О КОГОМОЛОГИЧЕСКОЙ ПОСЛЕДОВАТЕЛЬНОСТИ В ПОЛУАБЕЛЕВОЙ КАТЕГОРИИ

Н. В. Глотко, В. И. Кузьминов

Аннотация: В полуабелевой категории строго точной последовательности $0 \to A \to B \to C \to 0$ коцепных комплексов соответствует когомологическая последовательность

$$\cdots \to H^n(A) \to H^n(B) \to H^n(C) \to H^{n+1}(A) \to \cdots$$

Исследуются условия точности гомологической последовательности в заданном ее члене. Библиогр. 6.

Будем рассматривать аддитивные категории, в которых выполнена

Аксиома 1. Каждый морфизм α имеет ядро $\ker \alpha$ и коядро $\operatorname{coker} \alpha$.

В аддитивной категории, удовлетворяющей аксиоме 1, каждый морфизм α допускает каноническое разложение $\alpha = (\operatorname{im} \alpha)\bar{\alpha}(\operatorname{coim} \alpha)$, где $\operatorname{im} \alpha = \ker \operatorname{coker} \alpha$, $\operatorname{coim} \alpha = \operatorname{coker} \ker \alpha$.

Морфизм α называется *строгим*, если $\bar{\alpha}$ — изоморфизм.

Будем использовать следующие обозначения: O_c , M, M_c , P, P_c — классы всех строгих морфизмов, мономорфизмов, строгих мономорфизмов, эпиморфизмов и строгих эпиморфизмов соответственно.

Аддитивная категория называется *полуабелевой*, если в ней кроме аксиомы 1 выполнены еще следующие две аксиомы.

Аксиома 2. В каждом универсальном квадрате

$$\begin{array}{ccc}
A & \xrightarrow{\alpha} & B \\
f \downarrow & g \downarrow \\
C & \xrightarrow{\beta} & D
\end{array} \tag{1}$$

 $\alpha \in M_c \Longrightarrow \beta \in M_c$.

Аксиома 2*. В каждом коуниверсальном квадрате

$$D \xrightarrow{\beta} C$$

$$g \downarrow \qquad f \downarrow$$

$$B \xrightarrow{\alpha} A$$

$$(2)$$

Работа выполнена при поддержке Российского фонда фундаментальных исследований (код проекта 01-01-00795).

 $\alpha \in P_c \Longrightarrow \beta \in P_c$.

Последовательность $A \xrightarrow{\varphi} B \xrightarrow{\psi} C$ называется точной, если $\operatorname{im} \varphi = \ker \psi$. В полуабелевой категории последовательность $A \xrightarrow{\varphi} B \xrightarrow{\psi} C$ точна тогда и только тогда, когда $\operatorname{coim} \psi = \operatorname{coker} \varphi$.

Последовательность $0 \to A \xrightarrow{\varphi} B \xrightarrow{\psi} C \to 0$ называется строго точной, если $\varphi = \ker \psi$ и $\psi = \operatorname{coker} \varphi$.

Строго точной последовательности

$$0 \to A \xrightarrow{\varphi} B \xrightarrow{\psi} C \to 0 \tag{3}$$

коцепных комплексов в полуабелевой категории соответствует когомологическая последовательность

$$\dots \to H^n(A) \xrightarrow{H^n(\varphi)} H^n(B) \xrightarrow{H^n(\psi)} H^n(C) \xrightarrow{\Delta^n} H^{n+1}(A) \to \dots$$
 (4)

- \mathcal{A} . А. Райков в [1] показал, что последовательность (4) точна и морфизмы, ее образующие, являются строгими, если все дифференциалы комплексов A, B и C будут строгими морфизмами. В [2] дано следующее обобщение этого результата:
- 1) если дифференциал d_A^n комплекса A является строгим морфизмом, то последовательность (4) точна в членах $H^n(B)$ и $H^n(C)$, а $H^n(\psi)$ строгий морфизм;
- 2) если дифференциал d_B^n комплекса B является строгим морфизмом, то последовательность (4) точна в членах $H^n(C)$ и $H^{n+1}(A)$, а Δ^n строгий морфизм;
- 3) если дифференциал d_C^n комплекса C является строгим морфизмом, то последовательность (4) точна в членах $H^{n+1}(A)$ и $H^{n+1}(B)$, а $H^{n+1}(\varphi)$ строгий морфизм.

Ясно, что условие строгости в указанном уточнении результата Д. А. Райкова в общем случае не может быть отброшено. Соответствующие примеры легко построить в категории $\mathcal{B}an$ банаховых пространств и непрерывных линейных операторов. Однако существуют полуабелевы категории, в которых каждой строго точной последовательности (3) соответствует точная последовательность (4). Так обстоит дело, например, в полуабелевых категориях, удовлетворяющих следующим условиям.

