ЗАДАЧА КОШИ ДЛЯ ВКЛЮЧЕНИЯ В БАНАХОВЫХ ПРОСТРАНСТВАХ И ПРОСТРАНСТВАХ РАСПРЕДЕЛЕНИЙ

И. В. Мельникова

Аннотация: Исследована корректность вырожденных задач Коши

$$Bu'(t) = Fu(t), \ t \ge 0, \ u(0) = x; \quad \frac{d}{dt}Bv(t) = Fv(t), \ t \ge 0, \ Bv(0) = x,$$

рассматриваемых в форме задачи Коши для включения с линейным многозначным оператором \mathscr{A} :

$$u'(t) \in \mathcal{A}u(t), \quad t \ge 0, \ u(0) = x.$$
 (ICP)

На основе нового подхода к определению вырожденных интегрированных полугрупп и их генераторов в банаховом пространстве получен критерий корректности задачи (ICP) (n-корректности, (n, ω)-корректности) в терминах оператора (λ – \mathscr{A}) $^{-1} = R_{\mathscr{A}}(\lambda)$ и разложения пространства в прямую сумму. Полученное разложение обобщает условие плотности области определения генератора невырожденной полугруппы. Кроме того, задача Коши для включения рассмотрена в пространстве абстрактных распределений, и даны необходимые и достаточные условия корректности в пространстве $\mathscr{D}'(X) := \mathscr{L}(\mathscr{D}, X)$. Библиогр. 22.

Введение. Работа посвящена исследованию корректности вырожденных задач Коши

$$Bu'(t) = Fu(t), \quad t \in [0, T), \quad u(0) = x,$$
 (1)

$$\frac{d}{dt}Bv(t) = Fv(t), \quad t \in [0, T), \quad Bv(0) = x, \tag{2}$$

$$\ker B \neq \{0\}, \quad T \leq \infty,$$

рассматриваемых в форме задачи Коши для включения с линейным многозначным оператором \mathscr{A} :

$$u'(t) \in \mathcal{A}u(t), \quad t \in [0, T), \ u(0) = x.$$
 (3)

Если положить $\mathscr{A}=B^{-1}F$ для задачи (1) или $\mathscr{A}=FB^{-1}$ и u=Bv для задачи (2), то u является решением задачи Коши (3). Обратно, если u — решение задачи (3) с соответствующим оператором \mathscr{A} , то u является решением (1) или любое v из множества Bv=u — решение (2). Линейные операторы $B,F:X\to Y$, действующие в банаховых пространствах X и Y, предполагаются такими, что \mathscr{A} порождает некоторую вырожденную полугруппу.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 99–01–001442) и Министерства общего и профессионального образования (№ 97–01.7–72).

Исследованию существования и единственности решения вырожденных задач в банаховых пространствах посвящено большое число работ, однако критерия корректности в общем случае до сих пор не получено. Для первоначального этапа исследований задачи (1) характерно использование техники F-присоединенных к ядру B векторов и разложение пространства X=Y в прямую сумму подпространств, на одном из которых обратим оператор F, на другом — оператор B и $B^{-1}F$ ограничен (см., например, [1]), а также спектральной техники и техники коэрцитивных операторов [2]. Позднее для исследования вырожденных задач стали применять полугрупповую технику [3, 4] и технику многозначных операторов [5, 6] — в результате получены условия разрешимости задач (1), (2) в терминах операторов ($\lambda B - F$) ^{-1}B и $B(\lambda B - F)^{-1}$. В [7] дана спектральная характеристика оператора \mathscr{A} , порождающего однозначно разрешимую проинтегрированную задачу

$$v(t) \in \frac{t^n}{n!} x + \mathcal{A} \int_0^t v(s) \, ds, \quad x \in X, \tag{4}$$

в [8, 9] для задач (1) и (3) установлен критерий равномерной корректности типа MFPHY (Miaydera — Feller — Phillips — Hille — Yosida) на основе техники C_0 полугрупп с генератором, являющимся однозначным сужением оператора \mathcal{A} . Для того чтобы получить критерий корректности в общем случае, возникла необходимость в технике вырожденных полугрупп с многозначными генераторами, обладающими различными спектральными свойствами. После работы Арендта [10], где интегрированные полугруппы были введены через абстрактное преобразование Лапласа, в теории полугрупп появилась серия работ [11-13], в которых дан новый подход к исследованию интегрированных и сверточных полугрупп: вместо определения генератора через производную в нуле соответствующего порядка от полугруппы или через преобразование Лапласа в экспоненциальном случае полугруппа и генератор определяются через связывающее их уравнение. Обобщение этих идей на случай включений в настоящей работе позволило получить критерий корректности задачи (3) с оператором А, порождающим вырожденные полугруппы, полугруппы класса C_0 и интегрированные. В §1 дано доказательство критерия равномерной корректности задачи (3) на максимальном классе корректности $D(\mathscr{A})$ в терминах существования вырожденной C_0 -полугруппы с генератором \mathscr{A} и полугруппы, порожденной однозначным сужением оператора \mathscr{A} , а также в терминах поведения резольвенты $R_{\mathscr{A}}(\lambda) := (\lambda I - \mathscr{A})^{-1}$ и разложения пространства X в прямую сумму

$$X = \mathscr{A}0 \oplus \overline{D(\mathscr{A})}. (5)$$

Это разложение обобщает условие плотности области определения генератора (невырожденной) C_0 -полугруппы. В § 2 в предположении разложения пространства, обобщающего (5):

$$X = \mathscr{A}^{n+1} 0 \oplus X_{n+1}, \quad X_{n+1} = \overline{D(\mathscr{A}^{n+1})}, \tag{6}$$

получен критерий (n,ω) -корректности на подмножествах из $D(\mathscr{A}^{n+1})$ в терминах оценок на резольвенту. В § 3 исследованы локальная задача Коши и тесно связанная с ней задача Коши в пространстве распределений. Необходимые и достаточные условия n-корректности и корректности в пространстве абстрактных распределений $\mathscr{D}'(X) := \mathscr{L}(\mathscr{D},X)$ (\mathscr{D} — пространство Л. Шварца) получены в терминах операторов обобщенного решения и оценок на резольвенту.

Многочисленные примеры вырожденных задач Коши приведены в [2,6,14]. Структура вырожденных полугрупп, указанная в теоремах 2 и 4, позволяет строить примеры вырожденных полугрупп, используя известные полугруппы класса C_0 и интегрированные полугруппы, в том числе с неплотно заданными генераторами. Пример такого рода приведен в $\S 2$.

1. Равномерная корректность задачи Коши для включения. Мы начинаем исследование вырожденных задач Коши с изучения равномерной корректности, которая, как и в случае задачи Коши с однозначным оператором, оказывается связанной с существованием сильно непрерывной по $t \geq 0$ полугруппы. В данном случае эта полугруппа сама является вырожденной.

Определение 1. Задача Коши (3) называется равномерно корректной на $E\subseteq D(\mathscr{A}),$ если

(a) для любого $x \in E$ существует единственное решение

$$u(\cdot) \in C^1\{[0,\infty), X\} \cap C\{[0,\infty), D(\mathscr{A})\};$$

(b)
$$\sup_{0 \le t \le \tau} \|u(t)\| \le C_{\tau} \|x\|$$
 для любого $\tau > 0$.

Определение 2. Однопараметрическое семейство линейных ограниченных операторов $U = \{U(t), t \geq 0\}$ на X называется полугруппой класса C_0 (C_0 -полугруппой), если выполняются условия

- (U1) $U(t + \tau) = U(t)U(\tau), t, \tau \ge 0$ (полугрупповое равенство);
- (U2) $\lim_{t \to t_0} U(t) x = U(t_0) x, t_0 \ge 0, x \in X$ (условие сильной непрерывности);
- (U3) U(0) = I.

Оператор $\mathscr{A}x := \lim_{t\to 0} t^{-1}(U(t)x - x)$, определенный для тех x, где этот предел существует, называется инфинитезимальным генератором C_0 -полугруппы.

Если семейство U удовлетворяют условиям (U1), (U2), а оператор U(0) (и, следовательно, U(t) для любого $t \ge 0$) имеет ненулевое ядро, то U называется вырожденной C_0 -полугруппой.

Из условия (U3) следует, что C_0 -полугруппа является невырожденной. Из равенства (U1) вытекает, что в вырожденном случае оператор U(0) является проектором в пространстве X, порождающим разложение $X = \text{im } U(0) \oplus \ker U(0)$, а сужение U(t) на $\text{im } U(0) - C_0$ -полугруппой.

Учитывая свойства C_0 -полугрупп, дадим еще два определения генератора, эквивалентные определению инфинитезимального генератора, после чего рассмотрим обобщение этих определений на случай вырожденных полугрупп.

