n-JORDAN MULTIPLIERS

Mohammad Fozouni

Abstract

Let A be a Banach algebra, X be a Banach left A-module and $n \geq 2$ be an integer. A bounded linear operator $T: A \longrightarrow X$ is called an n-Jordan multiplier if for each $a \in A$, $T\left(a^{n}\right)=a \cdot T\left(a^{n-1}\right)$. In this paper we investigate this notion and give some illuminating examples. Also, we give an approximate local version of n-Jordan multipliers and try to investigate when an approximate local n-Jordan multiplier is an n-Jordan multiplier. Finally, for functional Banach algebras we give a characterization of n-Jordan multipliers.

1 Introduction and preliminaries

The theory of multipliers for the first time introduced and studied by Helgason in [5]. Also, Wang in [10] investigated and studied this notion and proved some remarkable results of multipliers. Indeed, for a Banach algebra A, a linear operator $T: A \longrightarrow A$ is a (right) multiplier if $T(a b)=a T(b)$ for all $a, b \in A$.

On the other hand, Hejazian et al., introduced the concept of n-homomorphisms for integers $n \geq 2$; see [4]. Also, Gordji in [3] introduced the theory of n-Jordan homomorphisms and gave a nice relation between 3 -homomorphisms and 3 -Jordan homomorphisms.

Using the idea of n-homomorphisms, Laali and the author of the paper in [7], introduced and studied the notion of n-multipliers and gave a nice relation of this notion with n-homomorphisms.

In this paper we introduce and investigate the notion of n-Jordan multiplier from a Banach algebra A into a Banach left A-module X. In the sequel of this section we give some preliminaries which will be used later. For undefined concepts we refer the reader to [2].

Definition 1. A Banach algebra A is called nilpotent if there exists an integer $n \geq 2$ such that

$$
A^{n}=\left\{a_{1} a_{2} a_{3} \ldots a_{n}: a_{1}, a_{2}, a_{3}, \ldots, a_{n} \in A\right\}=\{0\} .
$$

[^0]http://www.utgjiu.ro/math/sma

The index of A, denoted by $I(A)$, is the minimum $n \in \mathbb{N}$ such that $A^{n}=\{0\}$. So, if $I(A)=n$, there exists elements $a_{1}, a_{2}, \ldots a_{n-1} \in A$ such that $a_{1} a_{2} \ldots a_{n-1} \neq 0$.

Definition 2. Let A be an Banach algebra. We say that A is nil if there exists $n \in \mathbb{N}$ such that $a^{n}=0$ for all $a \in A$. The nil index of A, denoted by $N I(A)$ is the minimum $n \in \mathbb{N}$ such that $a^{n}=0$ for all $a \in A$.

Theorem 3. (Grabiner) Let A be a nil (F)-algebra. Then A is nilpotent.
Proof. See [2, Theorem 2.6.34].
To see the definition of an (F)-algebra see [2, Definition 2.2.5]. As an example, every Banach algebra is an (F)-algebra.

Let A be a Banach algebra and $a, b \in A$. Define a bounded bilinear functional on $A^{*} \times A^{*}$ as

$$
(a \otimes b)(f, g)=f(a) g(b) \quad\left(f, g \in A^{*}\right)
$$

The projective tensor product space $A \widehat{\otimes} A$ with the above multiplication, natural addition and the norm

$$
\|x\|=\inf \left\{\sum_{n=1}^{\infty}\left\|a_{n}\right\|\left\|b_{n}\right\|<\infty: x=\sum_{n=1}^{\infty} a_{n} \otimes b_{n}\right\}
$$

is a Banach algebra that is characterized as follows;

$$
\left\{\sum_{n=1}^{\infty} a_{n} \otimes b_{n}: n \in \mathbb{N}, a_{n}, b_{n} \in A, \sum_{n=1}^{\infty}\left\|a_{n}\right\|\left\|b_{n}\right\|<\infty\right\} .
$$

Clearly, $A \widehat{\otimes} A$ with the following action is a Banach left A-module;

$$
a \cdot(b \otimes c)=a b \otimes c \quad(a, b, c \in A) .
$$

2 -Jordan multipliers

Let A be a Banach algebra and X be a Banach left A-module. Recall that a bounded linear map $T: A \rightarrow X$ is called a right Jordan multiplier if $T\left(a^{2}\right)=a \cdot T(a)$ for each $a \in A$. In the rest we drop the prefix right for simplicity. We give the following definition of an n-Jordan multiplier as a generalization of Jordan multipliers.