Аксиома 3. В каждом универсальном квадрате (1) $\alpha \in M \Longrightarrow \beta \in M$.

Аксиома 3*. В каждом коуниверсальном квадрате (2) $\alpha \in P \Longrightarrow \beta \in P$.

Полуабелева категория называется $\mathit{cnequanbho\'u}$, если в ней выполнены аксиомы 3 и 3^* .

В настоящей работе мы заменяем условие строгости дифференциалов комплексов A, B и C более слабым условием их универсальности и в результате получаем вариант теоремы о точности когомологической последовательности (4), охватывающий случай специальных полуабелевых категорий.

В следующей лемме перечислены используемые в дальнейшем известные свойства морфизмов в полуабелевой категории.

Лемма 1 [1–3]. В полуабелевой категории справедливы следующие утверждения и им двойственные:

- 1) ker $\alpha \in M_c$ для каждого морфизма $\alpha, \beta \in M_c \iff \beta = \operatorname{im} \beta$;
- 2) если $\alpha, \beta \in M_c$ и морфизм $\alpha\beta$ определен, то $\alpha\beta \in M_c$;
- 3) $\alpha\beta \in M_c \Longrightarrow \beta \in M_c$;
- 4) в коуниверсальном квадрате (2) $\alpha \in M \Longrightarrow \beta \in M, \ \alpha \in M_c \Longrightarrow \beta \in M_c$;
- 5) $\alpha\beta \in O_c$ и $\beta \in P \Longrightarrow \alpha \in O_c$;
- 6) морфизм $\bar{\alpha}$ из канонического разложения произвольного морфизма α является биморфизмом, т. е. $\bar{\alpha} \in M \cap P$.

Мономорфизм $\alpha: A \to B$ называется универсальным [4], если для любого морфизма $f: A \to C$ в универсальном квадрате (1) $\beta \in M$.

Эпиморфизм $\alpha: B \to A$ называется *универсальным*, если для любого морфизма $f: C \to A$ в коуниверсальном квадрате (2) $\beta \in P$.

Морфизм α назовем M-универсальным, если $\bar{\alpha}$ — универсальный мономорфизм, и P-универсальным, если $\bar{\alpha}$ — универсальный эпиморфизм.

Будем использовать следующие обозначения: M_u , P_u , MO_u , PO_u — классы универсальных мономорфизмов, универсальных эпиморфизмов, M-универсальных морфизмов и P-универсальных морфизмов соответственно.

Очевидно, в полуабелевой категории $M_c \subset M_u, P_c \subset P_u, O_c \subset MO_u \cap PO_u$.

Лемма 2. В полуабелевой категории справедливы следующие утверждения и им двойственные:

- 1) если морфизм $\alpha\beta$ определен и $\alpha, \beta \in P_u$, то $\alpha\beta \in P_u$;
- 2) если $\alpha\beta \in P_u$, то $\alpha \in P_u$;
- 3) $P_u = P \cap PO_u$;
- 4) если морфизм $\alpha\beta\gamma$ определен, $\alpha\in M_c,\ \gamma\in P_c,\ \text{то}\ \alpha\beta\gamma\in PO_u\Longleftrightarrow\beta\in PO_u;$
 - 5) в коуниверсальном квадрате (2) $\alpha \in PO_u \Longrightarrow \beta \in PO_u$;
 - 6) $\beta \alpha \in PO_u$, $\beta \in M \Longrightarrow \alpha \in PO_u$.

Доказательство. Утверждения 1 и 2 доказаны в [4, предложения 2.8 и 2.9]. Пусть $\alpha: B \to A - P$ -универсальный морфизм. Для произвольного морфизма $f: C \to A$ рассмотрим коуниверсальные квадраты

Квадрат

$$D \xrightarrow{\beta} C$$

$$g \downarrow \qquad \qquad f \downarrow$$

$$B \xrightarrow{\alpha} A.$$

где $\beta=\beta_3\beta_2\beta_1$, коуниверсален [4, с. 44]. По лемме 1 $\beta_1\in M_c$, β_2 — биморфизм, $\beta_3\in P_c$. Следовательно, $\beta_2=\bar{\beta}$. Легко видеть, что $\beta_2\in P_u$. Доказано утверждение 5 леммы.

Если морфизм $\alpha\beta\gamma$ определен, $\alpha\in M_c,\ \gamma\in P_c,\ \text{то}\ \bar{\beta}=\overline{\alpha\beta\gamma}.$ Поэтому $\alpha\beta\gamma\in PO_u\Longleftrightarrow\beta\in PO_u.$

Если морфизм $\beta\alpha$ определен и $\beta\in M$, то квадрат

$$A \xrightarrow{\alpha} B$$

$$id \downarrow \qquad \beta \downarrow$$

$$A \xrightarrow{\beta\alpha} C$$

коуниверсален. Согласно утверждению 5 $\beta \alpha \in PO_u \Longrightarrow \alpha \in PO_u$. Доказано утверждение 6.