1. Из определения C_0 -полугруппы следует ее экспоненциальная ограниченность: $U(t) \leq Ce^{\omega t}, t \geq 0, \omega \in \mathbb{R}$, поэтому определено преобразование Лапласа от полугруппы и для ее инфинитезимального генератора имеет место равенство

$$(\lambda I - \mathscr{A})^{-1} x = \int_{0}^{\infty} e^{-\lambda t} U(t) x \, dt, \quad x \in X, \ \operatorname{Re} \lambda > \omega. \tag{7}$$

Обратно, пусть $L(\lambda)$ — преобразование Лапласа от ω -экспоненциально ограниченной оператор-функции $U(t),\ t\geq 0.$ В [10] показано, что L удовлетворяет резольвентному тождеству

$$(\mu - \lambda)(\mu - \lambda)L(\lambda)L(\mu) = L(\lambda) - L(\mu), \quad \text{Re } \lambda, \text{Re } \mu > \omega,$$

если и только если U удовлетворяет полугрупповому равенству. При этом если полугруппа U невырожденна (т. е. U(0) = I), то операторы $L(\lambda)$ обратимы, существует оператор $\mathscr{A} := \lambda I - L^{-1}(\lambda)$, $\operatorname{Re} \lambda > \omega$, для которого $L(\lambda)$ является резольвентой, и выполняется равенство (7). Таким образом, равенство (7) может служить определением генератора C_0 -полугруппы.

2. Из определения инфинитезимального генератора А следуют равенства

$$U'(t)x = \mathscr{A}U(t)x = U(t)\mathscr{A}x, \quad t \ge 0, x \in D(\mathscr{A}).$$

Отсюда в силу замкнутости \mathscr{A} и плотности области определения генератора C_0 -полугруппы получаем уравнения, связывающие полугруппу с генератором:

$$U(t)x - x = \int_{0}^{t} U(s) \mathscr{A} x \, ds, \ x \in D(\mathscr{A}); \quad U(t)x - x = \mathscr{A} \int_{0}^{t} U(s) x \, ds, \ x \in X.$$
 (8)

Нетрудно показать, что если выполняются уравнения (8), то имеет место равенство (7). Отсюда находим еще одно эквивалентное определение C_0 -полугруппы и порождающего ее генератора — это семейство ограниченных операторов $\{U(t), t \geq 0\}$ и оператор \mathscr{A} , удовлетворяющие уравнениям (8). При этом генератор определяется через полугруппу следующим образом:

$$D(\mathscr{A}) := \left\{ x \in X \mid \exists y : U(t)x - x = \int_0^t U(s)y \, ds, \ t \in [0, T) \right\}, \quad \mathscr{A}x := y.$$

Теперь, обобщая соотношения (7), (8), переходим к определению и исследованию вырожденных полугрупп. Вырожденные полугруппы оказываются связанными с многозначными операторами.

Определение 3. Отображение $\mathscr{A}: X \mapsto 2^Y$ называется линейным многозначным оператором, если его график $\{(x,\mathscr{A}x), x \in D(\mathscr{A})\}$ является линейным многообразием в $X \times Y$; оператор \mathscr{A} называется $\mathit{замкнутым}$, если его график замкнут.

Оператор A, являющийся сужением многозначного оператора \mathscr{A} , с областью определения D(A), равной $D(\mathscr{A})$, назовем однозначной ветвью \mathscr{A} .

Как и в однозначном случае, для оператора $\mathscr{A}: X \mapsto 2^X$ из условия непустоты резольвентного множества $\rho(\mathscr{A}) := \{\lambda \in \mathbb{C}: (\lambda I - \mathscr{A})^{-1} \in \mathscr{L}(X)\}$ следует его замкнутость.

Нетрудно проверить, что если для некоторого подпространства $X_1\subset X$ имеет место разложение $X=\mathscr{A}0\oplus X_1,$ то линейный оператор

$$Au := \mathscr{A}u \cap X_1, \quad D(A) := \{ u \in X : Au \neq \emptyset \}, \tag{9}$$

является однозначным и для него имеет место равенство $D(A) = D(\mathscr{A})$, т. е. A — однозначная ветвь \mathscr{A} .

Теперь рассмотрим обобщение определений генератора C_0 -полугруппы на случай вырожденной C_0 -полугруппы. Определение (однозначного) инфинитезимального генератора \mathscr{A} полугруппы U годится и в вырожденном случае (при этом $D(\mathscr{A}) \cap \ker U = \{0\}$), а вот определение генератора через равенство (7) приводит к многозначному оператору. Пусть L — преобразование Лапласа от вырожденной (экспоненциально ограниченной в силу свойств (U1), (U2)) C_0 -полугруппы U. Из резольвентного тождества для преобразования Лапласа от полугруппы получаем

$$(\mu - L^{-1}(\mu))x + \ker U = (\lambda - L^{-1}(\lambda))x + \ker U =: \mathscr{A}x,$$

$$x \in \operatorname{im} L(\lambda) =: D(\mathscr{A}), \quad \lambda, \mu : \operatorname{Re} \lambda, \operatorname{Re} \mu > \omega,$$

и, следовательно, равенство (7), определяющее линейный теперь уже многозначный оператор \mathscr{A} , называемый *генератором вырожденной* C_0 -полугруппы. Из равенства (7) следует, что $\ker U = \ker(\lambda I - \mathscr{A})^{-1}$. С другой стороны, $\ker(\lambda I - \mathscr{A})^{-1} = \mathscr{A}0$. Это означает, что генератор C_0 -полугруппы является многозначным, если и только если эта полугруппа вырожденна.

Обобщение определения полугруппы, порожденной оператором \mathscr{A} , через уравнения (8) приводит к определению вырожденной C_0 -полугруппы и ее генератора через уравнение и включение. В следующем параграфе при исследовании (n,ω) -корректности мы рассмотрим определение 6 такого типа. Для исследования равномерной корректности задачи (3) в этом параграфе оказывается достаточно определения генератора, введенного через равенство (7).

Следующие две теоремы связывают корректность задачи Коши для включения с порождением оператором \mathscr{A} вырожденной C_0 -полугруппы и с порождением C_0 -полугруппы оператором, равным однозначной ветви \mathscr{A} . Они показывают роль разложения (5) и дают критерий равномерной корректности задачи (3) в терминах поведения $(\lambda I - A)^{-1}$ и $(\lambda I - \mathscr{A})^{-1}$.

Теорема 1. Пусть \mathscr{A} — замкнутый линейный многозначный оператор в банаховом пространстве X. Пусть $X_1 := \overline{D(\mathscr{A})}$ и оператор A определен по формуле (9). Тогда эквивалентны следующие утверждения:

- (W) задача Коши (3) равномерно корректна на $D(\mathscr{A})$:
- (S) оператор A является однозначной ветвью $\mathscr A$ и генератором C_0 -полугруппы в X_1 ;
- (R) для оператора A, однозначной ветви \mathscr{A} , выполнено MFPHY-условие: существуют $K>0,\ \omega\in\mathbb{R}$ такие, что

$$\left\| \frac{d^k}{d\lambda^k} R_A(\lambda) \right\| \le \frac{Kk!}{(\operatorname{Re}\lambda - \omega)^{k+1}}, \quad \operatorname{Re}\lambda > \omega, \ k = 0, 1, 2, \dots$$
 (10)

Доказательство. (W) \Longrightarrow (S) \Longrightarrow (R). Определим на $D(\mathscr{A})$ операторы решения $U(t)x:=u(t),\ t\geq 0$. Из корректности задачи (3) следует, что операторы U(t) являются ограниченными на $D(\mathscr{A})$ и их можно продолжить на $X_1=\overline{D(\mathscr{A})}$. Подобно невырожденному случаю можно показать, что операторы U(t) образуют C_0 -полугруппу на X_1 . Пусть $G:X_1\mapsto X_1$ — генератор этой полугруппы. Тогда G— это линейный замкнутый плотно определенный оператор со свойством

$$U(t)x \in C^1\{[0,\infty], X_1\} \Longleftrightarrow x \in D(G).$$

Поскольку для любого $x \in D(\mathscr{A})$ решение $u(\cdot) = U(\cdot)x$ принадлежит пространству $C^1\{[0,\infty],X_1\}$, имеет место вложение $D(\mathscr{A}) \subset D(G)$. В силу замкнутости оператора \mathscr{A} для любого $x \in D(\mathscr{A})$ получаем

$$U(t)x - x = \int_{0}^{t} U'(\tau)x \, d\tau \in \mathscr{A} \int_{0}^{t} U(\tau)x \, d\tau.$$

Полученное включение может быть продолжено на X_1 . Отсюда

$$\frac{U(t)x - x}{t} \in \frac{1}{t} \mathscr{A} \int_{0}^{t} U(\tau)x \, d\tau, \quad t > 0, \ x \in X_{1}.$$

Из определения $D(G):=\{x\in X_1\mid\exists\lim_{t\to 0}t^{-1}(U(t)x-x)\}$ следует, что $D(G)\subset D(\mathscr{A})$, значит, $D(G)=D(\mathscr{A})$ и $Gx\in\mathscr{A}x$ для любого $x\in D(\mathscr{A})$. Поскольку $Gx\in X_1$, для любого $x\in D(\mathscr{A})=D(G)$

$$Gx \in Ax := \mathscr{A}x \cap X_1 \implies D(\mathscr{A}) \subset D(A) \implies D(\mathscr{A}) = D(A).$$
 (11)

Покажем, что A — однозначный оператор, совпадающий с G. Пусть $y \in A0 := \mathcal{A}0 \cap X_1$. Положим $z := (\lambda - G)^{-1}y$, $\lambda \in \rho(G)$ (резольвентное множество $\rho(G)$ непусто, так как G — генератор C_0 -полугруппы). Для этого элемента z имеем

$$(\lambda - G)z = y$$
 in $\lambda z = y + Gz \in \mathcal{A}0 + Gz \subset \mathcal{A}0 + \mathcal{A}z = \mathcal{A}z$,

т. е. $\lambda z \in \mathscr{A}z$, поэтому $(ze^{\lambda t})' = \lambda ze^{\lambda t} \in \mathscr{A}(ze^{\lambda t})$, следовательно, $u(t) = ze^{\lambda t}$, $t \geq 0$, является решением задачи (3) с начальным условием u(0) = z для любого $\lambda \in \rho(G)$. В силу корректности задачи (3) отсюда z = 0 и $y = (\lambda - G)z = 0$. Таким образом, $A0 = \{0\}$, т. е. A — однозначный оператор. Из соотношений (11) получаем $Gx \subset Ax \Longrightarrow G = A$ для любого $x \in D(G) = D(A)$. Таким образом, A является генератором C_0 -полугруппы в X_1 . Это эквивалентно выполнению условия (10) для его резольвенты.

