УСТОЙЧИВОСТЬ КЛАССОВ ОТОБРАЖЕНИЙ И ГЁЛЬДЕРОВОСТЬ СТАРШИХ ПРОИЗВОДНЫХ ЭЛЛИПТИЧЕСКИХ РЕШЕНИЙ СИСТЕМ НЕЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

А. П. Копылов

Аннотация: В 1954 г. Л. Ниренберг получил следующий хорошо известный результат: если $z:U\to\mathbb{R},\,U-$ область в $\mathbb{R}^n,$ является решением класса C^2 эллиптического уравнения с частными производными

$$F(x_1, \dots, x_n; z; \partial z/\partial x_1, \dots, \partial z/\partial x_n; \partial^2 z/\partial x_1^2, \dots, \partial^2 z/\partial x_n^2) = 0$$

2-го порядка, где F — функция класса C^1 , то тогда частные производные $\partial^2 z/\partial x_i \partial x_j$ 2-го порядка функции z локально непрерывны по Гёльдеру в U. Одновременно с Ниренбергом Ч. Морри получил аналогичный результат для эллиптических систем нелинейных уравнений 2-го порядка.

В настоящей статье получен такой же результат, но уже для эллиптических решений систем нелинейных дифференциальных уравнений с частными производными произвольного порядка и весьма общего вида. В основе его доказательства лежат результаты исследований последних лет автора статьи, посвященных изучению явлений устойчивости в C^l -норме классов отображений. Библиогр. 10.

В работе [1] Л. Ниренберг опубликовал следующий хорошо известный результат. Пусть $z:U\to\mathbb{R},\,U$ — область (открытое связное множество) в вещественном евклидовом пространстве \mathbb{R}^n , является дважды непрерывно дифференцируемым решением эллиптического уравнения

$$F(x_1, \dots, x_n; z; \partial z/\partial x_1, \dots, \partial z/\partial x_n; \partial^2 z/\partial x_1^2, \dots, \partial^2 z/\partial x_n^2) = 0$$

2-го порядка. Предположим, что F — непрерывная функция, обладающая непрерывными частными производными 1-го порядка относительно всех своих аргументов. Тогда частные производные 2-го порядка $\partial^2 z/\partial x_i \partial x_j$ функции z локально непрерывны по Гёльдеру в U. Одновременно с Ниренбергом Ч. Морри получил аналогичный результат (см. [2]) в более общей ситуации эллиптических систем нелинейных уравнений 2-го порядка.

В настоящей работе мы устанавливаем, что свойством непрерывности по Гёльдеру обладают старшие производные эллиптических решений систем нелинейных дифференциальных уравнений с частными производными произвольного порядка и весьма общего вида. Для формулирования результатов статьи нам необходимо ввести ряд понятий.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 99–01–00517), Международной ассоциации INTAS и государственной поддержке ведущих научных школ Российской Федерации.

Пусть

$$\mathfrak{L}_{j}(x; f_{1}(x), \dots, f_{m}(x); \dots, \partial^{p_{1}} f_{\varkappa}(x), \dots; \dots, \partial^{p_{l}} f_{\varkappa}(x), \dots; \dots, \partial^{p_{l}} f_{\varkappa}(x), \dots) = 0, \quad j = 1, 2, \dots, k \quad (1)$$

 $(x=(x_1,x_2,\ldots,x_n)\in\mathbb{R}^n;\,p_{\nu}=(p_{\nu 1},p_{\nu 2},\ldots,p_{\nu n})$ — мультииндекс порядка $|p_{\nu}|=\sum_{s=1}^n p_{\nu s}=\nu=0,1,\ldots,l;\,\partial^{p_{\nu}}f_{\varkappa}=[(\partial_1)^{p_{\nu 1}}\circ(\partial_2)^{p_{\nu 2}}\circ\cdots\circ(\partial_n)^{p_{\nu n}}]f_{\varkappa},\,\partial_s=\partial/\partial x_s,$ — частная производная функции f_{\varkappa} (= $\partial^{p_0}f_{\varkappa}$), $\varkappa=1,2,\ldots,m$, соответствующая мультииндексу p_{ν} , причем в (1) используются символы всех таких частных производных вплоть до порядка l каждой из функций $f_{\varkappa},\,\varkappa=1,2,\ldots,m$), — система l-го порядка c частными производными, составленная из k (вообще говоря) нелинейных уравнений относительно m искомых вещественных функций $f_{\varkappa},\,\varkappa=1,2,\ldots,m$, n вещественных переменных. Здесь \mathfrak{L}_j — вещественные непрерывные функции, обладающие непрерывными частными производными 1-го порядка относительно всех своих аргументов (функции класса C^1):

$$\mathfrak{L}_j = \mathfrak{L}_j(x; \dots, v_{p_0,\varkappa}, \dots; \dots, v_{p_1,\varkappa}, \dots; \dots; \dots, v_{p_l,\varkappa}, \dots), \tag{2}$$

$$(x;\ldots,v_{p_0,\varkappa},\ldots;\ldots,v_{p_1,\varkappa},\ldots;\ldots;\ldots,v_{p_l,\varkappa},\ldots)=y\in Y, Y$$
 — область пространства $\mathbb{R}^{N_l},\ N_l=n+m\sum\limits_{\nu=0}^l n_{\nu},\ n_{\nu}=rac{(n+\nu-1)!}{
u!(n-1)!},\
u=0,1,\ldots,l.$

ОПРЕДЕЛЕНИЕ 1. Отображение $f:U\to\mathbb{R}^m, U$ — область в \mathbb{R}^n , называется решением класса $C^l=C^l(U,\mathbb{R}^m)$ (C^l -решением) системы (1), если 1) $f\in C^l$ и 2) для любого $x\in U$ точка

$$y = (x; \dots, \partial^{p_0} f_{\varkappa}(x), \dots; \dots, \partial^{p_1} f_{\varkappa}(x), \dots; \dots; \dots, \partial^{p_l} f_{\varkappa}(x), \dots)$$

принадлежит множеству Y и удовлетворяет (1).

Определение 2. Система (1) называется эллиптической, если $^{1)}$

$$\operatorname{rank}\left\{\sum_{p_{l}} \zeta^{p_{l}} \begin{pmatrix} \partial_{v_{p_{l},1}} \mathfrak{L}_{1}(y) & \dots & \partial_{v_{p_{l},m}} \mathfrak{L}_{1}(y) \\ \dots & \dots & \dots \\ \partial_{v_{p_{l},1}} \mathfrak{L}_{k}(y) & \dots & \partial_{v_{p_{l},m}} \mathfrak{L}_{k}(y) \end{pmatrix}\right\} = m \tag{3}$$

для каждых $\zeta \in \mathbb{R}^n \setminus \{0\}$ и $y \in Y$. Решение $f: U \to \mathbb{R}^m$, U — область в \mathbb{R}^n , класса C^l системы (1) называется эллиптическим, если условие эллиптичности (3) выполняется в каждой точке $y = (x; \dots, \partial^{p_0} f_{\varkappa}(x), \dots; \dots, \partial^{p_1} f_{\varkappa}(x), \dots; \dots; \dots, \partial^{p_l} f_{\varkappa}(x), \dots; \dots; \dots, \partial^{p_l} f_{\varkappa}(x), \dots)$, $x \in U$.

Замечание 1. В (1)–(3), как и всюду в настоящей работе, используются мультииндексные обозначения.

Замечание 2. В том случае, когда (1) — система линейных уравнений с бесконечно дифференцируемыми коэффициентами, ее эллиптичность в смысле определения 1 эквивалентна эллиптичности этой системы в смысле понятий из [3].

Основной результат данной статьи представляет собой

 $^{^{1)}}$ Суммирование в (3) осуществляется с использованием всех мультииндексов p_l порядка $|p_l|=l.$

Теорема 1. Предположим, что функции \mathfrak{L}_j в (1), (2) принадлежат классу $C^1(Y)$, т. е. являются непрерывными и обладают непрерывными частными производными 1-го порядка относительно всех своих аргументов в Y. Тогда частные производные l-го порядка любого эллиптического C^l -решения $f: U \to \mathbb{R}^m$, U - область в \mathbb{R}^n , системы (1) локально в U удовлетворяют условию Гёльдера с любым показателем α , принадлежащим интервалу]0,1[: если $0 < \alpha < 1$ и E компактное подмножество области U, то существует число $C_{\alpha,E} \ge 0$ такое, что

$$|\partial^{p_l} f_{\varkappa}(x') - \partial^{p_l} f_{\varkappa}(x'')| \le C_{\alpha, E} |x' - x''|^{\alpha},\tag{4}$$

$$x', x'' \in E, |p_l| = l, \varkappa = 1, 2, \dots, m.$$

Из определения эллиптичности решения системы (1) и из условий теоремы 1 вытекает, что эта теорема есть следствие такого утверждения.

Теорема 1'. Предположим, что система (1) удовлетворяет условиям теоремы 1 и является эллиптической. Тогда каждое ее C^l -решение обладает свойством (4).

