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n-JORDAN MULTIPLIERS

Mohammad Fozouni

Abstract. Let A be a Banach algebra, X be a Banach left A-module and n > 2 be an
integer. A bounded linear operator T': A — X is called an n-Jordan multiplier if for each a € A,
T(a™) = a-T(a"""). In this paper we investigate this notion and give some illuminating examples.
Also, we give an approximate local version of n-Jordan multipliers and try to investigate when an
approximate local n-Jordan multiplier is an n-Jordan multiplier. Finally, for functional Banach

algebras we give a characterization of n-Jordan multipliers.

1 Introduction and preliminaries

The theory of multipliers for the first time introduced and studied by Helgason in [5].
Also, Wang in [10] investigated and studied this notion and proved some remarkable
results of multipliers. Indeed, for a Banach algebra A, a linear operator T: A — A
is a (right) multiplier if T'(ab) = aT'(b) for all a,b € A.

On the other hand, Hejazian et al., introduced the concept of n-homomorphisms
for integers n > 2; see [4]. Also, Gordji in [3] introduced the theory of n-Jordan
homomorphisms and gave a nice relation between 3-homomorphisms and 3-Jordan
homomorphisms.

Using the idea of n-homomorphisms, Laali and the author of the paper in [7],
introduced and studied the notion of n-multipliers and gave a nice relation of this
notion with n-homomorphisms.

In this paper we introduce and investigate the notion of n-Jordan multiplier from
a Banach algebra A into a Banach left A-module X. In the sequel of this section we
give some preliminaries which will be used later. For undefined concepts we refer
the reader to [2].

Definition 1. A Banach algebra A is called nilpotent if there exists an integer n > 2
such that

A" ={ayazas...ay : a1,a9,a3, ...,a, € A} = {0}.
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The index of A, denoted by I(A), is the minimum n € N such that A” = {0}.
So, if I(A) = n, there exists elements aj, az,...ap—1 € A such that ajas...a,—1 # 0.

Definition 2. Let A be an Banach algebra. We say that A is nil if there exists
n € N such that a™ = 0 for all a € A. The nil index of A, denoted by NI(A) is the
minimum n € N such that a™ = 0 for all a € A.

Theorem 3. (Grabiner) Let A be a nil (F)-algebra. Then A is nilpotent.
Proof. See [2, Theorem 2.6.34]. O

To see the definition of an (F)-algebra see [2, Definition 2.2.5]. As an example,
every Banach algebra is an (F)-algebra.

Let A be a Banach algebra and a,b € A. Define a bounded bilinear functional
on A* x A* as

(a®b)(f,g) = f(a)g(b) (f,g€A).

The projective tensor product space AR A with the above multiplication, natural
addition and the norm

=] = inf{z lanll[[bnll < 00z 2= an ®bn} :
n=1 n=1

is a Banach algebra that is characterized as follows;

o] e8]
{Z an ®bn ine N, an,bn € A?Z Han”anH < OO} ‘

n=1 n=1

Clearly, A®A with the following action is a Banach left A-module;

a-(b®c)=ab®c (a,b,c € A).

2 n-Jordan multipliers

Let A be a Banach algebra and X be a Banach left A-module. Recall that a bounded
linear map 7' : A — X is called a right Jordan multiplier if T'(a?) = a.T'(a) for each
a € A. In the rest we drop the prefix right for simplicity. We give the following
definition of an n-Jordan multiplier as a generalization of Jordan multipliers.

Definition 4. Let A be a Banach algebra, X be a Banach left A-module and let
n > 2 be an integer. A bounded linear map T : A — X is an n-Jordan multiplier if

T(a") =a-T(a" 1) (a € A).
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n-Jordan Multipliers 123

Clearly, each Jordan multiplier is an n-Jordan multiplier but the converse is not
valid in general (see Example 5 below). We denote by JMul, (A, X) the set of all
n-Jordan multipliers from A into X and suppose that JMul,(A) = JMul, (A, A). It
is clear that JMul,, (A4, X) is a vector subspace of B(A, X); the Banach space of all
bounded linear operators from A into X, and one can see that it is closed, because
if {T,,,} is a sequence in JMul,, (4, X) for which T,, — T where T' € B(A, X)), then
for each a € A we have

I7(@") — a- (@) < [T(@") ~ Tfa)]| + [Tn(a™) 0 T(@" )]
< = Tullla” | + lla- Ton(a™) - a- (@)
<T = Tallla”|| + 1T = Tllllallla™ ]
If m — oo, the right hand side of the above inequalities tend to zero and hence
T(a™) —a-T(a™ ). So, T is an n-Jordan multiplier. Hence, JMul, (A, X) is closed.
Therefore, JMul,, (4, X) is a Banach space for every positive integer n > 2.