 $(R) \Longrightarrow (W)$. Как известно (см., например, [1,15]), выполнение оценок (10) в банаховом пространстве X_1 для плотно определенного оператора A ($\overline{D(A)} = X_1$), кроме отмеченной выше эквивалентности существованию C_0 -полугруппы, является необходимым и достаточным условием равномерной корректности на D(A) задачи Коши

$$u'(t) = Au(t), \quad t \ge 0, \ u(0) = x.$$

Эта задача с оператором A, равным однозначной ветви \mathscr{A} , равномерно корректна на D(A), если и только если задача Коши для включения (3) равномерно корректна на $D(\mathscr{A})$. Действительно, любое решение задачи с оператором A будет решением задачи (3). Обратно, если $u(\cdot)$ — решение задачи (3), то $u'(t) \in X_1$, следовательно, $\mathscr{A}u(t) \cap X_1 \neq \varnothing$ и $u(t) \in D(A)$ при $t \geq 0$. \square

Покажем, что при дополнительном условии $\rho(\mathscr{A}) \neq \varnothing$ оценки MFPHY выполнены для резольвенты самого оператора \mathscr{A} .

Теорема 2. Пусть \mathscr{A} — линейный многозначный оператор в банаховом пространстве X c непустым резольвентным множеством. Тогда

- (W) задача Коши (3) равномерно корректна на $D(\mathscr{A}),$ если и только если
- (R') для $R_{\mathscr{A}}(\lambda)$ выполнено MFPHY-условие и имеет место разложение пространства $X = \overline{D(\mathscr{A})} \oplus \mathscr{A}0.$

ДОКАЗАТЕЛЬСТВО. (W) \Longrightarrow (R'). В теореме 1 доказано, что оператор A совпадает с однозначной ветвью $\mathscr A$ и является генератором C_0 -полугруппы U. Покажем, что имеет место разложение пространства (5). Тогда полугруппа $\mathscr U$, равная U на $\overline{D(\mathscr A)} = X_1$ и нулю на $\mathscr A$ 0, будет вырожденной C_0 -полугруппой с генератором $\mathscr A$; из равенства (7) для этой полугруппы и ее генератора следует условие (10) для $R_{\mathscr A}(\lambda)$. Положим

$$y:=R_{\mathscr{A}}(\lambda)x$$
, где $x\in X,\lambda\in\rho(\mathscr{A})$ и $z:=x-(\lambda I-A)y$.

Имеем $y \in D(\mathscr{A}) = D(A)$ и $(\lambda I - A)y \in X_1$. Поскольку $(\lambda - \mathscr{A})^{-1}f = (\lambda - A)^{-1}f$ для любого $f \in X_1$, получаем

$$(\lambda I - \mathscr{A})^{-1}z = (\lambda I - \mathscr{A})^{-1}x - (\lambda I - \mathscr{A})^{-1}(\lambda I - A)y = 0.$$

Значит, $z \in \ker(\lambda - \mathscr{A})^{-1} = \mathscr{A}0$, и для $x \in X$ имеет место разложение $x = z + (\lambda - A)y \in \mathscr{A}0 + X_1$. Из однозначности оператора A следует $A0 = \mathscr{A}0 \cap X_1 = \{0\}$. Таким образом, получено разложение X в прямую сумму: $X = \mathscr{A}0 \oplus X_1$.

 $(R')\Longrightarrow (W)$. В силу определения оператора A и разложения $X=\mathscr{A}0\oplus X_1$ условие (10) для $R_\mathscr{A}(\lambda)$ и $R_A(\lambda)$ выполняется одновременно. Следовательно, задача Коши с оператором A равномерно корректна на D(A). Как вытекает из теоремы 1, это эквивалентно равномерной корректности задачи (3) на $D(\mathscr{A})$. \square

Замечания. В рефлексивном пространстве X из оценок (10) для резольвенты оператора \mathscr{A} получаем разложение пространства $X = \mathscr{A}0 \oplus \overline{D(\mathscr{A})}$ [6], поэтому в рефлексивном пространстве MFPHY-условие для $R_{\mathscr{A}}(\lambda)$ является достаточным для равномерной корректности задачи (3) на $D(\mathscr{A})$.

Если положить $R_{\mathscr{A}}(\lambda) = (\lambda B - F)^{-1}B$ для задачи (1) и $R_{\mathscr{A}}(\lambda) = B(\lambda B - F)^{-1}$ для задачи (2), то в качестве следствия из теоремы 2 получаем критерий корректности задачи (1) с операторами F, B такими, что замкнут оператор $B^{-1}F$; для задачи (2) с замкнутым оператором FB^{-1} получаем критерий существования единственной функции $u(\cdot)$ такой, что любая v из множества Bv = u является решением задачи (2).

2. (n, ω) -Корректность задачи Коши для включения. Рассмотрим задачу Коши, для которой решение устойчиво относительно изменения x по некоторой более сильной норме, чем норма пространства X.

Определение 4. Пусть $n \in \mathbb{N}$. Задача (3) называется (n, ω) -корректной на $E \subseteq D(\mathscr{A}^n)$, если для любого $x \in E$ существует единственное решение u(t), $t \geq 0$, такое, что

$$||u(t)|| \le Ce^{\omega t}||x||_{\mathscr{A}^n}, \quad ||x||_{\mathscr{A}^n} := \sum_{k=0}^n ||\mathscr{A}^k x||$$

для некоторого C>0. Здесь $\|\mathscr{A}^k x\|$ — фактор-норма элемента $\{\mathscr{A}^k x\}$ в пространстве $X/\mathscr{A}^k 0$.

Если множество регулярных точек непусто, то норма $\|x\|_{\mathscr{A}^n}$ эквивалентна норме

$$||x||_n := \inf_{y: \ R^n_{\mathscr{A}}(\lambda)y=x} ||y||, \quad \lambda \in \rho(\mathscr{A}).$$

В теоремах 3, 4 мы покажем, как (n,ω) -корректность задачи (3) на различных подмножествах E связана с существованием n+1 раз интегрированной экспоненциально ограниченной полугруппы и соответствующими оценками для резольвенты генератора. В теореме 5 при условии разложения пространства (6) докажем критерий (n,ω) -корректности. В § 3 будут исследованы вопросы корректности локальной задачи Коши.

Определение 5. Пусть $k \in \mathbb{N}, T \leq \infty$. Однопараметрическое семейство ограниченных линейных операторов $V := \{V(t), t \in [0,T)\}$ на X называется k раз интегрированной полугруппой, если

(V1) выполнено равенство

$$V(t)V(s) = \frac{1}{(k-1)!} \int_{0}^{s} \left[(s-r)^{k-1}V(t+r) - (t+s-r)^{k-1}V(r) \right] dr, \quad s, t, t+s \in [0,T);$$

(V2) V(t) сильно непрерывна по $t \in [0, T)$.

Полугруппа называется локальной, если $T < \infty$, экспоненциально ограниченной, если существуют K > 0, $\omega \in \mathbb{R}$ такие, что $\|V(t)\| \leq Ke^{\omega t}$, $t \geq 0$, и вырожденной, если $\ker V = \{x \mid \forall t \in [0,T), \ V(t)x = 0\} \neq \{0\}.$

Из (V1) для любых $x\in X$ и $t\in [0,T)$ следует равенство V(t)V(0)x=V(0)V(t)x=0, значит, $V(0)x\in\ker V,$ и для невырожденной полугруппы V(0)=0

Учитывая, что подобно случаю C_0 -полугруппы операторы

$$L_k(\lambda) := \int_0^\infty \lambda^k e^{-\lambda t} V(t) dt$$

удовлетворяют резольвентному тождеству, если и только если экспоненциально ограниченная оператор-функция $V(\cdot)$ удовлетворяет (V1), определим генератор k раз интегрированной ω -экспоненциально ограниченной полугруппы V (в общем случае многозначный оператор) с помощью равенства

$$(\lambda I - \mathscr{A})^{-1} = \int_{0}^{\infty} \lambda^{k} e^{-\lambda t} V(t) dt, \quad \operatorname{Re} \lambda > \omega, \tag{12}$$

обобщающего (7). Отсюда следует $\ker V = \ker(\lambda I - \mathscr{A})^{-1} = \mathscr{A}0$, т. е. генератор полугруппы является многозначным, если и только если эта полугруппа вырожденна.

