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MATRIX POWER MEANS AND POLYA-SZEGO
TYPE INEQUALITIES

Mohsen Kian and Fatemeh Rashid

Abstract. It has been shown that if i is a compactly supported probability measure on M},
then for every unit vector n € C", there exists a compactly supported probability measure (denoted
by (un,1)) on RY so that the inequality

(Pe(p)n,m) < Pe({um,m)  (t€(0,1])

holds. In particular, we consider a reverse of the above inequality and present some Pdlya—Szego

type inequalities for power means of probability measures on positive matrices.

1 Introduction and preliminaries

In what follows, assume that M, is the algebra of all n x n matrices with complex
entries and H,, is the real subspace of all Hermitian matrices in Ml,,. A matrix A € H,
is called positive semi-definite (positive definite) and denoted by A > 0 (A > 0) if
all of its eigenvalues are non-negative (positive). We denote by M the set of all
positive definite matrices. The well-known Loewner partial order on H, is defined
by

A<B <<= B-A>0, (A, BecH,).

In particular, if § is an scalar, then we mean by A < § that A < §I, where [
denotes the identity matrix.

Matrix means have raised in the matrix theory as non-commutative extensions
of scalar-valued means. Some of the most familiar matrix means are AV;B = (1 —
t)A +tB (weighted arithmetic mean), Af; B = A/? (A_1/2BA_1/2)t A2 (weighted
geometric mean) and ALB = ((1—t)A~'+ tB_l)_1 (weighted harmonic mean),
where ¢t € [0,1] and A, B are positive matrices, see e.g. [3].

Let a = (a1,--- ,ar) be a k-tuple of positive real numbers, ¢t € (0,1] and let
w = (w1, ,wg) be a weight vector. The weighted power mean of aj,--- ,a is
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1
defined by Pi(w;a) = (E?Zl wiag) ". It turns out to be the unique positive solution
of the equation z = Zle wizt~tal
geometric mean of ay,--- , ag.

The matrix arithmetic and harmonic means can be naturally extended to a k-

tuple A = (A4, -+, Ay) of positive matrices,

k k -1
Viw;A) =Y widi, lw;A)= (Z wiA;1> .
=1 =1

Recently, there have been several works regarding extension of the matrix geometric
mean to several variables. The notion of power means for positive matrices A =
(A, -+, Ag) denoted by P;(w;A) has been introduced in [7] as the unique positive
invertible solution of the non-linear matrix equation

. When t — 0, the power mean converges to the

k
X = ZM(X fe Ai) (t € (0,1]) (1.1)
i=1
For t € [~1,0), put Py(w;A) := P_y(w; A™1) 7, where A~ = (A7), .. LATH.
The matrix power mean interpolates between the weighted harmonic and arith-
metic means (see also [4]) and

k -1 k
(Z wiAi_1> < Py(w;A) < Z%’Ai~ (1.2)
i=1 i=1

The notion of power mean for probability measures on M} has also been studied
[5]: If u is a probability measure of compact support on Ml and ¢ € (0, 1], then the
equation

X= /M XuZdu(2)

has a unique solution in M. Tt defines the power mean as a map P; from the
set of all probability measures of compact support on M, into Ml. In the case of
t € [~1,0), the power mean is defined by P;(u) = P_(v)~!, where v(£) = p(E~1)
for every measurable set £. The above integral is in the sense of vector-valued. If f
is a continuous function from a topological space X into a Banach space and y is a
probability measure of compact support on the Borel o-algebra of X', then

Np,
[ = tim > Flapu(Bu)
=1

in which {By,;; i =1,---, Ny, } is a partition of supp(p) and a; is an arbitrary point
in By, ;.
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It is known that a matrix mean ¢ has a monotonicity property via any positive
unital linear mapping @, say ®(AocB) < ®(A)o®(B), see [3, 9, 10]. In particular,

((AaB)n,m) < (An,m)o(Bn,n) (1.3)

for every n € C", see [1, 2, 10].
In this paper, we present inequality (1.3) for power mean of probability measures.
It provides some inequalities of type (1.3) and its reverses for matrix power means.

