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SOLUTIONS TO A FIRST ORDER HYPERBOLIC
SYSTEM

Nezam Iraniparast

Abstract The study of small perturbations in the shock initiation of an inviscid compressible

fluid with chemical reaction leads to a first order hyperbolic system of two equations. The order

zero approximation of the system involves only constant coefficients. Here, we study a variation of

this hyperbolic system and generalize it so that not all coefficients are constants. The boundary

conditions in the first quadrant (t, x > 0), where x is the spatial variable and t is time, include data

along x = 0 and a proportionality relation between the dependent variables along t = 0. Using the

characteristics of the system, we obtain explicit solutions.

1 Introduction

In the work of David Logan [1], the forced, linear, one dimensional hyperbolic
system,(

−1 a2

1 − 1

) (
u
v

)
t

+

(
u
v

)
x

=

(
f(t)
g(t)

)
, x > 0, t > 0, (1.1)

where 0 < a < 1 is a constant, is studied under the assumption that the boundary
condition,

u(0, t) = 0, t ≥ 0, (1.2)

and the initial condition,

u(x, 0) = αv(x, 0), x > 0, (1.3)

are satisfied. Here α > 0 is also a constant. The problem was originally studied
by Fickett [2] in relation to the work on a condensed explosive to determine the
rate of chemical energy release from detonating the explosive. The linearization of
the underlying mathematical model led to a hyperbolic system which very closely
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resembles the system in (1.1). In our work presented here, we use the method of
David Logan [1] to solve a variation of the system in (1.1) namely,(

−1 − a
−a − 1

) (
u
v

)
t

+

(
u
v

)
x

=

(
f(t)
g(t)

)
, x > 0, t > 0, (1.4)

with the assumption that 0 < a < 1 depends on the variable t. The boundary and
initial conditions are kept the same as in (1.2) and (1.3), namely,

u(0, t) = 0, t ≥ 0, u(x, 0) = γv(x, 0), x > 0, (1.5)

where we have replaced constant α, 0 < α < 1, in (1.3) with the constant γ,
−1 < γ < 0. Our goal is to first use the method of characteristics to find v along
x = 0. This is then used to find the solution u(x, t) to (1.4), (1.5) at an arbitrary
point (x, t) in the quadrant x > 0, t > 0.

2 The Characteristics

The eigenvalues of the coefficient matrix in (1.4) are a − 1 and −(a + 1) with

the corresponding eigenvectors

(
1

−1

)
, and

(
1
1

)
, respectively. Let P =(

1 1
−1 1

)
andD =

(
a− 1 0
0 − (a+ 1)

)
and note that PDP−1 =

(
−1 − a
−a − 1

)
.

Now rewrite the equation (1.4) in the following manner,

PDP−1

(
u
v

)
t

+

(
u
v

)
x

=

(
f(t)
g(t)

)
, x > 0, t > 0, (2.1)

Multiply equation (2.1) by P−1 to obtain,

DP−1

(
u
v

)
t

+ P−1

(
u
v

)
x

= P−1

(
f(t)
g(t)

)
, x > 0, t > 0, (2.2)

The system (2.2) in expanded form will be a pair of equations as follows,

(ut − vt) +
1

a−1(ux − vx) =
f−g
a−1 ,

(ut + vt)− 1
a+1(ux − vx) =

f+g
−(a+1) .

(2.3)

Consider the functions u and v along the curves C+: dx
dt = 1

a−1 and C−: dx
dt = −1

a+1
respectively. Then equations in (2.3) along these curves can be written as,

du
dt −

dv
dt = f−g

a−1 ,
du
dt +

dv
dt = f+g

−(a+1) .
(2.4)
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Solutions to a first order hyperbolic system 161

We assume that the negative characteristics C+ and C− both meet at the same
point (x0, 0) on the x-axis and cross the t-axis at points (0, α) and (0, β), α < β.
They therefore must satisfy,

C+ : x1(t) =
∫ α
t

1
a−1dτ,

C− : x2(t) =
∫ β
t

1
−(1+a)dτ.