Рассмотрим теперь определение интегрированной полугруппы и порождающего ее оператора через соотношения, обобщающие (8). Пусть \mathscr{A} — генератор (возможно, вырожденной) k раз интегрированной полугруппы V, определяемый равенством (12). Применим к (12) оператор ($\lambda I - \mathscr{A}$) справа на $D(\mathscr{A})$. Учитывая единственность преобразования Лапласа и соотношения

$$(\lambda I - \mathscr{A})^{-1}(\lambda I - \mathscr{A})x = x, \quad V(t)\mathscr{A}x \in \mathscr{A}V(t)x, \quad x \in D(\mathscr{A}),$$

$$(\lambda I - \mathscr{A})(\lambda I - \mathscr{A})^{-1}x \ni x, \quad \int_{0}^{\infty} \lambda^{k+1} \frac{t^{k}}{k!} e^{-\lambda t} x \, dt = x, \quad x \in X,$$

интегрируя по частям $\int\limits_0^\infty \lambda^k e^{-\lambda s} V(s) \mathscr{A}x \, ds$, на $D(\mathscr{A})$ получаем уравнение и включение

$$V(t)x - \frac{t^k}{k!}x = \int_0^t V(s)\mathscr{A}x \, ds \in \mathscr{A} \int_0^t V(s)x \, ds, \quad x \in D(\mathscr{A}). \tag{13}$$

Это включение может быть продолжено на $\overline{D(\mathscr{A})}$. Полагая в (13) $x = R_{\mathscr{A}}(\lambda)y$, получаем продолжение на все пространство X:

$$V(t)y - \frac{t^k}{k!}y \in \mathscr{A} \int_0^t V(s)y \, ds, \quad y \in X.$$
 (14)

Обратно, если ω -экспоненциально ограниченная оператор-функция $V(\cdot)$ удовлетворяет (13), (14) с замкнутым линейным оператором \mathscr{A} , то при $\mathrm{Re}\,\lambda > \omega$ операторы $L_k(\lambda)$ удовлетворяют соотношениям

$$(\lambda I - \mathscr{A})L_k(\lambda)x \ni x, \ x \in X, \quad L_k(\lambda)(\lambda I - \mathscr{A})x = x, \ x \in D(\mathscr{A}).$$

Следовательно, $(\lambda I - \mathscr{A})^{-1} = L_k(\lambda)$, выполнено равенство (12), и сильно непрерывная оператор-функция $V(\cdot)$ удовлетворяет (V1). Таким образом, для экспоненциально ограниченной k раз интегрированной полугруппы и ее генератора может быть дано определение через соотношения (13), (14), эквивалентное (V1), (V2) и (12). Такое определение оказывается полезным не только для экспоненциально ограниченных полугрупп, но и локальных, поэтому мы дадим его для случая $t \in [0,T)$.

Определение 6. Пусть \mathscr{A} — замкнутый линейный (многозначный) оператор, $k \in \mathbb{N}$. Однопараметрическое семейство линейных ограниченных на X операторов $\{V(t), t \in [0,T)\}, T \leq \infty$, удовлетворяющих (13), (14), называется k раз интегрированной полугруппой, порожденной генератором \mathscr{A} .

Предложение 1. Для k раз интегрированной полугруппы V и порождающего ее генератора $\mathscr A$ выполнено равенство (V1).

Доказательство. Выше было показано, что для экспоненциально ограниченной k раз интегрированной полугруппы, порожденной \mathscr{A} , имеют место равенство (12) и, следовательно, (V1).

Теперь по схеме Танаки — Оказавы [16] покажем, что и для локальной полугруппы из соотношений (13), (14) при $t \in [0,T)$ следует, что в некоторой области правой полуплоскости существует резольвента $R_{\mathscr{A}}(\lambda)$ и для нее имеют место степенные оценки. Из этих оценок, как будет показано, вытекает равенство (V1).

Определим оператор

$$R(\lambda,\tau) := \int_{0}^{\tau} \lambda^{k} e^{-\lambda t} V(t) dt, \quad \lambda \in \mathbb{C}, \ \tau < T.$$

Применяя к этому равенству оператор $(\lambda I - \mathscr{A}),$ из соотношений (13), (14) получаем

$$R(\lambda, \tau)(\lambda I - \mathscr{A})x = (I - G(\lambda))x, \quad x \in D(\mathscr{A}),$$

$$(\lambda I - \mathscr{A})R(\lambda, \tau)x \ni (I - G(\lambda))x, \quad x \in X,$$

(15)

где

$$G(\lambda)x := \lambda^k e^{-\lambda \tau} V(\tau) x + \sum_{j=0}^{k-1} \frac{(\lambda \tau)^j}{j!} e^{-\lambda \tau} x, \ \|G(\lambda)\| \le C (1+|\lambda|)^k e^{-\tau \operatorname{Re} \lambda}, \ C = C(\tau, k).$$

Логарифмируя неравенство $C(1+|\lambda|)^k e^{-\tau \operatorname{Re} \lambda} < \gamma < 1$, получаем область

$$\Lambda_k := \left\{ \lambda \in \mathbb{C} : \operatorname{Re} \lambda > \frac{k}{\tau} \ln(1 + |\lambda|) + C \right\}, \quad C = C(\gamma, \tau), \quad \tau > 0,$$

в которой $\|G(\lambda)\| < 1$. Следовательно, $\|(1 - G(\lambda))^{-1}\| < 1/(1 - \gamma)$, и существует ограниченный оператор $(\lambda I - \mathscr{A})^{-1} = R_{\mathscr{A}}(\lambda)$, удовлетворяющий условию

$$(\exists C > 0 \ \forall \lambda \in \Lambda_k) \quad \|R_{\mathscr{A}}(\lambda)\| \le C|\lambda|^k. \tag{16}$$

Из этой оценки на резольвенту по теореме Любича для включений [7] следует, что уравнение (4) имеет единственное решение. В [13] доказано, что операторы $V(t)V(s),\,t\in[0,T)$ (при фиксированном $s\in[0,T)$), и операторы в правой части соотношения (V1), примененные к элементу $z\in X$, дают решение задачи Коши для уравнения (4) с начальным значением x=V(s)z для любого $z\in X$. Отсюда и из единственности решения выводим полугрупповое равенство (V1). \square

Подчеркнем, что далее при исследовании (n,ω) -корректности и n-корректности задачи Коши (3), как и в случае равномерной корректности, наша цель — получение критерия в терминах оценок на резольвенту, при этом полугрупповые результаты играют промежуточную роль. Поэтому каждый раз мы будем использовать наиболее подходящую полугрупповую технику: для исследования (n,ω) -корректности — это определение интегрированной полугруппы и ее генератора через соотношения (V1), (V2) и (12), а для исследования n-корректности — определение 6. При этом, как показывают доказательства теорем 3–7, получить критерий корректности в терминах резольвенты, используя технику интегрированных полугрупп (экспоненциально ограниченных и локальных), удается лишь в предположении соответствующего разложения пространства.

Теорема 3. Пусть X — банахово пространство, $n \in \mathbb{N}$, $\omega \in \mathbb{R}$, \mathscr{A} — линейный многозначный оператор в X, для которого пересечение множества регулярных точек c полуплоскостью $\operatorname{Re} \lambda > \omega$ непусто. Если задача (3) (n,ω) -корректна на $D(\mathscr{A}^{n+1})$, то для $R_{\mathscr{A}}(\lambda)$ выполнено условие типа MFPHY: найдутся такие C > 0, $\omega \in \mathbb{R}$, что

$$\left\| \frac{d^k}{d\lambda^k} \frac{R_{\mathscr{A}}(\lambda)}{\lambda^{n+1}} \right\| \le \frac{Ck!}{(\operatorname{Re} \lambda - \omega)^{k+1}}, \quad \operatorname{Re} \lambda > \omega, \ k = 0, 1, 2, \dots$$
 (R_{n+1})

ДОКАЗАТЕЛЬСТВО. Пусть $x \in D_{n+1} := D(\mathscr{A}^{n+1})$. Введем операторы решения $U(t)x := u(t), t \geq 0$, где $u(\cdot)$ — единственное решение задачи (3). В силу устойчивости решения операторы U(t) могут быть продолжены на $[D_{n+1}]_n$, замыкание D_{n+1} по норме $\|\cdot\|_n$. Для $x \in D_{n+1}$ имеем $U(t)x \in D(\mathscr{A})$ и

$$U'(t)x \in \mathscr{A}U(t)x = \lambda U(t)x - (\lambda I - \mathscr{A})U(t)x, \quad \lambda \in \rho(\mathscr{A}).$$

Отсюда (пользуясь для краткости обозначением $R:=R_{\mathscr{A}}(\lambda))$ получаем

$$RU'(t)x = R\mathscr{A}U(t)x = \lambda RU(t)x - U(t)x,$$

$$U(t)x = R(\lambda - \mathscr{A})U(t)x \in (\lambda - \mathscr{A})RU(t)x,$$

$$R\mathscr{A}U(t)x = \lambda RU(t)x - U(t)x \in \mathscr{A}RU(t)x,$$

$$RU'(t)x = (RU(t)x)' \in \mathscr{A}RU(t)x, \quad RU(0)x = Rx, \quad x \in D_{n+1}.$$

$$(17)$$

Следовательно, $RU(t)x, t \ge 0$, является решением задачи (3) с начальным условием $Rx, x \in D_{n+1}$, и в силу единственности RU(t)x = U(t)Rx. Интегрируя (17) от 0 до t, получаем на D_{n+1} равенство

$$\int_{0}^{t} U(s)x \, ds = -U(t)Rx + Rx + \lambda \int_{0}^{t} U(s)Rx \, ds =: U_1(t)x.$$