Following the notations of [7], let Mul, (A, X) show the set of all n-multipliers
from A into X. Note that 7' € Mul,, (4, X) if

T(ajaz...ap) = ay - T(ag...ap) (a1,a9,as,...,a, € A).

The following example shows the difference between 3-Jordan multipliers and
Jordan multipliers.

Example 5. Suppose that A defined as follows

R R
0 R
A= 0 0
0 0

coc oo
o B R =

Clearly, A is a Banach algebra equipped with the usual matriz-like operations and
l1-norm, that is, the sum of all absolute values of entries. Define the operator
T:A— A as follows

0 a b ¢ 0 f b ¢
T 0 0 d e 10 0 d e
000 f {00 0 a
000 O 00 00
0 a b ¢
0 0 d el . , ,
where a = 000 f is an arbitrary element of A. Clearly, T is a bounded
0 00O
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0 0 ad ae+bf 0 0 0 adf
. 0 0 d af 000 O
2 _ 3
linear operator on A, a* = 00 0 0 and a° = 000 0
00 O 0 000 O

Therefore, T(a?) = a? and T(a) = a3. Now, immediately one can see that T is
a 3-Jordan multiplier but it is not a Jordan multiplier.

In the following proposition we show that the class of n-Jordan multipliers is
strictly larger than the class of n-multipliers.

Proposition 6. There exists a Banach algebra A and a Banach left A-module X
such that

Mul,, (A4, X) € JMul, (A4, X) (n=3,4,5,...).

Moreover, there exists a Banach algebra A and a Banach left A-module X such that
for every positive integer n > 3,

JMul,,—1 (A4, X) € JMul, (A4, X).
Proof. For each Banach algebra A and Banach left A-module X, clearly
Mul,, (4, X) C JMul, (A4, X).

Now, let A be a nil Banach algebra such that NI(A) = n. So, A is nilpotent by
Grabiner’s Theorem. Suppose that I(A) = m and m > n. Therefore, there exists
a1,G2,...am—1 in A such that ajas...apm—1 # 0. Take X = ARA and let T: A - X
be an operator specified by

T(a) = a1a2...0m—1 ® a (a € A). (2.1)

The operator T' is an element of JMul, (A, X)) which is not belong to Mul, (A4, X).
Because,

T(a") = araz...a;m—1 ®a™ =0,

"*1) = aa1a9...am—1 ® a1 = 0.

a.T(@" ") = a(araz...am_1 ®a
and T(ajaz...ap) = a162...apym—1 @ ajaz...an, # 0 = ay - T(azas...ay,).

For the second part of the theorem, take the Banach algebra A and X as above
and let T' be the operator defined by equation 2.1. It is clear that every (n—1)-Jordan
multiplier is an n-Jordan multiplier. On the other hand, there exists an element
ao € A such that ag_l # 0. Hence, T(ag_l) = a102...Qm—1 ®a8’_1 #0= ao-T(ag_2)
and this show the strict inclusion. O
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Let {4, : n € N} be a collection of algebras. Suppose that [[, A, denotes the
product space of the collection {A,, : n € N} such that the linear operations being
given coordinatewise. We recall that the cp-direct sum of the collection is

0
@An ={(an) € HA" : li7ILnan =0, |(an)|lco = sup |lan||a, < oo}.

Remark 7. There exists a Banach algebra A and a Banach left A-module X such
that A is not nil and JMula(A, X) € JMul3(4, X). To see this, let {A,} be a
collection of Banach algebras such that Ay is nil with NI(Ay) = 3. So, by Grabiner’s
Theorem, there exists m € N such that I(A1) = m. Also, let A = @2 A, and
X = ARA. There exists c1,...cm—1 € A1 with c1¢y ... Cm_1 #£0. For1 <i<m-—1,
put a; = (¢;,0,...) and a = ayag ... am—1. Define the operator T : A — X by

T((bn)) =a @ (bn)  ((bn) € A).

