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SOLVING THE NONLINEAR BIHARMONIC
EQUATION BY THE LAPLACE-ADOMIAN AND

ADOMIAN DECOMPOSITION METHODS

Man Kwong Mak, Chun Sing Leung and Tiberiu Harko

Abstract. The biharmonic equation, as well as its nonlinear and inhomogeneous generalizations,

plays an important role in engineering and physics. In particular the focusing biharmonic nonlinear

Schrödinger equation, and its standing wave solutions, have been intensively investigated. In the

present paper we consider the applications of the Laplace-Adomian and Adomian Decomposition

Methods for obtaining semi-analytical solutions of the generalized biharmonic equations of the type

∆2y + α∆y + ωy + b2 + g (y) = f , where α, ω and b are constants, and g and f are arbitrary

functions of y and the independent variable, respectively. After introducing the general algorithm

for the solution of the biharmonic equation, as an application we consider the solutions of the one-

dimensional and radially symmetric biharmonic standing wave equation ∆2R+R−R2σ+1 = 0, with

σ = constant. The one-dimensional case is analyzed by using both the Laplace-Adomian and the

Adomian Decomposition Methods, respectively, and the truncated series solutions are compared

with the exact numerical solution. The power series solution of the radial biharmonic standing

wave equation is also obtained, and compared with the numerical solution.

1 Introduction

The biharmonic equation appears in numerous applications in science and engineering
[54, 22, 38]. For example, the equation describing the displacement vector u⃗ in
elastodynamics is given by [22, 38]

(λ+ µ)∇ (∇ · u⃗) + µ∇2u⃗+ F⃗ = 0, (1.1)

where λ and µ are the Lamé coefficients, and F⃗ is the body force acting on the
object. By decomposing the displacement vector u⃗ = ∇φ+∇× ψ⃗, Eq. (1.1) gives

∇2∇2φ = ∇4φ = ∆2φ = − 1

λ+ µ
∇ · F⃗ ,∇2∇2ψ⃗ = ∇4ψ⃗ =

1

µ
∇× F⃗ , (1.2)
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that is, the equations for φ and ψ⃗ are the inhomogeneous scalar and vector biharmonic
equations [22]. Continuous models of elastic bodies have been intensively studied
by using a variety of mathematical methods. The uniqueness of the solution of
an initial-boundary value problem in thermoelasticity of bodies with voids was
established in [42].The theory of semigroups of operators was applied in [43] in order
to prove the existence and uniqueness of solutions for the mixed initial-boundary
value problems in the thermoelasticity of dipolar bodies. The temporal behaviour
of the solutions of the equations describing a porous thermoelastic body, including
voidage time derivative among the independent constitutive variables was considered
in [44].

The biharmonic equation also appears in the context of gravitational theories.
Let’s consider the gravitational field of Dirac δ-type mass distribution, with the mass
density given by ρ = 4πGmδ (r⃗), where G is gravitational constant, m the mass,
and δ (r⃗) is the Dirac delta function. Then the gravitational potential Φ satisfies the
Poisson equation [21],

∆Φ = 4πGmδ (r⃗) , (1.3)

with the radial solution given by Φ(r) = −Gm/r. As it is well known, this potential
is singular at r = 0, giving rise to infinite tidal forces. However, a modification of
the Poisson equation of the form [21]

∆
(
1 +M−2∆

)
Φ = 4πGmδ (r⃗) , (1.4)

where M is a constant, gives the solution Φ(r) = −Gm
(
1− e−Mr

)
/r, which is

nonsingular at r = 0, and tends towards the Newtonian potential when M → ∞.
In quantum mechanics the biharmonic equation plays an important role. The

Gross-Pitaevskii equation, describing the physical properties of Bose - Einstein
Condensates in the presence of a gravitational potential is given by [20, 28, 29, 30]

i
∂

∂t
ψ (r⃗, t) =

[
− ∇2

2M2
+ φgrav (r⃗) + φrot (r⃗) + φη (r⃗) +

∂F (ρ)

∂ρ

]
ψ (r⃗, t)), (1.5)

where M is the mass of the particle, φgrav the gravitational potential satisfying the
Poisson equation, while the potential giving the Coriolis and centrifugal forces is
given by

φrot (r⃗) = −1

2
|Ω⃗|2 |r⃗|2 + 2Ω⃗ · v⃗ × r⃗. (1.6)

The potential describing the possible viscous effects is φη = −η r⃗ · ∇v⃗ [56], while
F (ρ) is an arbitrary function of the particle number density, ρ = |ψ (r⃗, t)|2 [20].
Assuming that the wave function can be described as ψ (r⃗, t) =

√
ρ ei S(r⃗,t), where

S (r⃗, t) is the action of the particle, by defining v⃗ = ∇S/M it follows that in the
static case the Schrödinger equation is equivalent with a system of two equations,
the continuity equation ∇ · (ρv⃗) = 0, and an Euler type equation, given by

1

ρ
∇ p+∇

(
v2

2
+ φ

)
+ Ω⃗× Ω⃗× r⃗ + 2 Ω⃗× v⃗ = η∇2 v⃗ +

1

2M2
∇
(
∇2√ρ
√
ρ

)
. (1.7)
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Solving the nonlinear biharmonic equation via Laplace-ADM 185

This representation of the Schrödinger equation is called the hydrodynamic or the
Madelung representation of quantum mechanics. The pressure p of the quantum
fluid can be obtained from the function F (ρ) as [20]

p = ρ
∂F (ρ)

∂ρ
− F (ρ). (1.8)

This relation follows from the equivalence between the Schrödinger equation in
the hydrodynamic representation, and the Euler equation (1.7), respectively.

In the static case, by taking the divergence of Eq. (1.7) gives a biharmonic type
equation for the density distribution of the quantum fluid,

4πGρ = −∇
(
1

ρ
∇ p

)
+ 2Ω⃗2 +

1

2M
∇2

(
∇2√ρ
√
ρ

)
. (1.9)

Another quantum mechanical context with important applications in which the
biharmonic equation does appear is in physical models described by the focusing
biharmonic nonlinear Schrödinger equation, [13, 14, 15, 49, 31, 47],

i~
∂Ψ(t, r⃗)

∂t
−∆2Ψ(t, r⃗) + |Ψ(t, r⃗)|2σ Ψ(t, r⃗) = 0, (1.10)

where σ ∈ R, and which must be solved with the initial condition Ψ (0, r⃗) =
Ψ0 (r⃗) ∈ H2

(
Rd
)
. The focusing biharmonic nonlinear Schrödinger equation is the

generalization of the focusing nonlinear Schrödinger equation, given by

i~
∂Ψ(t, r⃗)

∂t
−∆Ψ(t, r⃗) + |Ψ(t, r⃗)|2σ Ψ(t, r⃗) = 0, (1.11)

and it can be derived from the variational principle [13]

S =

∫
Ld4r⃗dt, (1.12)

where the Lagrangian density L is given by

L (ψ,ψ∗, ψt, ψ
∗
t ,∆ψ,∆ψ

∗) =
i

2
(ψtψ

∗ − ψ∗
tψ)− |∆ψ|2 + 1

1 + σ
|ψ|2(σ+1) . (1.13)

An equation of the form

∆pu+ V (x) |u|p−2 u = f(x, u), (1.14)

where p ≥ 2, and ∆2
pu = ∆

(
|∆u|p−2∆u

)
is called the p-biharmonic operator, plays

an important role in the mathematical modeling of non Newtonian fluids and in
elasticity. In particular, it describes the properties of the electro-rheological fluids,
with viscosity depending on the applied electric field [53].
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Eq. (1.10) has the important property of admitting waveguide (standing-wave)
solutions, which can be represented as ψ(t, r⃗) = λ2/σeiλ

4tR(λr⃗), where the function
R satisfies the ”standing-wave” equation, which takes the form of a biharmonic
equation, given by [13]

−∆2R (r⃗)−R (r⃗) + |R|2σR (r⃗) = 0. (1.15)

If σd = 4, Eq. (1.10) is called L2-critical, or simply critical [13]. The properties of
the generalized nonlinear biharmonic equation (1.10) where studied by using mostly
numerical methods [25, 26]. Peak-type singular solutions of Eq. (1.10) of the quasi-
self similar form Ψ(t, r) ∼

(
1/Ld/2(t)R (r/L(t))

)
ei

∫
dt′4(t′), with limt→Tc L(t) = 0

have been shown to exist in [13].

