ISSN 1842-6298 (electronic), 1843-7265 (print) Volume 13 (2018), 121 – 129

n-JORDAN MULTIPLIERS

Mohammad Fozouni

Abstract. Let A be a Banach algebra, X be a Banach left A-module and $n \ge 2$ be an integer. A bounded linear operator $T: A \longrightarrow X$ is called an *n*-Jordan multiplier if for each $a \in A$, $T(a^n) = a \cdot T(a^{n-1})$. In this paper we investigate this notion and give some illuminating examples. Also, we give an approximate local version of *n*-Jordan multipliers and try to investigate when an approximate local *n*-Jordan multiplier is an *n*-Jordan multiplier. Finally, for functional Banach algebras we give a characterization of *n*-Jordan multipliers.

1 Introduction and preliminaries

The theory of multipliers for the first time introduced and studied by Helgason in [5]. Also, Wang in [10] investigated and studied this notion and proved some remarkable results of multipliers. Indeed, for a Banach algebra A, a linear operator $T : A \longrightarrow A$ is a (right) multiplier if T(ab) = aT(b) for all $a, b \in A$.

On the other hand, Hejazian et al., introduced the concept of *n*-homomorphisms for integers $n \ge 2$; see [4]. Also, Gordji in [3] introduced the theory of *n*-Jordan homomorphisms and gave a nice relation between 3-homomorphisms and 3-Jordan homomorphisms.

Using the idea of n-homomorphisms, Laali and the author of the paper in [7], introduced and studied the notion of n-multipliers and gave a nice relation of this notion with n-homomorphisms.

In this paper we introduce and investigate the notion of n-Jordan multiplier from a Banach algebra A into a Banach left A-module X. In the sequel of this section we give some preliminaries which will be used later. For undefined concepts we refer the reader to [2].

Definition 1. A Banach algebra A is called nilpotent if there exists an integer $n \ge 2$ such that

 $A^{n} = \{a_{1}a_{2}a_{3}...a_{n} : a_{1}, a_{2}, a_{3}, ..., a_{n} \in A\} = \{0\}.$

http://www.utgjiu.ro/math/sma

²⁰¹⁰ Mathematics Subject Classification: 46H05; 42A45

Keywords: Banach algebra; Banach module; multiplier; Jordan multiplier This work was supported by a grant from Gonbad Kavous University

The index of A, denoted by I(A), is the minimum $n \in \mathbb{N}$ such that $A^n = \{0\}$. So, if I(A) = n, there exists elements $a_1, a_2, \dots a_{n-1} \in A$ such that $a_1a_2\dots a_{n-1} \neq 0$.

Definition 2. Let A be an Banach algebra. We say that A is nil if there exists $n \in \mathbb{N}$ such that $a^n = 0$ for all $a \in A$. The nil index of A, denoted by NI(A) is the minimum $n \in \mathbb{N}$ such that $a^n = 0$ for all $a \in A$.

Theorem 3. (Grabiner) Let A be a nil (F)-algebra. Then A is nilpotent.

Proof. See [2, Theorem 2.6.34].

To see the definition of an (F)-algebra see [2, Definition 2.2.5]. As an example, every Banach algebra is an (F)-algebra.

Let A be a Banach algebra and $a, b \in A$. Define a bounded bilinear functional on $A^* \times A^*$ as

$$(a \otimes b)(f,g) = f(a)g(b)$$
 $(f,g \in A^*).$

The projective tensor product space $A \widehat{\otimes} A$ with the above multiplication, natural addition and the norm

$$||x|| = \inf \left\{ \sum_{n=1}^{\infty} ||a_n|| ||b_n|| < \infty : x = \sum_{n=1}^{\infty} a_n \otimes b_n \right\},$$

is a Banach algebra that is characterized as follows;

$$\left\{\sum_{n=1}^{\infty} a_n \otimes b_n : n \in \mathbb{N}, a_n, b_n \in A, \sum_{n=1}^{\infty} \|a_n\| \|b_n\| < \infty\right\}.$$

Clearly, $A \widehat{\otimes} A$ with the following action is a Banach left A-module;

$$a \cdot (b \otimes c) = ab \otimes c$$
 $(a, b, c \in A).$

2 *n*-Jordan multipliers

Let A be a Banach algebra and X be a Banach left A-module. Recall that a bounded linear map $T: A \to X$ is called a right Jordan multiplier if $T(a^2) = a.T(a)$ for each $a \in A$. In the rest we drop the prefix right for simplicity. We give the following definition of an *n*-Jordan multiplier as a generalization of Jordan multipliers.