Now, it is easy to check that T € JMulz(A, X) \ JMula(A, X) and A is not a nil
Banach algebra in general.

3 Approximate local n-Jordan multipliers

Suppose that T : A — X is a bounded linear operator such that X is a Banach left
A-module. We say that the operator 7' is an approximate local n-Jordan multiplier
if, for each a € A, there exist a sequence {1y} in JMul, (A, X) such that, T'(a) =
lim,,, T,y (a). Samei in [9], investigated approximate local multipliers and answered
this question; When an approximate local multiplier is a multiplier? In this section
we answer this question in the setting of n-Jordan multipliers.

To proceed further first we recall the algebraic reflexivity from [1]. Let X and
Y be Banach spaces and S be a subset of B(X,Y). Put

ref(S) ={T € B(X,Y): T(x) € {s(x): s € S} Vx € X}.
Then S is algebraically reflexive if, S = ref(S) or just ref(S) C S.

Lemma 8. Let A be a Banach algebra, X be a Banach left A-module andn > 3, be
an integer. Then the following statements are equivalent.

1. Every approximate local n-Jordan multiplier from A into X is an n-Jordan
multiplier.

2. JMuly, (A,X) is algebraically reflezive.

Proof. (1) = (2): Let T € ref(JMul,(A, X)). So, for each a € A there exists a
sequence {71, ,,} in JMul, (A, X) such that, T'(a) = lim,, T, m(a). Hence, T is an
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approximate local n-Jordan multiplier. Therefore, T is an n-Jordan multiplier by
assumption and this shows that JMul, (A,X) is algebraically reflexive.

(2) = (1): Let T: A — X be an approximate local n-Jordan multiplier. So, for
each a € A, there exists a sequence {Tg ,,} such that, T'(a) = lim,, T, ,,(a). Hence,
T € ref(JMul, (A, X)) and reflexivity of JMul,, (A, X) implies that T" is an n-Jordan
multiplier. O

Let A be a Banach algebra and X be a Banach left A-module. Then for each
x € X, the left annihilator of 2 in A is defined by 2+ = {a € A:a -z = 0}.

Theorem 9. Suppose that A is a Banach algebra such that JMul, (A, A*) is algebra-
ically reflexive and X is a Banach left A-module such that {x € X : 2+ = A} = 0.
Then every approzimate local n-Jordan multiplier from A into X is an n-Jordan
multiplier.

Proof. Let T : A — X be an approximate local n-Jordan multiplier and f € X*.
Define a map £ : X — A* as follows

fpl@)=aef (z€X),

where z o f € A* is defined by z e f(a) = f(a-x) for all a € A. Therefore, £ is a
bounded left A-module morphism. Because, for a € A and x € X we have

Rila-z)=(a-z)ef=a-(xef)=a- R (x).

So, using Lemma 8, we conclude that ¢ o T € JMul, (A, A*).
Now, for a € A we have

87 (T(@™)) = Ry o T(a") = a- &5 0 T(a" ™)
= a- 85 (T(a*)
— R¢(a-T(@"™)).

Therefore, &¢(T(a") —a - T(a" 1)) = 0. If we put uw = T(a™) — a - T(a""'), then
f(a-u) =0 for all @ € A. So, by the Hahn-Banach theorem we have a - u = 0
for all @ € A. So, ut = A and this implies that u = 0. Hence, T is an n-Jordan
multiplier. O

4 Characterization on functional Banach algebra

Let (A, ||-||) be a non-empty Banach space and 0 # f € A*. For each a,b € A define,
aob = f(b)a. One can easily check that A with the multiplication ” o” and the norm

|| - || is a Banach algebra called the functional Banach algebra which will be denoted
n times

A

by Ay; see [8] and [6] for more details. For each a € A, let a” =G oacao...oa.
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Theorem 10. Let f be an injective functional, dim(A) > 1 and T : Ay — Ay be a
bounded linear operator. Then the following assertions are equivalent.

