INITIAL VALUE PROBLEMS FOR FRACTIONAL
 FUNCTIONAL DIFFERENTIAL INCLUSIONS
 WITH HADAMARD TYPE DERIVATIVES IN BANACH SPACES

John R. Graef, Nassim Guerraiche and Samira Hamani

Abstract

The authors establish sufficient conditions for the existence of solutions to boundary value problems for fractional differential inclusions involving the Hadamard type derivatives of order $\alpha \in(0,1]$ in Banach spaces.

1 Introduction

This paper is concerned with the existence of solutions to initial value problems (IVP for short) for fractional order functional differential inclusions. We consider the initial value problem

$$
\begin{gather*}
{ }^{H} D^{\alpha} y(t) \in F\left(t, y_{t}\right), \quad \text { for a.e. } t \in J=[1, T], 0<\alpha \leq 1, \tag{1.1}\\
y(t)=\varphi(t), \quad t \in[1-r, 1], \tag{1.2}
\end{gather*}
$$

where ${ }^{H} D^{\alpha}$ is the Hadamard fractional derivative, \mathbb{E} is a Banach space, $\mathcal{P}(\mathbb{E})$ is the family of all nonempty subsets of $\mathbb{E}, F:[1-r, T] \times \mathbb{E} \rightarrow \mathcal{P}(\mathbb{E})$ is a multivalued map, and $\varphi \in C([1-r, 1], \mathbb{E})$ with $\varphi(1)=0$. For any function y defined on $[1-r, T]$ and any $t \in J$, we denote by y_{t} the element of $C([1-r, 1], \mathbb{E})$ defined by

$$
y_{t}=y(t+\theta), \theta \in[1-r, 1] .
$$

Here, $y_{t}(\cdot)$ represents the history of the state of the system from the time $t-r$ up to the present time t.

Differential equations of fractional order have recently proved to be valuable tools in modeling many phenomena in various fields of science and engineering. There are

[^0]http://www.utgjiu.ro/math/sma
numerous applications in viscoelasticity, electrochemistry, control, porous media, electromagnetism, etc. documented in the literature (see [29, 32, 38]). There have been significant developments in the theory of fractional differential equations in recent years; see, for example, the monographs of Hilfer [30], Kilbas et al. [32], Momani et al. [35], and Podlubny [38], as well as the papers [1, 2, 11, 12, 13, 22, 23, 27, 29, 35]. However, the literature on Hadamard-type fractional differential equations has not undergone as much development; see, for example, [4, 10, 24, 25, 40]. The fractional derivative that Hadamard [26] introduced in 1892 differs from the aforementioned derivatives in the sense that the kernel of the integral in the definition of the Hadamard derivative contains a logarithmic function with an arbitrary exponent (see Definition 6 below). A detailed description of the Hadamard fractional derivative and integral can be found in $[15,16,17]$.

In this paper, we present existence results for the problem (1.1)-(1.2) in the case where the right hand side is convex valued. This result relies on the set-valued analog of Mönch's fixed point theorem combined with the technique of measure of noncompactness. Recently, this has proved to be a valuable tool in studying fractional differential equations and inclusions in Banach spaces; for details, see the papers of Agarwal et al. [2], Benchohra et al. [12, 13, 14], Graef et al. [25], and Laosta et al. [34]. The results here extend to the multivalued case some previous results in the literature, and we believe constitutes an interesting contribution to this emerging field of study.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts that will be used in the remainder of this paper.

Let $C(J, \mathbb{E})$ be the Banach space of all continuous functions from J into \mathbb{E} with the norm

$$
\|y\|_{\infty}=\sup \{|y(t)|: 0 \leq t \leq T\}
$$

and let $L^{1}(J, \mathbb{E})$ denote the Banach space of functions $y: J \rightarrow \mathbb{E}$ that are Lebesgue integrable with the norm

$$
\|y\|_{L^{1}}=\int_{0}^{T}|y(t)| d t
$$

We take $A C(J, \mathbb{E})$ to be the space of functions $y: J \rightarrow \mathbb{E}$ that are absolutely continuous. We endow the space $C([1-r, 1], \mathbb{E})$ with the norm

$$
\|\varphi\|_{C}=\sup \{|\varphi(\theta)|: 1-r \leq \theta \leq 1\}
$$

For any Banach space $(X,\|\cdot\|)$, we let $P_{c l}(X)=\{Y \in \mathcal{P}(X): Y$ is closed $\}$, $P_{b}(X)=\{Y \in \mathcal{P}(X): Y$ is bounded $\}, P_{c p}(X)=\{Y \in \mathcal{P}(X): Y$ is compact $\}$, and $P_{c p, c}(X)=\{Y \in \mathcal{P}(X): Y$ is compact and convex $\}$.