Definition 4. Let A be a Banach algebra, X be a Banach left A-module and let $n \geq 2$ be an integer. A bounded linear map $T: A \rightarrow X$ is an n-Jordan multiplier if

$$
T\left(a^{n}\right)=a \cdot T\left(a^{n-1}\right) \quad(a \in A) .
$$

Clearly, each Jordan multiplier is an n-Jordan multiplier but the converse is not valid in general (see Example 5 below). We denote by $\operatorname{JMul}_{n}(A, X)$ the set of all n-Jordan multipliers from A into X and suppose that $\operatorname{JMul}_{n}(A)=\operatorname{JMul}_{n}(A, A)$. It is clear that $\mathrm{JMul}_{n}(A, X)$ is a vector subspace of $B(A, X)$; the Banach space of all bounded linear operators from A into X, and one can see that it is closed, because if $\left\{T_{m}\right\}$ is a sequence in $\operatorname{JMul}_{n}(A, X)$ for which $T_{n} \longrightarrow T$ where $T \in B(A, X)$, then for each $a \in A$ we have

$$
\begin{aligned}
\left\|T\left(a^{n}\right)-a \cdot T\left(a^{n-1}\right)\right\| & \leq\left\|T\left(a^{n}\right)-T_{m}\left(a^{n}\right)\right\|+\left\|T_{m}\left(a^{n}\right)-a \cdot T\left(a^{n-1}\right)\right\| \\
& \leq\left\|T-T_{m}\right\|\left\|a^{n}\right\|+\left\|a \cdot T_{m}\left(a^{n-1}\right)-a \cdot T\left(a^{n-1}\right)\right\| \\
& \leq\left\|T-T_{m}\right\|\left\|a^{n}\right\|+\left\|T-T_{m}\right\|\|a\|\left\|a^{n-1}\right\| .
\end{aligned}
$$

If $m \rightarrow \infty$, the right hand side of the above inequalities tend to zero and hence $T\left(a^{n}\right)-a \cdot T\left(a^{n-1}\right)$. So, T is an n-Jordan multiplier. Hence, $\operatorname{JMul}_{n}(A, X)$ is closed.

Therefore, $\operatorname{JMul}_{n}(A, X)$ is a Banach space for every positive integer $n \geq 2$.
Following the notations of $[7]$, let $\operatorname{Mul}_{n}(A, X)$ show the set of all n-multipliers from A into X. Note that $T \in \operatorname{Mul}_{n}(A, X)$ if

$$
T\left(a_{1} a_{2} \ldots a_{n}\right)=a_{1} \cdot T\left(a_{2} \ldots a_{n}\right) \quad\left(a_{1}, a_{2}, a_{3}, \ldots, a_{n} \in A\right) .
$$

The following example shows the difference between 3-Jordan multipliers and Jordan multipliers.

Example 5. Suppose that A defined as follows

$$
A=\left[\begin{array}{cccc}
0 & \mathbb{R} & \mathbb{R} & \mathbb{R} \\
0 & 0 & \mathbb{R} & \mathbb{R} \\
0 & 0 & 0 & \mathbb{R} \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Clearly, A is a Banach algebra equipped with the usual matrix-like operations and l_{1}-norm, that is, the sum of all absolute values of entries. Define the operator $T: A \longrightarrow A$ as follows