Definition 4. Let A be a Banach algebra, X be a Banach left A-module and let $n \ge 2$ be an integer. A bounded linear map $T : A \to X$ is an n-Jordan multiplier if

$$T(a^n) = a \cdot T(a^{n-1}) \qquad (a \in A).$$

Surveys in Mathematics and its Applications 13 (2018), 121 – 129 http://www.utgjiu.ro/math/sma Clearly, each Jordan multiplier is an *n*-Jordan multiplier but the converse is not valid in general (see Example 5 below). We denote by $JMul_n(A, X)$ the set of all *n*-Jordan multipliers from A into X and suppose that $JMul_n(A) = JMul_n(A, A)$. It is clear that $JMul_n(A, X)$ is a vector subspace of B(A, X); the Banach space of all bounded linear operators from A into X, and one can see that it is closed, because if $\{T_m\}$ is a sequence in $JMul_n(A, X)$ for which $T_n \longrightarrow T$ where $T \in B(A, X)$, then for each $a \in A$ we have

$$\begin{aligned} \|T(a^{n}) - a \cdot T(a^{n-1})\| &\leq \|T(a^{n}) - T_{m}(a^{n})\| + \|T_{m}(a^{n}) - a \cdot T(a^{n-1})\| \\ &\leq \|T - T_{m}\| \|a^{n}\| + \|a \cdot T_{m}(a^{n-1}) - a \cdot T(a^{n-1})\| \\ &\leq \|T - T_{m}\| \|a^{n}\| + \|T - T_{m}\| \|a\| \|a^{n-1}\|. \end{aligned}$$

If $m \to \infty$, the right hand side of the above inequalities tend to zero and hence $T(a^n) - a \cdot T(a^{n-1})$. So, T is an n-Jordan multiplier. Hence, $JMul_n(A, X)$ is closed. Therefore, $JMul_n(A, X)$ is a Banach space for every positive integer $n \ge 2$.

Following the notations of [7], let $\operatorname{Mul}_n(A, X)$ show the set of all *n*-multipliers from A into X. Note that $T \in \operatorname{Mul}_n(A, X)$ if

$$T(a_1a_2...a_n) = a_1 \cdot T(a_2...a_n) \quad (a_1, a_2, a_3, ..., a_n \in A).$$

The following example shows the difference between 3-Jordan multipliers and Jordan multipliers.

Example 5. Suppose that A defined as follows

$$A = \begin{bmatrix} 0 & \mathbb{R} & \mathbb{R} & \mathbb{R} \\ 0 & 0 & \mathbb{R} & \mathbb{R} \\ 0 & 0 & 0 & \mathbb{R} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Clearly, A is a Banach algebra equipped with the usual matrix-like operations and l_1 -norm, that is, the sum of all absolute values of entries. Define the operator $T: A \longrightarrow A$ as follows

$$T\left(\begin{bmatrix} 0 & a & b & c \\ 0 & 0 & d & e \\ 0 & 0 & 0 & f \\ 0 & 0 & 0 & 0 \end{bmatrix}\right) = \begin{bmatrix} 0 & f & b & c \\ 0 & 0 & d & e \\ 0 & 0 & 0 & a \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

where $a = \begin{bmatrix} 0 & a & b & c \\ 0 & 0 & d & e \\ 0 & 0 & 0 & f \\ 0 & 0 & 0 & 0 \end{bmatrix}$ is an arbitrary element of A. Clearly, T is a bounded

Therefore, $T(\mathfrak{a}^2) = \mathfrak{a}^2$ and $T(\mathfrak{a}^3) = \mathfrak{a}^3$. Now, immediately one can see that T is a 3-Jordan multiplier but it is not a Jordan multiplier.