2 main results

Assume that ¢ is a non-zero real number and p is a probability measure of compact
support on the positive half line. Consider the equation

o= [ o du), (2.1)
R+

This equation has a unique solution, say

T = (/}R+ 2 du(z)>1 (2.2)

This unique solution, which we denote it by P;(i), can be regarded as a power mean
and gives an extension of Pi(w;a). If a = (a1,---,ax) is a k-tuple of positive real
numbers, w = (w1, ,wy) is a weight vector and the measure p is defined on the
Borel g-algebra of RT satisfying that p({a;}) = w; for alli = 1,--- | k, then equation
(2.1) turns to

k
T = g wixlftag
=1

and

() e

Suppose that p is a probability measure of compact support on M. Assume
that &€ is a Borel subset of RT and put £ = {4 € M,}; (An,n) € £}. We define
a measure denoted by (un,n) on RT by (un,n)(€) = u(€). It is easy to see that
(un,n) is a probability measure on RT. Now if f is a continuous function on R*
and integrable with respect to u, then

/ f((Zn,m))du(Z / f(z)d(pun, ) (2). (2.3)

We will use the following known result (see e.g., 3, 6])
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Lemma 1 (Holder-McCarthy inequality). Let A € M,,. If n € C" is a unit vector,
then

(i) (An,m)" < (A™np,n)  for allr > 1;
(i) (An,m)" > (A"n,n)  for all 0 <r < 1;
(iii) If A is invertible, then (An,n)" < (A"n,n)  for all T <O0.

The next theorem gives inequality (1.3) for power means.

Theorem 2. Let p be a probability measure of compact support on MY, If n is a
unit vector in C" and t € (0, 1], then

(Pe(w)n,m) < Pe({un,m))- (2.4)
Ift € [-1,0), then a reverse inequality holds.
Proof. Lett € (0,1] and let the function f be defined on M} by f(X fM* Xt Zdu(Z).

Then
f(X)= lim ZX#,: itt(Bm.i),

m—r00

where {By,;; i=1,---,Ny}isa Borel partition of supp(u) and Z; is an arbitrary
point in By, ;, see [5]. If n € C™ is a unit vector, then

(f(X)n,m) = </M+ X#cZp(dZ)n,n)

N,

= ( lim ZX#t Zip(Bum,i)n,m)

m—)oo
Nm
= n}gnoo Zz; (B, ) ((X#:Zi)n, m)
Nm
= Z (B i) (X722 X7V2)X 2, X2

)(1/277 ){'1/277

, ).
[ X2l [ X120

_ 1/2 —1/2 7 yy—1/20t
*,JE%OZ“ DXl (122X 712)

Since t € (0, 1], using Lemma 1 we get

N
FXmm) < Tim > (B, )| X 20] 201 Zim, )
i=1

Nim

= (Xn,n)' ™" lim_ > u(Bini)(Zin, )"
i=1
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N,
Set C' = limy, 00 Y ,u(Bm,l-)<Zm,77>t, so that
i=1

(f(X)m,m) < (Xn,m)'~'C. (2.5)
It follows from (2.5) that
(PXOnn) < (F(Xnn) ' and (F(X)n.n)' ™ < (X7 O (2.6)
Combining two inequalities in (2.6) we get
(F(X)m.n) < (X, )00, (2.7)
By using an induction process, we reach
(F{Xm,m) < <X77777)(1—75)2Cl+(1—?f)+(1—7f)2+...+(1—t)£71

1-(1-t)¢

= (X, )T (¢ € N).

Letting £ — oo and noting that f¢(X) — Pi(u) we observe that (P;(u)n,n) < C'/*,
It follows from the definition of the vector-valued integrals that

m—00 4

Nm
= lim E i)\ 4i f= '
=1 £ U(Bm,z)<Zl77777> /Mi <Z77’77> d'u(Z)

= / Z'd{pn, n)(2),
R+

where the last equality follows from (2.3). Therefore,

o= ([ samn)” = Rtunn)

This gives (2.4).

Now assume that ¢t € [~1,0) and v(€) = u(£71) for every measurable set €. In-
equality (2.4) then implies that (P_¢(v)n,n) < P_y((vn,n)). It follows from Lemma
1 that

Py({pm,m) = Poe((vn,m)) ™ < (P-y()n,m) ™" < (P-y(v) " 'nym) = (P, ).
This completes the proof. O

It is known that a reverse of (1) holds as follows:
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Lemma 3. [8] Let 0 < r < 1 and m,M be two positive real numbers . If A is a
positive definite matriz with 0 <m < A < M, then

(A"n,m) = a(m, M, r){(An,n)", (2.8)

T s T T T
where a(m, M,r) = (]Y[f;)(me%) (% M%T:ZMT> . Ifr € [-1,0), then a reverse

inequality holds in (2.8).

Utilizing Lemma 3 and an argument as in the proof of Theorem 2 we obtain the
next result. We omit the proof.

Proposition 4. Let p be a probability measure of compact support on MI and n be
a unit vector in C™. If

mPy(p) < Z < MPy(p), (Z € supp(p)),

then
(Pe(p)n,m) = a(m, M, t) Pi((un, )

for every t € (0,1]. Ift € [-1,0), then a reverse inequality holds.