1. T is an n-Jordan multiplier.
2. T(a)oa=aoT(a) for all a € A.
3. T(a)ob=>boT(a) for all a,b € A.

Proof. (1) = (2): Let a € A and T'(a) oa = aoT(a). So, we have

T(a") =T(f(a)"'a) = f(a)""'T(a) = f(a)"*(T(a) 0 a)
= f(@)" (a0 T(a)) = ao (f(a)"*T(a))
=aoT(a™ ).

Therefore, T is an n-Jordan multiplier.
(2) = (1): Let T be an n-Jordan multiplier. So, we have

J(@)"2(T(a) 0 @) = f(a)"*T(a) = T(a") = a0 T(a"")
= af(a)"2/(T(a))
— f(@)" (a0 T(a)).

Now, we have two cases; If f(a) # 0, then T'(a) ca = a o T(a) and if f(a) = 0,
the injectivity of f yields a = 0. Therefore T'(a) = 0 and hence f(7'(a)) = 0. So
T(a) oa =aoT(a), which completes the proof.

(3) = (2): This is clear.

(2) = (3): The Banach algebra A is a semiprime ring, i.e., if a € A and
aAra = {0}, then a = 0. Since, dim(A4) > 1 we conclude that the characteristic
of Ay is not two, i.e., the minimum number such that a" = e is not two (e is the
identity element of Af). Since T'(a)oa = aoT'(a) for all a € A, we conclude that T is
a Jordan multiplier. Therefore, by [11, Proposition 1.4], T" is a multiplier. Now, with
the same argument as in the above for each a,b € A we have T'(a)ob=boT(a). O

Example 11. Let dim(A) > 1 and f be injective. For a fixzed ay € A, define
T:Ay — Af by T(a) = ap o a. Clearly, T is a bounded linear functional. If for
each 0 #a € A, aoT(a) =T(a)oa, then a = ff((a?) ag. Hence dim(A) = 1 which
contradicts the hypothesis. Therefore, T is not an n-Jordan multiplier by Theorem
10.

Remark 12. Using the proof of Theorem 10, one can see that
JMUIQ(AJC) = JMuln(Af) = Muln(Af) = Mulg(Af),

for alln > 3.

kst sk ok sk ok sk s ok sk sk ok ok sk sk ok s sk sk s ok sk sk sk s sk sk sk ok sk sk sk sk ok sk sk sk s ok sk sk ok sk ok sk sk ok sk sk sk sk sk sk sk ok sk sk ok ok sk ok sk sk ok ok sk sk ok ok sk k

Surveys in Mathematics and its Applications 13 (2018), 121 — 129
http://www.utgjiu.ro/math/sma


http://www.utgjiu.ro/math/sma/v13/v13.html
http://www.utgjiu.ro/math/sma

128 M. Fozouni

Remark 13. Suppose that A is a non-empty Banach space with the norm || - || and
0 # f € A*. If we define aob = f(a)b, then A with the the multiplication” ¢” is a
Banach algebra which we denote it by A. One can easily check that each bounded
linear operator T' on A is an n-Jordan multiplier.

Two questions

Let A and B be two Banach algebras. A linear map ¢ : A — B is called an n-Jordan
homomorphism if ¢(a™) = p(a)” for all a € A; see [3] for more details.

In [12] Zelazko, proved the following theorem.

Theorem: Let A be a Banach algebra. Also let B be a semisimple commutative
Banach algebra. Then each 2-Jordan homomorphism from A into B is a 2-homomor-
phism.

Gordji in [3] generalized the above theorem for 3-Jordan homomorphism, i.e., he
proved that each 3-Jordan homomorphism from a Banach algebra into a semisimple
and commutative Banach algebra is a 3-homomorphism.

Now, like the theory of n-Jordan homomorphism we raise the following interesting
question for n-Jordan multipliers.

Question 1: Let A be a Banach algebra and X be a Banach left A-module. Let
T be an n-Jordan multiplier (n > 3) from A into X. When T is an n-multiplier?
what condition(s) is (are) needed?

Zalar in [11, Corollary 1.5] showed that a linear map on a semisimple algebra A
such that T(a?) = aT(a) for all a € A, is continuous. Now, we raise the following
question.

Question 2: Suppose that A is a semisimple Banach algebra, n is an integer
with n > 3 and T : A — A is a linear map such that T(a") = aT(a" ). Is T
continuous (or equivalently bounded)? what condition(s) is (are) needed?
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