In the following proposition we show that the class of n-Jordan multipliers is strictly larger than the class of n-multipliers.

Proposition 6. There exists a Banach algebra A and a Banach left A-module X such that

$$\operatorname{Mul}_n(A, X) \subsetneq \operatorname{JMul}_n(A, X) \qquad (n = 3, 4, 5, \ldots).$$

Moreover, there exists a Banach algebra A and a Banach left A-module X such that for every positive integer $n \geq 3$,

$$\operatorname{JMul}_{n-1}(A, X) \subsetneq \operatorname{JMul}_n(A, X).$$

Proof. For each Banach algebra A and Banach left A-module X, clearly

$$\operatorname{Mul}_n(A, X) \subseteq \operatorname{JMul}_n(A, X).$$

Now, let A be a nil Banach algebra such that NI(A) = n. So, A is nilpotent by Grabiner's Theorem. Suppose that I(A) = m and m > n. Therefore, there exists $a_1, a_2, ..., a_{m-1}$ in A such that $a_1a_2...a_{m-1} \neq 0$. Take $X = A \widehat{\otimes} A$ and let $T : A \to X$ be an operator specified by

$$T(a) = a_1 a_2 \dots a_{m-1} \otimes a \qquad (a \in A).$$

The operator T is an element of $JMul_n(A, X)$ which is not belong to $Mul_n(A, X)$. Because,

$$T(a^{n}) = a_{1}a_{2}...a_{m-1} \otimes a^{n} = 0,$$

$$a.T(a^{n-1}) = a(a_{1}a_{2}...a_{m-1} \otimes a^{n-1}) = aa_{1}a_{2}...a_{m-1} \otimes a^{n-1} = 0.$$

and $T(a_1a_2...a_n) = a_1a_2...a_{m-1} \otimes a_1a_2...a_n \neq 0 = a_1 \cdot T(a_2a_3...a_n).$

For the second part of the theorem, take the Banach algebra A and X as above and let T be the operator defined by equation 2.1. It is clear that every (n-1)-Jordan multiplier is an n-Jordan multiplier. On the other hand, there exists an element $a_0 \in A$ such that $a_0^{n-1} \neq 0$. Hence, $T(a_0^{n-1}) = a_1 a_2 \dots a_{m-1} \otimes a_0^{n-1} \neq 0 = a_0 \cdot T(a_0^{n-2})$ and this show the strict inclusion.

Let $\{A_n : n \in \mathbb{N}\}$ be a collection of algebras. Suppose that $\prod_n A_n$ denotes the product space of the collection $\{A_n : n \in \mathbb{N}\}$ such that the linear operations being given coordinatewise. We recall that the c_0 -direct sum of the collection is

$$\bigoplus_{n=1}^{0} A_n = \{(a_n) \in \prod_{n=1}^{\infty} A_n : \lim_{n=1}^{\infty} a_n = 0, \|(a_n)\|_{\infty} = \sup \|a_n\|_{A_n} < \infty\}.$$

Remark 7. There exists a Banach algebra A and a Banach left A-module X such that A is not nil and $JMul_2(A, X) \subseteq JMul_3(A, X)$. To see this, let $\{A_n\}$ be a collection of Banach algebras such that A_1 is nil with $NI(A_1) = 3$. So, by Grabiner's Theorem, there exists $m \in \mathbb{N}$ such that $I(A_1) = m$. Also, let $A = \bigoplus_{n=1}^{\infty} A_n$ and $X = A \widehat{\otimes} A$. There exists $c_1, \ldots, c_{m-1} \in A_1$ with $c_1c_2 \ldots c_{m-1} \neq 0$. For $1 \leq i \leq m-1$, put $a_i = (c_i, 0, \ldots)$ and $\mathfrak{a} = a_1a_2 \ldots a_{m-1}$. Define the operator $T : A \longrightarrow X$ by

$$T((b_n)) = \mathfrak{a} \otimes (b_n) \quad ((b_n) \in A).$$

Now, it is easy to check that $T \in JMul_3(A, X) \setminus JMul_2(A, X)$ and A is not a nil Banach algebra in general.