(2.5)

To ensure that x1(t) and x2(t) meet at t = 0 we impose the condition,

∫ α

0

1

a− 1
dτ =

∫ β

0

1

−(1 + a)
dτ. (2.6)

An example of a function a that allows the condition (2.6) to be satisfied is,

a(t) =
1√
t+ 2

, t ≥ 0. (2.7)

A pair of characteristics corresponding to this particular choice of a are,

x1(t) = 2 log(

√
2− 1√

t+ 2− 1
)− 2

√
t+ 2− t+ 2

√
2 + 1, t ≥ 0, (2.8)

and

x2(t) = 2 log(

√
2 + 1√

t+ 2 + 1
) + 2

√
t+ 2− t− 2

√
2 + 1, t ≥ 0. (2.9)

In the quadrant x ≥ 0 and t ≥ 0 the curves meet at x0 = 1 on the x-axis, and at
α ≈ 0.318 and β ≈ 1.60 on the t-axis. See figure 1.
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Figure 1: In the quadrant x ≥ 0 and t ≥ 0 the characteristic curves C+ and C− through
(x, t) and (0, α), (0, β) on the t-axis.

Now let’s integrate equations in (2.3) along the curves C+ and C− respectively.
We have,

u(x, t)− v(x, t)−
∫ t

0

f(τ)− g(τ)

a(τ)− 1
dτ = k1, on C+, (2.10)

and

u(x, t) + v(x, t)−
∫ t

0

f(τ) + g(τ)

−(a(τ) + 1)
dτ = k2, on C−, (2.11)

where k1 and k2 are arbitrary constants. From (2.10), (2.11) and the boundary
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condition in (1.5), at the point (x0, 0) on the x-axis we must have,

u(x0, 0)− v(x0, 0) = k1,
u(x0, 0) + v(x0, 0) = k2,
u(x0, 0)) = γv(x0, 0).

(2.12)

From the equations in (2.12) we find k1 and k2 to be,

k1 = (γ − 1)v(x0, 0), (2.13)

k2 = (γ + 1)v(x0, 0). (2.14)

Also, the expression on the left-hand-side of (2.10) has the same values at the two
points (x0, 0) and (0, α). The same is true about the expression in (2.11) at the
points (x0, 0) and (0, β). These mean,

u(x0, 0)− v(x0, 0) = u(0, α)− v(0, α)−
∫ α

0

f − g

a− 1
dτ, (2.15)

and

u(x0, 0) + v(x0, 0) = u(0, β) + v(0, β)−
∫ β

0

f + g

−(a+ 1)
dτ. (2.16)

Apply the condition in (1.5), where we assume that u = 0 along the t-axis, to
(2.15)-(2.16) and then add the resulting equations to find,

2u(x0, 0) = −v(0, α) + v(0, β))−
∫ α

0

f − g

a− 1
dτ −

∫ β

0

f + g

−(a+ 1)
dτ. (2.17)

Do the same as above but this time subtract the equation (2.15) from (2.16) to find

2v(x0, 0) = v(0, α) + v(0, β)) +

∫ α

0

f − g

a− 1
dτ −

∫ β

0

f + g

−(a+ 1)
dτ. (2.18)

Add (2.17) to (2.18) to get,

u(x0, 0) + v(x0, 0) = v(0, β)−
∫ β

0

f + g

−(a+ 1)
dτ. (2.19)

Use the initial condition in (1.5), u(x0, 0) = γv(x0, 0), in (2.19) to find,

(γ + 1)v(x0, 0) = v(0, β)−
∫ β

0

f + g

−(a+ 1)
dτ. (2.20)

Subtract (2.17) from (2.18) and use the initial condition in (1.5) to get,

(1− γ)v(x0, 0) = v(0, α) +

∫ α

0

f − g

a− 1
dτ. (2.21)
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Equating v(x0, 0) in (2.20) and (2.21) we have,

v(0, α) =
1− γ

1 + γ
(v(0, β)−

∫ β

0

f + g

−(a+ 1)
dτ)−

∫ α

0

f − g

a− 1
dτ. (2.22)

Rewriting (2.22),

v(0, β) =
1 + γ

1− γ
v(0, α) +

1 + γ

1− γ

∫ α

0

f − g

a− 1
dτ +

∫ β

0

f + g

−(a+ 1)
dτ. (2.23)