$$
T\left(\left[\begin{array}{llll}
0 & a & b & c \\
0 & 0 & d & e \\
0 & 0 & 0 & f \\
0 & 0 & 0 & 0
\end{array}\right]\right)=\left[\begin{array}{llll}
0 & f & b & c \\
0 & 0 & d & e \\
0 & 0 & 0 & a \\
0 & 0 & 0 & 0
\end{array}\right]
$$

where $\mathfrak{a}=\left[\begin{array}{llll}0 & a & b & c \\ 0 & 0 & d & e \\ 0 & 0 & 0 & f \\ 0 & 0 & 0 & 0\end{array}\right]$ is an arbitrary element of A. Clearly, T is a bounded
linear operator on $A, \mathfrak{a}^{2}=\left[\begin{array}{cccc}0 & 0 & a d & a e+b f \\ 0 & 0 & d & d f \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$ and $\mathfrak{a}^{3}=\left[\begin{array}{cccc}0 & 0 & 0 & a d f \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$.
Therefore, $T\left(\mathfrak{a}^{2}\right)=\mathfrak{a}^{2}$ and $T\left(\mathfrak{a}^{3}\right)=\mathfrak{a}^{3}$. Now, immediately one can see that T is a 3-Jordan multiplier but it is not a Jordan multiplier.

In the following proposition we show that the class of n-Jordan multipliers is strictly larger than the class of n-multipliers.

Proposition 6. There exists a Banach algebra A and a Banach left A-module X such that

$$
\operatorname{Mul}_{n}(A, X) \subsetneq \operatorname{JMul}_{n}(A, X) \quad(n=3,4,5, \ldots)
$$

Moreover, there exists a Banach algebra A and a Banach left A-module X such that for every positive integer $n \geq 3$,

$$
\operatorname{JMul}_{n-1}(A, X) \subsetneq \operatorname{JMul}_{n}(A, X)
$$

Proof. For each Banach algebra A and Banach left A-module X, clearly

$$
\operatorname{Mul}_{n}(A, X) \subseteq \operatorname{JMul}_{n}(A, X)
$$

Now, let A be a nil Banach algebra such that $N I(A)=n$. So, A is nilpotent by Grabiner's Theorem. Suppose that $I(A)=m$ and $m>n$. Therefore, there exists $a_{1}, a_{2}, \ldots a_{m-1}$ in A such that $a_{1} a_{2} \ldots a_{m-1} \neq 0$. Take $X=A \widehat{\otimes} A$ and let $T: A \rightarrow X$ be an operator specified by

$$
\begin{equation*}
T(a)=a_{1} a_{2} \ldots a_{m-1} \otimes a \quad(a \in A) \tag{2.1}
\end{equation*}
$$

The operator T is an element of $\operatorname{JMul}_{n}(A, X)$ which is not belong to $\operatorname{Mul}_{n}(A, X)$. Because,

$$
\begin{aligned}
& T\left(a^{n}\right)=a_{1} a_{2} \ldots a_{m-1} \otimes a^{n}=0 \\
& a . T\left(a^{n-1}\right)=a\left(a_{1} a_{2} \ldots a_{m-1} \otimes a^{n-1}\right)=a a_{1} a_{2} \ldots a_{m-1} \otimes a^{n-1}=0
\end{aligned}
$$

and $T\left(a_{1} a_{2} \ldots a_{n}\right)=a_{1} a_{2} \ldots a_{m-1} \otimes a_{1} a_{2} \ldots a_{n} \neq 0=a_{1} \cdot T\left(a_{2} a_{3} \ldots a_{n}\right)$.
For the second part of the theorem, take the Banach algebra A and X as above and let T be the operator defined by equation 2.1. It is clear that every $(n-1)$-Jordan multiplier is an n-Jordan multiplier. On the other hand, there exists an element $a_{0} \in A$ such that $a_{0}^{n-1} \neq 0$. Hence, $T\left(a_{0}^{n-1}\right)=a_{1} a_{2} \ldots a_{m-1} \otimes a_{0}^{n-1} \neq 0=a_{0} \cdot T\left(a_{0}^{n-2}\right)$ and this show the strict inclusion.