In one dimension, Eq. (1.15) is given by

− d4R(x)

dx4
−R(x) + |R|2σ(x)R(x) = 0. (1.16)

On the other hand, if we require radial symmetry, Eq. (1.15) reduces to

−∆2
rR(r)−R(r) + |R|2σ(r)R(r) = 0, (1.17)

where ∆2
r , the radial biharmonic operator, is given by

∆2
r =

d4

dr4
+

2(d− 1)

r

d3

dr3
+

(d− 1)(d− 3)

r2
d2

dr2
− (d− 1)(d− 3)

r3
d

dr
. (1.18)

At the origin r = 0, all the odd derivatives of R must vanish, and hence the standing
wave solution of the focusing biharmonic nonlinear Schrödinger equation must satisfy
the boundary conditions

R′(0) = R′′′(0) = R(∞) = R′(∞) = 0. (1.19)

A lot of attention and work has been devoted recently to the study of Adomian’s
Decomposition Method (ADM) [3, 4, 5, 6, 7, 8], a powerful mathematical method
that offers the possibility of obtaining approximate analytical solutions of many
kinds of ordinary and partial differential equations, as well as of integral equations
that describe various mathematical, physical and engineering problems. One of the
important advantages of the Adomian Decomposition Method is that it can provide
analytical approximations to the solutions of a rather large class of nonlinear (and
stochastic) differential and integral equations without the need of linearization, or
the use of perturbative and closure approximations, or of discretization methods,
which could lead to the necessity of the extensive use of numerical computations.
Usually to obtain a closed-form analytical solutions of a nonlinear problem requires
some simplifying and restrictive assumptions.
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In the case of differential equations the Adomian Decomposition Method generates
a solution in the form of a series, whose terms are obtained recursively by using the
Adomian polynomials. Together with its formal simplicity, the main advantage of
the Adomian Decomposition Method is that the series solution of the differential
equation converges fast, and therefore its application saves a lot of computing time.
Moreover, in the Adomian Decomposition Method there is no need to discretize
or linearize the considered differential equation. For reviews of the mathematical
aspects of the Adomian Decomposition Method and its applications in physics
and engineering see [7] and [8], respectively. From a historical point of view, the
ADM was first introduced and applied in the 1980’s [3, 4, 5, 6]. Ever since it has
been continuously modified, generalized and extended in an attempt to improve its
precision and accuracy, and/or to expand the mathematical, physical and engineering
applications of the original method [9, 23, 57, 58, 60, 40, 63, 10, 11, 36, 34, 35, 50,
59, 12, 17, 18, 19, 1, 2, 27, 32, 48, 62, 64, 45, 33, 51]. The Adomian method
was extensively applied in mathematical physics and for the study of population
growth models that can be described by ordinary or partial differential equations,
or systems of ordinary and partial differential equations. A few example of such
systems successfully investigated by using the ADM are shallow water waves [46],
the Brussselator model [55], the Lotka- Volterra prey-predator type model [52],
and the Belousov - Zhabotinski reduction model [24], respectively. The equations
of motion of the massive and massless particles in the Schwarzschild geometry of
general relativity by using the Laplace-Adomian Decomposition were investigated in
[41], where series solutions of the geodesics equation in the Schwarzschild geometry
were obtained.

Despite the considerable importance of the biharmonic equation in many scientific
and engineering applications, very little work has been devoted to its study via
the Adomian Decomposition Method. A numerical method based on the Adomian
Decomposition Method was introduced in [37] for the approximate solution of the
one dimensional equations of the form

d4u(x)

dx4
+ α(x)

d2u(x)

dx2
+ β(x)

du

dx
= f (u(x)) ,

where f (u(x)) is an arbitrary nonlinear function. The obtained formalism was
applied to the case of the equation

d4u(x)

dx4
+ µu(x) = 0,

where µ is a constant, and it was shown that the Adomian approximation gives a
good description of the numerical solution.

It is the purpose of the present paper to consider a systematic investigation of
the applications of the Adomian Decomposition method to the case of the nonlinear
biharmonic equation. We will consider two distinct implementations of the Adomian
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Decomposition Method: the Laplace-Adomian Decomposition Method, and the
standard Adomian Decomposition Method, respectively. We consider both the one-
dimensional nonlinear biharmonic equation of the form

d4y(x)

dx4
+ α

d2y

dx2
+ ωy(x) + b2 + g(y) = f(x), (1.20)

as well as the nonlinear biharmonic equation with radial symmetry, given by

d4y(r)

dr4
+

4

r

d3y(r)

dr3
+ α

d2y(r)

dr2
+

2

r
α
dy(r)

dr
+ ωy(r) + b2 + g(y(r)) = f(r). (1.21)

These equations are the generalization of Eq. (1.15), in the one-dimensional and
radially symmetric case. For the sake of generality we have also introduced the
second order derivative whose presence allows an easy comparison between the
properties of the biharmonic and harmonic equations. We have also included a
source term in the biharmonic equations. In both cases we develop the corresponding
Laplace-Adomian and Adomian Decomposition Method algorithms. As an important
application of the developed methods we obtain the Adomian type power series
solutions of the biharmonic nonlinear standing wave equations (1.16) and (1.17),
respectively. In all cases the approximate solutions are compared with the exact
numerical ones.

The present paper is organized as follows. In Section 2 we discuss the application
of the Laplace-Adomian Decomposition Method to the case of the generalized strongly

nonlinear one dimensional biharmonic equation of the type d4y(x)
dx4 +α d2y

dx2 + ωy(x) +
b2+g(y) = f(x). The general Laplace-Adomian Decomposition Method algorithm is
developed for this equations. As an application of our general results we consider the
one dimensional biharmonic standing wave equation d4R

dx4 +R−R2 = 0, and we obtain
its truncated power series solution by using both the Laplace-Adomian and the
Adomian Decomposition Methods. The truncated series solutions are compared with
the exact numerical solution. The generalized nonlinear biharmonic equation with
radial symmetry is considered in Section 3. The Laplace-Adomian Decomposition
Method algorithm is developed for this case, and the solutions of the biharmonic
standing wave equation are obtained in the form of a truncated power series. The
comparison with the exact numerical solution is also performed. Finally, we discuss
and conclude our results in Section 4.

2 The Laplace-Adomian and the Adomian Decomposition
Methods for the nonlinear one dimensional biharmonic
equation

In the present Section we develop the Laplace-Adomian Decomposition Method for
a generalized one dimensional nonlinear inhomogeneous biharmonic type equation
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of the form
d4y(x)

dx4
+ α

d2y

dx2
+ ωy(x) + b2 + g(y) = f(x), (2.1)

where α, ω and b are constants, g is an arbitrary nonlinear function of dependent
variable y, while f(x) is an arbitrary function of the independent variable x. Eq. (2.1)
must be integrated with the initial conditions y(0) = y0, y

′(0) = y01, y
′′(0) = y02,

and y′′′(0) = y03, respectively.

2.1 The general algorithm

In the Laplace-Adomian method we apply the Laplace transformation operator L,
defined as L[f(x)] =

∫∞
0 f(x)e−sxdx [39], to Eq. (2.1). Thus we obtain

L
[
d4y(x)

dx4

]
+ αL

[
d2y

dx2

]
+ ωL[y] + L[b2] + L [g(y)] = L [f(x)] . (2.2)

In the following we denote L[f(x)] = F (s). We use now the properties of the
Laplace transform, and thus we find

F (s) =
s
{(
α+ s2

)
[sy(0) + y′(0)] + sy′′(0) + y′′′(0)

}
− b2

s (s4 + αs2 + ω)
+

1

s4 + αs2 + ω
L[f(x)](s)− 1

s4 + αs2 + ω
L[g(y(x))](s). (2.3)

As a next step we assume that the solution of the one dimensional biharmonic
Eq. (2.1) can be represented in the form of an infinite series, given by

y(x) =

∞∑
n=0

yn(x), (2.4)

where all the terms yn(x) can be computed recursively. As for the nonlinear operator
g(y), it is decomposed according to

g(y) =
∞∑
n=0

An, (2.5)

where the An’s are the Adomian polynomials. They can be computed generally from
the definition [8]

An =
1

n!

dn

dϵn
f

( ∞∑
i=0

ϵiyi

)⏐⏐⏐⏐⏐
ϵ=0

. (2.6)

The first five Adomian polynomials are given by the expressions,

A0 = f (y0) , (2.7)
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A1 = y1f
′ (y0) , (2.8)

A2 = y2f
′ (y0) +

1

2
y21f

′′ (y0) , (2.9)

A3 = y3f
′ (y0) + y1y2f

′′ (y0) +
1

6
y31f

′′′ (y0) , (2.10)

A4 = y4f
′ (y0) +

[
1

2!
y22 + y1y3

]
f ′′ (y0) +

1

2!
y21y2f

′′′ (y0) +
1

4!
y41f

(iv) (y0) . (2.11)

Substituting Eqs. (2.4) and (2.5) into Eq. (2.1) we obtain

L

[ ∞∑
n=0

yn(x)

]
=

s
{(
α+ s2

)
[sy(0) + y′(0)] + sy′′(0) + y′′′(0)

}
− b2

s (s4 + αs2 + ω)
+

1

s4 + αs2 + ω
L[f(x)](s)− 1

s4 + αs2 + ω
L[

∞∑
n=0

An]. (2.12)

Matching both sides of Eq. (2.12) yields the following iterative algorithm for the
power series solution of Eq. (2.1),

L [y0] =
s
{(
α+ s2

)
[sy(0) + y′(0)] + sy′′(0) + y′′′(0)

}
− b2

s (s4 + αs2 + ω)
+

1

s4 + αs2 + ω
L[f(x)](s), (2.13)

L [y1] = − 1

s4 + αs2 + ω
L [A0] , (2.14)

L [y2] = − 1

s4 + αs2 + ω
L [A1] , (2.15)

...