Let α
β = r, then 0 < r < 1. Also let 1+γ

1−γ = δ, then for −1 < γ < 0 we will have
0 < δ < 1 and (2.23) can be written in the form,

v(0, β) = δv(0, rβ) + δ

∫ rβ

0

f − g

a− 1
dτ +

∫ β

0

f + g

−(a+ 1)
dτ. (2.24)

Substitute rβ for β in (2.24),

v(0, rβ) = δv(0, r2β) + δ

∫ r2β

0

f − g

a− 1
dτ +

∫ rβ

0

f + g

−(a+ 1)
dτ. (2.25)

Replace v(0, rβ) in (2.24) with the right hand side of (2.25),

v(0, β) = δ(δv(0, r2β) + δ
∫ r2β
0

f−g
a−1dτ +

∫ rβ
0

f+g
−(a+1)dτ)

+δ
∫ rβ
0

f−g
a−1dτ +

∫ β
0

f+g
−(a+1)dτ.

(2.26)

Repeated replacements of β with rβ as above leads to a general statement for v(0, β)
as follows,

v(0, β) = δnv(0, rnβ) +

n∑
i=1

δi
∫ riβ

0

f − g

a− 1
dτ +

n−1∑
i=0

δi
∫ riβ

0

f + g

−(a+ 1)
dτ (2.27)

Letting n → ∞ we obtain,

v(0, β) =
∞∑
i=1

δi
∫ riβ

0

f − g

a− 1
dτ +

∞∑
i=0

δi
∫ riβ

0

f + g

−(a+ 1)
dτ. (2.28)

If we assume that the functions f−g
a−1 and f+g

−(a+1) are bounded then the series in

(2.28) converge and the value of v along x = 0 is computed. To sum up, we state
the following lemma.

Lemma 1. Let β > α > 0 be the points of intersections of the characteristics C−

and C+ respectively, as defined in (2.5), with the t-axis and δ = 1+γ
1−γ . Suppose f and

g are piecewise continuous on 0 ≤ t < ∞ and the condition (2.6) is satisfied. Then
under the conditions of boundedness of the functions f−g

a−1 and f+g
−(a+1) for t ≥ 0 and

x ≥ 0 the value of v at the point (0, β) can be computed and is given by the identity
(2.28).
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3 The Solution of the System

Suppose (x, t) is a point in the quadrant x ≥ 0, t ≥ 0 and the characteristics C+, C−

pass through it and the points (0, α) and (0, β) respectively, as shown in figure 2.
Integrating the equations in (2.4) from α to t on C+ and β to t on C− we have,

u(x, t)− v(x, t)−
∫ t

α

f(τ)− g(τ)

a(τ)− 1
dτ = c1, on C+, (3.1)

u(x, t) + v(x, t)−
∫ t

β

f(τ) + g(τ)

−(a(τ) + 1)
dτ = c2, on C−. (3.2)

Since the expressions on the left of (3.1), (3.2) are constants on the characteristics,
their values at the points (0, α) and (0, β) are the same. This means,

u(x, t)− v(x, t)−
∫ t

α

f(τ)− g(τ)

a(τ)− 1
dτ = u(0, α)− v(0, α), on C+, (3.3)

u(x, t) + v(x, t)−
∫ t

β

f(τ) + g(τ)

−(a(τ) + 1)
dτ = u(0, β) + v(0, β), on C−. (3.4)

Using the boundary condition in (1.5) we have u(0, α) = 0 = u(0, β) in the identities
(3.3), (3.4). Adding these equations and solving for u(x, t) we have,

u(x, t) =
1

2
[

∫ t

α

f(τ)− g(τ)

a(τ)− 1
dτ +

∫ t

β

f(τ) + g(τ)

−(a(τ) + 1)
dτ + v(0, β)− v(0, α)]. (3.5)

In order to write u(x, t) in terms of the integrals of the forcing data f, g only we use
the identity (2.22), where we let 1+γ