3 Approximate local *n*-Jordan multipliers

Suppose that $T: A \to X$ is a bounded linear operator such that X is a Banach left A-module. We say that the operator T is an approximate local n-Jordan multiplier if, for each $a \in A$, there exist a sequence $\{T_{a,m}\}$ in $JMul_n(A, X)$ such that, $T(a) = \lim_m T_{a,m}(a)$. Same iin [9], investigated approximate local multipliers and answered this question; When an approximate local multiplier is a multiplier? In this section we answer this question in the setting of n-Jordan multipliers.

To proceed further first we recall the algebraic reflexivity from [1]. Let X and Y be Banach spaces and S be a subset of B(X, Y). Put

$$\operatorname{ref}(S) = \{ T \in B(X, Y) : T(x) \in \overline{\{s(x) : s \in S\}} \ \forall x \in X \}.$$

Then S is algebraically reflexive if, $S = \operatorname{ref}(S)$ or just $\operatorname{ref}(S) \subseteq S$.

Lemma 8. Let A be a Banach algebra, X be a Banach left A-module and $n \ge 3$, be an integer. Then the following statements are equivalent.

- 1. Every approximate local n-Jordan multiplier from A into X is an n-Jordan multiplier.
- 2. $JMul_n(A,X)$ is algebraically reflexive.

Proof. (1) \Rightarrow (2): Let $T \in \operatorname{ref}(\operatorname{JMul}_n(A, X))$. So, for each $a \in A$ there exists a sequence $\{T_{a,m}\}$ in $\operatorname{JMul}_n(A, X)$ such that, $T(a) = \lim_m T_{a,m}(a)$. Hence, T is an

approximate local *n*-Jordan multiplier. Therefore, T is an *n*-Jordan multiplier by assumption and this shows that $JMul_n(A,X)$ is algebraically reflexive.

 $(2) \Rightarrow (1)$: Let $T : A \to X$ be an approximate local *n*-Jordan multiplier. So, for each $a \in A$, there exists a sequence $\{T_{a,m}\}$ such that, $T(a) = \lim_{m} T_{a,m}(a)$. Hence, $T \in \operatorname{ref}(\operatorname{JMul}_n(A, X))$ and reflexivity of $\operatorname{JMul}_n(A, X)$ implies that T is an *n*-Jordan multiplier.

Let A be a Banach algebra and X be a Banach left A-module. Then for each $x \in X$, the left annihilator of x in A is defined by $x^{\perp} = \{a \in A : a \cdot x = 0\}$.

Theorem 9. Suppose that A is a Banach algebra such that $JMul_n(A, A^*)$ is algebraically reflexive and X is a Banach left A-module such that $\{x \in X : x^{\perp} = A\} = 0$. Then every approximate local n-Jordan multiplier from A into X is an n-Jordan multiplier.

Proof. Let $T : A \to X$ be an approximate local *n*-Jordan multiplier and $f \in X^*$. Define a map $\mathfrak{K}_f : X \to A^*$ as follows

$$\mathfrak{K}_f(x) = x \bullet f \quad (x \in X),$$

where $x \bullet f \in A^*$ is defined by $x \bullet f(a) = f(a \cdot x)$ for all $a \in A$. Therefore, \mathfrak{K}_f is a bounded left A-module morphism. Because, for $a \in A$ and $x \in X$ we have

$$\mathfrak{K}_f(a \cdot x) = (a \cdot x) \bullet f = a \cdot (x \bullet f) = a \cdot \mathfrak{K}_f(x).$$

So, using Lemma 8, we conclude that $\Re_f \circ T \in JMul_n(A, A^*)$.

Now, for $a \in A$ we have

$$\mathfrak{K}_f(T(a^n)) = \mathfrak{K}_f \circ T(a^n) = a \cdot \mathfrak{K}_f \circ T(a^{n-1})$$
$$= a \cdot \mathfrak{K}_f(T(a^{n-1}))$$
$$= \mathfrak{K}_f(a \cdot T(a^{n-1})).$$

Therefore, $\Re_f(T(a^n) - a \cdot T(a^{n-1})) = 0$. If we put $u = T(a^n) - a \cdot T(a^{n-1})$, then $f(a \cdot u) = 0$ for all $a \in A$. So, by the Hahn-Banach theorem we have $a \cdot u = 0$ for all $a \in A$. So, $u^{\perp} = A$ and this implies that u = 0. Hence, T is an n-Jordan multiplier.