L [yk+1] = − 1

s4 + αs2 + ω
L [Ak] . (2.16)

By applying the inverse Laplace transformation to Eq. (2.13), we obtain the
value of y0. After substituting y0 into Eq. (2.7), we find easily the first Adomian
polynomial A0. Then we substitute A0 into Eq. (2.14), and we compute the Laplace
transform of the quantities on the right-hand side of the equation. By applying the
inverse Laplace transformation we find the value of y1. In a similar step by step
approach the other terms y2, y3, . . ., yk+1, can be computed recursively.
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2.2 Application: the one dimensional biharmonic standing wave
equation

As an application of the previously developed Laplace-Adomian formalism we consider
the solutions of the standing wave equation (1.15), By assuming the the function R
is real, and that R ∈ R+, the standing waves equation takes the form

d4R

dx4
= R2σ+1 −R. (2.17)

We solve Eq. (2.17) with the initial conditions R′ (0) = R′′′ (0) = 0, and R(0) ̸= 0
and R′′ (0) ̸= 0, respectively. To solve Eq. (2.17) we take its Laplace transform,
thus obtaining

L
[
d4R

dx4

]
= L

[
R2σ+1 −R

]
, (2.18)

(
s4 + 1

)
L [R] = s3R (0) + s2R′ (0) + sR′′ (0) +R′′′ (0) + L

[
R2σ+1

]
, (2.19)

and

L [R] =
s3R (0) + sR′′ (0)

s4 + 1
+

1

s4 + 1
L
[
R2σ+1

]
, (2.20)

respectively. Hence we immediately obtain

R (x) = L−1

[
s3R (0) + sR′′ (0)

s4 + 1

]
+ L−1

{
1

s4 + 1
L
[
R2σ+1

]}
. (2.21)

Substituting

R (x) =

∞∑
n=0

Rn (x) , R
2σ+1 =

∞∑
n=0

An (x) , (2.22)

where An are the Adomian polynomials for all n, into Eq. (2.21) yields

∞∑
n=0

Rn (x) = R0 (x) +

∞∑
n=0

Rn+1 (x) = L−1

[
s3R (0) + sR′′ (0)

s4 + 1

]
+

L−1

{ ∞∑
n=0

[
1

s4 + 1
L (An)

]}
. (2.23)

For the function R2σ+1 a few Adomian polynomials are [61]

A0 = R2σ+1
0 , (2.24)

A1 = (2σ + 1)R1R
2σ
0 , (2.25)

A2 = (2σ + 1)R2R
2σ
0 + 2σ (2σ + 1)

R2
1

2!
R2σ−1

0 , (2.26)

******************************************************************************
Surveys in Mathematics and its Applications 13 (2018), 183 – 213

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v13/v13.html
http://www.utgjiu.ro/math/sma


192 M. K. Mak, C. S. Leung and T. Harko

A3 = (2σ + 1)R3R
2σ
0 + 2σ (2σ + 1)R1R2R

2σ−1
0 +

2σ (2σ + 1) (2σ − 1)
R3

1

3!
R2σ−2

0 . (2.27)

We rewrite Eq. (2.23) in a recursive form as

R0 (x) = L−1

[
s3R (0) + sR′′ (0)

s4 + 1

]
=

R(0) cos

(
x√
2

)
cosh

(
x√
2

)
+R′′(0) sin

(
x√
2

)
sinh

(
x√
2

)
,(2.28)

Rk+1 (x) = L−1

{
L [Ak]

s4 + 1

}
. (2.29)

For k = 0 we have

R1 (x) = L−1

{
L [A0]

s4 + 1

}
= L−1

{
L
[
R1+2σ

0

]
s4 + 1

}
, (2.30)

For k = 1, we obtain

R2 (x) = L−1

{
L [A1]

s4 + 1

}
= L−1

{
L
[
(2σ + 1)R1R

2σ
0

]
s4 + 1

}
, (2.31)

For k = 2, we find

R3 (x) = L−1

{
L [A2]

s4 + 1

}
= L−1

{
L
[
(2σ + 1)R2R

2σ
0 + σ (2σ + 1)R2

1R
2σ−1
0

]
s4 + 1

}
,

(2.32)
For k = 3 we have

R4 (x) = L−1

{
L (A3)

s4 + 1

}
= L−1

{
1

s4 + 1
L

[
(2σ + 1)R3R

2σ
0 +

2σ (2σ + 1)R1R2R
2σ−1
0 + σ (2σ + 1) (2σ − 1)R3

1R
2σ−2
0 /3

]}
. (2.33)

Hence the truncated semi-analytical solution of Eq. (2.17) is given by

R (x) ≈ R0 (x) +R1 (x) +R2 (x) +R3 (x) +R4 (x) + .... (2.34)
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2.2.1 The case σ = 1/2

In order to give a specific example in the following we consider the case σ = 1/2.
Then the standing wave equation (2.17) becomes

d4R

dx4
= R2 −R. (2.35)

Hence we obtain the successive approximations to the solution as

R1(x) =
1

60

{
3
[
R(0)2 +

(
R′′(0)

)2]
cos
(√

2x
)
+ 4

[
2
(
R′′(0)

)2 − 5R(0)2
]
×

cos

(
x√
2

)
cosh

(
x√
2

)
+ cosh

(√
2x
)[((

R′′(0)
)2 −R(0)2

)
×

cos
(√

2x
)
+ 3

(
R(0)2 +

(
R′′(0)

)2)]
+

8R(0)R′′(0) sin

(
x√
2

)
sinh

(
x√
2

)
−

2R(0)R′′(0) sin
(√

2x
)
sinh

(√
2x
)
+

15
[
R(0)−R′′(0)

] [
R(0) +R′′(0)

]}
, (2.36)

R2(x) =
1

57600

{
640R(0)3 cos

(√
2x
)
cosh

(√
2x
)
− 9600R(0)3 −

384R(0)
[
5R(0)2 − 4(R′′(0))2

]
cos
(√

2x
)
+

(3 + 3i)

[
− (64− 64i)R(0)5R(0)2 − 4(R′′(0))2 cosh

(√
2x
)
+

(10 + 5i)(R(0) + iR′′(0))(R(0)− i((R′′(0))2 cosh
(√

−4 + 3ix
)
+

5(R(0) + i(R′′(0)))(R(0)− i(R′′(0)))(
(2 + i)(R(0) + iR′′(0)) cosh

(√
4− 3ix

)
−

(1 + 2i)(R(0)− iR′′(0)) cosh
(√

4 + 3ix
))]

−
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6(R′′(0))
((
R′′(0)

)2 − 3R(0)2
)
sin

(
3x√
2

)
sinh

(
3x√
2

)
+

128R′′(0)
(
3R(0)2 − 2(R′′(0))2

)
sin
(√

2x
)
sinh

(√
2x
)
+

6R(0)
(
R(0)2 − 3(R′′(0))2

)
cos

(
3x√
2

)
cosh

(
3x√
2

)
+

2 cos

(
x√
2

)[
R(0)6367R(0)2 − 1557(R′′(0))2 cosh

(
x√
2

)
−

2130
√
2x(R(0)−R′′(0))R(0)2 + 116R(0)(R′′(0)) + 71(R′′(0))2 ×

sinh

(
x√
2

)]
+ 2 sin

(
x√
2

)[
R′′(0)×

(
4821R(0)2 − 7711

(
R′′(0)

)2)
sinh

(
x√
2

)
+ 30

√
2x(R(0) +

R′′(0))

(
71R(0)2 − 116R(0)R′′(0) + 71(R′′(0))2

)
cosh

(
x√
2

)]
+

15(1− 3i)
(
R(0)− iR′′(0)

) (
R(0) + iR′′(0)

)2 ×
cosh

(√
−4− 3ix

)}
. (2.37)

Thus we have obtained the following three terms truncated approximate solution
of the nonlinear one dimensional biharmonic equation (2.35),

R(x) ≈ R0(x) +R1(x) +R2(x). (2.38)

2.3 The Adomian Decomposition Method for the biharmonic standing
wave equation

For the sake of comparison we also consider the application of the standard Adomian
Decomposition Method for solving the standing wave equation (2.17) with the same
initial conditions as used in the previous Section. Four fold integrating Eq. (2.17)
gives

∫ x

0
dx1

∫ x1

0
dx2

∫ x2

0
dx3

∫ x3

0

d4R (x4)

dx44
dx4 =∫ x

0
dx1

∫ x1

0
dx2

∫ x2

0
dx3

∫ x3

0

[
R2σ+1 (x4)−R (x4)

]
dx4. (2.39)
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Hence we immediately obtain

R (x) = R (0) +R′′ (0)
x2

2
+∫ x

0
dx1

∫ x1

0
dx2

∫ x2

0
dx3

∫ x3

0

[
R2σ+1 (x4)−R (x4)

]
dx4. (2.40)

SubstitutingR (x) =
∑∞

n=0Rn (x), R
2σ+1 =

∑∞
n=0An (x), whereAn are the Adomian

polynomials for all n, into Eq. (2.40), yields

∞∑
n=0

Rn (x) = R0 (x) +

∞∑
n=0

Rn+1 (x) = R (0) +R′′ (0)
x2

2
+

∞∑
n=0

∫ x

0
dx1

∫ x1

0
dx2

∫ x2

0
dx3

∫ x3

0
[An (x4)−Rn (x4)] dx4. (2.41)