A multivalued map $G: X \rightarrow \mathcal{P}(X)$ is convex (closed) valued if $G(X)$ is convex (closed) for all $x \in X$. We say that G is bounded on bounded sets if $G(B)=$ $\cup_{x \in B} G(x)$ is bounded in X for all $B \in P_{b}(X)$ (i.e., $\left.\sup _{x \in B}\{\sup \{|y|: y \in G(x)\}\}\right)$.

The mapping G is called upper semi-continuous (u.s.c.) on X if for each $x_{0} \in X$, the set $G\left(x_{0}\right)$ is a nonempty closed subset of X, and for each open set N of X containing $G\left(x_{0}\right)$, there exists an open neighborhood N_{0} of x_{0} such that $G\left(N_{0}\right) \subset N$. Also, G is said to be completely continuous if $G(B)$ is relatively compact for every $B \in P_{b}(X)$.

If the multivalued map G is completely continuous with nonempty compact values, then G is u.s.c if and only if G has a closed graph (i.e., $x_{n} \rightarrow x_{*}, y_{n} \rightarrow y_{*}$, $y_{n} \in G\left(x_{n}\right)$ imply $\left.y_{*} \in G\left(x_{*}\right)\right)$. The mapping G has a fixed point if there is $x \in X$ such that $x \in G(x)$. The set of fixed point of the multivalued operator G will be denoted by FixG. A multivalued map $G: J \rightarrow P_{c l}(X)$ is said to be measurable if for every $y \in X$, the function

$$
t \rightarrow d(y, G(t))=\inf \{|y-z|: z \in G(t)\}
$$

is measurable.
Definition 1. A multivalued map $F: J \times \mathbb{E} \rightarrow \mathcal{P}(\mathbb{E})$ is said to be Carathéodory if:
(1) $t \rightarrow F(t, u)$ is measurable for each $u \in \mathbb{E}$;
(2) $u \rightarrow F(t, u)$ is upper semicontinuous for almost all $t \in J$.

For each $y \in A C(J, \mathbb{E})$, define the set of selections of F by

$$
S_{F, y}=\left\{v \in L^{1}(J, \mathbb{E}): v(t) \in F\left(t, y_{t}\right) \text { a.e. } t \in J\right\} .
$$

Let (X, d) be a metric space induced from the normed space $(X,|\cdot|)$. The function $H_{d}: \mathcal{P}(X) \times \mathcal{P}(X) \rightarrow \mathbb{R}_{+} \cup\{\infty\}$ given by

$$
H_{d}(A, B)=\max \left\{\sup _{a \in A} d(a, B), \sup _{b \in B} d(A, b)\right\}
$$

is known as the Hausdorff-Pompeiu metric.
For more details on multivalued maps see the books of Aubin and Cellina [6], Aubin and Frankowska [7], Castaing and Valadier [19], and Deimling [21].

Next, we define the Kuratowski measure of noncompactness and give some of its important properties.

Definition 2. ([5, 8]) Let \mathbb{E} be a Banach space and let $\Omega_{\mathbb{E}}$ be the set of all bounded subsets of \mathbb{E}. The Kuratowski measure of noncompactness is the map $\beta: \Omega_{\mathbb{E}} \rightarrow$ $[0, \infty)$ defined by

$$
\beta(B)=\inf \left\{\epsilon>0: B \subset \bigcup_{j=1}^{m} B_{j}, B \in \Omega_{\mathbb{E}}, \text { and } \operatorname{diam}\left(B_{j}\right) \leq \epsilon\right\} .
$$

Properties: The Kuratowski measure of noncompactness satisfies the following properties (for more details see $[5,8]$).
(1) $\beta(B)=0$ if and only if \bar{B} is compact (B is relatively compact).
(2) $\beta(B)=\beta(\bar{B})$.
(3) $A \subset B$ implies $\beta(A) \leq \beta(B)$.
(4) $\beta(A+B) \leq \beta(A)+\beta(B)$.
(5) $\beta(c B)=|c| \beta(B), c \in \mathbb{R}$.
(6) $\beta(\operatorname{con} B)=\beta(B)$.

Here \bar{B} and $\operatorname{con} B$ denote the closure and the convex hull of the bounded set B, respectively.

Theorem 3. ([28], [37, Theorem 1.3]) Let \mathbb{E} be a Banach space and $C \subset L^{1}(J, \mathbb{E})$ be a countable set with $|u(t)| \leq h(t)$ for a.e. $t \in J$ and every $u \in C$, where $h \in$ $L^{1}\left(J, \mathbb{R}_{+}\right)$. Then the function $\varphi(t)=\beta(C(t))$ belongs to $L^{1}\left(J, \mathbb{R}_{+}\right)$and satisfies

$$
\beta\left(\int_{0}^{T} u(s) d s: u \in C\right) \leq 2 \int_{0}^{T} \beta(C(s)) d s
$$

Lemma 4. ([34, Lemma 2.6]) Let J be a compact real interval, let F be a Carathéodory multivalued map, and let θ be a linear continuous map from $L^{1}(J, \mathbb{E}) \mapsto C(J, \mathbb{E})$. Then the operator

$$
\theta \circ S_{F, y}: C(J, \mathbb{E}) \mapsto P_{c p, c}(C(J, \mathbb{E})), \quad y \mapsto\left(\theta \circ S_{F, y}\right)(y)=\theta\left(S_{F, y}\right)
$$

is a closed graph operator in $C(J, \mathbb{E}) \times C(J, \mathbb{E})$.
In the remainder of this paper we use the notation that $\log (\cdot)=\log _{e}(\cdot)$ and that $[\alpha]$ denotes the integer part of α.