Основу доказательства теоремы 1' составляет следующая ниже теорема 2, которая представляет собой один из итогов исследований последних лет автора настоящей статьи, посвященных изучению явлений устойчивости в C^l -норме $(l=0,1,2,\dots)$ классов отображений [4-8]. В этой теореме изучаются свойства решений систем (5) уравнений в частных производных. Такого рода система является важным частным случаем систем, рассмотренных в [6-8], и имеет вид 2)

$$\mathfrak{L}_j(x; v_{l-1}(f, x); v^l(f, x))$$

$$= \mathcal{L}_j(x; v^0(f, x); v^1(f, x); \dots; v^{l-1}(f, x); v^l(f, x)) = 0, \quad j = 1, 2, \dots, k, \quad (5)$$

где $v^{\nu}(f,x)=(\dots,\partial^{p_{\nu}}f_{\varkappa}(x),\dots)$ — совокупность значений в точке x всех частных производных $\partial^{p_{\nu}}f_{\varkappa}(x)$ ν -го порядка всех функций $f_{\varkappa},\ \varkappa=1,2,\dots,m$ $(p_{\nu},$ как и выше, — мультииндекс порядка ν), упорядоченная, например, лексикографическим способом (см. [6,7]); $v_{l-1}(f,x)=(v^0(f,x);\,v^1(f,x);\dots;v^{l-1}(f,x));$ функции \mathfrak{L}_j заданы на множестве $U_1=U\times\prod_{\nu=0}^l(\mathbb{R}^m)^{n_{\nu}}$ (U— область в \mathbb{R}^n) про-

странства \mathbb{R}^{N_l} , для почти всех $x \in U$ (в смысле обычной меры Лебега в \mathbb{R}^n) принимают конечные значения $\mathfrak{L}_j(x;v_{l-1};v^l) = \mathfrak{L}_j(x;v^0;v^1;\dots;v^{l-1};v^l)$ всякий

раз, когда
$$(v_{l-1}; v^l) = (v^0; v^1; \dots; v^{l-1}; v^l) \in \prod_{\nu=0}^l (\mathbb{R}^m)^{n_\nu}, v^\nu = (\dots, v_{p_\nu,\varkappa}, \dots) \in (\mathbb{R}^m)^{n_\nu}$$
, и допускают разложение

$$\mathfrak{L}(x; v_{l-1}; v^l) = V(x; v_{l-1}; v^l) + T(x; v_{l-1})$$
(6)

 $(\mathfrak{L} = (\mathfrak{L}_1, \mathfrak{L}_2, \dots, \mathfrak{L}_k), V = (V_1, V_2, \dots, V_k), T = (T_1, T_2, \dots, T_k))$, которое удовлетворяет следующим условиям (ср. с условиями (i)–(iv) из статей [6–8]).

(a) Функции V_j , $j=1,2,\ldots,k$, измеримы, причем существуют неотрицательное вещественное число ε и эллиптический линейный дифференциальный оператор³⁾

$$D = (D_1, D_2, \dots, D_k) = \sum_{|p|=l} a_p \partial^p$$
 (7)

 $^{^{2)}}$ Мы используем далее обозначения и понятия из работ [6–8].

 $^{^{3)}}$ Заметим, что условию эллиптичности линейного дифференциального оператора (7) можно придать следующий вид: $\mathrm{rank}\,\sigma_D(\zeta)=m$ для каждого $\zeta\in\mathbb{R}^n\setminus\{0\}$, где $\sigma_D(\zeta)=\sum_{|p|=l}\zeta^pa_p$ — символ оператора D.

порядка l (p- мультииндекс, $a_p=\left(a_p^{j\varkappa}\right)_{\substack{j=1,\dots,k\\ \varkappa=1,\dots,m}}-$ вещественная $(k\times m)$ -матрица) такие, что для почти каждой точки $x\in U$

$$\left| V(x; v_{l-1}; v^l) - \sum_{|p|=l} a_p \tilde{v}^p \right| \le \varepsilon |v^l|,$$

если $(v_{l-1}; v^l) \in \mathbb{R}^{N_l-n}$ $(\tilde{v}^p$ — вектор пространства \mathbb{R}^m с компонентами $v_{p,\varkappa} = v_{p_l,\varkappa}, \varkappa = 1, 2, \ldots, m$).

- (b) Отображение $(x; v_{l-1}) \mapsto T(x; v_{l-1}) \ (= \mathfrak{L}(x; v_{l-1}; 0)), \ (x; v_{l-1}) \in U \times \mathbb{R}^{N_{l-1}-n}$, измеримо. Кроме того, существует число $q_0 > n$ такое, что
- 1) для почти всех точек $x\in U$ отображение $T(x;\cdot):v_{l-1}\mapsto T(x;v_{l-1}),$ $v_{l-1}\in\mathbb{R}^{N_{l-1}-n},$ удовлетворяет условию Липшица:

$$|T(x;v'_{l-1})-T(x;v''_{l-1})| \le E(x)|v'_{l-1}-v''_{l-1}|, \quad v'_{l-1},v''_{l-1} \in \mathbb{R}^{N_{l-1}-n}$$

где E принадлежит пространству $L_{q_0, \text{loc}}(U, \mathbb{R})$ вещественных функций, суммируемых локально (в U) в степени q_0 ;

2) для любого $v_{l-1} \in \mathbb{R}^{N_{l-1}-n}$ отображение $T(\cdot; v_{l-1}): x \mapsto T(x; v_{l-1}), x \in U$, принадлежит $L_{q_0,\text{loc}}(U,\mathbb{R}^k)$ (из п. 1 вытекает, что достаточно предполагать выполнение условия $T(\cdot; v_{l-1}) \in L_{q_0,\text{loc}}(U,\mathbb{R}^k)$ хотя бы для одного $v_{l-1} \in \mathbb{R}^{N_{l-1}-n}$).

Определение 3 (ср. с определением 1 в [7]). Решением класса Соболева $W^l_{q,\text{loc}}(U,\mathbb{R}^m)$ ($W^l_{q,\text{loc}}(U,\mathbb{R}^m)$ -решением) системы (5) называется любое отображение этого класса, удовлетворяющее (5) почти всюду в U.

Замечание. Здесь и ниже мы полагаем, что отображение \mathfrak{L} в (5) — это лучший с точки зрения теории интеграла Лебега представитель отображений, отличающихся от \mathfrak{L} разве что на множестве меры нуль, который в работе [8] определяется соотношениями (58), т. е.

$$\mathfrak{L}_{j}(y) = \overline{\lim}_{r \searrow 0} \frac{1}{r^{N_{l}} v_{N_{l}}} \int_{\{w \in \mathbb{R}^{N_{l}}, |w-y| < r\}} \mathfrak{L}_{j}(w) dw, \quad y \in U_{1}, \quad j = 1, 2, \dots, k.$$

Для дальнейшего нам необходимо напомнить определения оператора D^0 первого порядка, присоединенного в смысле понятий из [5] к дифференциальному оператору D порядка l с постоянными коэффициентами вида (7), и функций χ и χ^1 из формулировок лемм 1 и 2 статьи [7]. С этой целью рассмотрим множество $\mathcal{O} = \mathcal{O}^{n,m,k,l}$ всех эллиптических линейных дифференциальных операторов вида (7).

ЗАМЕЧАНИЕ. Далее мы используем еще и следующую запись оператора (7):

$$Dg(x) = \sum_{j=1}^{k} \{D_{j}g(x)\}e_{j} = \sum_{1 \leq \mu_{1} \leq \dots \leq \mu_{l} \leq n} \mathring{a}_{\mu_{1}\dots\mu_{l}}\partial_{\mu_{1}\dots\mu_{l}}g(x)$$

$$= \sum_{j=1}^{k} \left\{ \sum_{\varkappa=1}^{m} \sum_{1 \leq \mu_{1} \leq \dots \leq \mu_{l} \leq n} \mathring{a}_{\mu_{1}\dots\mu_{l}}^{j\varkappa}\partial_{\mu_{1}\dots\mu_{l}}g_{\varkappa}(x) \right\} e_{j} \quad (7')$$

 $(e_1,\ldots,e_k$ — канонический базис в \mathbb{R}^k).

 $^{^{4)}}W^l_{q,\mathrm{loc}}(U,\mathbb{R}^m)$ — пространство всех отображений $g:U\to\mathbb{R}^m$, обладающих свойством: у каждой точки $x\in U$ существует окрестность $U_x\subset U$ такая, что $g|_{U_x}\in W^l_q(U_x,\mathbb{R}^m)$.

Определение 4 (см. [5, 7]). Линейный дифференциальный оператор 1-го порядка

$$D^{0}F(y) = \left(\sum_{\varkappa=1}^{m} \sum_{1 \leq \mu_{1} \leq \dots \leq \mu_{l} \leq n} \hat{a}_{\mu_{1}\dots\mu_{l}}^{1\varkappa} \partial_{\mu_{1}} F_{\mu_{2}\dots\mu_{l},\varkappa}(y), \dots, \sum_{\varkappa=1}^{m} \sum_{1 \leq \mu_{1} \leq \dots \leq \mu_{l} \leq n} \hat{a}_{\mu_{1}\dots\mu_{l}}^{k\varkappa} \partial_{\mu_{1}} F_{\mu_{2}\dots\mu_{l},\varkappa}(y), \dots, \partial_{\nu_{1}} F_{\nu_{2}\dots\nu_{l},\varkappa}(y) - \partial_{\nu_{\varphi(1)}} F_{\nu_{\varphi(2)}\dots\nu_{\varphi(l)},\varkappa}(y), \dots\right)$$
(8)

 $(1 \leq \nu_1 \leq n; \ 1 \leq \nu_2 \leq \cdots \leq \nu_l \leq n; \ 1 \leq \varkappa \leq m; \ \mathring{a}_{\mu_1 \dots \mu_l}^{\jmath \varkappa}$ — коэффициенты оператора D в записи $(7'); \ \varphi = \varphi_{\nu} : \{1, \dots, l\} \to \{1, \dots, l\}$ — «упорядочивающая» по возрастанию значения отображения $\nu : \{1, \dots, l\} \to \{1, \dots, n\}$ биекция множества $\{1, \dots, l\}$: $\nu_{\varphi(1)} \leq \cdots \leq \nu_{\varphi(l)}$) называется $\mathit{npucoedunennum}$ к оператору D из (7).

Отметим, что оператор D^0 эллиптичен в том и только том случае, если эллиптичен оператор D [5], и что в случае, когда m=1 и $D=\triangle=\sum_{s=1}^n \partial_{ss}$, решение системы $D^0g=0$ представляет собой систему сопряженных гармонических функций М. Рисса.