We rewrite Eq. (2.41) in a recursive form as

R0 (x) = R (0) +R′′ (0)
x2

2
, (2.42)

Rk+1 (x) =

∫ x

0
dx1

∫ x1

0
dx2

∫ x2

0
dx3

∫ x3

0
[Ak (x4)−Rk (x4)] dx4. (2.43)

With the help of Eq. (2.42) and Eq. (2.43), we obtain the semi-analytical solution
of Eq. (2.17) as given by

R (x) = R0 (x) +R1 (x) +R2 (x) +R3 (x) .... (2.44)

In order to discuss a specific case we consider again Eq. (2.17) for σ = 1/2. Then

A0 = R2
0 =

[
R (0) +R′′ (0)

x2

2

]2
, (2.45)

which gives

R1(x) =

∫ x

0
dx1

∫ x1

0
dx2

∫ x2

0
dx3

∫ x3

0
[A0 (x4)−R0 (x4)] dx4 =

∫ x

0
dx1

∫ x1

0
dx2∫ x2

0
dx3

∫ x3

0

{[
R (0) +R′′ (0)

x24
2

]2
−
[
R (0) +R′′ (0)

x24
2

]}
dx4, (2.46)

R1(x) =
1

24
[R(0)− 1]R(0)x4 +

1

720
[2R(0)− 1]R′′6 +

(R′′(0))2 x8

6720
, (2.47)

R2 (x) =

∫ x

0
dx1

∫ x1

0
dx2

∫ x2

0
dx3

∫ x3

0
[2R0 (x4)R1 (x4)−R1 (x4)] dx4, (2.48)
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R2 (x) =
R(0)

[
2R(0)2 − 3R(0) + 1

]
40320

x8 +

[
34R(0)2 − 34R(0) + 1

]
R′′(0)

3628800
x10 +

31 [2R(0)− 1] (R′′(0))2

239500800
x12 +

(R′′(0))3

161441280
x14, (2.49)

R3 (x) =

∫ x

0
dx1

∫ x1

0
dx2

∫ x2

0
dx3

∫ x3

0

[
2R0 (x4)R2 (x4) +R2

1 (x4)−R2 (x4)
]
dx4,

(2.50)

R3(x) =
R(0)

[
74R(0)3 − 148R(0)2 + 75R(0)− 1

]
479001600

x12 +[
1088R(0)3 − 1632R(0)2 + 546R(0)− 1

]
R′′(0)

87178291200
x14 +[

7186R(0)2 − 7186R(0) + 559
]
(R′′(0))2

10461394944000
x16 +

2393 [2R(0)− 1] (R′′(0))3

320118685286400
x18 +

61 (R′′(0))4

250298560512000
x20. (2.51)

Thus we have obtained an approximate solution of Eq. (2.35) as given by

R(x) ≈ R0(x) +R1(x) +R2(x) +R3(x). (2.52)

2.4 Comparison with the exact numerical solution

In order to test the accuracy of the obtained semi-analytical solutions of the standing
wave equation (2.17) we compare the exact numerical solution of the equation for
σ = 1/2 with the approximate solutions obtained via the Laplace-Adomian and
Adomian Decomposition Method. The comparison of the exact numerical solution
and the three-terms solution of the Laplace-Adomian Method is presented in Fig. 1,
while the comparison of the numerical solution and Adomian Decomposition Method
is done in Fig. 2.

As one can see from Fig 1, the Laplace Adomian Decomposition Method, truncated
to three terms only, gives an excellent description of the numerical solution, at least
for the adopted range of initial conditions. The approximate solutions describes well
the complex features of the solution on a relatively large range of the independent
variable x. The simple Adomian Decomposition Method is more easy to apply,
however, its accuracy seems to be limited, as compared to the Laplace Adomian
Decomposition Method. Moreover, it is important to point out that there is a
strong dependence on the initial conditions of the accuracy of the method. If the
values R(0) and R′′(0) are small, the series solutions are in good agreement with the
numerical ones. However, for larger values of the initial conditions, the accuracy of
the Adomian methods decreases rapidly.
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Figure 1: Comparison of the numerical solutions of the nonlinear biharmonic
standing wave equation (2.35) and of the Laplace-Adomian Decomposition Method
approximate solutions, truncated to three terms, given by Eq. (2.38. The numerical
solution is represented by the solid curve, while the dashed curve depicts the Laplace-
Adomian three terms solution. The initial conditions used to integrate the equations
are R(0) = 5.1×10−5 and R′′(0) = 2.65×10−5 (left figure), and R(0) = −4.1×10−5

and R′′(0) = −7.86× 10−6 (right figure), respectively.
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Figure 2: Comparison of the numerical solutions of the nonlinear biharmonic
equation (2.35) and of the Adomian Decomposition Method approximate solutions,
truncated to four terms, given by Eq. (2.52. The numerical solutions are represented
by the solid curves, while the dashed curves depicts the Adomian Decomposition
Method four terms solutions. The initial conditions used to integrate the equations
are R(0) = −4.1×10−6 and R′′(0) = −7.86×10−2 (left figure) and R(0) = 7.19×10−8

and R′′(0) = 1.37× 10−2 (right figure), respectively.
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3 The biharmonic nonlinear equation with radial symmetry

In three dimensions d = 3, and the radial biharmonic operator (1.18) takes the
simple form

∆2
r =

d4

dr4
+

4

r

d3

dr3
. (3.1)

Hence the general nonlinear three dimensional biharmonic equation with radial
symmetry is given by

d4y(r)

dr4
+

4

r

d3y(r)

dr3
+ α

d2y(r)

dr2
+

2

r
α
dy(r)

dr
+ ωy(r) + b2 + g(y(r)) = f(r), (3.2)

where α, b2 and ω are constants, while g(y), the nonlinear operator term, and f(r),
are two arbitrary functions. Eq. (3.2) must be integrated with the initial conditions
y(0) = y0, y

′(0) = y01, y
′′(0) = y02, and y

′′′(0) = y03, respectively. After multiplying
Eq. (3.2) with r we obtain

r
d4y(r)

dr4
+ 4

d3y(r)

dr3
+ αr

d2y(r)

dr2
+ 2α

dy(r)

dr
+ ωry(r) + rg(y(r)) = rf(r)− b2r. (3.3)

3.1 The Laplace-Adomian Decomposition Method solution

As a first step in our study we assume that y and g(y(r)) can be represented in the
form of a power series as

y =
∞∑
n=0

yn, g(y(r)) =
∞∑
n=0

An, (3.4)

where An are the Adomian polynomials. Hence Eq. (3.3) becomes

∞∑
n=0

r
d4yn(r)

dr4
+ 4

∞∑
n=0

d3yn(r)

dr3
+ α

∞∑
n=0

r
d2yn(r)

dr2
+ 2α

∞∑
n=0

dyn(r)

dr
+

ω
∞∑
n=0

ryn(r) +
∞∑
n=0

rAn = rf(r)− b2r. (3.5)

After applying the Laplace transformation operator to Eq. (3.3) we obtain

∞∑
n=0

L
[
r
d4yn(r)

dr4

]
+ 4

∞∑
n=0

L
[
d3yn(r)

dr3

]
+ α

∞∑
n=0

L
[
r
d2yn(r)

dr2

]
+

2α
∞∑
n=0

L
[
dyn(r)

dr

]
+ ω

∞∑
n=0

L [ryn(r)] +
∞∑
n=0

L [rAn] = L
[
rf(r)− b2r

]
. (3.6)

By taking into account the relations
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L
[
r
d4yn(r)

dr4

]
(s) =

∫ ∞

0
r
d4yn(r)

dr4
e−srdr = − d

ds

∫ ∞

0

d4yn(r)

dr4
e−srdr =

− d

ds
L
[
d4yn(r)

dr4

]
(s), (3.7)

L
[
r
d2yn(r)

dr2

]
=

∫ ∞

0
r
d2yn(r)

dr2
e−srdr = − d

ds

∫ ∞

0

d2yn(r)

dr2
e−srdr =

− d

ds
L
[
d2yn(r)

dr2

]
(s), (3.8)

L [ryn(r)] (s) =

∫ ∞

0
ryn(r)e

−srdr = − d

ds

∫ ∞

0
yn(r)e

−srdr =

− d

ds
L [yn[(r)] (s), (3.9)

and the linearity of the Laplace transformation, Eq. (3.6) becomes

−
(
s4 + αs2 + ω

) ∞∑
n=0

F ′
n(s)− y(0)

(
α+ s2

)
− 2sy′(0)− 3y′′(0) +

∞∑
n=0

L [rAn] (s) = − b
2

s2
+ L [rf(r)] (s). (3.10)

From Eq. (3.10) we obtain the following recursion relations

−
(
s4 + αs2 + ω

)
F ′
0(s)− y(0)

(
α+ s2

)
− 2sy′(0)− 3y′′(0) =

− b
2

s2
+ L [rf(r)] (s), (3.11)