Правая часть этого равенства и, значит, операторы $U_1(t)$ определены на D_n . Операторы $U_1(t)$ на D_n коммутируют с R, удовлетворяют оценке

$$||U_1(t)x|| \le Ce^{\omega t} ||Rx||_n \le C_1 e^{\omega t} ||x||_{n-1}$$

и, следовательно, могут быть продолжены на $[D_n]_{n-1}$. В общем случае

$$U_k(t)x := -U_{k-1}(t)Rx + \frac{t^{k-1}}{(k-1)!}Rx + \lambda \int_0^t U_{k-1}(s)Rx \, ds, \tag{18}$$

$$x \in D_{n+1-k}, \quad k = 1, \dots, n+1.$$

Операторы $U_k(t)$ на D_{n+1-k} коммутируют с R и удовлетворяют оценке

$$||U_k(t)x|| \le Ce^{\omega t}||x||_{n-k}, \quad k = 1, \dots, n,$$

тем самым могут быть продолжены на $[D_{n+1-k}]_{n-k}$. В частности, $U_n(t)$ определены и коммутируют с R на $D(\mathscr{A})$, удовлетворяют оценке $||U_n(t)x|| \leq Ce^{\omega t}||x||$ и могут быть продолжены на $\overline{D(A)}$, а операторы $V(t) := U_{n+1}(t)$ определены, ограничены и коммутируют с R на всем пространстве $X = D_0$. На $\ker R = \mathscr{A}0$ все построенные операторы $U_k(t)$ ($k \geq 1$) равны нулю.

Покажем, что семейство $\{V(t), t \geq 0\}$ является n+1 раз интегрированной экспоненциально ограниченной полугруппой. Из (18) следует, что $V(\cdot)x$ непрерывна по $t \geq 0$ для любого $x \in X$, следовательно, выполняется (V2). Чтобы показать, что выполняется (V1), достаточно проверить, что оператор-функция $L_{n+1}(\lambda)$, определенная при $\mathrm{Re}\,\lambda > \omega$, удовлетворяет резольвентному тождеству, т. е. достаточно проверить равенство (12) с k, равным n+1. Умножая (18) на $\lambda^k e^{-\lambda t}$ и интегрируя от 0 до ∞ , при k=n+1 получаем равенство

$$L_{n+1}(\lambda)x = \int_{0}^{\infty} \lambda^{n+1} e^{-\lambda t} V(t)x \, dt = R_{\mathscr{A}}(\lambda)x, \quad x \in X,$$
 (19)

верное для λ из резольвентного множества $\rho(\mathscr{A})$, которое по условию непусто. Следовательно, резольвентное тождество имеет место для $L_{n+1}(\lambda)$ — аналитического продолжения $R_{\mathscr{A}}(\lambda)$ в полуплоскость $\operatorname{Re} \lambda > \omega$. Таким образом, $\{V(t), t \geq 0\}$ является вырожденной n+1 раз интегрированной экспоненциально ограниченной полугруппой с генератором \mathscr{A} . Из равенства (19) в области $\operatorname{Re} \lambda > \omega$ вытекает условие (R_{n+1}) . \square

Теорема 4. Пусть для линейного многозначного оператора $\mathscr A$ выполнено условие (R_n) . Тогда задача (3) (n,ω) -корректна на $R^{n+1}_{\mathscr A}(\lambda)\overline{D(\mathscr A)}$.

ДОКАЗАТЕЛЬСТВО. Если условие (R_n) имеет место для некоторых C>0 и $\omega\in\mathbb{R}$, то из интегрированной версии теоремы Уиддера [10] следует, что $\mathscr A$ является генератором n+1 раз интегрированной ω -экспоненциально ограниченной полугруппы $\{V(t); t\geq 0\}$ (которая может быть и вырожденной) с условием

$$||V(t+h) - V(t)|| \le Ce^{\omega t}h, \quad t \ge 0, \ h \ge 0.$$
 (20)

Из равенства (19) для генератора полугруппы подобно (13), (14) получаем

$$V(t)x = \frac{t^{n+1}}{(n+1)!}x + \int_{0}^{t} V(s)\mathscr{A}x \, ds, \ V(t)x \in \frac{t^{n+1}}{(n+1)!}x + \mathscr{A}\int_{0}^{t} V(s)x \, ds, \ x \in D(\mathscr{A}).$$
(21)

Отсюда для $x \in D(\mathscr{A}^2)$ (т. е. для x таких, что $\mathscr{A}x \cap D(\mathscr{A}) \neq \varnothing$) имеем

$$V'(t)x = \frac{t^n}{n!}x + V(t)\mathscr{A}x, \quad V'(t)\mathscr{A}x \in \frac{t^n}{n!}\mathscr{A}x + V(t)\mathscr{A}^2x \subset \frac{t^n}{n!}\mathscr{A}x + \mathscr{A}V(t)\mathscr{A}x$$

И

$$V''(t)x = \frac{t^{n-1}}{(n-1)!}x + V'(t)\mathscr{A}x, \quad V''(t)x \in \frac{t^{n-1}}{(n-1)!}x + \mathscr{A}V'(t)x. \tag{22}$$

Используя свойство (20) и замкнутость оператора \mathscr{A} , включение в (21) можно продолжить с $D(\mathscr{A})$ на $\overline{D(\mathscr{A})} = X_1$. Теперь покажем, что уравнение и включение (22) можно продолжить с $D(\mathscr{A}^2) = R^2 X$ на RX_1 (где $R := R_{\mathscr{A}}(\lambda)$). Пусть $y \in X_1$. Тогда существует последовательность $D(\mathscr{A}) \ni y_n \to y$. Возьмем $x_n = Ry_n$. Тогда

$$\mathscr{A}x_n = \mathscr{A}Ry_n = -(\lambda I - \mathscr{A})Ry_n + \lambda Ry_n, \quad x_n \to Ry = x \in RX_1$$

и множество $\{(\lambda - \mathscr{A})Ry_n\}$ содержит последовательность y_n , сходящуюся к y. Отсюда $\{\mathscr{A}x_n\cap D(\mathscr{A})\}\neq \varnothing$, и последовательность $-y_n+\lambda Ry_n\in D(\mathscr{A})$ сходится к $-y+\lambda Ry\in X_1$. В силу свойства (20) $V'(t)\mathscr{A}x_n\to V'(t)\mathscr{A}x$. Учитывая замкнутость оператора V''(t), получаем

$$V''(t)x = \frac{t^{n-1}}{(n-1)!}x + V'(t)\mathscr{A}x, \quad V''(t)x \in \frac{t^{n-1}}{(n-1)}x + \mathscr{A}V'(t)x, \quad x \in RX_1, (23)$$

так что для $x \in R^2 X_1$ существует $V''(t) \mathscr{A} x$. Дифференцируя (23), имеем

$$V^{(3)}(t)x = \frac{t^{n-2}}{(n-2)!}x + V''(t)\mathscr{A}x \in \frac{t^{n-2}}{(n-2)!}x + \mathscr{A}V''(t)x, \quad x \in \mathbb{R}^2 X_1.$$

Продолжим этот процесс:

$$V^{(n+2)}(t)x \in \mathscr{A}V^{(n+1)}(t)x, \ x \in \mathbb{R}^{n+1}\overline{D(\mathscr{A})}, \ V^{(n+1)}(0)x = x.$$

Тем самым $V^{(n+1)}x$ — решение задачи (3) с $x \in R^{n+1}X_1$. По теореме Любича для включений из условия (R_n) следует единственность решения. Устойчивость решения относительно $\|x\|_n$ вытекает из того, что $V^{(n+1)}(t)x, x \in R^{n+1}X_1$, выражаются через V'(t) на элементах $\mathscr{A}^kx, k \leq n$, и операторы V'(t) ограничены на $\overline{D(\mathscr{A})} = X_1$. \square

Сравнивая результаты теорем 3, 4 с результатами теоремы 2, отметим, что оценки (R_n) в общем случае без разложения пространства гарантируют корректность лишь на $R^{n+1}X_1$ (а не на $D_{n+1}=D(\mathscr{A}^{n+1})=R^{n+1}X$), а из корректности на D_{n+1} получены оценки (R_{n+1}) (а не (R_n)) и не получено какого-либо разложения пространства. При этом из оценок (R_{n+1}) и резольвентного тождества для любого x из D_{n+1} имеем $\|R_{\mathscr{A}}(\lambda)x-x\| \xrightarrow{\lambda \to \infty} \mathbb{R}_{e} \xrightarrow{\lambda \to \omega} 0$. Отсюда

$$D_{n+1} \cap \ker R = \{0\}$$
 и $X_{n+1} \cap \mathcal{A}0 = \{0\},$

т. е. из оценок (R_{n+1}) , связанных с (n,ω) -корректностью задачи (3) и существованием n+1 раз интегрированной полугруппы, в общем случае не следует ни $X_1\cap \mathscr{A}0=\{0\}$, ни $X_{n+1}\cap \mathscr{A}^{n+1}0=\{0\}$ и, значит, в общем случае не следует ни разложение (5), ни разложение (6) (напомним, что при условии $\rho(\mathscr{A})\neq \varnothing$ и, следовательно, без потери общности $0\in \rho(\mathscr{A})$, разложение (6) может быть записано в виде $X=X_{n+1}\oplus\ker R^{n+1}$).