Пусть теперь при t > 1

$$\mathcal{O}_{t} = \mathcal{O}_{t}^{n,m,k,l} = \left\{ D = \sum_{|p|=l} a_{p} \partial^{p} \in \mathcal{O}, \ \left| a_{p}^{j \varkappa} \right| \le t, \ j = 1, \dots, k, \right.$$

$$\varkappa = 1, \dots, m, \ \left| p \right| = l, \inf_{\zeta \in \mathbb{R}^{n}, \ u \in \mathbb{R}^{m}, \ \left| \zeta \right| = 1, \left| u \right| = 1} \left| \sum_{|p|=l} \zeta^{p} a_{p} u \right| \ge 1/t \right\}. \tag{9}$$

Замечание. В силу (9) $\bigcup_{t>1} \mathscr{O}_t = \mathscr{O}$.

Упомянутые выше функции χ и χ^1 можно определить (при t>1) следующим способом:

$$\chi(t) = \inf_{D \in \mathcal{O}_t} \Lambda(D^0), \tag{10}$$

$$\Lambda(D^{0}) = \min_{\zeta \in \mathbb{R}^{n}, u \in \mathbb{R}^{mn_{l-1}}, |\zeta| = 1, |u| = 1} |\sigma_{D^{0}}(\zeta)u|,$$

где D^0 — линейный дифференциальный оператор (8) первого порядка, присоединенный к оператору D, и⁵⁾

$$\chi^{1}(t) = \sup_{D \in \mathcal{O}_{t}} \left\{ \sup_{2 \le q < +\infty} \left[\frac{1}{q} \Upsilon_{q} \left(\frac{D^{0}}{\Lambda(D^{0})} \right) \right] \right\}. \tag{11}$$

Здесь

$$\Upsilon_q(D^0) = \sup_{h \in L_q(\mathbb{R}^n, \mathbb{R}^{k_0}), \|h\|_q = 1} \|\overline{P}h\|_q$$

 $^{^{5)}}$ Обращаем внимание читателя на то, что в формулировке леммы 2 в [7] допущена опечатка: вместо « $\Upsilon_q(D^0/\lambda(D^0))$ » должно быть « $\Upsilon_q(D^0/\Lambda(D^0))$ ».

 $\left(\|h\|_q=\left\{\int\limits_{\mathbb{R}^n}|h(y)|^qdy\right\}^{1/q}
ight)-q$ -норма сингулярного интегрального оператора $\overline{P}=(\overline{P}_1,\dots,\overline{P}_n)$ такого, что 6

$$(\overline{P}_s h)(x) = -\int_{\mathbb{R}^n} \left\{ \frac{\partial}{\partial x_s} H_{D^0}(y - x) \right\}^T h(y) dy - \left[\int_{|y| = 1} y_s \{ H_{D^0}(y) \}^T ds \right] h(x), \quad x \in \mathbb{R}^n.$$
(12)

При этом $H_{D^0}=D^0U$, где, в свою очередь, U — (матричнозначное) фундаментальное решение эллиптического линейного дифференциального оператора $L=(D^0)^*D^0$ второго порядка с постоянными коэффициентами $((D^0)^*$ — формально сопряженный к D^0 оператор), которое при $y\in\mathbb{R}^n\setminus\{0\}$ определяется на основе символа σ_L оператора L формулами

$$U(y) = \frac{(-1)^{(n-1)/2}}{4(2\pi)^{n-1}} \Delta^{(n-1)/2} \int_{|\zeta|=1} |\langle y, \zeta \rangle| \sigma_L^{-1}(\zeta) ds_{\zeta}, \tag{13}$$

если n нечетно, и

$$U(y) = \frac{(-1)^{n/2}}{2(2\pi)^n} \Delta^{n/2} \int_{|\zeta|=1} |\langle y, \zeta \rangle|^2 \ln|\langle y, \zeta \rangle| \sigma_L^{-1}(\zeta) ds_{\zeta}, \tag{14}$$

если n четно. Заметим, что Δ^{ν} — «итерированный лапласиан», интегралы в (13) и (14), равно как и второй из интегралов справа в (12), вычисляются по единичной сфере в \mathbb{R}^n относительно поверхностной меры и $\sigma_L^{-1}:\zeta\mapsto [\sigma_L(\zeta)]^{-1},$ $\zeta\in\mathbb{R}^n\setminus\{0\},$ — отображение, которое точке ζ ставит в соответствие матрицу $[\sigma_L(\zeta)]^{-1},$ обратную матрице $\sigma_L(\zeta)$ (в силу определения σ_L^{-1} связано с символом σ_{D^0} оператора D^0 соотношением $\sigma_L^{-1}(\zeta)=[-\{\sigma_{D^0}(\zeta)\}^T\sigma_{D^0}(\zeta)]^{-1}).$

Замечание. Из лемм 1 и 2 работы [7] вытекает, что

$$0 < \chi(t) \quad (< +\infty)$$

И

$$(0<) \quad \chi^1(t)<+\infty,$$

t > 1.

Теорема 2. Для каждых числа $q_0 > n$ и эллиптического линейного дифференциального оператора D вида (7) существует положительное число $\varepsilon = \varepsilon(q_0,D)$ такое, что если для системы (5) выполнены условия (a) и (b), в которых роль параметров и эллиптического оператора играют q_0 , $\varepsilon(q_0,D)$ и D, а вещественное число q удовлетворяет неравенству q > n, то каждое $W^l_{q_0,loc}(U,\mathbb{R}^m)$ -решение $f:U\to\mathbb{R}^m$ этой системы принадлежит пространству $W^l_{q_0,loc}(U,\mathbb{R}^m)$. Кроме того, для каждой точки $x_0\in U$ существует число $\tau>0$ такое, что шар $B_n(x_0,\tau)=\{x\in\mathbb{R}^n,|x-x_0|<\tau\}$ содержится в области U вместе со своим замыканием и для любых двух точек $x',x''\in B_n(x_0,\tau/4)$ и любого мультииндекса p_{l-1} порядка l-1 выполняется неравенство

$$\left|\partial^{p_{l-1}} f(x') - \partial^{p_{l-1}} f(x'')\right| \le \left\{ C_1 \max_{|x-x_0| = \tau/2} \left| v^{l-1}(f,x) - v^{l-1}(f,x_0) \right| + C_2 \tau^{1-l} \left[\rho_1 \frac{1}{1 - \zeta_0^n} + \rho_2 \frac{(1 - \zeta)^{-(n-1)}}{1 - \zeta_0^n \zeta^{-(n-1)}} + \rho_3 \frac{(1 - \zeta)^{-n}}{1 - \zeta_0^n \zeta^{-n}} \right] \right\} \tau^{n/q_0 - 1} |x' - x''|^{1 - n/q_0},$$
(15)

 $^{^{6)}\{\}cdot\}^{T}$ — операция транспонирования матриц.

где

$$\rho_{1} = [\chi(t)]^{-1} \tau^{l-n/q_{0}} \left[\|T(\cdot;0)\|_{q_{0},B(x_{0},\tau)} + \tau^{1-l} \|E\|_{q_{0},B(x_{0},\tau)} \sum_{0 \leq |p^{1}+p^{2}| \leq l-2} \frac{1}{(p^{1})!} \tau^{|p^{1}+p^{2}|} \left| \partial^{p^{1}+p^{2}} f(x_{0}) \right| \right]$$
(16)

 $(p^1, p^2 - мультииндексы),$

$$\rho_2 = C_3 \tau^{l - n/q_0} ||E||_{q_0, B(x_0, \tau)} \max_{|x - x_0| \le \tau} |v^{l - 1}(f, x)|, \tag{17}$$

$$\rho_3 = C_4 \tau^{l-1} \max_{|x-x_0| \le \tau} |v^{l-1}(f,x) - v^{l-1}(f,x_0)|, \tag{18}$$

$$\zeta_0 = \{ [\varepsilon_1 q_0 \chi^1(t) + 1]/2 \}^{1/n}, \tag{19}$$

$$\zeta_0 < \zeta < 1$$
,

$$\varepsilon/\chi(t) < \varepsilon_1 < 1/[q_0\chi^1(t)].$$
 (20)

B (15)–(20) величины C_1 – C_4 зависят только лишь от n, m, l, q_0 и оператора D; $t = \max\{\tilde{t}, 2\}$, при этом \tilde{t} представляет собой наименьшее из чисел λ , удовлетворяющих неравенствам

$$|a_p^{j\varkappa}| \le \lambda, \quad j = 1, 2, \dots, k, \quad \varkappa = 1, 2, \dots, m, \quad |p| = l,$$

$$\inf_{\zeta \in \mathbb{R}^n, u \in \mathbb{R}^m, |\zeta| = 1, |u| = 1} \left| \sum_{|p| = l} \zeta^p a_p u \right| \ge 1/\lambda \tag{21}$$

 $(a_p^{j\varkappa}$ — коэффициенты оператора D); параметр $\varepsilon=\varepsilon(q_0,D)$ выбирается столь малым, чтобы выполнялось неравенство

$$\varepsilon/\chi(t) < 1/[q_0\chi^1(t)];$$

наконец, χ и χ^1 — это функции, определенные соотношениями (10) и (11).

Замечание. Отображение f в формулировке теоремы 2 — это лучший с точки зрения теории интеграла представитель в классе отображений, эквивалентных f (т. е. совпадающих с f почти всюду в U), который в силу условия $f \in W^l_{q,\text{loc}}(U,\mathbb{R}^m), \ q > n$, и теорем вложения для пространств Соболева принадлежит $C^{l-1}(U,\mathbb{R}^m)$.

Доказательство теоремы 2 основывается на результатах, идеях и методах из работ [6-8].

В самом деле, рассматривая число $q_0 > n$ и эллиптический линейный дифференциальный оператор D с постоянными коэффициентами вида (7), выберем в качестве $\varepsilon(q_0,D)$ число ε , удовлетворяющее неравенствам

$$0 < \varepsilon < \frac{\chi(t)}{q_0 \chi^1(t)}. (22)$$

Если $f:U\to\mathbb{R}^m-W^l_{q,\mathrm{loc}}(U,\mathbb{R}^m)$ -решение системы (5), q>n, то в силу (22) и того, что система (5) является частным случаем систем (1) статьи [7], теорема 4 работы [8] (см. также теорему 1 в [7]) и замечание, помещенное в конце статьи [7], влекут принадлежность отображения f классу $W^l_{q_0,\mathrm{loc}}(U,\mathbb{R}^m)$. Тем самым первое из утверждений теоремы доказано.