Definition 5. ([32]) The Hadamard fractional integral of order α of a function $h:[1, T] \rightarrow \mathbb{E}$ is defined by

$$
I^{\alpha} h(t)=\frac{1}{\Gamma(\alpha)} \int_{1}^{t}\left(\log \frac{t}{s}\right)^{\alpha-1} \frac{h(s)}{s} d s, \quad \alpha>0
$$

provided the integral exists.
Definition 6. ([32]) For a function h given on the interval $[1, T]$, the Hadamard fractional derivative of order α of h is defined by

$$
\left({ }^{H} D^{\alpha} h\right)(t)=\frac{1}{\Gamma(n-\alpha)}\left(t \frac{d}{d t}\right)^{n} \int_{1}^{t}\left(\log \frac{t}{s}\right)^{n-\alpha-1} \frac{h(s)}{s} d s, n-1<\alpha<n, n=[\alpha]+1,
$$

Here $[\alpha]$ denotes the integer part of α and $\log (\cdot)=\log _{e}(\cdot)$.

The following result, known as Mönch's fixed point theorem, will be used to prove our main results.

Theorem 7. ([37]) Let K be a closed, convex subset of a Banach space \mathbb{E}, U be a relatively open subset of K, and $N: \bar{U} \mapsto \mathcal{P}(K)$. Assume that graph N is closed, N maps compact sets into relatively compact sets, and for some $x_{0} \in U$, the following two conditions are satisfied:
(i) $M \subset \bar{U}, M \subset \operatorname{conv}\left(x_{0} \cup N(M)\right)$, and $\bar{M}=\bar{U}$ with C a countable subset of M, implies \bar{M} is compact;
(ii) $x \notin(1-\lambda) x_{0}+\lambda N(x)$ for all $x \in \bar{U} \backslash U, \quad \lambda \in(0,1)$.

Then there exists $x \in \bar{U}$ with $x \in N(x)$.

3 Main results

We begin this section with the definition of a solution to our problem (1.1)-(1.2).
Definition 8. A function $y \in A C([1-r, T], \mathbb{R})$ is said to be a solution of (1.1)-(1.2), if there exists a function $v \in L^{1}([1, T], \mathbb{R})$, with $v(t) \in F\left(t, y_{t}\right)$ for a.e. $t \in[1, T]$, such that

$$
{ }^{H} D^{\alpha} y(t)=v(t), \quad \text { a.e. } \quad t \in[1, T], \quad 0<\alpha<1
$$

and the function y satisfies condition (1.2).
Theorem 9. Let $R>0, B=\{x \in \mathbb{E}:\|x\| \leq R\}$, and $U=\{x \in C(J, \mathbb{E}):\|x\| \leq R\}$, and assume the following conditions hold:
(H1) $F: J \times \mathbb{E} \rightarrow \mathcal{P}_{c p, p}(\mathbb{E})$ is a Carathéodory multi-valued map;
(H2) There exists a function $p \in L^{1}(J, \mathbb{E})$ such that

$$
\|F(t, u)\|_{\mathcal{P}}=\sup \{|v|: v(t) \in F(t, y)\} \leq p(t)
$$

for each $(t, y) \in J \times \mathbb{E}$ with $|y| \geq R$, and

$$
\lim _{R \mapsto \infty} \inf \frac{\int_{0}^{T} p(t) d t}{R}=\delta<\infty
$$

(H3) There exists a Carathéodory function $\psi: J \times[1,2 R] \mapsto \mathbb{R}_{+}$such that

$$
\beta(F(t, M)) \leq \psi(t, \beta(M)) \text { a.e. } t \in J \text { and each } M \subset B
$$

(H4) The function $\varphi=0$ is the unique solution in $C(J,[1,2 R])$ of the inequality

$$
\varphi(t) \leq 2 \frac{1}{\Gamma(\alpha)} \int_{1}^{t}\left(\log \frac{t}{s}\right)^{\alpha-1} \psi(s, \varphi(s)) \frac{d s}{s} \quad \text { for } t \in J
$$