Let $\left\{A_{n}: n \in \mathbb{N}\right\}$ be a collection of algebras. Suppose that $\prod_{n} A_{n}$ denotes the product space of the collection $\left\{A_{n}: n \in \mathbb{N}\right\}$ such that the linear operations being given coordinatewise. We recall that the c_{0}-direct sum of the collection is

$$
\bigoplus_{n}^{0} A_{n}=\left\{\left(a_{n}\right) \in \prod_{n} A_{n}: \lim _{n} a_{n}=0,\left\|\left(a_{n}\right)\right\|_{\infty}=\sup \left\|a_{n}\right\|_{A_{n}}<\infty\right\} .
$$

Remark 7. There exists a Banach algebra A and a Banach left A-module X such that A is not nil and $\operatorname{JMul}_{2}(A, X) \subsetneq \operatorname{JMul}_{3}(A, X)$. To see this, let $\left\{A_{n}\right\}$ be a collection of Banach algebras such that A_{1} is nil with $N I\left(A_{1}\right)=3$. So, by Grabiner's Theorem, there exists $m \in \mathbb{N}$ such that $I\left(A_{1}\right)=m$. Also, let $A=\bigoplus_{n}^{0} A_{n}$ and $X=A \widehat{\otimes} A$. There exists $c_{1}, \ldots c_{m-1} \in A_{1}$ with $c_{1} c_{2} \ldots c_{m-1} \neq 0$. For $1 \leq i \leq m-1$, put $a_{i}=\left(c_{i}, 0, \ldots\right)$ and $\mathfrak{a}=a_{1} a_{2} \ldots a_{m-1}$. Define the operator $T: A \longrightarrow X$ by

$$
T\left(\left(b_{n}\right)\right)=\mathfrak{a} \otimes\left(b_{n}\right) \quad\left(\left(b_{n}\right) \in A\right) .
$$

Now, it is easy to check that $T \in \operatorname{JMul}_{3}(A, X) \backslash \operatorname{JMul}_{2}(A, X)$ and A is not a nil Banach algebra in general.

3 Approximate local n-Jordan multipliers

Suppose that $T: A \rightarrow X$ is a bounded linear operator such that X is a Banach left A-module. We say that the operator T is an approximate local n-Jordan multiplier if, for each $a \in A$, there exist a sequence $\left\{T_{a, m}\right\}$ in $\operatorname{JMul}_{n}(A, X)$ such that, $T(a)=$ $\lim _{m} T_{a, m}(a)$. Samei in [9], investigated approximate local multipliers and answered this question; When an approximate local multiplier is a multiplier? In this section we answer this question in the setting of n-Jordan multipliers.

To proceed further first we recall the algebraic reflexivity from [1]. Let X and Y be Banach spaces and S be a subset of $B(X, Y)$. Put

$$
\operatorname{ref}(S)=\{T \in B(X, Y): T(x) \in \overline{\{s(x): s \in S\}} \quad \forall x \in X\}
$$

Then S is algebraically reflexive if, $S=\operatorname{ref}(S)$ or just $\operatorname{ref}(S) \subseteq S$.
Lemma 8. Let A be a Banach algebra, X be a Banach left A-module and $n \geq 3$, be an integer. Then the following statements are equivalent.

1. Every approximate local n-Jordan multiplier from A into X is an n-Jordan multiplier.
2. $\operatorname{JMul}_{\mathrm{n}}(A, X)$ is algebraically reflexive.