Что же касается второго, то фиксируя точку $x_0 \in U$, подберем число $\tau = \tau(x_0) > 0$ так, чтобы выполнялись соотношения $\tau < 1$, $\operatorname{cl} B(x_0, \tau) = \operatorname{cl} B_n(x_0, \tau)$ $\subset U$ и⁷⁾

$$2^{1-n/q_0} \left(n v_n \frac{q_0 - 1}{q_0 - n} \right)^{1-1/q_0} c_l[\chi(t)]^{-1} \left[\max_{|w| = 1} \|H_{D^0}(w)\| \right] \tau^{l-n/q_0} \times \|E\|_{q_0, B(x_0, \tau)} \le \frac{1 - \varepsilon_1 q_0 \chi^1(t)}{2}, \quad (23)$$

где v_n — объем n-мерного единичного шара,

$$c_l = \left\{ (l-1)! \sum_{s=1}^{l-1} \frac{1}{(s!)^2} + 1 \right\}^{1/2}, \quad l = 2, 3, \dots, \quad c_1 = 1,$$
 (24)

 D^0 — присоединенный в смысле определения 4 к оператору D дифференциальный оператор 1-го порядка, H_{D^0} — фундаментальное решение системы

$$(D^0)^*H(x) = 0,$$

наконец, E — это функция из условия (b), которому согласно условию нашей теоремы удовлетворяет система (5).

Используя обозначения из статьи [7], положим далее

$$\tilde{f}(z) = f(\tau z + x_0), \quad z \in B = B_n(0, 1),$$
(25)

И

$$F_{\tilde{f}} = (\dots, F_{s_1, \dots, s_{l-1}, \varkappa}, \dots) : B \to \mathbb{R}^{mn_{l-1}}, \tag{26}$$

где скалярные функции-компоненты отображения $F_{\tilde{t}}$

$$F_{s_1,\ldots,s_{l-1},\varkappa} = \partial_{s_1\ldots s_{l-1}}\tilde{f}_{\varkappa}, \quad 1 \le s_1 \le \cdots \le s_{l-1} \le n, \quad \varkappa = 1,\ldots,m, \tag{27}$$

представляют собой частные производные (l-1)-го порядка функций \tilde{f}_{\varkappa} (ср. (25) –(27) с (19) и (25) в [7]). Согласно теореме 3.2.2 из [9, гл. 3] для отображения $F_{\tilde{f}}$ при $y \in B_r = B_n(0,r), \, 0 < r \le 1$, имеет место представление

$$F_{\tilde{f}}(z) = \Phi_r(z) + (R_r(D^0 F_{\tilde{f}}))(z),$$
 (28)

при этом почти всюду в B_r

$$F'_{\tilde{\epsilon}}(z) = \Phi'_r(z) + (\overline{P}_r(D^0 F_{\tilde{\epsilon}}))(z),$$

(g'(z)- производная (дифференциал) 1-го порядка отображения $g:U\to\mathbb{R}^{mn_{l-1}}$ в точке $z\colon [g(z+\delta)-g(z)-g'(z)\delta]/|\delta|\to 0$, когда $\delta\to 0$. Как и в [7], эту производную мы отождествляем с элементом пространства $\mathbb{R}^{nmn_{l-1}}$. В случае, когда g принадлежит пространству $W^1_{1,\text{loc}}(X,\mathbb{R}^{mn_{l-1}}), X$ — открытое множество в \mathbb{R}^n , производная g'(z) определяется формально на основе обобщенных частных производных почти всюду в X). В (28)

$$\Phi_r(z) = -\int_{|u|=r} [H_{D^0}(u-z)]^T \sigma_{D^0} \left(\frac{u}{|u|}\right) F_{\tilde{f}}(u) \, ds_u,$$

 $^{^{7)}}$ Ср. неравенство (23) с соотношениями, рассмотренными в конце с. 873 в [7] (при этом в последних вместо « $2^{(1-n)/q_0}$ » следует читать « $2^{1-n/q_0}$ »).

$$(R_r g)(z) = \int_{|u| < r} [H_{D^0}(u-z)]^T g(u) du, \quad z \in B_r,$$

$$\overline{P}_r g = (R_r g)',$$

где $g\in L_{q,\mathrm{loc}}(B_r,\mathbb{R}^{k_0}),\, k_0=k+m\sum_{\nu=2}^{\min\{l,n\}}\frac{n!(l-1)!}{\nu!(n-\nu)!(\nu-2)!(l-\nu)!},\, q>1,$ и, как и выше,

 σ_{D^0} — символ дифференциального оператора D^0 , присоединенного к оператору D, и H_{D^0} — фундаментальное решение системы $(D^0)^*H(x)=0$. Заметим, что \overline{P} совпадает с оператором (12) (см. [9, гл. 3]).

Рассмотрим случай r = 1/2. Если $z', z'' \in B_{1/4}$, то

$$|\Phi_{1/2}(z') - \Phi_{1/2}(z'')| \le |z' - z''| \max_{z \in B_{1/4}} |\Phi'_{1/2}(z)|. \tag{29}$$

Учитывая еще лемму 3.3.1 из [9, гл. 3], имеем

$$\begin{aligned} |\Phi'_{1/2}(z)| &\leq c(D^0) \int\limits_{|w|=1/2} \frac{\left| F_{\tilde{f}}(w) - F_{\tilde{f}}(0) \right|}{|w-z|^n} \, ds_w \\ &\leq 2^{n+1} n v_n c(D^0) \max_{|w|=1/2} |F_{\tilde{f}}(w) - F_{\tilde{f}}(0)|, \quad z \in B_{1/4}, \quad (30) \end{aligned}$$

где

$$c(D^{0}) = A_{D^{0}} \left\{ \sum_{s=1}^{n} \left[\max_{|u|=1} \|\partial_{s} H_{D^{0}}(u)\| \right]^{2} \right\}^{1/2}, \tag{31}$$

$$A_{D^0} = \max_{|\zeta|=1, |u|=1} |\sigma_{D^0}(\zeta)u|. \tag{32}$$

Тем самым

$$\begin{aligned} &|\Phi_{1/2}(z') - \Phi_{1/2}(z'')| \le 2^{n+1} n v_n c(D^0) |z' - z''| \max_{|w| = 1/2} |F_{\tilde{f}}(w) - F_{\tilde{f}}(0)| \\ &\le 2^{n+1-n/q_0} n v_n c(D^0) |z' - z''|^{1-n/q_0} \max_{|w| = 1/2} |F_{\tilde{f}}(w) - F_{\tilde{f}}(0)|, \quad z', z'' \in B_{1/4}. \end{aligned}$$
(33)

Далее, в силу леммы 3.2.5 монографии [9, гл. 3]

$$|(R_{1/2}(D^{0}F_{\tilde{f}}))(z') - (R_{1/2}(D^{0}F_{\tilde{f}}))(z'')| \le 2^{n+1}v_{n}^{-1/q_{0}}(1 - n/q_{0})^{-1} \times (mn_{l-1})^{(q_{0}-2)/2q_{0}}\Upsilon_{q_{0}}(D^{0})|z' - z''|^{1-n/q_{0}}||D^{0}F_{\tilde{f}}||_{q_{0},B_{1/2}}, \quad z',z'' \in \mathbb{R}^{n}.$$
(34)

В то же время из (10)–(14) вытекает, что

$$\Upsilon_{q_0}(D^0) = \Upsilon_{q_0}\left(\Lambda(D^0) \frac{D^0}{\Lambda(D^0)}\right) = \frac{1}{\Lambda(D^0)} \Upsilon_{q_0}\left(\frac{D^0}{\Lambda(D^0)}\right) \le \frac{q_0 \chi^1(t)}{\chi(t)},\tag{35}$$

где $t = \max\{\tilde{t}, 2\}$, $\tilde{t} = \inf\{\lambda \in \mathbb{R}, \lambda \}$ удовлетворяет неравенствам (21) $\}$. Следовательно, соотношения (28)–(35) приводят нас к неравенству

$$|F_{\tilde{f}}(z') - F_{\tilde{f}}(z'')| \le \{C_1 \max_{|w| = 1/2} |F_{\tilde{f}}(w) - F_{\tilde{f}}(0)| + C_2 \|D^0 F_{\tilde{f}}\|_{q_0, B_{1/2}}\} |z' - z''|^{\alpha},$$

$$z', z'' \in B_{1/4}$$
, где $\alpha = 1 - n/q_0$,

$$C_1 = 2^{n+1-n/q_0} n v_n c(D^0)$$

И

$$C_2 = 2^{n+1} v_n^{-1/q_0} \frac{q_0^2}{q_0 - n} (m n_{l-1})^{(q_0 - 2)/2q_0} \frac{\chi^1(t)}{\chi(t)},$$

которому в силу (25)-(27) можно придать следующий вид

$$\begin{split} |\partial^{p_{l-1}}f(x') - \partial^{p_{l-1}}f(x'')| &\leq \{C_1 \max_{|x-x_0| = \tau/2} |v^{l-1}(f,x) - v^{l-1}(f,x_0)| \\ &+ C_2\tau^{1-l} \|D^0F_{\tilde{f}}\|_{q_0,B_{1/2}}\} |z' - z''|^{\alpha}, \quad x',x'' \in B(x_0,\tau/4). \end{split}$$

Нам осталось показать, что если число ε_1 удовлетворяет неравенствам (20), число ζ_0 определено посредством (19) и $\zeta_0 < \zeta < 1$, то

$$||D^{0}F_{\tilde{f}}||_{q_{0},B_{1/2}} \leq \rho_{1} \frac{1}{1-\zeta_{0}^{n}} + \rho_{2} \frac{(1-\zeta)^{-(n-1)}}{1-\zeta_{0}^{n}\zeta^{-(n-1)}} + \rho_{3} \frac{(1-\zeta)^{-n}}{1-\zeta_{0}^{n}\zeta^{-n}},$$
(36)

где ρ_1 , ρ_2 и ρ_3 — те же величины, что и в (16)–(18).