Если предположить, что разложение (6) имеет место, то получим критерий (n,ω) -корректности задачи Коши для включений.

Теорема 5. Пусть \mathscr{A} — линейный многозначный оператор в банаховом пространстве X, $\rho(\mathscr{A}) \neq \varnothing$ и имеет место разложение пространства (6) c некоторым $n \in \mathbb{N}$. Тогда задача (3) является (n,ω) -корректной на D_{n+1} , если и только если выполнено условие (R_n) .

ДОКАЗАТЕЛЬСТВО. Пусть выполнено условие (R_n) . Тогда по теореме 4 задача Коши для включения (3) (n,ω) -корректна на множестве

$$R^{n+1}X_1 \subset R^{n+1}X = D_{n+1}$$
, где $R := R_{\mathscr{A}}(\lambda)$, $X_1 := \overline{D(\mathscr{A})}$.

В силу разложения (6) имеем $R^{n+1}X=R^{n+1}X_{n+1}:=R^{n+1}\overline{R^{n+1}X}$. С другой стороны, $R^{n+1}X_{n+1}\subset R^{n+1}X_1$, следовательно, $D_{n+1}\subset R^{n+1}X_1$, и, значит, $R^{n+1}X_1=D_{n+1}$. Таким образом, задача (3) (n,ω) -корректна на D_{n+1} .

Пусть задача Коши (3) (n,ω) -корректна на D_{n+1} . Чтобы доказать (R_n) , учитывая разложение (6), изменим первый шаг в конструкции операторов $U_k(t)$ по формуле (18) в теореме 3. Вместо операторов U(t) будем использовать операторы $U_0(t)$, доопределенные на $\mathcal{A}0$:

$$U_0(t)x := \begin{cases} U(t)x, & x \in [D_{n+1}]_n, \\ 0, & x \in \mathscr{A}0. \end{cases}$$

Построенные таким образом операторы $U_0(t)$ заданы на $[D_{n+1}]_n \oplus \mathscr{A}0$. Благодаря этому построим интегрированную полугруппу $\{V(t), t \geq 0\}$ уже на n-м шаге, а не на (n+1)-м: операторы $V(t) := U_n(t)$ определим на $\mathscr{A}^{n+1}0$ и на $X_{n+1} = \overline{D_{n+1}}$, тем самым на $X = X_{n+1} \oplus \mathscr{A}^{n+1}0$ (в теореме 3 операторы $U_n(t)$ были определены лишь на $\overline{D(\mathscr{A})}$). Построенное семейство $\{V(t)\}$ экспоненциально ограничено, и для него выполнено равенство (12) с k=n. Следовательно, выполнено условие (R_n) .

Учитывая разложение (6), проясним структуру построенной вырожденной n раз интегрированной экспоненциально ограниченной полугруппы V, рассматривая ее на X_{n+1} и на $\mathscr{A}^{n+1}0$. По построению все оператор-функции $U_k(\cdot)$ ($k\geq 1$) равны интегралу соответствующего порядка от операторов решения на D_{n+1} , при этом $V(\cdot)=U_n(\cdot)$ продолжена по непрерывности на $X_{n+1}=\overline{D_{n+1}}$ и равна нулю на $\mathscr{A}0$. Следовательно, на X_{n+1} и на $\mathscr{A}0$ они не зависят от λ . Покажем, что для $x\in\mathscr{A}^{k+1}0$ значения $U_k(t)x$, определяемые через $R_{\mathscr{A}}(\lambda)x$, тоже не зависят от λ и равны полиномам соответствующего порядка $\sum_{j=0}^{k-1} t^j x_j$ с некоторыми x_j , равными линейным комбинациям из элементов $R_{\mathscr{A}}^i(\lambda)x$. Имеем

$$U_{1}(t)x = R_{\mathscr{A}}(\lambda)x, \quad x \in \mathscr{A}^{2}0 = \ker R_{\mathscr{A}}^{2}(\lambda),$$

$$U_{2}(t)x = (\lambda t - 1)R_{\mathscr{A}}^{2}(\lambda)x + tR_{\mathscr{A}}(\lambda)x, \quad x \in \mathscr{A}^{3}0, \qquad (24)$$

$$U_{3}(t)x = (\lambda^{2}t^{2}/2 - 2\lambda t + 1)R_{\mathscr{A}}^{3}(\lambda)x + t(\lambda t/2 - 1)R_{\mathscr{A}}^{2}(\lambda))x + t^{2}/2R_{\mathscr{A}}(\lambda)x, \quad x \in \mathscr{A}^{4}0,$$

$$\dots, U_{n}(t)x = \sum_{i=1}^{n} a_{i}(t,\lambda)R_{\mathscr{A}}^{i}(\lambda)x, \quad a_{i}(t,\lambda) = \sum_{k=0}^{i-1} (-1)^{k+i-1}C_{i-1}^{k}\lambda^{k}\frac{t^{k}}{k!}, \quad x \in \mathscr{A}^{n+1}0.$$

Независимость $U_1(t)$ от λ следует из равенства

$$dU_1(t)x/d\lambda = R'(\lambda)x = -R^2(\lambda)x = 0.$$

Далее по индукции можно доказать, что $dU_k(t)x/d\lambda=0,\ x\in\mathscr{A}^{k+1}0,\ k=2,3,\dots$

Примеры вырожденных полугрупп, их генераторов и корректных вырожденных задач Коши мы можем построить, используя известные примеры интегрированных полугрупп с неплотно определенными генераторами [10, 15, 17] следующим образом. Пусть A — генератор интегрированной полугруппы $\{V(t), t \geq 0\}$ в пространстве X. Предположим, что подпространство $\overline{D(A)} =: X_1$ дополняемо в X до некоторого подпространства Y, т. е. $X = X_1 \oplus Y$. Пусть $B := P_{X_1}$ — проектор на подпространство X_1 в X. Тогда $\ker B = Y$, $\operatorname{im} B = X_1$ и

$$(\lambda I - A)x = (\lambda B - A)x, \quad x \in D(A),$$
$$(\lambda B - A)^{-1}x = (\lambda I - A)^{-1}x = R_A(\lambda)x, \quad x \in \overline{D(A)}.$$

Следовательно, МҒРНҰ-оценки, верные для $R_A(\lambda)$ на X_1 , верны и для $(\lambda B - A)^{-1}B$ на X.

Именно, пусть

$$X = C[0, \infty), A = -d/dx, D(A) = \{ f \in C[0, \infty) \mid f' \in C[0, \infty), f(0) = 0 \}.$$

В этом случае $Y = \{\text{const}\}, (Bf)(x) = f(x) - f(0),$

$$D_1 = \{f \mid Af \in \text{im } B\} = \{f \in C[0, \infty) \mid f' \in C[0, \infty), f(0) = f'(0) = 0\}$$

и задача Коши

$$\frac{\partial u(x,t)}{\partial t} - \frac{\partial u(0,t)}{\partial t} + \frac{\partial u(x,t)}{\partial x} = 0, \quad x \in [0,\infty), \ t \ge 0, \quad u(x,0) = f(x),$$

является равномерно корректной на D_1 : для $f \in D_1$ ее решением будет

$$u(x,t) = f(x-t), x \ge t, u(x,t) = 0, x < t.$$

Рассмотрим теперь условия корректности задачи Коши для включения в случае, когда решение не обладает экспоненциальной ограниченностью, и в локальном случае.

3. Корректность локальной задачи Коши для включений.

Определение 7. Задача (3) называется n-корректной на $E \subseteq D(\mathscr{A}^{n+1})$, если для любого $x \in E$ существует единственное решение $u(t), \ 0 \le t < T$, такое, что для всех $\tau < T$

$$\sup_{t \le \tau} \|u(t)\| \le C_\tau \|x\|_n.$$

Покажем, что n-корректность задачи Коши для включения связана с существованием вырожденной локально интегрированной полугруппы, порожденной $\mathscr A$ (см. определение 6 при $T<\infty$), и с условием на резольвенту $\mathscr A$, определяемым следующим образом.

 (\mathscr{R}_m) Существует параметр $m \in \mathbb{R}$ такой, что

$$||R_{\mathscr{A}}(\lambda)|| \le C|\lambda|^m$$

для любого $\lambda \in \Lambda_m$ и некоторого C > 0.

Теорема 6. Пусть \mathscr{A} — линейный многозначный оператор в банаховом пространстве X. Если задача Коши (3) n-корректна на $D(\mathscr{A}^{n+1})$ и $\rho(\mathscr{A}) \cap \Lambda_{n+1} \neq \varnothing$ для некоторого $n \in \mathbb{N}$, то выполнено условие (\mathscr{R}_m) с m = n+1. Если выполнено условие (\mathscr{R}_m) , то задача (3) p-корректна на $R^{p+1}X_1$ при p > m+1.