Then the IVP (1.1)-(1.2) has at least one solution in $C(J, B)$, provided that

$$
\begin{equation*}
\delta<\frac{\Gamma(\alpha+1)}{(\log T)^{\alpha}} \tag{3.1}
\end{equation*}
$$

Proof. To transform the problem (1.1)-(1.2) into a fixed point problem, consider the multivalued operator

$$
\begin{aligned}
& N(y)(t)=\{h \in C([1-r, T], \mathbb{R}): h(t) \\
&\left.=\left\{\begin{array}{l}
\varphi(t), \quad \text { if } t \in[1-r, 1] \\
\frac{1}{\Gamma(\alpha)} \int_{1}^{t}\left(\log \frac{t}{s}\right)^{\alpha-1} \frac{v(s)}{s} d s, \quad \text { if } t \in J
\end{array}\right\} \text { for } v \in S_{F, y}\right\}
\end{aligned}
$$

Clearly, the fixed points of N are solutions to (1.1)-(1.2). We shall show that N satisfies the assumptions of Mönch's fixed point theorem. The proof will be given in several steps.

Step 1: $N(y)$ is convex for each $y \in C(J, B)$. Let h_{1}, h_{2} belong to $N(y)$; then there exist $v_{1}, v_{2} \in S_{F, y}$ such that for each $t \in J$, we have

$$
h_{i}(t)=\frac{1}{\Gamma(\alpha)} \int_{1}^{t}\left(\log \frac{t}{s}\right)^{\alpha-1} \frac{v_{i}(s)}{s} d s
$$

for $i=1,2$. Let $0 \leq d \leq 1$. Then, for each $t \in J$, we have

$$
\left(d h_{1}+(1-d) h_{2}\right)(t)=\frac{1}{\Gamma(\alpha)} \int_{1}^{t}\left(\log \frac{t}{s}\right)^{\alpha-1}\left[d v_{1}+(1-d) v_{2}\right] \frac{d s}{s}
$$

Now $S_{F, y}$ is convex since F has convex values, so

$$
d h_{1}+(1-d) h_{2} \in N(y)
$$

Step 2: $N(M)$ is relatively compact for each compact set $M \subset \bar{U}$. Let $M \subset \bar{U}$ be a compact set and let $\left\{h_{n}\right\}$ be any sequence of elements of $N(M)$. We will show that $\left\{h_{n}\right\}$ has a convergent subsequence by using the Arzelà-Ascoli theorem. Since $h_{n} \in N(M)$, there exist $y_{n} \in M$ and $v_{n} \in S_{F, y}, n=1,2, \ldots$, such that

$$
\begin{equation*}
h_{n}(t)=\frac{1}{\Gamma(\alpha)} \int_{1}^{t}\left(\log \frac{t}{s}\right)^{\alpha-1} v_{n}(s) \frac{d s}{s} \tag{3.2}
\end{equation*}
$$

Using Theorem 3 and the properties of the Kuratowski measure of noncompactness, we have

$$
\begin{equation*}
\beta\left(\left\{h_{n}(t)\right\}\right) \leq 2\left[\frac{1}{\Gamma(\alpha)} \int_{1}^{t} \beta\left(\left\{\left(\log \frac{t}{s}\right)^{\alpha-1} \frac{v_{n}(s)}{s}\right\}\right) d s\right] \tag{3.3}
\end{equation*}
$$

On the other hand, since $M(s)$ is compact in \mathbb{E}, the set $\left\{v_{n}(s): n \geq 1\right\}$ is compact. Consequently, $\beta\left(\left\{v_{n}(s): n \geq 1\right\}\right)=0$ for a.e. $s \in J$. Furthermore,

$$
\beta\left(\left\{\left(\log \frac{t}{s}\right)^{\alpha-1} \frac{v_{n}(s)}{s}\right\}\right)=\left(\log \frac{t}{s}\right)^{\alpha-1} \beta\left(\left\{v_{n}(s): n \geq 1\right\}\right)=0
$$

for a.e. $t, s \in J$. Now (3.3) implies that $\left\{h_{n}(t): n \geq 1\right\}$ is relatively compact in B for each $t \in J$. In addition, for each $t_{1}, t_{2} \in J$ with $t_{1}<t_{2}$, we have

$$
\begin{aligned}
\left|h_{n}\left(t_{2}\right)-h_{n}\left(t_{1}\right)\right|= & \left\lvert\, \frac{1}{\Gamma(\alpha)} \int_{1}^{t_{1}}\left[\left(\log \frac{t_{2}}{s}\right)^{\alpha-1}-\left(\log \frac{t_{1}}{s}\right)^{\alpha-1}\right] \frac{v_{n}(s)}{s} d s\right. \\
& \left.+\frac{1}{\Gamma(\alpha)} \int_{t_{1}}^{t_{2}}\left(\log \frac{t_{2}}{s}\right)^{\alpha-1} \frac{v_{n}(s)}{s} d s \right\rvert\, \\
\leq & \frac{p(t)}{\Gamma(\alpha)} \int_{1}^{t_{1}}\left[\left(\log \frac{t_{2}}{s}\right)^{\alpha-1}-\left(\log \frac{t_{1}}{s}\right)^{\alpha-1}\right] \frac{d s}{s} \\
& +\frac{p(t)}{\Gamma(\alpha)} \int_{t_{1}}^{t_{2}}\left(\log \frac{t_{2}}{s}\right)^{\alpha-1} \frac{d s}{s}
\end{aligned}
$$