Собственно, неравенство (36) ранее было доказано в подобной ситуации в [7, с. 875]. Но величины ρ_i , i=1,2,3, там имели несколько иной вид. Мы сейчас внесем необходимые изменения в доказательство этого неравенства в [7], которые позволят получить его в искомой форме (36). При этом можно полагать, что параметры ε' и ε'' из доказательства теоремы 1 в [7] в обсуждаемом сейчас случае совпадают с параметрами ε и ε_1 . Но прежде, чем приступить к детальному обсуждению неравенства (36), мы сделаем еще ряд замечаний.

Во-первых, мы утверждаем, что неравенства (20) настоящей статьи и неравенства (34) в [7] суть одно и тоже. В самом деле, в силу определения (11) функции χ^1 и теоремы 3.3.2 из [9, гл. 3]

$$\chi^1(t) \ge 1/q, \quad 2 \le q < +\infty.$$

Последнее неравенство влечет соотношение

$$\min\{1, 1/[q_0\chi^1(t)]\} = 1/[q_0\chi^1(t)],$$

а вместе с ним и упомянутое выше совпадение неравенств (20) данной работы и неравенств (34) статьи [7].

Второе замечание связано с неравенством (18) в [7]. Как указано в конце статьи [8], при предъявлении этого неравенства в [7] допущены неточности в записях. Учитывая это обстоятельство, важность неравенства (18) статьи [7] для излагаемого в настоящей работе и исходя из соображений удобства для читателя, мы приведем сейчас доказательство указанного неравенства (в интересующей нас ситуации).

К неравенству (18) в [7] мы приходим, оценивая величину $|T^{\tau}(y; v_{l-1,1}) - T^{\tau}(y; v_{l-1,2})|$ (см. неравенство (17) в [7]). В рассматриваемом в настоящей работе случае отображение T^{τ} (определяемое в [7] равенством (14)) выглядит так:

$$T^{\tau}(z; v_{l-1}) = T^{\tau}(z; v^0; v^1; \dots; v^{l-1}) = \tau^l T(\tau z + x_0; v^0; \tau^{-1} v^1; \dots; \tau^{-(l-1)} v^{l-1}),$$

где T — отображение из соотношений (6) данной статьи. Но тогда в силу свойств последнего (см. выше условие (b)) и того, что $\tau<1$, для почти всех $z\in B$ (=B(0,1)) имеем

$$|T^{\tau}(z; v_{l-1,1}) - T^{\tau}(z; v_{l-1,2})| \le \tau^{l} E(\tau z + x_{0}) \{|v_{1}^{0} - v_{2}^{0}|^{2} + \tau^{-2}|v_{1}^{1} - v_{2}^{1}|^{2} + \dots + \tau^{-2(l-1)}|v_{1}^{l-1} - v_{2}^{l-1}|^{2}\}^{1/2} \le \tau E(\tau z + x_{0})|v_{l-1,1} - v_{l-1,2}|,$$

$$v_{l-1,i} = (v_i^0; v_i^1; \dots; v_i^{l-1}) \in \mathbb{R}^{N_{l-1}-n}, i = 1, 2.$$
 Следовательно,
$$\|E^{\tau}\|_{q_0,B} \le \tau^{1-n/q_0} \|E\|_{q_0,B(x_0,\tau)}. \tag{37}$$

Тем самым аналог неравенства (18) из работы [7] получен. Доказательство самого неравенства (18) статьи [7] осуществляется тем же способом, что и в случае неравенства (37), при этом окончательная форма записи первого следующая:

$$||E^{\tau}||_{q_0,B} = \left\{ \int_B [E^{\tau}(y)]^{q_0} dy \right\}^{1/q_0}$$

$$\leq \tau^{1-n/q_0} c(\beta) b(\omega) |J_{\omega}|^{1/q_0} c(\psi, x_0, r_0) ||E||_{q_0, \omega^{-1}(B(z_0, \tau))}. \tag{38}$$

Следующее замечание касается параметра ν , введенного в соотношениях (36) в [7]⁸): ради упрощения записи мы полагаем ниже $\nu=1/2$.

Наконец, мы обращаем внимание читателя на те описки и опечатки в статье [7], которые указаны в конце работы [8] и которые необходимо учитывать при ознакомлении с доказательством теоремы 1 в [7].

Итак, обратимся к обсуждению доказательства неравенства (36). С этой целью напомним прежде всего, что

$$\rho_1 = \rho_1^1 + \rho_1^2 \tag{39}$$

(см. [7, с. 874, 875]). В рассматриваемом в настоящей статье случае

$$\rho_1^1 = [\chi(t)]^{-1} \tau^{l - n/q_0} ||T(\cdot; 0)||_{q_0, B(x_0, \tau)}. \tag{40}$$

Для второго же слагаемого в (39) имеем

$$\rho_1^2 = [\chi(t)]^{-1} ||E^{\tau}(\cdot)| \Lambda_{l-2,\tilde{f}}(\cdot)||_{q_0,B}, \tag{41}$$

где $\Lambda_{l-2,\tilde{f}}$ — отображение, построенное по отображению \tilde{f} способом, предложенным в [7, с. 867], причем, как легко показать,

$$|\Lambda_{l-2,\tilde{f}}(z)| \leq \sum_{\nu=0}^{l-2} \sum_{1 \leq s_1 \leq \dots \leq s_{\nu} \leq n} |\Lambda_{\partial_{s_1 \dots s_{\nu}} \tilde{f}}^{l-\nu-2}(z)|$$

$$\leq \sum_{0 \leq |p^1 + p^2| \leq l-2} \frac{1}{(p^1)!} \tau^{|p^1 + p^2|} |\partial^{p^1 + p^2} f(x_0)|, \quad |z| \leq 1. \quad (42)$$

Из (39)–(42) вытекает, что в качестве ρ_1 можно принять число, определяемое формулой (16).

Далее, к параметру ρ_2 мы приходим, оценивая величину

$$\sqrt{2}c_l[\chi(t)]^{-1}||E^{\tau}(\cdot)|\Phi_{\mu}(\cdot)||_{q_0,B^{\mu-1}},$$

где c_l определяется равенством (24) и (как и в [7, формулы (38)])

$$\Phi_{\mu}(z) = -\int\limits_{|u|=r_{\mu}} [H_{D^0}(u-z)]^T \sigma_{D^0} \left(\frac{u}{|u|}\right) F_{\tilde{f}}(u) ds_u, \quad |z| < r_{\mu},$$

 $^{^{8)} {\}rm B}$ соотношениях (36) в [7] вместо « $y \in B^0 (= B(0,1-\nu))$ » следует читать « $y \in B^0 (= B(0,\nu))$ ».

$$\begin{split} r_{\mu} &= 1 - (1 - \nu)\zeta^{\mu} = 1 - \zeta^{\mu}/2, B^{\mu} = B(0, r_{\mu}), \mu = 0, 1, 2, \dots. \text{ Так как при } |z| \leq r_{\mu - 1} \\ &|\Phi_{\mu}(z)| \leq cA_{D^{0}} \int\limits_{|u| = r_{\mu}} \frac{|F_{\tilde{f}}(u)|}{|u - z|^{n - 1}} \, ds_{u} \leq cA_{D^{0}} \{ \max_{|u| = r_{\mu}} |F_{\tilde{f}}(u)| \} nv_{n} \frac{\zeta^{-(\mu - 1)(n - 1)}}{[(1 - \nu)(1 - \zeta)]^{n - 1}} \\ &\leq 2^{n - 1} nv_{n} cA_{D^{0}} \tau^{l - 1} \{ \max_{|x - x_{0}| \leq \tau} |v^{l - 1}(f, x)| \} \frac{\zeta^{-(\mu - 1)(n - 1)}}{(1 - \zeta)^{n - 1}}, \quad c = \max_{|u| = 1} \|H_{D^{0}}^{T}(u)\| \\ &(A_{D^{0}} - \text{ величина, определяемая посредством (32)), \text{ то}} \\ &\sqrt{2} c_{l}[\chi(t)]^{-1} \|E^{\tau}(\cdot)|\Phi_{\mu}(\cdot)|\|_{q_{0}, B^{\mu - 1}} \leq \sqrt{2} c_{l}[\chi(t)]^{-1} \|E^{\tau}\|_{q_{0}, B} \{ \max_{z \in B^{\mu - 1}} |\Phi_{\mu}(z)| \} \\ &\leq \sqrt{2} c_{l}[\chi(t)]^{-1} \tau^{1 - n/q_{0}} \|E\|_{q_{0}, B(x_{0}, \tau)} 2^{n - 1} nv_{n} cA_{D^{0}} \tau^{l - 1} \{ \max_{|x - x_{0}| \leq \tau} |v^{l - 1}(f, x)| \} \\ &\times \frac{\zeta^{-(\mu - 1)(n - 1)}}{(1 - \zeta)^{n - 1}} = 2^{n - 1/2} nv_{n} c_{l}[\chi(t)]^{-1} cA_{D^{0}} \tau^{l - n/q_{0}} \|E\|_{q_{0}, B(x_{0}, \tau)} \\ &\times \{ \max_{|x - x_{0}| \leq \tau} |v^{l - 1}(f, x)| \} \frac{\zeta^{-(\mu - 1)(n - 1)}}{(1 - \zeta)^{n - 1}}. \end{split}$$