F ′
n+1(s) =

1

(s4 + αs2 + ω)
L [rAn] (s). (3.12)

From Eq. (3.11) we obtain

F0(s) =

∫
G(s)ds, (3.13)

where

G(s) =
b2/s2 − y(0)

(
α+ s2

)
− 2y′(0)s− 3y′′(0)− L [rf(r)] (s)

(s4 + αs2 + ω)
, (3.14)
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while Eq. (3.12) gives

Fk+1(s) =

∫
1

(s4 + αs2 + ω)
L [rAk] (s)ds. (3.15)

Hence we obtain the following approximate series solution of the radial nonlinear
biharmonic equation (3.2),

y0(r) = L−1

[∫
G(s)ds

]
(r), (3.16)

yk+1 = L−1

{∫
1

(s4 + αs2 + ω)
L [rAk] (s)ds

}
(r). (3.17)

3.2 Application: the radial biharmonic standing wave equation

In radial symmetry, and by assuming that R ∈ R+, the standing wave equation
(1.17) takes the form

d4R(r)

dr4
+

4

r

d3R(r)

dr3
+R(r)−R2σ+1(r) = 0, (3.18)

or, equivalently,

r
d4R(r)

dr4
+ 4

d3R(r)

dr3
+ rR(r) = rR2σ+1(r). (3.19)

By taking the Laplace transform of Eq. (3.19) we obtain

−
(
s4 + 1

)
F ′(s)−R(0)s2 − 2R′(0)s− 3R′′(0) = L

[
rR2σ+1(r)

]
(s). (3.20)

By writing

R(r) =
∞∑
n=0

Rn(r), R
2σ+1(r) =

∞∑
n=0

An(r),

L [R(r)] (s) =
∞∑
n=0

L [Rn(r)] (s) =
∞∑
n=0

Fn(s),

Eq. (3.20) becomes

−
(
s4 + 1

) ∞∑
n=0

F ′
n(s)−R(0)s2 − 2R′(0)s− 3R′′(0) =

∞∑
n=0

L [rAn(r)] (s). (3.21)

Hence we obtain the following recursive relations for the solution of Eq. (3.18),

F ′
0(s) = −R(0)s

2 + 2R′(0)s+ 3R′′(0)

s4 + 1
, (3.22)
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F ′
k+1(s) = − 1

s4 + 1
L [rAk(r)] (s). (3.23)

Eq. (3.22) can be integrated exactly to obtain F0(s) as

F0(s) =
1

8

{
2
[√

2R(0) + 4R′(0) + 3
√
2R′′(0)

]
tan−1

(
1−

√
2s
)
−

2
[√

2R(0)− 4R′(0) + 3
√
2R′′(0)

]
×

tan−1
(
1 +

√
2s
)
−
√
2
[
R(0)− 3R′′(0)

]
ln
s2 −

√
2s+ 1

s2 +
√
2s+ 1

}
. (3.24)

In the following we will consider the solutions of Eq. (3.18) with σ = 1/2,
together with the initial conditions R(0) ̸= 0, R′(0) = 0, R′′(0) ̸= 0, and R′′′(0) = 0,
respectively. Then, by neglecting the non-linear term R2 in Eq. (3.18) it turns out
that the general solution of the linear equation

r
d4R0(r)

dr4
+ 4

d3R0(r)

dr3
+ rR0(r) = 0, (3.25)

is given by

R0(r) =

(
1
2 − i

2

) {
sin
(

4
√
−1r

)
[R(0) + 3iR′′(0)] + sinh

(
4
√
−1r

)
[R(0)− 3iR′′(0)]

}
√
2r

.

(3.26)
The Laplace transform of R0 converges only for values of Re s ≥ s0 = 1/

√
2. In the

region of convergence F0(s) can effectively be expressed as the absolutely convergent
Laplace transform of another function, such that F0(s) = (s− s0)

∫∞
0 e−(s−s0)tβ(t)dt,

where β(t) =
∫ t
0 e

−s0uR0(u)du.
The first Adomian polynomial A0 is obtained as A0(r) = R2

0(r), and the Laplace
transform of rA0 is given by

L [rA0(r)] (s) =
1

8

{
3R(0)R′′(0) ln

(
16

s4
+ 1

)
+
[
R(0)2 + 9

(
R′′(0)

)2]×
ln

(
s2 + 2

s2 − 2

)
+
[
R(0)2 − 9

(
R′′(0)

)2]
tan−1

(
4

s2

)}
. (3.27)

Then the Laplace transform of the first correction term in the Adomian series
expansion is given as the solution of the following differential equation,

F ′
1(s) = − 1

8 (1 + s4)

{
3R(0)R′′(0) log

(
16

s4
+ 1

)
+
[
R(0)2 + 9

(
R′′(0)

)2]×
ln

(
s2 + 2

s2 − 2

)
+
[
R(0)2 − 9

(
R′′(0)

)2]
tan−1

(
4

s2

)}
. (3.28)
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The right hand side of the above equation cannot be integrated exactly. By expanding
it in power series of 1/s, we obtain

F ′
1(s) ≈ −R(0)

2

s6
− 6(R(0)R′′(0))

s8
+

3R(0)2 − 30 (R′′(0))2

s10
+

54R(0)R′′(0)

s12
+

246 (R′′(0))2 − 151R(0)2

5

s14
− 566(R(0)R′′(0))

s16
+O

((
1

s

)17
)
, (3.29)

and

F1(s) ≈ 1

5

{
566R(0)R′′(0)

3s15
+

151R(0)2 − 1230 (R′′(0))2

13s13
− 270R(0)R′′(0)

11s11
−

5
[
R(0)2 − 10 (R′′(0))2

]
3s9

+
30R(0)R′′(0)

7s7
+
R(0)2

s5

}
. (3.30)

respectively. Hence for the first term of the Adomian series expansionR1 = L−1 [F1(s)] (r)
we obtain

R1(r) =
R(0)2

120
r4 +

1

840
R(0)R′′(0)r6 +

10 (R′′(0))2 −R(0)2

120960
r8 − R(0)R′′(0)

739200
r10 +

151R(0)2 − 1230 (R′′(0))2

31135104000
r12 +

283R(0)R′′(0)

653837184000
r14 + .... (3.31)

The comparison of the two terms truncated Laplace-Adomian Decomposition
Method solution, R(r) ≈ R0(r)+R1(r) with the exact numerical solution is presented,
for two different sets of initial conditions, in Fig. 3.

3.3 The Adomian Decomposition Method for the radial biharmonic
standing waves equation

We consider now the use of the Adomian Decomposition Method for obtaining a
semi-analytical solution of the radial biharmonic standing waves equation. For the
sake of generality we will consider a more general equation of the form

d4R

dr4
+ f (r)

d3R

dr3
= R2σ+1 −R, (3.32)

where f(r) is an arbitrary function of the radial coordinate r, and which we will
solve with the initial conditions R(0) ̸= 0, R′ (0) = 0, R′′ (0) ̸= 0, and R′′′(0) = 0,
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Figure 3: Comparison of the numerical solutions of the radial biharmonic standing
wave equation (3.18) and of the approximate solutions obtained by the Laplace-
Adomian Decomposition Method, truncated to two terms, R(r) ≈ R0(r0 + R1(r).
The numerical solutions are represented by the solid curves, while the dashed curves
depicts the Laplace-Adomian Decomposition Method two terms solutions. The
initial conditions used to integrate the equations are R(0) = −7.85 × 10−12 and
R′′(0) = −4.31×10−5 (left figure) and R(0) = 1.27×10−12 and R′′(0) = 4.31×10−5

(right figure), respectively.

respectively. Then the following identity can be immediately obtained,

∫ r

0
dr1

∫ r1

0
dr2

∫ r2

0
e−

∫
f(r3)dr3dr3 ×∫ r3

0
e
∫
f(r4)dr4

[
R′′′′ (r4) + f (r4)R

′′′ (r4)
]
dr4

=

∫ r

0
dr1

∫ r1

0
dr2

∫ r2

0
e−

∫
f(r3)dr3dr3 ×[∫ r3

0
e
∫
f(r4)dr4dR′′′ (r4) +

∫ r3

0
e
∫
f(r4)dr4f (r4)R

′′′ (r4) dr4

]
=

∫ r

0
dr1

∫ r1

0
dr2

∫ r2

0
e−

∫
f(r3)dr3

[∫ r3

0
d
(
e
∫
f(r)drR′′′ (r)

)]
dr3

=

∫ r

0
dr1

∫ r1

0
dr2

∫ r2

0
e−

∫
f(r3)dr3

(
e
∫
f(r)drR′′′ (r)

)⏐⏐⏐r=r3

r=0
dr3

=

∫ r

0
dr1

∫ r1

0
dr2

∫ r2

0
e−

∫
f(r3)dr3e

∫
f(r3)dr3R′′′ (r3) dr3 =∫ r

0
dr1

∫ r1

0
dr2

∫ r2

0
R′′′ (r3) dr3 = R (r)−R (0)−R′′ (0)

r2

2
. (3.33)
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Thus Eq. (3.32) can be reformulated as an equivalent integral equation given by