4 Characterization on functional Banach algebra

Let $(A, \|\cdot\|)$ be a non-empty Banach space and $0 \neq f \in A^*$. For each $a, b \in A$ define, $a \circ b = f(b)a$. One can easily check that A with the multiplication " \circ " and the norm $\|\cdot\|$ is a Banach algebra called the functional Banach algebra which will be denoted n times

by A_f ; see [8] and [6] for more details. For each $a \in A$, let $a^n = a \circ a \circ a \circ \ldots \circ a$.

Theorem 10. Let f be an injective functional, $\dim(A) > 1$ and $T : A_f \to A_f$ be a bounded linear operator. Then the following assertions are equivalent.

- 1. T is an n-Jordan multiplier.
- 2. $T(a) \circ a = a \circ T(a)$ for all $a \in A$.
- 3. $T(a) \circ b = b \circ T(a)$ for all $a, b \in A$.

Proof. (1) \Rightarrow (2): Let $a \in A$ and $T(a) \circ a = a \circ T(a)$. So, we have

$$T(a^{n}) = T(f(a)^{n-1}a) = f(a)^{n-1}T(a) = f(a)^{n-2}(T(a) \circ a)$$
$$= f(a)^{n-2}(a \circ T(a)) = a \circ (f(a)^{n-2}T(a))$$
$$= a \circ T(a^{n-1}).$$

Therefore, T is an n-Jordan multiplier.

 $(2) \Rightarrow (1)$: Let T be an n-Jordan multiplier. So, we have

$$f(a)^{n-2}(T(a) \circ a) = f(a)^{n-1}T(a) = T(a^n) = a \circ T(a^{n-1})$$

= $af(a)^{n-2}f(T(a))$
= $f(a)^{n-2}(a \circ T(a))$.

Now, we have two cases; If $f(a) \neq 0$, then $T(a) \circ a = a \circ T(a)$ and if f(a) = 0, the injectivity of f yields a = 0. Therefore T(a) = 0 and hence f(T(a)) = 0. So $T(a) \circ a = a \circ T(a)$, which completes the proof.

 $(3) \Rightarrow (2)$: This is clear.

(2) \Rightarrow (3): The Banach algebra A_f is a semiprime ring, i.e., if $a \in A$ and $aA_f a = \{0\}$, then a = 0. Since, dim(A) > 1 we conclude that the characteristic of A_f is not two, i.e., the minimum number such that $a^n = e$ is not two (e is the identity element of A_f). Since $T(a) \circ a = a \circ T(a)$ for all $a \in A$, we conclude that T is a Jordan multiplier. Therefore, by [11, Proposition 1.4], T is a multiplier. Now, with the same argument as in the above for each $a, b \in A$ we have $T(a) \circ b = b \circ T(a)$. \Box

Example 11. Let dim(A) > 1 and f be injective. For a fixed $a_0 \in A$, define $T: A_f \longrightarrow A_f$ by $T(a) = a_0 \circ a$. Clearly, T is a bounded linear functional. If for each $0 \neq a \in A$, $a \circ T(a) = T(a) \circ a$, then $a = \frac{f(a)}{f(a_0)}a_0$. Hence dim(A) = 1 which contradicts the hypothesis. Therefore, T is not an n-Jordan multiplier by Theorem 10.

Remark 12. Using the proof of Theorem 10, one can see that

$$\operatorname{JMul}_2(A_f) = \operatorname{JMul}_n(A_f) = \operatorname{Mul}_n(A_f) = \operatorname{Mul}_2(A_f),$$

for all $n \geq 3$.

Remark 13. Suppose that A is a non-empty Banach space with the norm $\|\cdot\|$ and $0 \neq f \in A^*$. If we define $a \diamond b = f(a)b$, then A with the the multiplication " \diamond " is a Banach algebra which we denote it by ${}_{f}A$. One can easily check that each bounded linear operator T on ${}_{f}A$ is an n-Jordan multiplier.