Доказательство. Пусть задача (3) n-корректна на $D(\mathscr{A}^{n+1}) = D_{n+1}$. Тогда можно проверить, что построенное в теореме 3 семейство операторов $\{V(t):=U_{n+1}(t),\ t\in[0,T)\}$ удовлетворяет включению (14) с k=n+1. Сначала, учитывая исходное включение для U(t):

$$U'(t)x \in \mathscr{A}U(t)x, \quad x \in D_{n+1},$$

проверяем для $U_1(t)$ включение (14) при k=1 на D_n , затем, используя соответствующие включения для $U_k(t)$ ($k=1,\ldots n$) на D_{n+1-k} , проверяем включение (14) с k=n+1 для $V(t)=U_{n+1}(t)$ на X. Отсюда, применяя доказательство предложения 1, получаем включение (15) (где k в определении $R(\lambda,\tau)$ равно n+1). Значит, оператор $\lambda I-\mathscr{A}$ имеет правый обратный в области Λ_{n+1} . Отсюда и из условия

$$\rho(\mathscr{A}) \cap \Lambda_{n+1} =: \Lambda \neq \varnothing$$

следует, что для \mathscr{A} в области Λ существует резольвента. Продолжая аналитически резольвенту в область Λ_{n+1} , приходим к оценке (16) для $R_{\mathscr{A}}(\lambda)$ с k=n+1. Следовательно, выполнено условие (\mathscr{R}_{n+1}) .

Обратно, если для $R_{\mathscr{A}}(\lambda)$ выполнено условие (\mathscr{R}_m) , то оператор-функция

$$V_p(t) := \frac{1}{2\pi i} \int_{\Gamma} \lambda^{-p} e^{\lambda t} R_{\mathscr{A}}(\lambda) d\lambda, \quad \Gamma = \partial \Lambda_p,$$
 (25)

определена и непрерывна по $t\in (-\infty,\tau_p)$, где $\tau_p:=\frac{\tau}{m}(p-m-1)$, для любого p>m+1. Используя абстрактную теорему Коши, покажем, что $V_p(t)$ удовлетворяет уравнению (13) при k=p на $D(\mathscr{A})$:

$$\int_{0}^{t} V_{p}(s)(\mathscr{A} \pm \lambda I)x \, ds = \int_{0}^{t} \left(\frac{1}{2\pi i} \int_{\Gamma} (\lambda^{-p+1} e^{\lambda s} R_{\mathscr{A}}(\lambda)x - \lambda^{-p} e^{\lambda s}x) \, d\lambda\right) ds$$
$$= V_{p}(t)x - \frac{t^{p}}{p!}x, \quad t \in [0, \tau_{p}), \ x \in D(\mathscr{A}).$$

Применяя оператор $\mathscr{A} \pm \lambda I$ к $\int\limits_0^t V_p(s)x\,ds,\,x\in X$, получаем включение (14) при k=p. Отсюда, как показано в теореме 4, следует корректность задачи (3) на $R^{p+1}X_1$. Более того, для любого T>0 единственным устойчивым относительно $x\in R^{p+1}X_1$ по норме $\|\cdot\|_p$ решением задачи (3) является

$$u(t) = V_p^{(p)}(t)x, \quad t \in [0, \tau_p),$$

где p = p(T) выбрано так, что $\tau_p \ge T$. \square

Итак, мы показали, что для n-корректности локальной задачи Коши (3) на различных подмножествах E начальных данных из пространства X необходимым и достаточным является условие (\mathcal{R}_m). Теперь рассмотрим корректность задачи (3) с начальными данными из X в пространстве абстрактных распределений $\mathcal{D}'(X)$, которая, как и в невырожденном случае [18, 19], тесно связана с n-корректностью локальной задачи (3).

По определению пространство абстрактных распределений $\mathscr{D}'(X)$ (или пространство распределений на некотором банаховом пространстве X) является пространством линейных непрерывных операторов из \mathscr{D} в X, т. е. $\mathscr{D}'(X) := \mathscr{L}(\mathscr{D},X), \mathscr{D}'_0(X)$ — подпространство распределений, равных нулю на $(-\infty,0), \mathscr{D}$ — пространство Л. Шварца бесконечно дифференцируемых функций с компактным носителем в \mathbb{R} , \mathscr{D}_0 — с носителем в $[0,\infty)$.

Пояснить связь n-корректности задачи (3) и существования локальной интегрированной полугруппы с корректностью задачи в пространстве абстрактных распределений можно с точки зрения абстрактной структурной теоремы, согласно которой любое (абстрактное) распределение локально имеет непрерывную первообразную некоторого порядка [19]. Такой первообразной от распределения операторов решения и является интегрированная полугруппа соответствующего порядка.

Рассмотрим классическое решение задачи (3) u(t), $t \ge 0$, продолженное нулем при t < 0, как элемент $U \in \mathcal{D}'_0(X)$ в пространстве распределений. Имеем

$$\int\limits_{0}^{\infty}\varphi(t)u'(t)\,dt=-\langle U,\varphi'\rangle-\varphi(0)x\;\in\mathscr{A}\;\int\limits_{0}^{\infty}\varphi(t)u(t)\,dt=\mathscr{A}\langle U,\varphi\rangle,\quad\varphi\in\mathscr{D}.$$

Отсюда следует определение обобщенного решения: абстрактное распределение $U \in \mathcal{D}'_0([D(\mathscr{A})])$ называют решением задачи Коши (3) в смысле распределений, если для любой $\varphi \in \mathscr{D}$

$$\langle U, \varphi' \rangle + \mathscr{A} \langle U, \varphi \rangle \ni -\langle \delta, \varphi \rangle x, \quad x \in X,$$
 (26)

или, в терминах свертки, $P*U\ni\delta\otimes x$, где

$$P := \delta' \otimes I - \delta \otimes \mathscr{A} \in \mathscr{D}'_0(\mathscr{L}([D(\mathscr{A})], X)), \quad [D(\mathscr{A})] := \{D(\mathscr{A}), \| \cdot \|_{\mathscr{A}}\},$$
$$\langle \delta \otimes x, \varphi \rangle := \langle \delta, \varphi \rangle x, \quad \langle \delta' \otimes I, \varphi \rangle := \langle \delta', \varphi \rangle I, \quad \langle \delta \otimes A, \varphi \rangle := \langle \delta, \varphi \rangle \mathscr{A}.$$

Определение 8. Задача Коши (3) называется корректной в смысле распределений, если для любого $x \in X$ существует $U \in \mathscr{D}'_0([D(\mathscr{A})])$ (единственное решение задачи (26)) и для любой последовательности $x_n \to 0$ соответствующая последовательность решений U_n сходится к нулю в пространстве $\mathscr{D}'_0([D(\mathscr{A})])$.

Продемонстрированная в теоремах 1–6 техника включений и вырожденных полугрупп позволяет подобно задаче Коши с однозначным оператором получить условия корректности задачи (3) в смысле распределений. В предположении разложения пространства докажем критерий корректности в пространстве распределений и тесно связанный с ним критерий n-корректности.

Теорема 7. Пусть \mathscr{A} — линейный замкнутый многозначный на X оператор и при некотором $n \in \mathbb{N}$ имеет место разложение $X = X_{n+1} \oplus \ker R^{n+1}$. Тогда следующие утверждения эквивалентны условию (\mathscr{R}_m) при некотором $m \in \mathbb{N}$.

- (I) Задача Коши (3) корректна в смысле распределений, при этом обобщенное решение является вырожденным для $x \in \mathscr{A}^{n+1}0 = \ker R^{n+1}$.
 - (II) Существует распределение операторов решения задачи (26):

$$S \in \mathscr{D}'_0(\mathscr{L}(X, [D(\mathscr{A})]),$$

вырожденное на $\ker R^{n+1}$ и такое, что

$$P * S \ni \delta \otimes I_X, \quad S * P = \delta \otimes I_{[D(\mathscr{A})]}.$$
 (27)

(III) Для любого T>0 существует $p\in\mathbb{N}$ такое, что задача Коши (3) *р*-корректна на $D(\mathscr{A}^{p+1}).$

Доказательство. (I) \iff (II). Эквивалентность этих утверждений подобно невырожденному случаю [18] основана на равенстве, связывающем решение задачи (26) $U \in \mathscr{D}'_0([D(\mathscr{A})])$ с распределением $S \in \mathscr{D}'_0(\mathscr{L}(X, [D(\mathscr{A})])$:

$$\langle U, \varphi \rangle = \langle S, \varphi \rangle x = \langle Sx, \varphi \rangle, \quad \varphi \in \mathcal{D}, \quad x \in X.$$

(II) $\Longrightarrow (\mathscr{R}_m)$. Абстрактное распределение $S \in \mathscr{D}'_0(\mathscr{L}(X, [D(\mathscr{A})]))$, как и любое распределение из $\mathscr{D}'(\mathbb{R})$, локально на любом отрезке может быть продолжено с пространства \mathscr{D} на пространство j раз непрерывно дифференцируемых функций, где порядок j зависит от отрезка. На этом основано построение для S первообразной порядка j+2 [19]:

$$V(t) := \langle S, \psi_{t,j} \rangle, \quad \text{где } \psi_{t,j}(s) = \chi(s)\eta_j(t-s) \in \mathcal{D}^j[-1,T],$$

$$\chi(s) = \begin{cases} 0, & s \le -1, \\ 1, & s \ge 0, \end{cases}, \quad \chi(s) \in C^{\infty}(\mathbb{R}), \quad \eta_j(t) = \begin{cases} t^{j+1}/(j+1)!, & t \ge 0, \\ 0, & t < 0. \end{cases}$$

Подобно невырожденному случаю [18, 19] из соотношений (27) для S вытекают соотношения (13), (14) при k=j+2 для $V(t),\,t\in[0,T)$. Следовательно, V является локальной j+2 раз интегрированной полугруппой, порожденной \mathscr{A} . Как показано в предложении 1, для резольвенты генератора этой полугруппы выполнено условие (\mathscr{R}_m) с m=j+2.