Если $\alpha \in P$, то $\alpha = \bar{\alpha} \operatorname{coim} \alpha$. Так как $\operatorname{coim} \alpha \in P_c$, то по 1 и 2 $\alpha \in P_u \iff \bar{\alpha} \in P_u$. Доказано утверждение 3.

Лемма доказана.

Аксиома 4. В универсальном квадрате (1) $\alpha \in P_u \Longrightarrow \beta \in P_u$.

Аксиома 4*. В коуниверсальном квадрате (2) $\alpha \in M_u \Longrightarrow \beta \in M_u$.

Доказательство следующих двух лемм аналогично доказательству пп. 5 и 6 леммы 2.

Лемма 3. Если полуабелева категория удовлетворяет аксиоме 4, то в универсальном квадрате (1) в этой категории $\alpha \in PO_u \Longrightarrow \beta \in PO_u$.

Лемма 4. Если полуабелева категория удовлетворяет аксиоме 4^* , то $\beta\alpha \in MO_u, \beta \in M \Longrightarrow \alpha \in MO_u$.

Лемма 5. Пусть диаграмма

$$\begin{array}{cccc}
D & \xrightarrow{\gamma} & E \\
 & & & & & & & \\
 & & & & & & & \\
A & \xrightarrow{\varphi} & B & \xrightarrow{\psi} & C
\end{array} \tag{5}$$

в полуабелевой категории коммутативна, $\psi = \operatorname{coker} \varphi$, $\gamma = \operatorname{coker} \alpha$. Тогда

1) квадрат

$$D \xrightarrow{\gamma} E$$

$$\beta \downarrow \qquad \delta \downarrow$$

$$B \xrightarrow{\psi} C$$

$$(6)$$

универсален;

2) если $\varphi \in M_c$, то квадрат (6) коуниверсален.

Доказательство. 1. Пусть $u: B \to X$ и $v: E \to X$ — морфизмы такие, что $u\beta = v\gamma$. Так как $\psi = \operatorname{coker} \varphi$ и $u\varphi = u\beta\alpha = v\gamma\alpha = 0$, существует единственный морфизм $w: C \to X$, для которого $u = w\psi$. Поскольку $w\delta\gamma = w\psi\beta = u\beta = v\gamma$ и $\gamma \in P$, то $w\delta = v$. Квадрат (6) универсален.

2. Пусть $\varphi \in M_c$. Тогда по лемме 1 $\alpha \in M_c$, $\alpha = \ker \gamma$, $\varphi = \ker \psi$. Рассмотрим коуниверсальный квадрат

$$D_1 \xrightarrow{\gamma_1} E$$

$$\beta_1 \downarrow \qquad \qquad \delta \downarrow$$

$$B \xrightarrow{\psi} C.$$

Существует такой морфизм $\varepsilon: D \to D_1$, что $\gamma_1 \varepsilon = \gamma$, $\beta_1 \varepsilon = \beta$. Кроме того, существует такой единственный морфизм $\alpha_1: A \to D_1$, что $\beta_1 \alpha_1 = \varphi$ и $\gamma_1 \alpha_1 = 0$.

Так как $\beta_1 \varepsilon \alpha = \beta \alpha = \varphi$ и $\gamma_1 \varepsilon \alpha = \gamma \alpha = 0$, в силу единственности морфизма α_1 имеем $\alpha_1 = \varepsilon \alpha$.

В коммутативной диаграмме

$$\begin{array}{ccc}
D \\
 & & \downarrow \varepsilon & \searrow \gamma \\
A & \xrightarrow{\alpha_1} & D_1 & \xrightarrow{\gamma_1} & E
\end{array} \tag{7}$$

имеем

$$\alpha = \ker \gamma, \quad \gamma = \operatorname{coker} \alpha, \quad \alpha_1 = \ker \gamma_1, \quad \gamma_1 = \operatorname{coker} \alpha_1.$$
 (8)

В произвольной диаграмме (7), удовлетворяющей условиям (8), морфизм ε является изоморфизмом. Это утверждение является аксиомой полуабелевой категории Д. А. Райкова. В [5] установлено, что эта аксиома в случае аддитивной категории следует из аксиом 1, 2 и 2^* .

Лемма доказана.