Таким образом, согласно [7, с. 874] в качестве ρ_2 можно принять величину (17), где

$$C_3 = 2^{n-1/2} n v_n c_l [\chi(t)]^{-1} c A_{D^0}.$$

Наконец, параметр ρ_3 мы получаем, оценивая величину $\varepsilon_1\|\Phi'_\mu\|_{q_0,B^{\mu-1}}$ (см. [7, с. 874, 875]). Рассуждая так же, как и при выводе соотношений (30), учитывая, что если $|w|=r_\mu$ и $|z|\leq r_{\mu-1}$, то $|w-z|\geq r_\mu-r_{\mu-1}=\zeta^\mu(1-\zeta)/2$, и используя при этом соотношения (25)–(27), последовательно имеем

$$\begin{split} \varepsilon_{1} \left\| \Phi_{\mu}' \right\|_{q_{0},B^{\mu-1}} &\leq \varepsilon_{1} c(D^{0}) \left\{ \int_{B^{\mu-1}} \left[\int_{|w|=r_{\mu}} \frac{|F_{\tilde{f}}(w) - F_{\tilde{f}}(0)|}{|w - z|^{n}} ds_{w} \right]^{q_{0}} dz \right\}^{1/q_{0}} \\ &\leq \varepsilon_{1} 2^{n} n v_{n}^{1 + \frac{1}{q_{0}}} c(D^{0}) \tau^{l-1} \left\{ \max_{|x - x_{0}| \leq \tau} |v^{l-1}(f, x) - v^{l-1}(f, x_{0})| \right\} \frac{\zeta^{-(\mu-1)n}}{(1 - \zeta)^{n}} \\ &\leq [q_{0} \chi^{1}(t)]^{-1} 2^{n} n v_{n}^{1 + \frac{1}{q_{0}}} c(D^{0}) \tau^{l-1} \left\{ \max_{|x - x_{0}| \leq \tau} |v^{l-1}(f, x) - v^{l-1}(f, x_{0})| \right\} \frac{\zeta^{-(\mu-1)n}}{(1 - \zeta)^{n}}, \end{split}$$

 $c(D^0)$ — величина из (31) (здесь мы воспользовались неравенствами (20)). Тем самым в качестве ρ_3 можно принять величину (18) с

$$C_4 = [q_0 \chi^1(t)]^{-1} 2^n n v_n^{1 + \frac{1}{q_0}} c(D^0).$$

Доказательство теоремы 2 завершено.

Замечание 1. Как следует из доказательства теоремы 2 выбор параметра $\tau = \tau(x_0)$ в ее формулировке определяется (только лишь!) условиями $0 < \tau < 1$ и сl $B(x_0, \tau) \subset U$ и неравенством (23).

ЗАМЕЧАНИЕ 2. Доказательство теоремы 1 статьи [7] и, следовательно, теоремы 2 данной работы проведено, собственно, в том случае, когда порядок рассматриваемой системы $l \geq 2$. Это доказательство (с небольшими изменениями) сохраняет свою силу и в случае l=1. Суть этих изменений состоит в том, что если l=1, то обе эти теоремы доказываются непосредственно по тому же плану, что и теорема 3.4.1'' из [9, гл. 3, $\S 3.4]$, с использованием теоремы 1 из [8]. При

этом в формулировке теоремы 2 настоящей статьи $\partial^{p_{l-1}} f$ и $v^{l-1}(f,\cdot)$ заменяются на f, в качестве присоединенного оператора D^0 к оператору D выступает сам оператор D, $\chi(t)=t^{-1}$,

$$\rho_1 = t\tau^{1-n/q_0} ||T(\cdot;0)||_{q_0,B(x_0,\tau)}$$

И

$$C_3 = 2^{n-1} n v_n t c A_D.$$

Замечание 3. Полезно отметить, что в ходе доказательства теоремы 2 мы установили истинность такого утверждения

Теорема 3. В условиях теоремы 2

$$\|\partial^{p_l} f\|_{q_0, B(x_0, \tau/2)} \le \tau^{n/q_0 - l} \left\{ \rho_1 \frac{1}{1 - \zeta_0^n} + \rho_2 \frac{(1 - \zeta)^{-(n-1)}}{1 - \zeta_0^n \zeta^{-(n-1)}} + \rho_3 \frac{(1 - \zeta)^{-n}}{1 - \zeta_0^n \zeta^{-n}} \right\}.$$

При этом сама теорема 2 является прямым следствием последней теоремы.

Доказательство теоремы 1'. Рассматривая C^l -решение $f: U \to \mathbb{R}^m$ эллиптической системы (1), удовлетворяющей условиям теоремы, построим разностное отношение

$$f_s^h(x) = \frac{f(x + he_s) - f(x)}{h},$$

 $s=1,2,\ldots,n$, где h — малое вещественное число (e_1,e_2,\ldots,e_n) — канонический базис в \mathbb{R}^n , степень малости параметра h мы будем уточнять по ходу доказательства и для определенности будем полагать h>0). Ясно, что при достаточно малом значении параметра h отображение f_h^s есть решение системы

$$\mathfrak{L}_{h}^{s}(x; v_{l-1}(f_{h}^{s}, x); v^{l}(f_{h}^{s}, x)) = h^{-1} \{ \mathfrak{L}(x + he_{s}; v_{l-1}(f, x) + hv_{l-1}(f_{h}^{s}, x); v^{l}(f, x) + hv^{l}(f_{h}^{s}, x)) - \mathfrak{L}(x; v_{l-1}(f, x); v^{l}(f, x)) \} = 0.$$
(43)

Так как изучение свойства гёльдеровости старших производных отображения f осуществляется нами на локальном уровне, то мы зафиксируем далее точку $x_0 \in U$ и изберем следующий план действий. Мы постараемся выбрать столь малую окрестность этой точки и столь малое число h, что ограничение отображения f_h^s на эту окрестность будет представлять собой решение системы вида (5), удовлетворяющей условиям (a) и (b) со сколь угодно малым значением параметра ε и сколь угодно большим значением параметра q_0 (степень малости величин ε и $1/q_0$ предписывается заранее). Последнее окажется возможным в силу эллиптичности системы (1), C^1 -гладкости функций \mathfrak{L}_j и C^l -гладкости отображения f. При этом роль D будет играть оператор

$$\sum_{v_l} \{ (\partial_{v_{p_l, \varkappa}} \mathcal{L}_j(y_0)) \underset{\varkappa = 1, \dots, m}{}_{j=1, \dots, m} \} \partial^{p_l}, \tag{44}$$

$$y_0 = (x_0; v_{l-1}(f, x_0); v^l(f, x_0))$$

= $(x_0; \dots, \partial^{p_0} f_{\varkappa}(x_0), \dots; \dots, \partial^{p_1} f_{\varkappa}(x_0), \dots; \dots; \dots, \partial^{p_l} f_{\varkappa}(x_0), \dots),$

выбор функций $E=E_h^s$ не будет зависеть от h, для отображений $T(\cdot;0)=T_h^s(\cdot;0)$ будет иметь место представление

$$T_h^s(x;0) = \int_0^1 \frac{\partial \mathcal{L}}{\partial x_s} (x + \tau h e_s; v_{l-1}(f, x); v^l(f, x)) d\tau$$
 (45)

и тем самым в малой окрестности точки x_0 эти отображения будут равномерно относительно h ограничены.

Учитывая теорему 2 и замечание к ней, мы сможем в итоге заключить, что в некоторой окрестности точки x_0 неравенство (15) для отображений f_h^s выполняется равномерно по h. Следовательно, устремляя h к нулю, убеждаемся в справедливости теоремы 1'.

Перейдем к реализации намеченного плана.

С этой целью прежде всего заметим, что без умаления общности можно полагать $v_{l-1}(f,x_0)=0$ и $v^l(f,x_0)=0$ (вычитая, если потребуется, из решения f системы (1) его многочлен Тейлора степени l в точке x_0). Понятно, что можно полагать также $x_0=0$.

Предположим далее, что число α больше 0 и меньше 1. Пусть

$$q_0 = \frac{n}{1 - \alpha},\tag{46}$$

и пусть $t=\max\{\tilde{t},2\}$, где \tilde{t} — наименьшее из чисел λ , удовлетворяющих неравенствам

$$\begin{split} \left| a_p^{j\varkappa} \right| \leq \lambda, \quad j = 1, 2, \dots, k, \quad \varkappa = 1, 2, \dots, m, \quad |p| = l, \\ \inf_{\zeta \in \mathbb{R}^n, u \in \mathbb{R}^m, |\zeta| = 1, |u| = 1} |\sigma_D(\zeta)u| \geq 1/\lambda, \end{split}$$

в которых D — эллиптический линейный дифференциальный оператор (44). Отправляясь от этих параметров и C^1 -гладкости отображения \mathfrak{L} , подберем окрестность G точки $y_0 = (0;0;0)$ (cl $G \subset Y$) вида

$$G = B_n(0, r_1) \times B_{N_{t-1}-n}(0, r_2) \times B_{mn_t}(0, r_3),$$

где участвующие в построении декартова произведения множества суть n-мерный, $(N_{l-1}-n)$ -мерный и mn_l -мерный шары: $B_n(0,r_1)\subset\mathbb{R}^n,\ B_{N_{l-1}-n}(0,r_2)\subset\mathbb{R}^{N_{l-1}-n},\ B_{mn_l}(0,r_3)\subset\mathbb{R}^{mn_l},\$ так, чтобы

$$\|\mathcal{L}'_{v^l}(x; v_{l-1}; v^l) - \mathcal{L}'_{v^l}(0; 0; 0)\| \le \varepsilon < \frac{\chi(t)}{q_0 \chi^1(t)}, \quad (x; v_{l-1}; v^l) \in \operatorname{cl} G.$$
 (47)