Proof. (1) $\Rightarrow(2):$ Let $T \in \operatorname{ref}\left(\operatorname{JMul}_{n}(A, X)\right)$. So, for each $a \in A$ there exists a sequence $\left\{T_{a, m}\right\}$ in $\operatorname{JMul}_{n}(A, X)$ such that, $T(a)=\lim _{m} T_{a, m}(a)$. Hence, T is an
approximate local n-Jordan multiplier. Therefore, T is an n-Jordan multiplier by assumption and this shows that $\mathrm{JMul}_{n}(\mathrm{~A}, \mathrm{X})$ is algebraically reflexive.
$(2) \Rightarrow(1)$: Let $T: A \rightarrow X$ be an approximate local n-Jordan multiplier. So, for each $a \in A$, there exists a sequence $\left\{T_{a, m}\right\}$ such that, $T(a)=\lim _{m} T_{a, m}(a)$. Hence, $T \in \operatorname{ref}\left(\operatorname{JMul}_{n}(A, X)\right)$ and reflexivity of $\operatorname{JMul}_{n}(A, X)$ implies that T is an n-Jordan multiplier.

Let A be a Banach algebra and X be a Banach left A-module. Then for each $x \in X$, the left annihilator of x in A is defined by $x^{\perp}=\{a \in A: a \cdot x=0\}$.

Theorem 9. Suppose that A is a Banach algebra such that $\operatorname{JMul}_{n}\left(A, A^{*}\right)$ is algebraically reflexive and X is a Banach left A-module such that $\left\{x \in X: x^{\perp}=A\right\}=0$. Then every approximate local n-Jordan multiplier from A into X is an n-Jordan multiplier.

Proof. Let $T: A \rightarrow X$ be an approximate local n-Jordan multiplier and $f \in X^{*}$. Define a $\operatorname{map} \mathfrak{K}_{f}: X \rightarrow A^{*}$ as follows

$$
\mathfrak{K}_{f}(x)=x \bullet f \quad(x \in X)
$$

where $x \bullet f \in A^{*}$ is defined by $x \bullet f(a)=f(a \cdot x)$ for all $a \in A$. Therefore, \mathfrak{K}_{f} is a bounded left A-module morphism. Because, for $a \in A$ and $x \in X$ we have

$$
\mathfrak{K}_{f}(a \cdot x)=(a \cdot x) \bullet f=a \cdot(x \bullet f)=a \cdot \mathfrak{K}_{f}(x)
$$

So, using Lemma 8, we conclude that $\mathfrak{K}_{f} \circ T \in \operatorname{JMul}_{n}\left(A, A^{*}\right)$.
Now, for $a \in A$ we have

$$
\begin{aligned}
\mathfrak{K}_{f}\left(T\left(a^{n}\right)\right)=\mathfrak{K}_{f} \circ T\left(a^{n}\right) & =a \cdot \mathfrak{K}_{f} \circ T\left(a^{n-1}\right) \\
& =a \cdot \mathfrak{K}_{f}\left(T\left(a^{n-1}\right)\right) \\
& =\mathfrak{K}_{f}\left(a \cdot T\left(a^{n-1}\right)\right) .
\end{aligned}
$$

Therefore, $\mathfrak{K}_{f}\left(T\left(a^{n}\right)-a \cdot T\left(a^{n-1}\right)\right)=0$. If we put $u=T\left(a^{n}\right)-a \cdot T\left(a^{n-1}\right)$, then $f(a \cdot u)=0$ for all $a \in A$. So, by the Hahn-Banach theorem we have $a \cdot u=0$ for all $a \in A$. So, $u^{\perp}=A$ and this implies that $u=0$. Hence, T is an n-Jordan multiplier.

4 Characterization on functional Banach algebra

Let $(A,\|\cdot\|)$ be a non-empty Banach space and $0 \neq f \in A^{*}$. For each $a, b \in A$ define, $a \circ b=f(b) a$. One can easily check that A with the multiplication " \circ " and the norm $\|\cdot\|$ is a Banach algebra called the functional Banach algebra which will be denoted by A_{f}; see [8] and [6] for more details. For each $a \in A$, let $a^{n}=\overbrace{a \circ a \circ a \circ \ldots \circ a}^{n \text { times }}$.

Theorem 10. Let f be an injective functional, $\operatorname{dim}(A)>1$ and $T: A_{f} \rightarrow A_{f}$ be a bounded linear operator. Then the following assertions are equivalent.