Лемма 6. Пусть диаграмма

$$F \xrightarrow{\varepsilon} D \xrightarrow{\gamma} E$$

$$\alpha \downarrow \qquad \beta \downarrow \qquad \delta \downarrow$$

$$A \xrightarrow{\varphi} B \xrightarrow{\psi} C$$

в полуабелевой категории коммутативна, $\gamma=\mathrm{coker}\,\varepsilon,\ \mathrm{ker}\,\psi=\mathrm{im}\,\varphi,\ \varphi\in PO_u,$ $\beta\in M$ и квадрат

$$F \xrightarrow{\varepsilon} D$$

$$\alpha \downarrow \qquad \qquad \beta \downarrow$$

$$A \xrightarrow{\varphi} B$$

коуниверсален. Тогда $\delta \in M$.

Эта лемма является обобщением леммы 6 из [3]. Там предполагалось, что $\varphi \in O_c$ и $\psi = \operatorname{coker} \varphi$. Оба эти отличия несущественны, и доказательство остается прежним.

Пусть диаграмма

$$\begin{array}{cccc}
A_0 & \xrightarrow{\varphi_0} & B_0 & \xrightarrow{\psi_0} & C_0 & \longrightarrow & 0 \\
& & & & & \downarrow & & & \uparrow \downarrow & \\
0 & \xrightarrow{\varphi_1} & & B_1 & \xrightarrow{\psi_1} & C_1
\end{array} \tag{9}$$

в полуабелевой категории коммутативна, $\psi_0 = \operatorname{coker} \varphi_0, \ \varphi_1 = \ker \psi_1.$

Так же, как и в случае абелевой категории [6], для диаграммы (9) определен связывающий морфизм δ : Ker $\gamma \to \operatorname{Coker} \alpha$, причем Ker-Coker-последовательность

$$\operatorname{Ker} \alpha \xrightarrow{\varepsilon} \operatorname{Ker} \beta \xrightarrow{\zeta} \operatorname{Ker} \gamma \xrightarrow{\delta} \operatorname{Coker} \alpha \xrightarrow{\tau} \operatorname{Coker} \beta \xrightarrow{\theta} \operatorname{Coker} \gamma \tag{10}$$

полуточна.

Теорема 1. Если в диаграмме (9) в полуабелевой категории $\alpha \in MO_u$ ($\alpha \in PO_u$), то последовательность (10) точна в члене $\operatorname{Ker} \beta$ ($\operatorname{Ker} \gamma$). Если $\beta \in MO_u$ ($\beta \in PO_u$), то последовательность (10) точна в члене $\operatorname{Ker} \gamma$ ($\operatorname{Coker} \alpha$).

Если $\gamma \in MO_u$ ($\gamma \in PO_u$), то последовательность (10) точна в члене Coker α (Coker β).

ДОКАЗАТЕЛЬСТВО. Пусть $\beta=\beta_1\bar{\beta}\beta_3$ — каноническое разложение морфизма $\beta,$ квадраты

$$A_{2} \xrightarrow{\varphi_{2}} B_{2} \qquad A_{3} \xrightarrow{\varphi_{3}} B_{3}$$

$$\alpha_{1} \downarrow \qquad \beta_{1} \downarrow \qquad \alpha_{2} \downarrow \qquad \bar{\beta} \downarrow$$

$$A_{1} \xrightarrow{\varphi_{1}} B_{1}, \qquad A_{2} \xrightarrow{\varphi_{2}} B_{2}$$

$$(11)$$

 $A_1 \xrightarrow{\varphi_1} B_1, \quad A_2 \xrightarrow{\varphi_2} B_2$ коуниверсальны, $\psi_2 = \operatorname{coker} \varphi_2, \ \psi_3 = \operatorname{coker} \varphi_3.$ Существуют такие морфизмы $\alpha_3, \ \gamma_1, \ \gamma_2, \ \gamma_3, \ для$ которых диаграмма

$$A_{0} \xrightarrow{\varphi_{0}} B_{0} \xrightarrow{\psi_{0}} C_{0} \longrightarrow 0$$

$$\alpha_{3} \downarrow \qquad \beta_{3} \downarrow \qquad \gamma_{3} \downarrow$$

$$0 \longrightarrow A_{3} \xrightarrow{\varphi_{3}} B_{3} \xrightarrow{\psi_{3}} C_{3} \longrightarrow 0$$

$$\alpha_{2} \downarrow \qquad \bar{\beta} \downarrow \qquad \gamma_{2} \downarrow$$

$$0 \longrightarrow A_{2} \xrightarrow{\varphi_{2}} B_{2} \xrightarrow{\psi_{2}} C_{2} \longrightarrow 0$$

$$\alpha_{1} \downarrow \qquad \beta_{1} \downarrow \qquad \gamma_{1} \downarrow$$

$$0 \longrightarrow A_{1} \xrightarrow{\varphi_{1}} B_{1} \xrightarrow{\psi_{1}} C_{1}$$