Здесь $\mathcal{L}'_{v^l}(x;v_{l-1};v^l)$ — производная (частный дифференциал) по переменному v^l отображения \mathcal{L} в точке $(x;v_{l-1};v^l)\in Y, \|\Omega\|$ — операторная норма линейного отображения $\Omega:\mathbb{R}^{mn_l}\to\mathbb{R}^k$ (число ε в (47) мы ниже фиксируем). А затем, учитывая C^l -гладкость отображения f, подберем число $\rho>0$ такое, что $\rho\leq r_1/2, \ |v_{l-1}(f,x)|< r_2/2$ и $\ |v^l(f,x)|< r_3/2$, если $\ |x|\leq \rho$, и вслед за ним число $\gamma>0$, удовлетворяющее условиям $\gamma<\rho/2$ и $\ |v_{l-1}(f,x+he_s)-v_{l-1}(f,x)|< r_2/2$ и $\ |v^l(f,x+he_s)-v^l(f,x)|< r_3/2$ при $\ |x|\leq \rho/2$ и $\ h\leq \gamma$. В итоге (в силу (47)) мы получаем следующее неравенство:

$$\left\| \int_{0}^{1} \left\{ \mathcal{L}'_{v^{l}}(x + he_{s}; v_{l-1}(f, x) + h\bar{v}_{l-1}; v^{l}(f, x) + \tau h\bar{v}^{l}) - \mathcal{L}'_{v^{l}}(0; 0; 0) \right\} d\tau \right\| \leq \varepsilon, \quad (48)$$

где $|x| \le \rho/2, h \le \gamma, |\bar{v}_{l-1}| \le r_2/2h$ и $|\bar{v}^l| \le r_3/2h$ $(\bar{v}_{l-1} \in \mathbb{R}^{N_{l-1}-n}, \bar{v}^l \in \mathbb{R}^{mn_l}).$ Пусть далее⁹⁾

$$V_{h}^{s}(x; \bar{v}_{l-1}; \bar{v}^{l}) = \mathfrak{L}_{h}^{s}(x; \bar{v}_{l-1}; \bar{v}^{l}) - \mathfrak{L}_{h}^{s}(x; \bar{v}_{l-1}; 0)$$

$$= h^{-1} \{ \mathfrak{L}(x + he_{s}; v_{l-1}(f, x) + h\bar{v}_{l-1}; v^{l}(f, x) + h\bar{v}^{l}) - \mathfrak{L}(x + he_{s}; v_{l-1}(f, x) + h\bar{v}_{l-1}; v^{l}(f, x)) \}$$
(49)

 $^{^{9)}\}mathcal{L}'_{v^l}(0;0;0)v^l(f,x)$ — это эквивалентная форма записи оператора (44), где $y_0=(0;0;0)$.

$$(= \mathfrak{L}'_{v^l}(0;0;0)\bar{v}^l + \left[\int_0^1 \{ \mathfrak{L}'_{v^l}(x + he_s; v_{l-1}(f,x) + h\bar{v}_{l-1}; v^l(f,x) + \tau h\bar{v}^l) - \mathfrak{L}'_{v^l}(0;0;0) \} d\tau \right] \bar{v}^l),$$

$$T_h^s(x; \bar{v}_{l-1}) = \mathfrak{L}_h^s(x; \bar{v}_{l-1}; 0) = h^{-1} \left\{ \mathfrak{L}(x + he_s; v_{l-1}(f, x) + h\bar{v}_{l-1}; v^l(f, x)) - \mathfrak{L}(x; v_{l-1}(f, x); v^l(f, x)) \right\}$$
(50)

$$\begin{split} &(=\partial_{x_s}\mathfrak{L}(0;0;0)+\mathfrak{L}'_{v_{l-1}}(0;0;0)\bar{v}_{l-1}\\ &+\int\limits_0^1 \{\partial_{x_s}\mathfrak{L}(x+\tau he_s;v_{l-1}(f,x)+\tau h\bar{v}_{l-1};v^l(f,x))-\partial_{x_s}\mathfrak{L}(0;0;0)\}\,d\tau\\ &+\left[\int\limits_0^1 \big\{\mathfrak{L}'_{v_{l-1}}(x+\tau he_s;v_{l-1}(f,x)+\tau h\bar{v}_{l-1};v^l(f,x))-\mathfrak{L}'_{v_{l-1}}(0;0;0)\big\}\,d\tau\right]\bar{v}_{l-1}), \end{split}$$

 $x \in B_n(0, \rho/2), \, \bar{v}_{l-1} \in B_{N_{l-1}-n}(0, r_2/2h), \, \bar{v}^l \in B_{mn_l}(0, r_3/2h), \, h \leq \gamma \, (\mathfrak{L}_h^s$ — оператор из (43)). Тогда для ограничения $\widetilde{\mathfrak{L}}_h^s = \mathfrak{L}_h^s|_{Y_h}$ отображения \mathfrak{L}_h^s на область

$$Y_h = B_n(0, \rho/2) \times B_{N_{l-1}-n}(0, r_2/2h) \times B_{mn_l}(0, r_3/2h)$$

имеет место представление

$$\widetilde{\mathfrak{L}}_h^s(x;\bar{v}_{l-1};\bar{v}^l) = V_h^s(x;\bar{v}_{l-1};\bar{v}^l) + T_h^s(x;\bar{v}_{l-1}), \quad (x;\bar{v}_{l-1};\bar{v}^l) \in Y_h.$$

Кроме того, осуществленный выше выбор параметров r_1, r_2, r_3, ρ и γ позволяет заключить, что ограничение $\tilde{f}_h^s = f_h^s|_{B_n(0,\rho/2)}$ отображения f_h^s на шар $B_n(0,\rho/2)$ при $h \leq \gamma$ является C^l -решением (в смысле определения 1) системы

$$\widetilde{\mathfrak{L}}_h^s(x; v_{l-1}(\widetilde{f}_h^s, x); v^l(\widetilde{f}_h^s, x)) = 0.$$

Остановимся на некоторых важных для дальнейшего свойствах отображений V_h^s и T_h^s ($h \le \gamma$).

Во-первых, эти отображения продолжаются по непрерывности в замыкание $\operatorname{cl} Y_h$ области Y_h (мы сохраним для продолжений обозначения V_h^s и T_h^s).

Во-вторых, из (48) следует, что

$$|V_h^s(x; \bar{v}_{l-1}; \bar{v}^l) - \mathcal{L}'_{v^l}(0; 0; 0; 0)\bar{v}^l| \le \varepsilon |\bar{v}^l|,$$
 (51)

если $(x; \bar{v}_{l-1}; \bar{v}^l) \in Y_h$.

В-третьих, для любых двух точек $\bar{v}'_{l-1}, \bar{v}''_{l-1} \in \operatorname{cl} B_{N_{l-1}-n}(0,r_2/2h)$ и для каждой точки $x \in \operatorname{cl} B_n(0,\rho/2)$

$$T_h^s(x; \bar{v}_{l-1}'') - T_h^s(x; \bar{v}_{l-1}') = h^{-1} \left\{ \mathfrak{L}(x + he_s; v_{l-1}(f, x) + h\bar{v}_{l-1}''; v^l(f, x)) - \mathfrak{L}(x + he_s; v_{l-1}(f, x) + h\bar{v}_{l-1}'; v^l(f, x)) \right\}$$

$$= \left[\int_{0}^{1} \mathfrak{L}'_{v_{l-1}}(x + he_s; v_{l-1}(f, x) + h\bar{v}'_{l-1} + \tau h(\bar{v}''_{l-1} - \bar{v}'_{l-1}); v^l(f, x)) d\tau \right] (\bar{v}''_{l-1} - \bar{v}'_{l-1}). \tag{52}$$

В-четвертых,

$$T_h^s(x;0) = h^{-1} \{ \mathfrak{L}(x + he_s; v_{l-1}(f,x); v^l(f,x)) - \mathfrak{L}(x; v_{l-1}(f,x); v^l(f,x)) \},$$

 $x \in \operatorname{cl} B_n(0, \rho/2)$, и тем самым для $T_h^s(\cdot; 0)$ имеет место представление (45).

Наконец, из последнего и соотношений (52) вытекает, что для тех же значений переменных x, \bar{v}'_{l-1} и \bar{v}''_{l-1} выполняются неравенства

$$\left| T_h^s \left(x; \bar{v}_{l-1}'' \right) - T_h^s \left(x; \bar{v}_{l-1}' \right) \right| \le E_h^s (x) \left| \bar{v}_{l-1}'' - \bar{v}_{l-1}' \right|, \tag{53}$$

где

$$E_h^s(x) = \max_{(x:v_{l-1},v^l) \in cl} \left\| \mathcal{L}'_{v_{l-1}}(x;v_{l-1};v^l) \right\| = \Omega_1 < +\infty$$
 (54)

И

$$\left|T_h^s(x;0)\right| \le \max_{(x;v_{l-1};v^l)\in cl} \left\|\partial_{x_s} \mathfrak{L}(x;v_{l-1};v^l)\right\| = \Omega_2 < +\infty.$$
 (55)

Построим теперь продолжения операторов V_h^s и T_h^s , определенных соотношениями (49) и (50), в цилиндрическую область $B_n(0,\rho/2)\times\mathbb{R}^{N_l-n}\subset\mathbb{R}^{N_l}$ (второй оператор достаточно продолжить в N_{l-1} -мерную область $B_n(0,\rho/2)\times\mathbb{R}^{N_{l-1}-n}$), которые будут наследовать отмеченные выше свойства операторов V_h^s и T_h^s .

 $One pamop\ V_h^s$. Его продолжение есть отображение

$$\widehat{V}_h^s: B_n(0,\rho/2) \times \mathbb{R}^{N_l-n} \to \mathbb{R}^k$$

такое, что $\widehat{V}_h^s(y) = V_h^s(y)$, если $y \in \{\operatorname{cl} Y_h\} \cap \{B_n(0, \rho/2) \times \mathbb{R}^{N_l-n}\}$. А если $y = (x; \bar{v}_{l-1}; \bar{v}^l) \in \{B_n(0, \rho/2) \times \mathbb{R}^{N_l-n}\} \setminus \operatorname{cl} Y_h$, то

$$\widehat{V}_h^s(x; \bar{v}_{l-1}; \bar{v}^l) = V_h^s(x; v_{l-1}^*; v^{l*}) + \mathfrak{L}'_{v^l}(0; 0; 0)(\bar{v}^l - v^{l*}),$$

где $(v_{l-1}^*; v^{l*})$ — точка пересечения (в \mathbb{R}^{N_l-n}) границы множества $B_{N_{l-1}-n}(0, r_2/2h) \times B_{mn_l}(0, r_3/2h)$ и луча, выходящего из точки $(v_{l-1}(f, 0); v^l(f, 0)) = (0; 0) \in \mathbb{R}^{N_l-n}$ в направлении точки $(\bar{v}_{l-1}; \bar{v}^l)$.