1. T is an n-Jordan multiplier.
2. $T(a) \circ a=a \circ T(a)$ for all $a \in A$.
3. $T(a) \circ b=b \circ T(a)$ for all $a, b \in A$.

Proof. (1) $\Rightarrow(2)$: Let $a \in A$ and $T(a) \circ a=a \circ T(a)$. So, we have

$$
\begin{aligned}
T\left(a^{n}\right)=T\left(f(a)^{n-1} a\right) & =f(a)^{n-1} T(a)=f(a)^{n-2}(T(a) \circ a) \\
& =f(a)^{n-2}(a \circ T(a))=a \circ\left(f(a)^{n-2} T(a)\right) \\
& =a \circ T\left(a^{n-1}\right)
\end{aligned}
$$

Therefore, T is an n-Jordan multiplier.
$(2) \Rightarrow(1)$: Let T be an n-Jordan multiplier. So, we have

$$
\begin{aligned}
f(a)^{n-2}(T(a) \circ a)=f(a)^{n-1} T(a)=T\left(a^{n}\right) & =a \circ T\left(a^{n-1}\right) \\
& =a f(a)^{n-2} f(T(a)) \\
& =f(a)^{n-2}(a \circ T(a))
\end{aligned}
$$

Now, we have two cases; If $f(a) \neq 0$, then $T(a) \circ a=a \circ T(a)$ and if $f(a)=0$, the injectivity of f yields $a=0$. Therefore $T(a)=0$ and hence $f(T(a))=0$. So $T(a) \circ a=a \circ T(a)$, which completes the proof.
$(3) \Rightarrow(2)$: This is clear.
$(2) \Rightarrow(3)$: The Banach algebra A_{f} is a semiprime ring, i.e., if $a \in A$ and $a A_{f} a=\{0\}$, then $a=0$. Since, $\operatorname{dim}(A)>1$ we conclude that the characteristic of A_{f} is not two, i.e., the minimum number such that $a^{n}=e$ is not two (e is the identity element of A_{f}). Since $T(a) \circ a=a \circ T(a)$ for all $a \in A$, we conclude that T is a Jordan multiplier. Therefore, by [11, Proposition 1.4], T is a multiplier. Now, with the same argument as in the above for each $a, b \in A$ we have $T(a) \circ b=b \circ T(a)$.

Example 11. Let $\operatorname{dim}(A)>1$ and f be injective. For a fixed $a_{0} \in A$, define $T: A_{f} \longrightarrow A_{f}$ by $T(a)=a_{0} \circ a$. Clearly, T is a bounded linear functional. If for each $0 \neq a \in A, a \circ T(a)=T(a) \circ a$, then $a=\frac{f(a)}{f\left(a_{0}\right)} a_{0}$. Hence $\operatorname{dim}(A)=1$ which contradicts the hypothesis. Therefore, T is not an n-Jordan multiplier by Theorem 10.

Remark 12. Using the proof of Theorem 10, one can see that

$$
\operatorname{JMul}_{2}\left(A_{f}\right)=\operatorname{JMul}_{n}\left(A_{f}\right)=\operatorname{Mul}_{n}\left(A_{f}\right)=\operatorname{Mul}_{2}\left(A_{f}\right)
$$

for all $n \geq 3$.

Remark 13. Suppose that A is a non-empty Banach space with the norm $\|\cdot\|$ and $0 \neq f \in A^{*}$. If we define $a \diamond b=f(a) b$, then A with the the multiplication " \diamond is a Banach algebra which we denote it by ${ }_{f} A$. One can easily check that each bounded linear operator T on ${ }_{f} A$ is an n-Jordan multiplier.

Two questions

Let A and B be two Banach algebras. A linear map $\varphi: A \rightarrow B$ is called an n-Jordan homomorphism if $\varphi\left(a^{n}\right)=\varphi(a)^{n}$ for all $a \in A$; see [3] for more details.

In [12] Zelazko, proved the following theorem.
Theorem: Let A be a Banach algebra. Also let B be a semisimple commutative Banach algebra. Then each 2-Jordan homomorphism from A into B is a 2-homomorphism.