$$(12)$$

коммутативна. Так как $\varphi_1 \in M$ и $\varphi_1\alpha_1\alpha_2\alpha_3 = \beta\varphi_0 = \varphi_1\alpha$, то $\alpha_1\alpha_2\alpha_3 = \alpha$. Аналогично $\gamma_1\gamma_2\gamma_3 = \gamma$. Поскольку квадраты (11) коуниверсальны и $\varphi_1 \in M_c$, то $\varphi_2, \varphi_3 \in M_c$, $\alpha_1 \in M_c$, $\alpha_2 \in M$. По лемме 6 $\gamma_1, \gamma_2 \in M$. Так как $\alpha_1\alpha_2, \beta_1\bar{\beta}, \gamma_1\gamma_2 \in M$, то $\ker \alpha = \ker \alpha_3$, $\ker \beta = \ker \beta_3$, $\ker \gamma = \ker \gamma_3$.

Диаграмме, образованной первыми двумя строками диаграммы (12), соответствует Ker-Coker-последовательность, связанная с последовательностью (10) диаграммой

$$\operatorname{Ker} \alpha_{3} \stackrel{\varepsilon'}{\to} \operatorname{Ker} \beta_{3} \stackrel{\zeta'}{\to} \operatorname{Ker} \gamma_{3} \stackrel{\delta'}{\to} \operatorname{Coker} \alpha_{3} \to 0$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\operatorname{Ker} \alpha \stackrel{\epsilon}{\to} \operatorname{Ker} \beta \to \operatorname{Ker} \gamma \stackrel{\delta}{\to} \operatorname{Coker} \alpha \stackrel{\tau}{\to} \operatorname{Coker} \beta \stackrel{\theta}{\to} \operatorname{Coker} \gamma.$$
(13)

Морфизм a в этой диаграмме определен условием $a(\operatorname{coker} \alpha_3) = (\operatorname{coker} \alpha)\alpha_1\alpha_2$.

Так как $\beta_3 \in P_c$, то по теореме 1 работы [3] верхняя строка диаграммы (13) точна в членах $\operatorname{Ker} \gamma_3$ и $\operatorname{Coker} \alpha_3$, причем $\delta' \in P_c$. Определим морфизмы $\widehat{\alpha}_1$: $\operatorname{Coker}(\alpha_2\alpha_3) \to \operatorname{Coker} \alpha$ и $\widehat{\alpha}_2$: $\operatorname{Coker} \alpha_3 \to \operatorname{Coker}(\alpha_2\alpha_3)$ условиями $\widehat{\alpha}_1$ $\operatorname{coker}(\alpha_2\alpha_3) = (\operatorname{coker} \alpha)\alpha_1$ и $\widehat{\alpha}_2$ $\operatorname{coker} \alpha_3 = (\operatorname{coker}(\alpha_2\alpha_3))\alpha_2$. Тогда $a = \widehat{\alpha}_1\widehat{\alpha}_2$. В [3, лемма 10] установлено, что $\widehat{\alpha}_1 = \ker \tau$.

Если $\beta \in PO_u$, то $\alpha_2 \in P$. Но тогда и $\widehat{\alpha}_2 \in P$. Итак, $\delta = (\ker \tau)\widehat{\alpha}_2\delta'$, $\widehat{\alpha}_2\delta' \in P$. Следовательно, $\operatorname{coker} \delta = \operatorname{coim} \tau$. Последовательность (10) точна в члене $\operatorname{Coker} \alpha$.

Пусть $\alpha \in PO_u$. Имеем коммутативную диаграмму

$$A_{0} \xrightarrow{\alpha_{3}} A_{3} \xrightarrow{\operatorname{coker} \alpha_{3}} \operatorname{Coker} \alpha_{3}$$

$$\operatorname{id} \downarrow \qquad \alpha_{2} \downarrow \qquad \qquad \widehat{\alpha}_{2} \downarrow \qquad (14)$$

$$A_{0} \xrightarrow{\alpha_{2}\alpha_{3}} A_{2} \xrightarrow{\operatorname{coker}(\alpha_{2}\alpha_{3})} \operatorname{Coker}(\alpha_{2}\alpha_{3}).$$

Так как $\alpha_1\alpha_2\alpha_3 = \alpha$, $\alpha \in PO_u$, $\alpha_1 \in M_c$, то по п. 6 леммы 2 $\alpha_2\alpha_3 \in PO_u$. Ввиду того, что $\alpha_2 \in M$, левый квадрат диаграммы (14) коуниверсален. По лемме 6 $\widehat{\alpha}_2 \in M$. Итак, $\delta = \widehat{\alpha}_1\widehat{\alpha}_2(\operatorname{coker}\zeta)$, $\widehat{\alpha}_1\widehat{\alpha}_2 \in M$. Следовательно, $\ker \delta = \operatorname{im} \zeta$. Последовательность (10) точна в члене $\ker \gamma$.