R (r) = R (0) +R′′ (0)
r2

2
+

∫ r

0
dr1

∫ r1

0
dr2

∫ r2

0
e−

∫
f(r3)dr3dr3 ×∫ r3

0
e
∫
f(r4)dr4

[
R2σ+1 (r4)−R (r4)

]
dr4. (3.34)

By taking into account that f(r) = 4/r, and by decomposing R and R2σ+1 as
R =

∑∞
n=0Rn and R2σ+1 =

∑∞
n=0An, where An are the Adomian polynomials, we

obtain

R0 (r) +
∞∑
n=0

Rn+1 (r) = R (0) +R′′ (0)
r2

2
+

∫ r

0
dr1

∫ r1

0
dr2

∫ r2

0

1

r43
dr3 ×

∫ r3

0
r44

[ ∞∑
n=0

An (r4)−
∞∑
n=0

Rn (r4)

]
dr4. (3.35)

Then an analytic solution to Eq. (3.32) can be obtained with the help of the
recursive relations

R0 (r) = R (0) +R′′ (0)
r2

2
, (3.36)

Rk+1 (r) =

∫ r

0
dr1

∫ r1

0
dr2

∫ r2

0

1

r43
dr3

∫ r3

0
r44 [Ak (r4)−Rk (r4)] dr4. (3.37)

3.3.1 Application: the case σ = 1/2

As an application of the Adomian Decomposition Method for obtaining the solution
of Eq. (3.32) we consider the case σ = 1/2. Hence the radial biharmonic standing
wave equation becomes

d4R

dr4
+

4

r

d3R

dr3
= R2 −R. (3.38)

The first few terms in the series solution of this equation are given by

R0 (r) = R (0) +R′′ (0)
r2

2
, (3.39)

R1(r) =
1

120
[R(0)− 1]R(0)r4 +

[2R(0)− 1]R′′(0)

1680
r6 +

(R′′(0))2

12096
r8, (3.40)

R2(r) =
R(0)

[
2R(0)2 − 3R(0) + 1

]
362880

r8 +

[
18R(0)2 − 18R(0) + 1

]
R′′(0)

13305600
r10 +

41 [2R(0)− 1] (R′′(0))2

1037836800
r12 +

(R′′(0))3

396264960
r14, (3.41)
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R3(r) =
R(0)

[
146R(0)3 − 292R(0)2 + 151R(0)− 5

]
31135104000

r12 +[
1120R(0)3 − 1680R(0)2 + 566R(0)− 3

]
R′′(0)

1307674368000
r14 +[

31282R(0)2 − 31282R(0) + 3407
]
(R′′(0))2

414968666112000
r16 +

3061 [2R(0)− 1] (R′′(0))3

2027418340147200
r18 +

89 (R′′(0))4

1366067972505600
r20. (3.42)

The comparison between the exact numerical solution and the approximate
solution R(r) = R0(r) + R1(r) + R2(r) + R3(r) of Eq. (3.38) is represented, for
two sets of initial values, in Fig. 4.
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Figure 4: Comparison of the numerical solutions of the radial biharmonic standing
wave equation (3.38) and of the Adomian Decomposition Method approximate
solutions, truncated to four terms. The numerical solutions are represented by the
solid curves, while the dashed curves depicts the Adomian Decomposition Method
four terms solutions. The initial conditions used to integrate the equations are
R(0) = 7.44×10−15 and R′′(0) = 2.71×10−4 (left figure) and R(0) = −3.89×10−16

and R′′(0) = −1.91× 10−5 (right figure), respectively.

4 Discussions and concluding remarks

In the present paper we have presented the applications of the Adomian Decomposition
method for solving the nonlinear biharmonic differential equation. The Adomian
Decomposition Method has been successfully used to solve many classes of differential,
integral and functional equations. It has also important applications in science
and engineering. The basic ingredient of this approach is the decomposition of
the nonlinear term in the differential equations into a series of polynomials of
the form

∑∞
n=1An, where An are the so-called Adomian polynomials. Simple

formulas that can generate Adomian polynomials for many forms of nonlinearity
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have been derived in [7, 8]. The solutions of the nonlinear differential equations can
be obtained recursively, and each term of the Adomian series can be computed once
the corresponding polynomial, obtained from an expansion of the nonlinear term
into a power series, is known.

We have considered in detail both the one dimensional, as well as the radial, three
dimensional, biharmonic type equation containing some nonlinear terms. We have
implemented two versions of the Adomian Decomposition Method for solving the
biharmonic equation, namely, the Laplace-Adomian Decomposition Method, and the
standard Adomian Decomposition Method. The Laplace-Adomian Decomposition
Method combines the powerful Laplace transformation with the advantages of the
Adomian method, with the iterative procedure applied in the space of the Laplace
transformed functions. In the radial case the Laplace transforms of the terms in the
Adomian expansion can be obtained as solutions of a first order differential equation,
which can be obtained by quadratures. However, in the present case the integral,
and the Laplace transform itself, cannot be obtained in an exact form, and therefore
one have to resort to some approximate methods.

For each type of considered equations we have also considered some concrete
examples, and we have compared the Adomian solution with the exact numerical
solution. Generally, the efficiency, precision and robustness of the Laplace-Adomian
Decomposition Method is very good. In the case of the one-dimensional standing
wave biharmonic equation only three terms of the Adomian expansion are enough
to give a good approximation of the numerical solution, while for the case of the
radial nonlinear biharmonic standing wave equation the numerical solution can be
approximated by using only two terms. This coincidence implicitly shows the power
of the Adomian method, which can be used to find out even the exact solution of a
given differential equation. However, in general the application of the method may
be complicated by the difficulties in solving exactly the differential equations for the
Laplace transform, and for obtaining the inverse Laplace transform. But, at least
in the case of the radial nonlinear standing wave equation, a simple technique based
on the power series expansion of the Laplace transform of the Adomian polynomials
gives good approximations of the numerical solutions. Numerical techniques for
obtaining the inverse Laplace transform [39] may also be useful in obtaining the
successive terms in the Laplace-Adomian expansion.

We have also considered the standard Adomian Decomposition Method for both
the first order and radial nonlinear biharmonic equations. Computationally, this
method is very simple, and it can provide some power series solutions that can
describe the numerical solution relatively well. The Adomian method is very simple
and efficient, but it may raise some questions about the convergence of the series of
functions [1, 2]. Moreover, we must point out that the accuracy of the approximations
of the numerical solution by the Adomian series is strongly dependent on the initial
conditions used to solve the equations. The Adomian solutions work well for small
numerical values of the initial conditions. Once these values are increased, the
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accuracy of the estimations becomes poor, at least for the number of terms used
to approximate the solutions in the present approach. These raises the issue of the
dependence of the convergence of the Adomian solution from the initial conditions,
a mathematical problem certainly worth of investigating.

The biharmonic equation appears in many physical and engineering applications
[20, 21, 25, 26]. In particular, it plays an important role within the hydrodynamic
formulation of the Schrödinger equation, and in the presence of the quantum potential.
This physical approach is extensively used for the study of the quantum fluids.
In many applications, mostly due to the computational difficulties, the quantum
potential is neglected. However, by using the present approach, semi-analytical
solutions of the biharmonic equation can be obtained, which can approximate well
the numerical solution. The semi-analytical solutions offer the possibility of a
deeper insight into the physical nature of the problem, as well as of a significant
simplification of the estimation of some relevant physical parameters.

Similar investigations based on the applications of this powerful method could
lead to the development of powerful mathematical methods for solving different
problems described by fourth order differential equations that play an important role
in engineering, like, for example, in the study of the large amplitude free vibrations
of a uniform cantilever beam [16].

The Adomian Decomposition Method, as well as its Laplace transform version,
represents a powerful mathematical tool for physicists and engineers investigating
both theoretical and applied problems. The biharmonic equation, and its extensions,
are interesting in themselves from a mathematical point of view. There are also
important in many applications. In the present study we have introduced some
theoretical tools, which are extremely effective in dealing with strongly nonlinear
differential equations and complex mathematical models, and that may help in the
better understanding of the properties and solutions of the nonlinear biharmonic
equation.
Acknowledgement. We would like to thank the anonymous reviewer for comments
and suggestions that helped us to improve our manuscript. T. H. would like to
thank the Yat Sen School of the Sun Yat Sen University in Guangzhou for the kind
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References

[1] K. Abbaoui and Y. Cherrualt, Convergence of Adomian’s method applied
to differential equations, Comp. Math. Appl. 28 (1994), 103-109.
MR1287509(95g:65090). Zbl 0809.65073.

[2] K. Abbaoui, Y. Cherrualt, Convergence of Adomian’s method applied to
nonlinear equations, Math. Comp. Mod. 20 (1994), 69-73. MR1302630(65H05).
Zbl 0822.65027.

******************************************************************************
Surveys in Mathematics and its Applications 13 (2018), 183 – 213

http://www.utgjiu.ro/math/sma

http://www.ams.org/mathscinet-getitem?mr=1287509
https://zbmath.org/?q=an:0809.65073
http://www.ams.org/mathscinet-getitem?mr=1302630
https://zbmath.org/?q=an:0822.65027
http://www.utgjiu.ro/math/sma/v13/v13.html
http://www.utgjiu.ro/math/sma


208 M. K. Mak, C. S. Leung and T. Harko

[3] G. Adomian, Decomposition solution for Duffing and Van der Pol oscillators,
Int. J. Math. & Math. Sci. 9 (1986), 731-732. MR0870528. Zbl 0605.34036.