 $(\mathscr{R}_m)\Longrightarrow$ (III). По резольвенте, удовлетворяющей условию (\mathscr{R}_m) , для любого p>m+1 строим оператор-функцию $V_p(t),\ t\in [0,\tau_p)$, определенную на X, по формуле (25). Как показано в теореме 6, она является локальной p раз интегрированной полугруппой, порожденной генератором \mathscr{A} . Через V_p , где p выбрано так, что $\tau_p\geq T$, строится решение локальной задачи (3):

$$u(t) := V_p^{(p)}(t)x, \quad t \in [0, T), \ x \in \mathbb{R}^{p+1}X_1.$$

Это решение единственно и устойчиво относительно x по норме $\|\cdot\|_p$. В силу разложения (6) при $p \geq n$ имеем

$$R^{p+1}X = R^{p+1}X_{p+1} = R^{p+1}X_1.$$

Отсюда следует p-корректность локальной задачи (3) на $R^{p+1}X = D(\mathscr{A}^{p+1}).$

(III) \Longrightarrow (I). Решение $U\in \mathscr{D}_0'([D(\mathscr{A})])$ задачи Коши (26) с начальным условием

$$x \in X = X_{n+1} \oplus \ker R^{n+1} \quad (X = X_{p+1} \oplus \ker R^{n+1}$$
при $p \ge n)$

строим через семейство операторов $\{U_p(t), t \in [0, T)\}$, определенных в теореме 5 и продолженных нулем для t < 0, следующим образом:

$$\langle U, \varphi \rangle = \langle Sx, \varphi \rangle := \langle U_p^{(p)} x, \varphi \rangle, \quad \varphi \in \mathscr{D}.$$
 (28)

Здесь для любого $\varphi \in \mathscr{D}$ за счет увеличения p можно T выбрать так, что $\operatorname{supp} \varphi \in [0,T)$. При этом

$$\langle U_p^{(p)}, \varphi \rangle = \langle U_{p'}^{(p')}, \varphi \rangle, \quad p' \ge p.$$

Семейство $\{U_p(t)\}$ с учетом разложения пространства построено в теореме 5 на X_{p+1} и на $\ker R^{n+1}$, т. е. на X. В теореме 6 показано, что исходя из включения для $U_0(\cdot)x$, равного $u(\cdot)$ на D_{p+1} и нулю на $\mathcal{A}0$, для операторов $U_p(t)$, определенных на X, получаем (13) и (14) с k=p на

$$D_{p+1} \oplus \ker R^{n+1}$$
 и $X = X_{p+1} \oplus \ker R^{n+1}, p \ge n,$

соответственно. Отсюда вытекают соотношения (27) для $S:=U_p^{(p)}$. По построению $U_p(t)x, x\in X$, принадлежат $D(\mathscr{A})$, следовательно, $U:=Sx\in \mathscr{D}_0'([D(\mathscr{A})])$. При этом распределение U=Sx для $x\in X_{p+1}$ является пределом классических решений в пространстве распределений, а для $x\in\ker R^{n+1}$ в силу (24) равно сумме δ -функций и их производных в нуле:

$$U = \sum_{j=1}^{p} \delta^{(j)} x_j$$

с некоторыми x_j , равными линейным комбинациям из элементов R^ix . Следовательно, решение $U\in \mathscr{D}_0'([D(\mathscr{A})])$ вырожденно на $\mathscr{A}^{n+1}0$, т. е.

$$\langle U, \varphi \rangle = 0 = \langle Sx, \varphi \rangle$$

для любых $\varphi \in \mathcal{D}_0$, $x \in \ker R^{n+1}$.

Устойчивость построенного решения U вытекает из свойств полугруппы $\{U_p(t)\}$ и формулы (28). Единственность решения следует из уравнения для S и ассоциативности свертки: $U = (\delta \otimes I) * U = S * P * U = S * (\delta \otimes x) = Sx$. \square

В заключение отметим, что проведенное исследование корректности позволяет для некорректных вырожденных задач Коши строить приближенное решение, устойчивое относительно изменения исходных данных из пространства X с помощью регуляризующих операторов. Как следует из доказанных теорем, первым шагом в построении таких операторов для некорректных задач Коши является операция проектирования на подпространство X_{n+1} . Рассматривая на X_{n+1} уже невырожденную задачу Коши, можно использовать известные регуляризующие операторы, учитывающие дифференциальную специфику задачи (см., например, [20–22]).

Автор искренне признательна В. В. Иванову за полезные обсуждения.

ЛИТЕРАТУРА

- 1. *Крейн С. Г., Хазан М. И.* Дифференциальные уравнения в банаховом пространстве // Математический анализ. М.: ВИНИТИ, 1990 Т. 21. С. 130–264. (Итоги науки и техники).
- Carrol R., Showalter R. E. Singular and degenerate Cauchy problems. New York: Acad. Press, 1976.
- Abdelasis N. H., Neubrander F. Degenerate abstract Cauchy problem // Seminar notes in funct. analysis and PDE. Baton Rouge: Louisiana State Univ., 1991–1992. P. 1–12.
- **4.** Zaidman S. Well-posed Cauchy problem and related semigroups of operators for the equation $Bu'(t) = Au(t), t \ge 0$, in Banach spaces // Libertas Math. 1992. V. 12. P. 147–159.
- Yagi A. Generation theorems of semigroups for multivalued linear operators // Osaka J. Math. 1991. V. 28, N 2. P. 385–410.
- Favini A., Yagi A. Degenerate differential equations in Banach spaces. New York; Basel; Hong Kong: Marcel Dekker, Inc., 1999.
- Knuckles C., Neubrander F. Remarks on the Cauchy problem for multi-valued linear operators // Math. Res. Berlin: Academie-Verl. 1994. V. 82. P. 174–187.
- 8. Мельникова И. В., Альшанский М. А. Корректность вырожденной задачи Коши в банаховом пространстве // Докл. РАН. 1994. Т. 336, № 1. С. 17–24.
- 9. Мельникова И. В., Гладченко А. В. Корректность задачи Коши для включений в банаховых пространствах // Докл. РАН. 1998. Т. 361, № 6. С. 736–739.
- 10. Arendt W. Vector valued Laplace transforms and Cauchy problems // Israel J. Math. 1987. V. 59. P. 327–352.
- 11. Thieme H. R. Integrated semigroups and integrated solutions to abstract Cauchy problems // J. Math. Anal. Appl. 1990. V. 152, N 2. P. 416–447.
- Arendt W., El-Mennaoui O., Keyantuo V. Local integrated semigroups: evolution with jumps of regularity // J. Math. Anal. Appl. 1994. V. 186, N 2. P. 572–595.

- 13. Cioranescu I., Lumer G. Regularizations of evolution equations via kernels K(t), K-evolution operators and convoluted semigroups, generation theorems // Seminar notes in funct. analysis and PDE. Baton Rouge: Louisiana State Univ., 1994. P. 45–52.
- **14.** Демиденко Г. В., Успенский С. В. Уравнения и системы, не разрешенные относительно старшей производной. Новосибирск: Научная книга, 1998.
- Melnikova I. V., Alshansky M. A. Well-posedness of the Cauchy problem in Banach space: regular and degenerate cases // J. Math. Sci. 1997. V. 87, N 4. P. 3732–3777.
- Tanaka N., Okazawa N. Local C-semigroups and local integrated semigroups // Proc. London Math. Soc. 1990. V. 61, N 1. P. 63–90.
- 17. Kellermann H., Hieber M. Integrated semigroups // J. Funct. Anal. 1989. V. 84, N 1. P. 160–180.
- 18. Мельникова И. В. Свойства d-полугрупп Лионса и обобщенная корректность задачи Коши // Функцион. анализ и его прил. 1997. Т. 31, № 3. С. 23–37.
- Fattorini H. O. The Cauchy problem. Reading, Mass.: Addison-Wesley, 1983 (Encyclop. Math. Appl., 18).
- Лаврентьев М. М. Условно-корректные задачи для дифференциальных уравнений. Новосибирск: Новосиб. гос. ун-т, 1973.
- **21.** *Мельникова И. В.* Регуляризация некорректных дифференциальных задач // Сиб. мат. журн. 1992. Т. 33, № 2. С. 125–134.
- Melnikova I. V. General theory of the ill-posed Cauchy problem // J. Inverse Ill-Posed Probl. 1995. V. 3, N 2. P. 149–171.

Cтатья поступила 15 марта 1999 г., окончательный вариант - 1 февраля 2001 г.

Мельникова Ирина Валерьяновна

Уральский гос. университет, математико-механический факультет просп. Ленина, 51, Екатеринбург 620083

просп. Ленина, 51, Екитериноург 020005

Irina.Melnikova@usu.ru