Пусть $\gamma \in PO_u$. Представим морфизм ψ_1 в виде $\psi_1 = \psi_1' \operatorname{coim} \psi_1$, где $\psi_1' = (\operatorname{im} \psi_1) \bar{\psi}_1$ — мономорфизм. Так как $\psi_0 = \operatorname{coker} \varphi_0$ и $(\operatorname{coim} \psi_1) \beta \varphi_0 = 0$, существует морфизм $\gamma' : C_0 \to \operatorname{Coim} \psi_1$, для которого $\gamma' \psi_0 = (\operatorname{coim} \psi_1) \beta$. Поскольку $\psi_1' \gamma' \psi_0 = \psi_1' (\operatorname{coim} \psi_1) \beta = \psi_1 \beta = \gamma \psi_0$ и $\psi_0 \in P$, то $\psi_1' \gamma' = \gamma$.

Диаграмме

соответствует Ker-Coker-последовательность, которая по теореме 2 работы [3] точна в члене Coker β . Эта последовательность связана с последовательностью (10) коммутативной диаграммой

где морфизм $\widehat{\psi}_1{}'$ определен так, что диаграмма

$$\begin{array}{cccc} C_0 & \xrightarrow{\gamma'} & \operatorname{Coim} \psi_1 & \xrightarrow{\operatorname{coim} \gamma'} & \operatorname{Coker} \gamma' \\ & & & \downarrow \downarrow & & & \widehat{\psi}_1' \downarrow \\ & & & & C_0 & \xrightarrow{\gamma} & C_1 & \xrightarrow{\operatorname{coim} \gamma} & \operatorname{Coker} \gamma \end{array}$$

коммутативна. По лемме 6 $\widehat{\psi}_1' \in M$. Но тогда $\ker \theta = \ker \theta' = \operatorname{im} \tau$ и последовательность (10) точна в члене Сокег β .

Доказаны три из шести утверждений теоремы 1. Остальные три следуют из доказанных по двойственности.

Теорема доказана.

Теорема 2. Если в полуабелевой категории выполнена аксиома 4^* , то для Ker-Coker-последовательности (10) диаграммы (9) $\alpha \in MO_u \Longrightarrow \zeta \in MO_u$, $\beta \in MO_u \Longrightarrow \delta \in MO_u$, $\gamma \in MO_u \Longrightarrow \tau \in MO_u$. Если выполнена аксиома 4, то $\alpha \in PO_u \Longrightarrow \zeta \in PO_u$, $\beta \in PO_u \Longrightarrow \delta \in PO_u$, $\gamma \in PO_u \Longrightarrow \tau \in PO_u$.

Доказательство. В доказательстве теоремы 1 морфизм δ был представлен в виде $\delta = \widehat{\alpha}_1 \widehat{\alpha}_2 \delta'$, где $\widehat{\alpha}_1 \in M_c, \ \delta' \in P_c$. Если выполнена аксиома 4 и $\beta \in MO_u$, то $\alpha_2 \in MO_u$. Имеем коммутативную диаграмму

По лемме 5 квадрат

$$A_{3} \xrightarrow{\operatorname{coker} \alpha_{3}} \operatorname{Coker} \alpha_{3}$$

$$\alpha_{2} \downarrow \qquad \qquad \widehat{\alpha}_{2} \downarrow$$

$$A_{2} \xrightarrow{\operatorname{coker}(\alpha_{2}\alpha_{3})} \operatorname{Coker}(\alpha_{2}\alpha_{3})$$

универсален. Но тогда $\hat{\alpha}_2 \in MO_u$ по утверждению, двойственному п. 5 леммы 2. По утверждению, двойственному п. 4 этой леммы, $\delta \in MO_u$.

Предположим теперь, что $\alpha \in MO_u$ и выполнена аксиома 4^* . Используя каноническое разложение морфизма φ_0 , представим этот морфизм в виде $\varphi_0 = (\operatorname{im} \varphi_0)\varphi_0'$, где $\varphi_0' \in P$. Так как $\psi_3\beta_3(\operatorname{im} \varphi_0) = 0$ и $\varphi_3 = \ker \psi_3$, существует такой морфизм α_3' : $\operatorname{Im} \varphi_0 \to A_3$, что $\varphi_3\alpha_3' = \beta_3 \operatorname{im} \varphi_0$. Поскольку $\varphi_3\alpha_3'\varphi_0' = \beta_3(\operatorname{im} \varphi_0)\varphi_0' = \varphi_3\alpha_3$ и $\varphi_3 \in M$, то $\alpha_3'\varphi_0' = \alpha_3$. По лемме 4 $\alpha_3' \in MO_u$.