As $t_{1} \rightarrow t_{2}$, the right hand side of the above inequality tends to zero. This shows that $\left\{h_{n}: n \geq 1\right\}$ is equicontinuous. Consequently, $N(M)$ is relatively compact in $C(J, B)$.

Step 3: N has a closed graph. Let $y_{n} \rightarrow y_{*}, h_{n} \in N\left(y_{n}\right)$, and $h_{n} \rightarrow h_{*}$. We need to show that $h_{*} \in N\left(y_{*}\right)$. Now $h_{n} \in N\left(y_{n}\right)$ implies there exists $v_{n} \in S_{F, y}$ such that for each $t \in J$,

$$
h_{n}(t)=\frac{1}{\Gamma(\alpha)} \int_{1}^{t}\left(\log \frac{t}{s}\right)^{\alpha-1} v_{n}(s) \frac{d s}{s}
$$

Consider the continuous linear operator $\theta: L^{1}(J, E) \mapsto C(J, E)$ defined by

$$
\theta(v)(t) \mapsto h_{n}(t)=\frac{1}{\Gamma(\alpha)} \int_{1}^{t}\left(\log \frac{t}{s}\right)^{\alpha-1} v_{n}(s) \frac{d s}{s}
$$

Clearly, $\left\|h_{n}(t)-h(t)\right\| \rightarrow 0$ as $n \rightarrow \infty$. From Lemma 4 it follows that $\theta \circ S_{F, y}$ is a closed graph operator. Moreover, $h_{n}(t) \in \theta\left(S_{F, y_{n}}\right)$. Since $y_{n} \rightarrow y$, Lemma 4 implies

$$
h(t)=\frac{1}{\Gamma(\alpha)} \int_{1}^{t}\left(\log \frac{t}{s}\right)^{\alpha-1} v(s) \frac{d s}{s}
$$

Step 4: \bar{M} is compact. Assume $M \subset \bar{U}, M \subset \operatorname{conv}(\{0\} \cup N(M))$, and $\bar{M}=\bar{C}$ for some countable set $C \subset M$. By an argument similar to the one used in Step 2, we
see that $N(M)$ is equicontinuous. Since $M \subset \operatorname{conv}(\{0\} \cup N(M))$, we conclude that M is equicontinuous as well. To apply the Arzelà-Ascoli theorem, we need to show that $M(t)$ is relatively compact in \mathbb{E} for each $t \in J$. Since $C \subset M \subset \operatorname{conv}(\{0\} \cup N(M))$ and C is countable, we can find a countable set $H=\left\{h_{n}: n \geq 1\right\} \subset N(M)$ with $C \subset \operatorname{conv}(\{0\} \cup H)$. Then, there exist $y_{n} \in M$ and $v_{n} \in S_{F, y_{n}}$ such that

$$
h_{n}(t)=\frac{1}{\Gamma(\alpha)} \int_{1}^{t}\left(\log \frac{t}{s}\right)^{\alpha-1} v_{n}(s) \frac{d s}{s} .
$$

From the fact that $M \subset C \subset \operatorname{conv}(\{0\} \cup H)$), in view of Theorem 3, we have

$$
\beta(M(t)) \leq \beta(C(t)) \leq \beta(H(t))=\beta\left(\left\{h_{n}(t): n \geq 1\right\}\right) .
$$

Now in view of the fact that $v_{n}(s) \in M(s)$, applying (3.3), we have

$$
\begin{aligned}
\beta(M(t)) & \leq 2\left[\frac{1}{\Gamma(\alpha)} \int_{1}^{t} \beta\left(\left\{\left(\log \frac{t}{s}\right)^{\alpha-1} v_{n}(s) \frac{1}{s}: n \geq 1\right\}\right) d s\right] \\
& \leq 2\left[\frac{1}{\Gamma(\alpha)} \int_{1}^{t}\left(\log \frac{t}{s}\right)^{\alpha-1} \beta(M(s)) \frac{d s}{s}\right] \\
& \leq 2\left[\frac{1}{\Gamma(\alpha)} \int_{1}^{t}\left(\log \frac{t}{s}\right)^{\alpha-1} \psi(s, \beta(M(s))) \frac{d s}{s}\right]
\end{aligned}
$$

Also, the function φ given by $\varphi(t)=\alpha(M(t))$ belongs to $C(J,[1,2 R])$. Consequently, by $(H 3), \varphi=0$; that is, $\beta(M(t))=0$ for all $t \in J$. Thus, by the Arzelà-Ascoli theorem, M is relatively compact in $C(J, B)$.