[4] G. Adomian, Convergent series solution of nonlinear equations, J. Comput.
Appl. Math. 11 (1984), 225-230. Zbl 0549.65034.

[5] G. Adomian, On the convergence region for decomposition solutions, J. Comput.
Appl. Math. 11 (1984), 379-380. MR0777113(65U05). Zbl 0547.65053.

[6] G. Adomian, Nonlinear stochastic dynamical systems in physical problems,
J. Math. Anal. Appl. 111 (1985), 105-113. MR0808665(86m:60161). Zbl
0582.60067.

[7] G. Adomian, A review of the Decomposition Method in Applied Mathematics,
J. Math. Anal. Appl. 135 (1988), 501-544. MR0967225 (89j:00046). Zbl
0671.34053.

[8] G. Adomian, Solving Frontier Problems of Physics: the Decomposition
Method, Kluwer, Dordrecht, The Netherlands, 1994. MR1282283(95e:00026).
Zbl 0802.65122.

[9] G. Adomian, R. Rach, Modified Adomian Polynomials, Math. Comp. Mod. 24
(1996), 39-46. MR1426307 (98b:33017). Zbl 0874.65051.

[10] E. Babolian, S. Javadi, Restarted Adomian Method for Algebraic Equations,
Appl. Math. Comput. 146 (2003), 533-541. MR2008570. Zbl 1032.65049.

[11] E. Babolian, S. Javadi, H. Sadehi, Restarted Adomian Method for Integral
Equations, Appl. Math. Comput. 153 (2004), 353-359. MR2064662. Zbl
1048.65132.

[12] H. O. Bakodah, Some Modification of the Adomian Decomposition Method
Applied to Nonlinear System of Fredholm Integral Equations of the Second Kind,
Int. J. Contemp. Math. Sciences, 7 (2012), 929-942. MR2905162.

[13] G. Baruch, G. Fibich, E. Mandelbaum, Singular solutions of the biharmonic
nonlinear Schrödinger equation, SIAM J. Appl. Math. 70 (2010), 3319-3341.
MR2763506(2012b:35317). Zbl 1210.35224.

[14] G. Baruch, G. Fibich, E. Mandelbaum, Ring-type singular solutions of the
biharmonic nonlinear Schrodinger equation, Nonlinearity 23 (2010), 2867-2887.
MR2727174 (2012c:35407). Zbl 1202.35294.

[15] G. Baruch, G. Fibich, Singular solutions of the L2-supercritical biharmonic
nonlinear Schrödinger equation, Nonlinearity 24 (2011), 1843-1859. MR2802308
(2012e:35235). Zbl 1230.35125.

******************************************************************************
Surveys in Mathematics and its Applications 13 (2018), 183 – 213

http://www.utgjiu.ro/math/sma

http://www.ams.org/mathscinet-getitem?mr=0870528
https://zbmath.org/?q=an:0605.34036
https://zbmath.org/?q=an:0549.65034
http://www.ams.org/mathscinet-getitem?mr=0777113
https://zbmath.org/?q=an:0547.65053
http://www.ams.org/mathscinet-getitem?mr=0808665
https://zbmath.org/?q=an:0582.60067
https://zbmath.org/?q=an:0582.60067
http://www.ams.org/mathscinet-getitem?mr=0967225
https://zbmath.org/?q=an:0671.34053
https://zbmath.org/?q=an:0671.34053
http://www.ams.org/mathscinet-getitem?mr=1282283
https://zbmath.org/?q=an:0802.65122
http://www.ams.org/mathscinet-getitem?mr=1426307
https://zbmath.org/?q=an:0874.65051
http://www.ams.org/mathscinet-getitem?mr=2008570
https://zbmath.org/?q=an:1032.65049
http://www.ams.org/mathscinet-getitem?mr=2064662
https://zbmath.org/?q=an:1048.65132
https://zbmath.org/?q=an:1048.65132
http://www.ams.org/mathscinet-getitem?mr=2905162
http://www.ams.org/mathscinet-getitem?mr=2763506
https://zbmath.org/?q=an:1210.35224
http://www.ams.org/mathscinet-getitem?mr=2727174
https://zbmath.org/?q=an:1202.35294
http://www.ams.org/mathscinet-getitem?mr=2802308
https://zbmath.org/?q=an:1230.35125
http://www.utgjiu.ro/math/sma/v13/v13.html
http://www.utgjiu.ro/math/sma


Solving the nonlinear biharmonic equation via Laplace-ADM 209

[16] J. A. Belinchon, T. Harko, M. K. Mak, Approximate Analytical Solution for
the Dynamic Model of Large Amplitude Non-Linear Oscillations Arising in
Structural Engineering, J. Applied Math. Eng. 8 (2016), 25-34.

[17] J. Biazar, E. Babolian, R. Islam, Solution of the system of ordinary differential
equations by Adomian Decomposition Method, Appl. Math. Comput. 147
(2004), 713-719. MR2011082. Zbl 1034.65053.

[18] J. Biazar, E. Babolian, A. Nouri, R. Islam, An alternate algorithm for computing
Adomian polynomials in special cases, Appl. Math. Comput. 138 (2003), 523-
529. MR1950081. Zbl 1027.65076.

[19] J. Biazar, M. Tango, E. Babolian, R. Islam, Solution of the kinetic modeling
of lactic acid fermentation using Adomian decomposition method, Appl. Math.
Comput. 144 (2003), 433-439. MR1994082. Zbl 1048.92013.

[20] C. G. Boehmer, T. Harko, Can dark matter be a Bose-Einstein condensate?,
JCAP 06 (2007), 025. doi:10.1088/1475-7516/2007/06/025.

[21] J. Boos, Gravitational Friedel oscillations in higher-derivative and infinite-
derivative gravity?, arXiv:1804.00225 [gr-qc] (2018).

[22] K. T. Chau, Theory of differential equations in engineering and mechanics,
CRC Press Taylor & Francis Group, Boca Raton, USA, 2018. MR3702065.

[23] Y. Cherruault, G. Adomian, K. Abbaoui, R. Rach, Further remarks on
convergence of Decomposition Method, Int. J. Bio-Med. Comp. 38 (1995), 89-93.
doi:org/10.1016/0020-7101(94)01042-Y.

[24] H. Fatoorehchi, R. Zarghami, H. Abolghasemi, R. Rach, Chaos control in the
cerium-catalyzed Belousov-Zhabotinsky reaction using recurrence quantification
analysis measures, Chaos, Solitons & Fractals 76 (2015), 121-129. Zbl
1352.93053.

[25] G. Fibich, G. C. Papanicolaou, Self-focusing in the perturbed and unperturbed
nonlinear Schr”odinger equation in critical dimension, SIAM J. Applied Math.
60 (2000), 183-240. MR1740841(2000j:78013). Zbl 1026.78013.

[26] G. Fibich, B. Ilan, G. Papanicolaou, Self-focusing with fourth-order dispersion,
SIAM J. Applied Math. 62 (2002), 1437-1462. MR1898529(2003b:35198). Zbl
1003.35112.

[27] H. Ghasemi, M. Ghovatmand, S. Zarrinkamar, H. Hassanabadi, Solution
of the nonlinear Klein-Gordon equation for two new terms via the
Adomian decomposition method, Eur. Phys. J. Plus 129 (2014), 32.
doi:10.1140/epjp/i2014-14032-4.

******************************************************************************
Surveys in Mathematics and its Applications 13 (2018), 183 – 213

http://www.utgjiu.ro/math/sma

http://www.ams.org/mathscinet-getitem?mr=2011082
https://zbmath.org/?q=an:1034.65053
http://www.ams.org/mathscinet-getitem?mr=1950081
https://zbmath.org/?q=an:1027.65076
http://www.ams.org/mathscinet-getitem?mr=1994082
https://zbmath.org/?q=an:1048.92013
https://doi:10.1088/1475-7516/2007/06/025
arXiv:1804.00225 [gr-qc]
http://www.ams.org/mathscinet-getitem?mr=3702065
https://doi.org/10.1016/0020-7101(94)01042-Y
https://zbmath.org/?q=an:1352.93053
https://zbmath.org/?q=an:1352.93053
http://www.ams.org/mathscinet-getitem?mr=1740841
https://zbmath.org/?q=an:1026.78013
http://www.ams.org/mathscinet-getitem?mr=1898529
https://zbmath.org/?q=an:1003.35112
https://zbmath.org/?q=an:1003.35112
https://doi:10.1140/epjp/i2014-14032-4
http://www.utgjiu.ro/math/sma/v13/v13.html
http://www.utgjiu.ro/math/sma


210 M. K. Mak, C. S. Leung and T. Harko

[28] T. Harko, Evolution of cosmological perturbations in Bose-Einstein condensate
dark matter, Mon. Not. Roy. Astron. Soc. 413 (2011), 3095-3104.
doi:10.1111/j.1365-2966.2011.18386.x.