Рассмотрим диаграмму

$$\operatorname{Ker} \beta \oplus \alpha'_{0} \xrightarrow{p_{2}} A'_{0}$$

$$\downarrow i_{1} \nearrow \qquad \qquad \downarrow \downarrow \qquad \qquad \varphi_{3}\alpha'_{3} \downarrow$$

$$\operatorname{Ker} \beta \xrightarrow{\ker \beta} B_{0} \xrightarrow{\beta_{3}} B_{3},$$

в которой i_1 — каноническое вложение первого слагаемого в прямую сумму, p_2 — каноническая проекция на второе слагаемое, $j=(\ker\beta, \mathrm{im}\,\varphi_0)$. По лемме 5 квадрат

$$\operatorname{Ker} \beta \oplus A'_{0} \xrightarrow{p_{2}} A'_{0}$$

$$\downarrow j \qquad \qquad \varphi_{3}\alpha'_{3} \downarrow$$

$$B_{0} \xrightarrow{\beta_{3}} B_{3}$$

коуниверсален. Так как $\varphi_3 \in M_c$, по лемме 2 $\varphi_3 \alpha_3' \in MO_u$. По аксиоме 4^* $j \in MO_u$.

Рассмотрим теперь диаграмму

$$\begin{array}{cccc} & \operatorname{Ker} \beta \oplus \alpha_0' & \stackrel{p_1}{\longrightarrow} & \operatorname{Ker} \beta \\ & & & & & & & & \\ i_2 \nearrow & & & & & & & \\ A_0' & \stackrel{\operatorname{im} \varphi_0}{\longrightarrow} & B_0 & \stackrel{\psi_0}{\longrightarrow} & C_0, \end{array}$$

в которой i_2 — каноническое вложение второго слагаемого в прямую сумму, p_1 — каноническая проекция на первое слагаемое. По лемме 5 квадрат

$$\operatorname{Ker} \beta \oplus A'_{0} \xrightarrow{p_{1}} \operatorname{Ker} \beta$$

$$\downarrow \qquad \qquad \qquad \psi_{0}(\operatorname{ker} \beta) \downarrow$$

$$B_{0} \xrightarrow{\psi_{0}} C_{0}$$

универсален. Так как $j \in MO_u$, то $\psi_0(\ker \beta) \in MO_u$. Поскольку $\psi_0(\ker \beta) = (\ker \gamma)\zeta$, по лемме $2 \zeta \in MO_u$. Установлено, что при выполнении аксиомы 4^* $\alpha \in MO_u \Longrightarrow \zeta \in MO_u$. Доказательство следования $\alpha \in PO_u \Longrightarrow \zeta \in PO_u$ при выполнении аксиомы 4 аналогично. Доказаны три из шести утверждений теоремы 2. Остальные двойственны доказанным.

Теорема доказана.

Пусть $A=(A^n,d_A^n)_{n\in\mathbb{Z}}$ — коцепной комплекс в аддитивной категории, удовлетворяющей аксиоме 1. Для каждого $n\in\mathbb{Z}$ существует единственный морфизм $a_A^n: \operatorname{Coker} d_A^{n-1} \to \operatorname{Ker} d_A^{n+1}$, удовлетворяющий условию

$$\left(\ker d_A^{n+1}\right) a_A^n \left(\operatorname{coker} d_A^{n-1}\right) = d_A^n. \tag{15}$$

Определены когомологии $H^n(A) = \operatorname{Coker} a_A^{n-1}$ и $\widetilde{H}^n(A) = \operatorname{Ker} a_A^n$ комплекса A. Существует канонический морфизм $m_A^n: H^n(A) \to \widetilde{H}^n(A)$, определенный условием

$$(\ker a_A^n) m_A^n (\operatorname{coker} a_A^{n-1}) = (\operatorname{coker} d_A^{n-1}) (\ker d_A^n).$$

Если категория полуабелева, то m_A^n — изоморфизм [2].

Произвольный морфизм $\varphi: \stackrel{A}{A} \to B$ комплексов индуцирует морфизмы $\widehat{\varphi}^n: \operatorname{Ker} d_A^n \to \operatorname{Ker} d_B^n$ и $\widehat{\varphi}^n: \operatorname{Coker} d_A^{n-1} \to \operatorname{Coker} d_B^{n-1}$. Строго точной последовательности комплексов

$$0 \to A \xrightarrow{\varphi} B \xrightarrow{\psi} C \to 0 \tag{16}$$

в полуабелевой категории соответствуют коммутативная диаграмма

и ее Ker-Coker-последовательность

$$\widetilde{H}^n(A) \xrightarrow{\varepsilon^n} \widetilde{H}^n(B) \xrightarrow{\zeta^n} \widetilde{H}^n(C) \xrightarrow{\delta^n} H^{n+1}(A) \xrightarrow{\tau^{n+1}} H^{n+1}(B) \xrightarrow{\theta^{n+1}} H^{n+1}(C). \tag{17}_n$$

Наличие изоморфизмов m_C^n позволяет объединить последовательности (17_n) в одну последовательность

$$\dots \to H^n(A) \xrightarrow{\tau^n} H^n(B) \xrightarrow{\zeta^n} H^n(C) \xrightarrow{\Delta^n} H^{n+1}(A) \to \dots, \tag{18}$$

где $\Delta^n = \delta^n m_C^n$.