 $One pamop T_h^s$. Продолжение

$$\widehat{T}_h^s: B_n(0, \rho/2) \times \mathbb{R}^{N_{l-1}-n} \to \mathbb{R}^k$$

строится следующим способом. Если $(x; \bar{v}_{l-1}) \in B_n(0, \rho/2) \times \operatorname{cl} B_{N_{l-1}-n}(0, r_2/2h)$, то $\widehat{T}_h^s(x; \bar{v}_{l-1}) = T_h^s(x; \bar{v}_{l-1})$. В случае же $(x; \bar{v}_{l-1}) \in \{B_n(0, \rho/2) \times \mathbb{R}^{N_{l-1}-n}\} \setminus \{B_n(0, \rho/2) \times \operatorname{cl} B_{N_{l-1}-n}(0, r_2/2h)\}$ мы полагаем

$$\widehat{T}_h^s(x; \bar{v}_{l-1}) = T_h^s(x; v_{l-1}^{**}),$$

где

$$v_{l-1}^{**} = \frac{r_2}{2h} \frac{\bar{v}_{l-1}}{|\bar{v}_{l-1}|}$$

— точка пересечения (в $\mathbb{R}^{N_{l-1}-n}$) граничной сферы шара $B_{N_{l-1}-n}(0,r_2/2h)$ и луча, выходящего из центра этого шара в направлении точки \bar{v}_{l-1} .

Не составляет труда проверить, что отображения \widehat{V}_h^s и \widehat{T}_h^s непрерывны (хотя, возможно, и потеряли свойство принадлежности классу C^1), при этом неравенство (51) остается справедливым и в случае \widehat{V}_h^s :

$$\left| \hat{V}_h^s(x; \bar{v}_{l-1}; \bar{v}^l) - \mathcal{L}'_{v^l}(0; 0; 0) \bar{v}^l \right| \le \varepsilon |\bar{v}^l|, \quad (x; \bar{v}_{l-1}; \bar{v}^l) \in B_n(0, \rho/2) \times \mathbb{R}^{N_l - n}. \quad (56)$$

По аналогичной причине легко показать, что соотношения (53) и (55) имеют место также и для операторов \widehat{T}_{h}^{s} , причем с теми же постоянными Ω_{1} и Ω_{2} :

$$\left| \widehat{T}_{h}^{s}(x; \bar{v}_{l-1}^{"}) - \widehat{T}_{h}^{s}(x; \bar{v}_{l-1}^{"}) \right| \le \Omega_{1} \left| \overline{v}_{l-1}^{"} - \bar{v}_{l-1}^{"} \right|, \tag{57}$$

$$|\widehat{T}_h^s(x;0)| (= |T_h^s(x;0)|) \le \Omega_2,$$
 (58)

 $x\in B_n(0,\rho/2),\ \bar v'_{l-1},\bar v''_{l-1}\in\mathbb R^{N_{l-1}-n}.$ Таким образом, мы пришли к следующей ситуации: система

$$\widehat{\mathfrak{L}}_{h}^{s}(x; v_{l-1}(\tilde{f}_{h}^{s}, x); v^{l}(\tilde{f}_{h}^{s}, x)) = \widehat{V}_{h}^{s}(x; v_{l-1}(\tilde{f}_{h}^{s}, x); v^{l}(\tilde{f}_{h}^{s}, x)) + \widehat{T}_{h}^{s}(x; v_{l-1}(\tilde{f}_{h}^{s}, x)) = 0$$

в силу неравенств (56)–(58) удовлетворяет условиям теоремы 2 (где сейчас D это оператор (44)), а отображение $\tilde{f}_h^s:B_n(0,\rho/2)\to\mathbb{R}^m$ является ее $(C^l$ -) реше-

Зафиксируем теперь положительное число τ , меньшее, чем $\min\{1, \rho/2\}$, и такое, что выполняется неравенство (23), в котором мы полагаем сейчас $E(x) = E_h^s(x)$, $x \in B_n(0,\tau)$ (другими словами, в (23) в обсуждаемом в данный момент случае $||E||_{q_0,B(x_0,\tau)} = \Omega_1 v_n^{1/q_0} \tau^{n/q_0}$), а в качестве эллиптического линейного дифференциального оператора D с постоянными коэффициентами мы, как и выше, выбираем оператор (44). Учитывая теорему 2 и замечание к ней, мы видим, что в шаровой окрестности $B_n(0,\tau)$ точки $0\in\mathbb{R}^n$ для отображения $\hat{f}_h^s|_{B_n(0,\tau)}$ выполняется неравенство (15). В то же время неравенства (54), (57) и (58), в которых постоянные Ω_1 и Ω_2 не зависят от параметра h, а также то обстоятельство, что из C^l -гладкости рассматриваемого нами решения fсистемы (1) и из способа подбора параметров ρ и γ вытекает равномерная по $h \leq \gamma, \ s = 1, 2, \dots, n$ и $x \in B_n(0, \rho/2)$ ограниченность величин

$$|v_{l-1}(\tilde{f}_h^s, x)| = \frac{|v_{l-1}(f, x + he_s) - v_{l-1}(f, x)|}{h},$$

позволяют (без затраты больших усилий) убедиться в следующем: неравенство (15) в нашем случае обретает вид

$$\left| \partial^{p_{l-1}} \tilde{f}_h^s(x') - \partial^{p_{l-1}} \tilde{f}_h^s(x'') \right| \le \Theta |x' - x''|^{\alpha}, \quad x', x'' \in B_n(0, \tau), \tag{59}$$

где постоянная Θ также не зависит от h (мы использовали здесь равенство (46)). Тем самым, устремляя h к нулю, мы убеждаемся в выполнении неравенства (59) и для частных производных l-го порядка решения f системы (1). Таким образом, произвол в выборе числа $\alpha \in]0,1[$ и точки $x_0 \in \text{dom } f$ позволяет утверждать, что теорема 1' доказана (а вместе с ней доказана и теорема 1).

Замечание. Исследование, осуществленное Л. Ниренбергом в [1], основывается на использовании идей из квазиконформного анализа. Как следует из вышеизложенного, наше исследование также зиждется на подобных идеях (но их использование у нас несколько отличается от того, что представлено в [1]). В самом деле, в том случае, когда для системы (5) выполнено условие

$$T(x; v_{l-1}) = 0 \quad ((x; v_{l-1}) \in U \times \mathbb{R}^{N_{l-1}-n}),$$

где $T(x; v_{l-1})$ — второе слагаемое в (6), ее решения в силу условий (a) и (b) являются решениями дифференциального неравенства

$$|Df(x)| = |\mathfrak{L}(x; v_{l-1}(f, x); v^l(f, x)) - Df(x)| \le \varepsilon |v^l(f, x)|$$
 (60)

(D- дифференциальный оператор из условия (a)). При этом решение неравенства (60) (при малом значении параметра ε), по нашему мнению, следует рассматривать как естественный аналог квазиконформного отображения. Изучение тех свойств решений дифференциальных неравенств (60) при малых ε , которые роднят эти решения с решениями эллиптических систем Dg(x)=0 линейных уравнений в частных производных с постоянными коэффициентами, как раз и составляет предмет исследований устойчивости в C^{l-1} -норме пучков решений систем линейных дифференциальных уравнений (см. [4, 5]).

В заключение отметим, что результаты настоящей работы анонсированы в статье [10].

ЛИТЕРАТУРА

- Nirenberg L. On a generalization of quasi-conformal mappings and its application to elliptic partial differential equations // Contributions to the Theory of Partial Differential Equations, Ann. Math. Studies. 1954. N 33. P. 95–100.
- 2. Morrey C. B., Jr. Second order elliptic systems of differential equations // Contributions to the Theory of Partial Differential Equations, Ann. Math. Studies. 1954. N 33. P. 101–159.
- Шварц Л. Комплексные аналитические многообразия. Эллиптические уравнения с частными производными. М.: Мир, 1964.
- 4. Копылов А. П. Об основах теории устойчивости в C^l -норме классов решений систем линейных уравнений с частными производными // Докл. РАН. 1999. Т. 365, № 5. С. 589–592.
- 5. Копылов А. П. Устойчивость в C^l -норме классов решений систем линейных уравнений с частными производными эллиптического типа // Сиб. мат. журн. 1999. Т. 40, № 2. С. 352–371.
- 6. Копылов А. П. О W_q^l -регулярности решений систем уравнений с частными производными, локально близких к эллиптическим системам линейных уравнений с постоянными коэффициентами // Докл. РАН. 1999. Т. 368, № 3. С. 303–306.
- Копылов А. П. О регулярности решений систем уравнений с частными производными, локально близких к эллиптическим системам линейных уравнений с постоянными коэффициентами. І // Сиб. мат. журн. 1999. Т. 40, № 4. С. 861–879.
- Копылов А. П. О регулярности решений систем уравнений с частными производными, локально близких к эллиптическим системам линейных уравнений с постоянными коэффициентами. II // Сиб. мат. журн. 2000. Т. 41, № 1. С. 98–117.
- **9.** Копылов А. П. Устойчивость в C-норме классов отображений. Новосибирск: Наука, 1990.
- 10. Копылов А. П. Устойчивость классов отображений и непрерывность по Гёльдеру старших производных решений эллиптических систем нелинейных уравнений с частными производными произвольного порядка // Докл. РАН. 2001. Т. 379, № 4. С. 442–446.

Статья поступила 25 мая 2001 г.

Копылов Анатолий Павлович

Институт математики им. С. Л. Соболева СО РАН, Новосибирск 630090 kopylov@math.nsc.ru