[29] T. Harko, Bose-Einstein condensation of dark matter solves the core/cusp
problem, JCAP 05 (2011), 022. doi:10.1088/1475-7516/2011/05/022.

[30] T. Harko, G. Mocanu, Cosmological evolution of finite temperature Bose-
Einstein condensate dark matter, Phys. Rev. D 85 (2012), 084012.
doi:10.1103/PhysRevD.85.084012.

[31] N. Hayashi, J. A. Mendez-Navarro, P. I. Naumkin, Asymptotics for the fourth-
order nonlinear Schrödinger equation in the critical case, J. Diff. Eqs. 261
(2016), 5144-5179. MR3542971. Zbl 1353.35262.

[32] S. He, K. Sun, S. Banerjee, Dynamical properties and complexity in fractional-
order diffusionless Lorenz system, Eur. Phys. J. Plus 131 (2016), 254.
doi:10.1140/epjp/i2016-16254-8.

[33] S. He, K. Sun, X. Mei, B. Yan, S. Xu, Numerical analysis of a fractional-order
chaotic system based on conformable fractional-order derivative, Eur. Phys. J.
Plus 132 (2017), 36. doi:10.1140/epjp/i2017-11306-3.

[34] H. Jafari, V. Daftardar-Gejji, Revised Adomian decomposition method for
solving a system of nonlinear equations, Appl. Math. Comput. 175 (2006),
1-7. MR2216321. Zbl1088.65047.

[35] H. Jafari, V. Daftardar-Gejji, Revised Adomian decomposition method for
solving systems of ordinary and fractional differential equations, Appl. Math.
Comput. 181 (2006), 598-608. MR2216321. Zbl1148.65319.

[36] C. Jin, M. Liu, A new modification of Adomian decomposition method for
solving a kind of evolution equation, Appl. Math. Comput. 169 (2005), 953-
962. MR2174695(2006e:35291). Zbl 1121.65355.

[37] A. K. Khalifa, The decomposition method for one dimensional
biharmonic equations, Int. J. Sim. and Proc. Mod. 2 (2006), 33-36.
doi.org/10.1504/IJSPM.2006.009010.

[38] L. D. Landau, E. M. Lifshitz, Theory of Elasticity, Pergamon Press, Oxford,
UK, 1970. MR0106584.

[39] D. M. Lerner, G. M. Lerner, A simplified algorithm for the inverse Laplace
transform, Radiophysics and Quantum Electronics 13 (1970), 482-484.
MR0282500.

******************************************************************************
Surveys in Mathematics and its Applications 13 (2018), 183 – 213

http://www.utgjiu.ro/math/sma

https://doi:10.1111/j.1365-2966.2011.18386.x
https://doi:10.1088/1475-7516/2011/05/022
https://doi:10.1103/PhysRevD.85.084012
http://www.ams.org/mathscinet-getitem?mr=3542971
https://zbmath.org/?q=an:1353.35262
https://doi:10.1140/epjp/i2016-16254-8
https://doi:10.1140/epjp/i2017-11306-3
http://www.ams.org/mathscinet-getitem?mr=2216321
https://zbmath.org/?q=an: 1088.65047
http://www.ams.org/mathscinet-getitem?mr=2216321
https://zbmath.org/?q=an:1148.65319
http://www.ams.org/mathscinet-getitem?mr=2174695
https://zbmath.org/?q=an:1121.65355
https://doi.org/10.1504/IJSPM.2006.009010
http://www.ams.org/mathscinet-getitem?mr=0106584
http://www.ams.org/mathscinet-getitem?mr=0282500
http://www.utgjiu.ro/math/sma/v13/v13.html
http://www.utgjiu.ro/math/sma


Solving the nonlinear biharmonic equation via Laplace-ADM 211

[40] X.-G. Luo, A Two-Step Adomian Decomposition Method, Appl. Math. Comput.
170 (2005), 570-583. MR2177562. Zbl 1082.65581.

[41] M. K. Mak, C. S. Leung, T. Harko, Computation of the general
relativistic perihelion precession and of light deflection via the Laplace-
Adomian Decomposition Method, Adv. High En. Phys. 2018 (2018), 7093592.
MR3825213.

[42] M. Marin, Contributions on uniqueness in thermoelastodynamics on bodies with
voids, Cienc. Mat.(Havana) 16 (1998), 101-109. MR1687183(2000a:74064). Zbl
1071.74588.

[43] M. Marin, An evolutionary equation in thermoelasticity of dipolar bodies, J.
Math. Phys. 40, (1999), 1391-1399. MR1674677(2000b:74034). Zbl 0967.74009.

[44] M. Marin, O. Florea, On temporal behaviour of solutions in thermoelasticity of
porous micropolar bodies, An. St. Univ. Ovidius Constanta-Seria Mathematics
22 (2014), 169-188. MR3187744. Zbl 1340.74023.

[45] S. T. Mohyud-Din, W. Sikander, U. Khan, N. Ahmed, Optimal variational
iteration method using Adomian’s polynomials for physical problems on
finite and semi-infinite intervals, Eur. Phys. J. Plus 132 (2017), 236.
doi:10.1140/epjp/i2017-11506-9.

[46] M. M. Mousa, M. Reda, The method of lines and Adomian Decomposition
for obtaining solitary wave solutions of the KdV Equation, Applied Physics
Research 5 (2013), 43-57. doi:10.5539/apr.v5n3p43.

[47] P. I. Naumkin, J. J. Perez, Higher-order derivative nonlinear Schrödinger
equation in the critical case, J. Math. Phys. 59 (2018), 021506. MR3766376.
Zbl 1390.35338.

[48] K. Parand, J. A. Rad, M. Ahmadi, A comparison of numerical and semi-
analytical methods for the case of heat transfer equations arising in porous
medium, Eur. Phys. J. Plus 131 (2016), 300. doi:10.1140/epjp/i2016-16300-7.

[49] B. Pausader, S. Xia, Scattering theory for the fourth-order Schrödinger
equation in low dimensions, Nonlinearity 26 (2013), 2175-2191. MR3078112.
Zbl 1319.35240.

[50] R. Rach, G. Adomian, R. E. Meyers, A modified decomposition, Comp. & Math.
Appl. 23 (1992), 17-23. MR1147059(92i:34015).

[51] J. Ruan, K. Sun, J. Mou, S. He, L. Zhang, Fractional-order simplest memristor-
based chaotic circuit with new derivative, Eur. Phys. J. Plus 133 (2018), 3.
doi:10.1140/epjp/i2018-11828-0.

******************************************************************************
Surveys in Mathematics and its Applications 13 (2018), 183 – 213

http://www.utgjiu.ro/math/sma

http://www.ams.org/mathscinet-getitem?mr=2177562
https://zbmath.org/?q=an:1082.65581
http://www.ams.org/mathscinet-getitem?mr=3825213
http://www.ams.org/mathscinet-getitem?mr=1687183
https://zbmath.org/?q=an:1071.74588
https://zbmath.org/?q=an:1071.74588
http://www.ams.org/mathscinet-getitem?mr=1674677
https://zbmath.org/?q=an:0967.74009
http://www.ams.org/mathscinet-getitem?mr=3187744
https://zbmath.org/?q=an:1340.74023
https://doi:10.1140/epjp/i2017-11506-9
https://doi:10.5539/apr.v5n3p43
http://www.ams.org/mathscinet-getitem?mr=3766376
https://zbmath.org/?q=an:1390.35338
https://doi:10.1140/epjp/i2016-16300-7
http://www.ams.org/mathscinet-getitem?mr=3078112
https://zbmath.org/?q=an:1319.35240
http://www.ams.org/mathscinet-getitem?mr=1147059
https://doi:10.1140/epjp/i2018-11828-0
http://www.utgjiu.ro/math/sma/v13/v13.html
http://www.utgjiu.ro/math/sma


212 M. K. Mak, C. S. Leung and T. Harko

[52] J. Ruan, Z. Lu, A modified algorithm for the Adomian decomposition method
with applications to Lotka-Volterra systems, Math. Comput. Mod. 46 (2007),
1214-1224. MR2376703 (2008j:65112). Zbl 1133.65046.

[53] M. Ruzicka, Electrorheological Fluids: Modeling and Mathematical Theory
(Lecture Notes in Mathematics: 1748), Springer Verlag, Berlin, Heidelberg,
New York, 2000. MR1810360(2002a:76004). Zbl 0962.76001.

[54] A. P. S. Selvadurai, Partial Differential Equations in Mechanics, Vol. 2, The
Biharmonic Equation, Poisson’s Equation, Springer Verlag, Berlin Heidelberg
New York, 2000. MR1844796.

[55] Ch. Tsitouras, Rational Approximants to the Solution of the Brusselator System
compared to the Adomian Decomposition Method, Int. J. Contemp. Math.
Sciences 4 (2009), 815-820. MR2603474. Zbl 1188.65094.

[56] L. Visinelli, Condensation of galactic cold dark matter, JCAP 1607 (2016), 009.
doi:10.1088/1475-7516/2016/07/009.

[57] A.-M. Wazwaz, The Modified Decomposition Method and Padé Approximation
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