Step 5: N has a fixed point. Let $h \in N(y)$ with $y \in U$. To see that $N(U) \subset U$, suppose this is not the the case. Then there would exist a function $y \in U$ with $\|N(y)\|_{\mathcal{P}}>R$ and

$$
h(t)=\frac{1}{\Gamma(\alpha)} \int_{1}^{t}\left(\log \frac{t}{s}\right)^{\alpha-1} v(s) \frac{d s}{s}
$$

for some $v \in S_{F, y}$. On the other hand,

$$
R \leq\|N(y)\|_{\mathcal{P}} \leq \frac{1}{\Gamma(\alpha)} \int_{1}^{t}\left(\log \frac{t}{s}\right)^{\alpha-1}|v(s)| \frac{d s}{s} \leq \frac{(\log T)^{\alpha}}{\Gamma(\alpha+1)} \int_{1}^{t} p(s) d s
$$

Dividing both sides by R and taking the $\lim \inf R \rightarrow \infty$, we conclude that

$$
\left[\frac{(\log T)^{\alpha}}{\Gamma(\alpha+1)}\right] \delta \geq 1
$$

which contradicts (3.1). Hence $N(U) \subset U$.
As a consequence of Steps $1-5$ and Theorem 7 , we conclude that N has a fixed point $y \in C(J, B)$ that in turn is a solution of the problem (1.1)-(1.2).

4 An example

In this section we apply the main result in this paper, Theorem 9 above, to the fractional differential inclusion

$$
\begin{gather*}
{ }^{H} D^{\alpha} y(t) \in F\left(t, y_{t}\right) \quad \text { for a.e. } t \in J=[1, T], 0<\alpha \leq 1, \tag{4.1}\\
y(t)=\varphi(t), \quad t \in[1-r, 1], \tag{4.2}
\end{gather*}
$$

where $F:[1-r, T] \times \mathbb{R} \rightarrow \mathcal{P}(\mathbb{R})$ is a multivalued map, and $\varphi \in C([1-r, 1], \mathbb{R})$ with $\varphi(1)=0$. Set

$$
F(t, y)=\left\{v \in \mathbb{R}: f_{1}(t, y) \leq v \leq f_{2}(t, y)\right\}
$$

where $f_{1}, f_{2}:[1-r, T] \times \mathbb{R} \mapsto \mathbb{R}$. We assume that for each $t \in[1-r, T], f_{1}(t, \cdot)$ is lower semi-continuous (i.e., the set $\left\{y \in \mathbb{R}: f_{1}(t, y)>\mu\right\}$ is open for each $\mu \in \mathbb{R}$), and $f_{2}(t, \cdot)$ is upper semi-continuous (i.e., the set $\left\{y \in \mathbb{R}: f_{2}(t, y)<\mu\right\}$ is open for each $\mu \in \mathbb{R})$. We also assume that there is a function $\left.p \in L^{1}(J, \mathbb{R})\right)$ such that

$$
\begin{aligned}
&\|F(t, u)\|_{\mathcal{P}}=\sup \{|v|: v(t) \in F(t, y)\} \\
&=\max \left(\left|f_{1}(t, y)\right|,\left|f_{2}(t, y)\right| \leq p(t) \quad \text { for } t \in[1-r, T] \text { and } y \in \mathbb{R} .\right.
\end{aligned}
$$

It is clear that F is compact and convex valued and is upper semi-continuous.
We take $C(s)$ to be the space of linear functions, i.e., we will choose $\varphi(t)=$ $\beta(C(t))$ such that

$$
\beta(u(s))=\frac{u(s)}{2}
$$

where

$$
u(s)=a s, \quad a>0, \quad \text { and } \quad \frac{2}{a} \leq s \leq \frac{4 R}{a} .
$$

For each $(t, y) \in J \times \mathbb{R}$ with $|y| \geq R$ we have

$$
\lim _{R \mapsto \infty} \inf \frac{\int_{0}^{T} p(t) d t}{R}=\delta<\infty .
$$

Finally, we assume that there exists a Carathéodory function $\psi: J \times[1,2 R] \mapsto \mathbb{R}_{+}$ such that

$$
\beta(F(t, M)) \leq \psi(t, \beta(M)) \text {, a.e. } t \in J \text { and each } M \subset B,
$$

and $\varphi=0$ is the unique solution in $C(J,[1,2 R])$ of the inequality

$$
\varphi(t) \leq 2 \frac{1}{\Gamma(\alpha)} \int_{1}^{t}\left(\log \frac{t}{s}\right)^{\alpha-1} \psi(s, \varphi(s)) \frac{d s}{s}
$$

for $t \in J$. Since all the conditions of Theorem 9 are satisfied, problem (4.1)-(4.2) has at least one solution y on $[1-r, e]$.