1−γ = δ in (2.22), to express v(0, α) in the following
form,

v(0, α) =
1

δ
(v(0, β)−

∫ β

0

f + g

−(a+ 1)
dτ)−

∫ α

0

f − g

a− 1
dτ. (3.6)

Also from (2.28) we have the value of v(0, β) in terms of the forcing data. If we
substitute this in the above equation we have v(0, α) completely determined. After
a little simplification we have,

v(0, α) = −
∫ α

0

f − g

a− 1
dτ +

∞∑
i=1

δi−1(

∫ riβ

0

f − g

a− 1
dτ +

∫ riβ

0

f + g

−(a+ 1)
dτ). (3.7)

Now we can compute u(x, t) by substituting v(0, α) and v(0, β) from (3.7) and (2.28),
respectively, into (3.5). The formula, after some simplification is,

u(x, t) = 1
2 [
∫ t
0 (

f(τ)−g(τ)
a(τ)−1 + f(τ)+g(τ)

−(a(τ)+1))dτ

+
∑∞

i=1((δ
i − δi−1)

∫ riβ
0 (f−g

a−1 + f+g
−(a+1))dτ)], x, t > 0.

(3.8)
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To find v(x, t), we eliminate u(x, t) from the equations (3.3), (3.4) and repeat a
process similar to the one above for the computation of u(x, t) to find,

v(x, t) = 1
2 [−

∫ t
0 (

f(τ)−g(τ)
a(τ)−1 + f(τ)+g(τ)

(a(τ)+1) )dτ

+
∑∞

i=1((δ
i + δi−1)

∫ riβ
0 (f−g

a−1 + f+g
−(a+1))dτ)], x, t > 0.

(3.9)

C
+ C

-

(����)

α
α β

0.0 0.5 1.0
t

0.2

0.4

0.6

0.8

1.0

x

Figure 2: In the quadrant x ≥ 0 and t ≥ 0 the characteristic curves C+ and C− through
(x, t) and (0, α), (0, β) on the t-axis.

We express these results in the following theorem,

Theorem 2. Under the assumptions of Lemma 1 the system (1.4) along with the
initial and boundary conditions in (1.5) has the solution given by (3.8), (3.9). The
parameter 0 < r < 1, is r = α

β .

4 Asymptotic Response

As in [1], we consider the physical response of the system to the case where the
forcing functions f, g become zero after certain times. We should expect that under
appropriate conditions the response of the system will be finite as well. For this
purpose we make the following assumptions, f(t) = 0 for t > T1 and g(t) = 0 for
t > T2. Let,

M1 = sup
[0,T1]

|f(t)|, M2 = sup
[0,T2]

|g(t)|. (4.1)

Also for 0 < a(t) < 1 we assume,

M = sup
[0,∞)

a(t), m = inf
[0,∞)

a(t). (4.2)
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Then 0 < M,m < 1. Let,
T = max{T1, T2}. (4.3)

Then,

|
∫ T

0

f − g

a− 1
| ≤ T

1−M
(M1 +M2), (4.4)

and

|
∫ T

0

f + g

−(a− 1)
| ≤ T

1 +m
(M1 +M2). (4.5)

Upon using the inequalities (4.4), (4.5) in the solutions for u and v in (3.8), (3.9)
we will have,

|u(x, t)| ≤ T (M1 +M2)(
1

1− δ
)(

1

1−M
+

1

1 +m
), (4.6)

|v(x, t)| ≤ T (M1 +M2)(
1

1− δ
)(

1

1−M
+

1

1 +m
). (4.7)

We state the above result as a theorem.

Theorem 3. Assume that f , g and a in equation (1.4) satisfy the conditions (4.1),
(4.2). Then the solutions of the system (1.4) under the conditions in (1.5) are
bounded with bounds give by (4.6), (4.7).