Let A = (A4,...,Ax) be a k-tuple of positive definite matrices and let w =
(wi,...,wk) be a weight vector. Consider the probability measure p on the set
{A1,..., Ax} CM;} by p({A;}) =w; for every i = 1,--- k. If X; = P;(u), then

k
Xy = / . Xt Zdu(Z) = ZwiXtﬁtAi = Pi(w; A).
M i=1
Therefore, we have the next corollary.

Corollary 5. Let A = (Ay,..., Ag) be a k-tuple of positive definite matrices and let
w=(w1,...,wg) be a weight vector. Then

(Pr(w; A)n,n) < Po(w; (A, ), -+ (Akmsm)) - (€ (0,1]) (2.9)

for every n € C™. If in addition m < A; < M for two positive real numbers m, M,
then

<Pt(w; A)% 77> > a(m, M7 t)Pt(wv <A1777 77>7 T <Ak777 77>) (t S (07 1]) (210)
Ift € [-1,0), then inequalities (2.9) and (2.10) are reversed.
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As a simple example, let A, B > 0 and w € [0,1]. Then

_ _ t
Pi(w; A, B) = Az ((1 —w) +w (ATIBA71> > it

Consider
1 10 1 10
A=11 2 0|, B=|140
0 01 0 0 2
1
Assume that t = —1/2, w=1/2and n= | 0 |. Then
0
1 1yl
<Pt(w;A,B)77,n>:<P—t (w; A BT 17,77>:1
and

Py(w; (An,m), (Bn,n)) = 0.615.

Remark 6. If A = (Ay,..., Ag) is a k-tuple of commuting positive matrices, then
1
Py (w; A) = (Zle wiAg) ", Corollary 5 implies that

k i k i
<(zwz~A§) n,n> < (Zw(Am,W) |
=1 =1

Theorem 7. Let pu be a probability measure of compact support on M} and n be a
unit vector in C™. If

m<Z<M for every Z € supp(p),
then
Pi((pn,m)) = (Pe(wn,m) < (VM —v/m)®>  (t € (0,1]).

Proof. The power means P;(u) satisfy [5] the inequality

</w_ Z—ld,U(Z))_l < P(p) < /w Zdu(Z), (2.11)

where P_1(p) = <fol ZfldM(Z)> is the harmonic mean and Py () = [y Zdp(Z)

is the arithmetic mean for every compactly supported probability measure p on M.
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Assume that {By,;; i =1,---, Np,} is a partition of supp(p) and Z; is an arbitrary
point in B,,; for i =1,--- , N;,. Then

/w Zdu(Z) — P(p) < /w Zdp(Z) — (/W Zldu(z)>1 (by (2.11))

Nm

N, -1
SN LR b ST
=1 i=1

Define a unital positive linear mapping T : M:Nm S M by T(A @ @ Ay, ) =
Zf\gf p(Bm,i)Ai. Then

Ny Ny -1
Z Zip(Bim,i) — (Z Zilﬂ(Bm,z')> =T(Z1® ®2Zn,)-T(Z & @ Zy )™
i=1 i=1

< (VM — vm)?, (2.12)
sincem < Z; < M fori=1,---,N,. Therefore
| Zauz) = Piw) < (VAT = vim? (2.13)
Mh

Moreover,

Fi({un,m) — (Pe(p)n,m) < /lR+ zd{um, n)(z) — (Pe(p)n, m)

where the last inequality follows from (2.13). O

Corollary 8. Let A = (Ay,...,Ax) be a k-tuple positive matrices and let w =
(w1, ..., ,wk) be a weight vector. If0 <m < A; <M (i=1,--- k) for some scalars
0<m< M, then

(Av,m)t - (Agn, ) = (Polw, A)n,n) < (VM = y/m)?
for every n € C™.
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Proof. Tt follows from the arithmetic-geometric mean inequality that

k
(Aum,m)* - (Agn, m)* Z Ain,n) <<Z wi l) >

The desired inequality therefore follows from (2.13).

Let A, B € M, be positive matrices with 0 < m < A;B < M and w € [0,1]. It
follows from Corollary 8 that

(An,m)*(Bn,m)' ™ < (Pi(w, A, B)n,n) + (VM — y/m)? (2.14)
for every unit vector n € C". Assume that ai,--- ,a, and by,--- , b, are positive
scalars such that m < a;,b; < M (i = 1,---,k). Put n = ﬁ(l,--- ,1) € C™,

A = diag(ai,--- ,a,) and B = diag(by, - - , b,). Inequality (2.14) implies that

n w n 1-w
(Eal> (Zbl> <Z wa +(1— )bt) —|—7”L(\/7 \/>)
i=1 i=1 i=1

which is a reverse Holder type inequality.
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