References

[1] R. P. Agarwal, M. Benchohra and S. Hamani, A survey on existence results for boundary value problems for nonlinear fractional differential equations and inclusions, Acta Applicandae Math. 109 (2010), 973-1033. MR2596185(2011a:34008). Zbl 1196.26009.
[2] R. P. Agarwal, M. Benchohra and D. Seba, On the application of measure of noncompactness to the existence of solutions for fractional differential equations, Results Math. 55 (2009), 221-230. MR2571191(2011d:34006). Zbl 1159.54001.
[3] R. P. Agarwal, M. Meehan and D. O’Regan, Fixed Point Theory and Applications, Cambridge Tracts in Mathematics 141 Cambridge University Press, Cambridge, UK, 2001. MR1825411(2002c:47122). Zbl 1185.26010.
[4] B. Ahmed and S. K. Ntouyas, Initial value problems for hybrid Hadamard fractional equations, Electron. J. Diff. Equ. 2014 (2014), No. 161, pp. 1-8. MR3239404. Zbl 1300.34012.
[5] R. R. Akhmerov, M. I. Kamenski, A. S. Patapov, A. E. Rodkina and B. N. Sadovski, Measure of Noncompactness and Condensing Operators, Translated from the 1986 Russian original by A. Iacop., Operator Theory: Advances and Applications, 55, Birkhäuser Verlag, Bassel, 1992. MR1153247(92k:47104).
[6] J. P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, BerlinHeidelberg, New York, 1984. MR0755330(85j:49010). Zbl 0538.34007.
[7] J. P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhauser, Boston, 1990. MR1048347(91d:49001). Zbl 0713.49021.
[8] J. Banas and K. Goebel, Measure of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics, Vol. 60, Dekker, New York, 1980. MR0591679(82f:47066). Zbl 0441.47056.
[9] J. Banas and K. Sadarangani, On some measures of noncompactness in the space of continous functions, Nonlinear Anal. 60 (2008), 377-383. MR2369904(2008m:46024). Zbl 1134.46012.
[10] M. Benchohra, S. Bouriah and J. R. Graef, Boundary value problems for nonlinear implicit Caputo-Hadamard type fractional differential equations with impulses, Mediterr. J. Math., to appear.
[11] M. Benchohra, S. Hamani and S. K. Ntouyas, Boundary value problems for differential equations with fractional order, Surveys in Mathematics and its Applications 3 (2008), 1-12. MR2390179(2009b:34188). hrefhttps://zbmath.org/?q=an:1157.26301Zbl 1157.26301.
[12] M. Benchohra, J. Henderson, and D. Seba, Boundary value problems for fractional differential inclusions in Banach Space, Frac. Diff. Cal. 2 (2012), 99-108. MR3003005.
[13] M. Benchohra, J. Henderson, and D. Seba, Meusure of noncompactenes and fractional differential equations in Banach Space, Commun. Appl. Anal. 12 (2008), 419-428. MR2494987(2010c:34088).
[14] M. Benchohra, J. J. Nieto and D. Seba, Measure of noncompactenes and fractional and hyperbolic partial fractional differential equations in Banach space, Panamer. Math. J. 20 (2010), 27-37. MR2760586. Zbl 1225.26005.
[15] P. L. Butzer, A. A. Kilbas and J. J. Trujillo, Composition of Hadamard-type fractional integration operators and the semigroup property, Math. Anal. Appl. 269 (2002), 387-400. MR1907120(2003k:47073). Zbl 1027.26004.
[16] P. L. Butzer, A. A. Kilbas and J. J. Trujillo, Fractional calculus in the Mellin setting and Hadamard-type fractional integrals, J. Math. Anal. Appl. 269 (2002), 1-27. MR1907871(2003k:47072). Zbl 0995.26007.
[17] P. L. Butzer, A. A. Kilbas and J. J. Trujillo, Mellin transform analysis and integration by parts for Hadamard-type fractional integrals, J. Math. Anal. Appl. 270 (2002), 1-15. MR1911748(2003k:47074). Zbl 1022.26011.
[18] L. Byszewski, Existence and uniqueness of mild and classical solutions of semilinear functional-differential evolution nonlocal Cauchy problem, Selected Problems of Mathematics, 25-33, 50th Anniv. Cracow Univ. Technol. Anniv. Issue 6, Cracow Univ. Technol., Kraków, 1995. MR1438064(97k:34123).
[19] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics 580, Springer-Verlag, Berlin-Heidelberg-New York, 1977. MR0467310(57 \#7169). Zbl 0346.46038.
[20] H. Covitz and S. B. Nadler Jr., Multivalued contraction mappings in generalized metric spaces, Israel J. Math. 8 (1970), 5-11. MR0263062(41 \#7667). Zbl 0192.59802 .
[21] K. Deimling, Multivalued Differential Equations, De Gruyter, Berlin-New York, 1992. MR1189795(94b:34026). Zbl 0760.34002.