Two questions

Let A and B be two Banach algebras. A linear map $\varphi : A \to B$ is called an n-Jordan homomorphism if $\varphi(a^n) = \varphi(a)^n$ for all $a \in A$; see [3] for more details.

In [12] Zelazko, proved the following theorem.

Theorem: Let A be a Banach algebra. Also let B be a semisimple commutative Banach algebra. Then each 2-Jordan homomorphism from A into B is a 2-homomorphism.

Gordji in [3] generalized the above theorem for 3-Jordan homomorphism, i.e., he proved that each 3-Jordan homomorphism from a Banach algebra into a semisimple and commutative Banach algebra is a 3-homomorphism.

Now, like the theory of *n*-Jordan homomorphism we raise the following interesting question for *n*-Jordan multipliers.

Question 1: Let A be a Banach algebra and X be a Banach left A-module. Let T be an n-Jordan multiplier $(n \ge 3)$ from A into X. When T is an n-multiplier? what condition(s) is (are) needed?

Zalar in [11, Corollary 1.5] showed that a linear map on a semisimple algebra A such that $T(a^2) = aT(a)$ for all $a \in A$, is continuous. Now, we raise the following question.

Question 2: Suppose that A is a semisimple Banach algebra, n is an integer with $n \ge 3$ and $T : A \longrightarrow A$ is a linear map such that $T(a^n) = aT(a^{n-1})$. Is T continuous (or equivalently bounded)? what condition(s) is (are) needed?

Acknowledgement. The author would like to thank the referee. This work partially supported by a grant from Gonbad Kavous University and the author would like to acknowledge this support.

References

- J. B. Conway, A Course in Operator Theory, Graduate studies in mathematics, Volume 21, AMS. 1999. MR1721402. Zbl 0936.47001.
- [2] H. G. Dales, Banach Algebras and Automatic Continuity, Clarendon press, Oxford, 2000. MR1816726. Zbl 0981.46043.
- [3] M. E. Gordji, n-Jordan homomorphisms, Bull. Aust. Math. Soc., 80. 01 (2009), 159–164. MR2520532. Zbl 1177.47046.

- [4] Sh. Hejazian, M. Mirzavaziri and M. S. Moslehian, *n-homomorphisms*, Bull. Iranian Math. Soc., **31** (2005), No. 1, 13–23. MR2228453. Zbl 1121.47028.
- [5] S. Helgason, Multipliers of Banach algebras, Ann. Maths., 64 (1956), 240–254.
 MR82075. Zbl 0072.32303.
- [6] A. R. Khoddami, Strongly zero-product preserving maps on normed algebras induced by a bounded linear functional, Khayyam J. Math., 1 (2015), no. 1, 107–114. MR3353480. Zbl 1352.46047.
- J. Laali, M. Fozouni, n-multipliers and their relations with n-homomorphisms, Vietnam J. Math., (2017) 45: 451–457. MR3669151. Zbl 1381.46038.
- [8] J. Laali, M. Fozouni, Some properties of functional Banach algebra, Facta Univ. Ser. Math. Inform., Vol. 28, No. 2 (2013), 189–196. MR3118917. Zbl 1324.46058.
- [9] E. Samei, Approximately local derivations, J. London Math. Soc., (2) 71 (2005), 759–778. MR2132382. Zbl 1072.47033.
- [10] J. K. Wang, Multipliers of commutative Banach algebras, Pacific J. Math., (1961), 1131–1149. MR138014. Zbl 0127.33302.
- [11] B. Zalar, On centralizers of semiprime rings. Comment. Math. Univ. Carol., 32 (1991), 609–614. MR1159807. Zbl 0746.16011.
- [12] W. Zelazko, A characterization of multiplicative linear functionals in complex Banach algebras. Studia math., 30 (1968), 83–85. MR229042. Zbl 0162.18504.

Mohammad Fozouni Department of Mathematics and Statistics Faculty of Basic Sciences & Engineering, Gonbad Kavous University, Golestan, Iran. E-mail: fozouni@gonbad.ac.ir http://profs.gonbad.ac.ir/fozouni/en

License

This work is licensed under a Creative Commons Attribution 4.0 International License.