Теорема 3. Для когомологической последовательности (18), соответствующей строго точной последовательности (16), выполнены следующие утверждения.

- 1. Если $d_A^n \in MO_u$ ($d_A^n \in PO_u$), то последовательность (18) точна в члене $H^n(B)$ (в члене $H^n(C)$). Если при этом выполнена аксиома 4^* (аксиома 4), то $\theta^n \in MO_u$ ($\theta^n \in PO_u$).
- 2. Если $d_B^n \in MO_u$ ($d_B^n \in PO_u$), то последовательность (18) точна в члене $H^n(C)$ (в члене $H^{n+1}(A)$). Если при этом выполнена аксиома 4^* (аксиома 4), то $\Delta^n \in MO_u$ ($\Delta^n \in PO_u$).
- 3. Если $d_C^n \in MO_u$ $(d_C^n \in PO_u)$, то последовательность (18) точна в члене $H^{n+1}(A)$ (в члене $H^{n+1}(B)$). Если при этом выполнена аксиома 4^* (аксиома 4), то $\tau^{n+1} \in MO_u$ $(\tau^{n+1} \in PO_u)$.

ДОКАЗАТЕЛЬСТВО. Пусть $d_B^n \in MO_u$. Из (15) следует, что $a_B^n \in MO_u$. По теореме 1 последовательность (17_n) точна в члене $\widetilde{H}^n(C)$. Диаграмма

$$\begin{array}{cccc} H^{n}(A) & \xrightarrow{\tau^{n}} & H^{n}(B) & \xrightarrow{\theta^{n}} & H^{n}(C) \\ & & & \\ m_{A}^{n} \downarrow & & m_{B}^{n} \downarrow & & m_{C}^{n} \downarrow & \searrow \Delta^{n} \\ & \widetilde{H}^{n}(A) & \xrightarrow{\varepsilon^{n}} & \widetilde{H}^{n}(B) & \xrightarrow{\zeta^{n}} & \widetilde{H}^{n}(C) & \xrightarrow{\delta^{n}} & H^{n+1}(A) \end{array}$$

коммутативна. Так как m_C^n и m_B^n — изоморфизмы, последовательность (18) точна в члене $H^n(C)$. Если выполнена аксиома 4^* , то по теореме 2 $\delta^n \in MO_u$. Но тогда и $\Delta^n \in MO_u$. Одно из утверждений теоремы 3 доказано. Остальные доказываются аналогично.

Следствие. В специальной полуабелевой категории когомологическая последовательность (18), соответствующая строго точной последовательности (16), точна.

В заключение отметим, что вопрос о том, выполнены ли аксиомы 4 и 4^* в произвольной полуабелевой категории, остается открытым.

ЛИТЕРАТУРА

- 1. Райков Д. А. Полуабелевы категории // Докл. АН СССР. 1969. Т. 188, № 5. С. 1006–1009.
- Копылов Я. А., Кузьминов В. И. О точности когомологической последовательности для короткой точной последовательности комплексов в полуабелевой категории // Тр. конференции «Геометрия и приложения». Новосибирск: Изд-во Ин-та математики, 2001. С. 76–83.
- 3. Копылов Я. А., Кузьминов В. И. О Ker-Coker-последовательности в полуабелевой категории // Сиб. мат. журн. 2000. Т. 41, № 3. С. 615–624.
- 4. Букур И., Деляну А. Введение в теорию категорий и функторов. М.: Мир, 1972.
- Кузьминов В. И., Черевикин А. Ю. О полуабелевых категориях // Сиб. мат. журн. 1972.
 Т. 13, № 6. С. 1284–1294.
- Гельфанд С. И., Манин Ю. И. Методы гомологической алгебры. Т. І. Введение в теорию когомологий и производные функторы. М.: Наука, 1988.

Статья поступила 2 августа 2001 г.

Глотко Николай Владимирович

Новосибирский гос. университет, ул. Пирогова, 2, Новосибирск 630090

Кузъминов Владимир Иванович

Институт математики им. С. Л. Соболева СО РАН, Новосибирск 630090

kuzminov@math.nsc.ru