[22] D. Delbosco and L. Rodino, Existence and uniqueness for a nonlinear fractional differential equation, J. Math. Anal. Appl. 204 (1996), 609-625. MR1421467(98b:34020). Zbl 0881.34005.
[23] K. Diethelm and N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl. 265 (2002), 229-248. MR1876137(2002m:34004). hrefhttps://zbmath.org/?q=an:1014.34003Zbl 1014.34003.
[24] J. R. Graef, S. R. Grace and E. Tunç, Asymptotic behavior of solutions of nonlinear fractional differential equations with Caputo-type Hadamard derivatives, Fract. Calc. Appl. Anal. 20 (2017), 71-87, MR3613321. Zbl 1359.34009.
[25] J. R. Graef, N. Guerraiche and S. Hamani, Boundary value problems for fractional differential inclusions with Hadamard type derivatives in Banach spaces Stud. Univ. Babeş-Bolyai Math., to appear.
[26] J. Hadamard, Essai sur l'etude des fonctions donnees par leur development de Taylor, J. Mat. Pure Appl. Ser. 8 (1892), 101-186. JFM 24.0359.01.
[27] S. Hamani, M. Benchohra and J. R. Graef, Existence results for boundary-value problems with nonlinear fractional differential inclusions and integral conditions, Electron. J. Diff. Equ. 10 (2010), No. 20, pp. 1-16. MR2592005(2010i:34024). Zbl 1185.26010.
[28] H. P. Heinz, On the behaviour of measure of noncompacteness with respect of differentiation and integration of vector-valued function, Nonlinear Anal. 7 (1983), 1351-1371. MR0726478(86i:47082). Zbl 528:47046.
[29] N. Heymans and I. Podlubny, Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives, Rheologica Acta 45 (2006), 765-772.
[30] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. MR1890106(2003f:26006). Zbl 0998.26002.
[31] A. A. Kilbas and S. A. Marzan, Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions, Differential Equations 41 (2005), 84-89. MR2213269(2006k:34010). Zbl 1160.34301.
[32] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006. MR2218073(2007a:34002). Zbl 1092.45003.
[33] V. Lakshmikantham and S. Leela, Nonlinear Differential Equations in Abstract Spaces, International Series in Mathematics: Theory, Methods and Applications, 2, Pergamon Press, Oxford, UK, 1981. MR0616449(82i:34072). Zbl 0456.34002.
[34] A. Lasota and Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equation, Bull. Accd. Pol. Sci., Ser. Sci. Math. Astronom. Phys. 13 (1965), 781-786. MR0196178(33 \#4370).
[35] S. M. Momani, S. B. Hadid and Z. M. Alawenh, Some analytical properties of solutions of differential equations of noninteger order, Int. J. Math. Math. Sci. 2004 (2004), 697-701. MR2054178(2005b:34074). Zbl 1069.34002.
[36] H. Mönch, Boundary value problem for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal. 75 (1980), 985-999. MR0586861(82c:34075). Zbl 0462.34041.
[37] D. O'Regan and R. Precup, Fixed point theorems for set-valued maps and existence principles for integral inclusions, J. Math. Anal. Appl. 245 (2000), 594-612. MR1758558(2001b:47112). Zbl 0956.47026.
[38] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999. MR1658022(99m:26009). Zbl 0924.34008.
[39] S. Szufla, On the application of measure of noncompactness to existence theorems, Rend. Semin. Mat. Univ. Padova 75 (1986), 1-14. MR0847653(87g:34071). Zbl 0589.45007.
[40] P. Thiramanus, S. K. Ntouyas and J. Tariboon, Existence and uniqueness results for Hadamard- type fractional differential equations with nonlocal fractional integral boundary conditions, Abstr. Appl. Anal. (2014), Art. ID 902054, 9 pp. MR3228094.

John R. Graef
Department of Mathematics,
University of Tennessee at Chattanooga,
Chattanooga, TN 37403-2504, USA.
e-mail: John-Graef@utc.edu

Nassim Guerraiche
Laboratoire des Mathématiques Appliqués et Pures, Université de Mostaganem, B.P. 227, 27000, Mostaganem, ALGERIE.
nassim.guerraiche@univ-mosta.dz

Samira Hamani

Laboratoire des Mathématiques Appliqués et Pures,
Université de Mostaganem, B.P. 227, 27000, Mostaganem, ALGERIE.
hamani_samira@yahoo.fr

License

This work is licensed under a Creative Commons Attribution 4.0 International License. © (1)

[^0]: 2010 Mathematics Subject Classification: 34K09; 34K37.
 Keywords: initial value problems; fractional derivatives; functional differential inclusions; Hadamard derivatives.