Gordji in [3] generalized the above theorem for 3-Jordan homomorphism, i.e., he proved that each 3-Jordan homomorphism from a Banach algebra into a semisimple and commutative Banach algebra is a 3 -homomorphism.

Now, like the theory of n-Jordan homomorphism we raise the following interesting question for n-Jordan multipliers.

Question 1: Let A be a Banach algebra and X be a Banach left A-module. Let T be an n-Jordan multiplier $(n \geq 3)$ from A into X. When T is an n-multiplier? what condition(s) is (are) needed?

Zalar in [11, Corollary 1.5] showed that a linear map on a semisimple algebra A such that $T\left(a^{2}\right)=a T(a)$ for all $a \in A$, is continuous. Now, we raise the following question.

Question 2: Suppose that A is a semisimple Banach algebra, n is an integer with $n \geq 3$ and $T: A \longrightarrow A$ is a linear map such that $T\left(a^{n}\right)=a T\left(a^{n-1}\right)$. Is T continuous (or equivalently bounded)? what condition(s) is (are) needed?

Acknowledgement. The author would like to thank the referee. This work partially supported by a grant from Gonbad Kavous University and the author would like to acknowledge this support.

References

[1] J. B. Conway, A Course in Operator Theory, Graduate studies in mathematics, Volume 21, AMS. 1999. MR1721402. Zbl 0936.47001.
[2] H. G. Dales, Banach Algebras and Automatic Continuity, Clarendon press, Oxford, 2000. MR1816726. Zbl 0981.46043.
[3] M. E. Gordji, n-Jordan homomorphisms, Bull. Aust. Math. Soc., 80. 01 (2009), 159-164. MR2520532. Zbl 1177.47046.
[4] Sh. Hejazian, M. Mirzavaziri and M. S. Moslehian, n-homomorphisms, Bull. Iranian Math. Soc., 31 (2005), No. 1, 13-23. MR2228453. Zbl 1121.47028.
[5] S. Helgason, Multipliers of Banach algebras, Ann. Maths., 64 (1956), 240-254. MR82075. Zbl 0072.32303.
[6] A. R. Khoddami, Strongly zero-product preserving maps on normed algebras induced by a bounded linear functional, Khayyam J. Math., 1 (2015), no. 1, 107-114. MR3353480. Zbl 1352.46047.
[7] J. Laali, M. Fozouni, n-multipliers and their relations with n-homomorphisms, Vietnam J. Math., (2017) 45: 451-457. MR3669151. Zbl 1381.46038.
[8] J. Laali, M. Fozouni, Some properties of functional Banach algebra, Facta Univ. Ser. Math. Inform., Vol. 28, No. 2 (2013), 189-196. MR3118917. Zbl 1324.46058.
[9] E. Samei, Approximately local derivations, J. London Math. Soc., (2) 71 (2005), 759-778. MR2132382. Zbl 1072.47033.
[10] J. K. Wang, Multipliers of commutative Banach algebras, Pacific J. Math., (1961), 1131-1149. MR138014. Zbl 0127.33302.
[11] B. Zalar, On centralizers of semiprime rings. Comment. Math. Univ. Carol., 32 (1991), 609-614. MR1159807. Zbl 0746.16011.
[12] W. Zelazko, A characterization of multiplicative linear functionals in complex Banach algebras. Studia math., 30 (1968), 83-85. MR229042. Zbl 0162.18504.

Mohammad Fozouni
Department of Mathematics and Statistics
Faculty of Basic Sciences \& Engineering, Gonbad Kavous University, Golestan, Iran. E-mail: fozouni@gonbad.ac.ir http://profs.gonbad.ac.ir/fozouni/en

License

This work is licensed under a Creative Commons Attribution 4.0 International License. © ©

[^0]: 2010 Mathematics Subject Classification: 46H05; 42A45
 Keywords: Banach algebra; Banach module; multiplier; Jordan multiplier
 This work was supported by a grant from Gonbad Kavous University