As can be seen from the inequalities (4.6) and (4.7), when M1 and M2 are small,
i.e., the forcing functions are small short lived pulses, the bounds on the solutions u,
v are small. To see the asymptotic behavior of the solutions for large t, we consider
a square impulse wave for f , and allow g to be zero for all time,

f(t) =

{
1 0 ≤ t ≤ 1
0 t > 1

(4.8)

g(t) = 0, t ≥ 0. (4.9)

Also define,
n1 = min{n ∈ Z+|rn+1β < 1 < rnβ} (4.10)

Writing the solutions (3.8), (3.9), for u and v with data given by, (4.8), (4.9), and
considering (4.10) we have,

u(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 [
∫ t
0 (

1
a−1 + 1

−(a+1))dτ +
∑n1

i=1[(δ
i − δi−1)∫ 1

0 (
1

a−1 + 1
−(a+1))dt]

+
∑∞

i=n1+1[(δ
i − δi−1)∫ riβ

0 ( 1
a−1) +

1
−(a+1))dt]], x ≥ 0, 0 ≤ t ≤ 1,

1
2 [
∫ 1
0 (

1
a−1 + 1

−(a+1))dτ +
∑n1

i=1[(δ
i − δi−1)∫ 1

0 (
1

a−1 + 1
−(a+1))dt]

+
∑∞

i=n1+1[(δ
i − δi−1)∫ riβ

0 ( 1
a−1) +

1
−(a+1))dt]], x ≥ 0, t > 1.

(4.11)

******************************************************************************
Surveys in Mathematics and its Applications 13 (2018), 159 – 169

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v13/v13.html
http://www.utgjiu.ro/math/sma


168 Nezam Iraniparast

Similarly,

v(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 [
∫ t
0 (−

1
a−1 + 1

−(a+1))dτ +
∑n1

i=1[(δ
i + δi−1)∫ 1

0 (
1

a−1 + 1
−(a+1))dt]

+
∑∞

i=n1+1[(δ
i + δi−1)∫ riβ

0 ( 1
a−1) +

1
−(a+1))dt]], x ≥ 0, 0 ≤ t ≤ 1,

1
2 [
∫ 1
0 (−

1
a−1 + 1

−(a+1))dτ +
∑n1

i=1[(δ
i + δi−1)∫ 1

0 (
1

a−1 + 1
−(a+1))dt]

+
∑∞

i=n1+1[(δ
i + δi−1)∫ riβ

0 ( 1
a−1) +

1
−(a+1))dt]], x ≥ 0, t > 1.

(4.12)

The components of the solutions (4.11), (4.12) above, show that for large t > 1
both u and v are of order O(δn1). To illustrate this further we consider the specific
function a(t) = 1√

t+2
. Then the solutions u, v are computed to be,

u(x, t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− ln(t+ 1)− t− (ln 2 + 1)(δn1 − 1)
−
∑∞

i=n1+1[(δ
i − δi−1)

(ln(riβ + 1) + riβ)], x ≥ 0, 0 ≤ t ≤ 1,
−δn1(ln 2 + 1)−

∑∞
i=n1+1[(δ

i − δi−1)

(ln(riβ + 1) + riβ)], x ≥ 0, t > 1.

(4.13)

and,

v(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ln(
√
t+2−1√
t+2+1

) + 2
√
t+ 2 + ln(

√
2+1√
2−1

)−
√
2

− (1+δ)(1−δn1 )
1−δ (ln 2 + 1)

−
∑∞

i=n1+1[(δ
i + δi−1)

(ln(riβ + 1) + riβ)], x ≥ 0, 0 ≤ t ≤ 1,

− ln((
√
3 + 2)(3− 2

√
2)) + 2

√
3− 2

√
2

−( (1+δ)(1−δn1 )
1−δ )(ln 2 + 1)−

∑∞
i=n1+1[(δ

i + δi−1)

(ln(riβ + 1) + riβ)], x ≥ 0, t > 1.

(4.14)

From the formulas in (4.13), (4.14) we have the following estimates on u, v for large
t > 1,

− (ln(2) + 1)δn1 < u(x, t) < (ln(
rn1+1

2
) + rn1+1β − 1)δn1 (4.15)

and,

− (ln(rn1+1β + 1) + 1)(
1 + δ

1− δ
)δn1 < v(x, t)− v∞ < 0, (4.16)

where v∞ is

v∞ = − ln((
√
3 + 2)(3− 2

√
2)) + 2

√
3− 2

√
2− (

(1 + δ)(1− δn1)

1− δ
)(ln 2 + 1). (4.17)
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