К ТЕОРЕМЕ КОМПАКТНОСТИ ДЛЯ ДИФФЕРЕНЦИАЛЬНЫХ ФОРМ

В. И. Кузьминов, И. А. Шведов

Аннотация: С. Киченассами указал условия, когда пространство W_p^k дифференциальных форм на замкнутом многообразии M с нормой $\|\omega\|_{W_p} = \|\omega\|_{L_p} + \|d\omega\|_{L_p}$ компактно вложено в пространство потоков F_p^k на M с нормой $\inf_{\varphi \in L_q} \{\|\omega - d\varphi\|_{L_q} + \|\varphi\|_{L_q}\}$. В работе получен вариант теоремы Киченассами для произвольных банаховых комплексов и, в частности, для эллиптических дифференциальных комплексов на замкнутом многообразии.

Ключевые слова: теоремы вложения, пространства Соболева дифференциальных форм, банаховы комплексы, эллиптические дифференциальные комплексы, рефлективные подкатегории

Пусть M — замкнутое ориентируемое гладкое n-мерное многообразие. В [1] С. Киченассами доказал, что для произвольного потока ω на M выполнено неравенство

$$\inf_{\omega\in L_q}\{\|\omega-d\varphi\|_{L_q}+\|\varphi\|_{L_q}\}\leq C\{\|\omega\|_{L_p}+\|d\omega\|_{L_p}\},$$

если $1 , <math>1 \le q < \infty$, 1/p - 1/q < 1/n.

Из этого неравенства следует, что пространство W^kL_p дифференциальных форм с нормой $\|\omega\|_{L_p}+\|d\omega\|_{L_p}$ вложено в пространство потоков F^kL_q с нормой $\inf_{\varphi\in L_q}\{\|\omega-d\varphi\|_{L_q}+\|\varphi\|_{L_q}\}$. Кроме того, в [1] показано, что это вложение компактно.

В настоящей работе установлено, что конструкция Киченассами тесно связана со свойством рефлективности подкатегории банаховых комплексов с непрерывными дифференциалами в категории всех банаховых комплексов. Предложен вариант вложения Киченассами для банаховых комплексов и найдены как достаточные, так и необходимые условия для компактности этого вложения. Получено обобщение теоремы Киченассами на случай пространств дифференциальных форм на компактном многообразии с краем. Указан вариант этой теоремы для дифференциальных эллиптических комплексов на замкнутом многообразии.

В дальнейшем оператором $T: X \to Y$ будем называть произвольное линейное отображение, заданное на линейном подпространстве $\mathrm{dom}\,T$ банахова пространства X и принимающее значения в банаховом пространстве Y.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 01–01–00795) и Совета по грантам Президента РФ для государственной поддержки ведущих научных школ (грант № 00–15–96165).

Будем использовать обозначения $\operatorname{Ker} T=\{x\in \operatorname{dom} T: Tx=0\}, \operatorname{Im} T=\{y\in Y: y=Tx, x\in \operatorname{dom} T\}.$ Пространство $\operatorname{dom} T$ будем считать снабженным нормой графика оператора T, а именно $\{\|x\|_X^2+\|Tx\|_Y^2\}^{1/2}.$ Пространство $\operatorname{dom} T$ банахово, если оператор T замкнут. Будем считать, что $\operatorname{dom} T=X$ в тех случаях, когда речь идет о непрерывном операторе $T:X\to Y$. Будем говорить, что последовательность в банаховом пространстве X частично сходится, если она содержит сходящуюся подпоследовательность.

Оператор T называют *нормально разрешимым*, если подпространство ${\rm Im}\,T$ замкнуто в Y. Из теоремы о замкнутом графике следует, что замкнутый оператор нормально разрешим тогда и только тогда, когда оператор $T^{-1}:{\rm Im}\,T\to X/{\rm Ker}\,T$ непрерывен.

Замкнутый оператор $T:X\to Y$ называется компактно разрешимым, если оператор $T^{-1}:\operatorname{Im} T\to X/\operatorname{Ker} T$ компактен. Всякий компактно разрешимый оператор нормально разрешим.

Замкнутый оператор T нормально разрешим тогда и только тогда, когда каждая ограниченная (фундаментальная) последовательность, лежащая в ${\rm Im}\,T$, может быть накрыта при отображении T ограниченной (фундаментальной) в X последовательностью. Замкнутый оператор T компактно разрешим тогда и только тогда, когда каждая ограниченная в ${\rm Im}\,T$ последовательность может быть накрыта при отображении T частично сходящейся последовательностью.

Следующая лемма доказана в [2].

Лемма 1. Замкнутый оператор T компактно разрешим тогда и только тогда, когда для каждой ограниченной в $\operatorname{dom} T$ последовательности x_n найдется лежащая в $\operatorname{dom} T$ и частично сходящаяся в X последовательность x_n' , для которой $Tx_n' = Tx_n$.

Лемма 2. Замкнутый плотно определенный оператор $T: X \to Y$ компактно разрешим тогда и только тогда, когда компактно разрешим сопряженный оператор $T^*: Y^* \to X^*$.

Доказательство. В [2] установлено, что оператор T^* компактно разрешим, если компактно разрешим оператор T. Докажем обратное утверждение. Пусть оператор T^* компактно разрешим. Тогда он нормально разрешим. Поскольку оператор T нормально разрешим в том и только в том случае, когда нормально разрешим оператор T^* [3, гл. IV, теорема 5.13], то T — нормально разрешимый оператор. Представим оператор T в виде композиции $T=i\circ \widetilde{T}\circ p$, где $p:X \to X/\operatorname{Ker} T$ — каноническая проекция на фактор-пространство, i: $\operatorname{Im} T \to Y - \operatorname{тождественное}$ вложение, оператор $\widetilde{T}: X/\operatorname{Ker} T \to \operatorname{Im} T$ индуцирован оператором T. Оператор \widetilde{T} замкнут и инъективно отображает dom \widetilde{T} на ${\rm Im}\, T$. Поэтому оператор $\widetilde{T}^{-1}: {\rm Im}\, T \to X/{\rm Ker}\, T$ непрерывен. Но тогда $(\widetilde{T}^*)^{-1}=(\widetilde{T}^{-1})^*$ [3, гл. III, теорема 5.30]. Поскольку p — непрерывный сюръективный оператор, а i — непрерывный оператор, то $T^* = p^* \circ \widetilde{T}^* \circ i^*$. Так как оператор T^* компактно разрешим, то компактно разрешим оператор \widetilde{T}^* и, следовательно, компактен оператор $(\widetilde{T}^*)^{-1} = (\widetilde{T}^{-1})^*$. По теореме Шаудера оператор \widetilde{T}^{-1} компактен, и поэтому оператор \widetilde{T} компактно разрешим. Следовательно, компактно разрешим оператор T. Лемма доказана.

Последовательность $A=\left(A^k,d_A^k\right)_{k\in\mathbb{Z}}$ банаховых пространств A^k и замкнутых плотно определенных операторов $d_A^k:A^k\to A^{k+1}$ называется банаховым комплексом, если $\operatorname{Im} d_A^{k-1}\subset \operatorname{Ker} d_A^k$ для каждого $k\in\mathbb{Z}$.

Морфизмом $f:A \to B$ банаховых комплексов называется последовательность непрерывных операторов $f^k:A^k\to B^k$, удовлетворяющая условиям $f^k(\operatorname{dom} d_A^k)\subset \operatorname{dom} d_B^k$ и $d_B^k f^k a=f^{k+1}d_A^k a$ для всех $a\in \operatorname{dom} d_A^k$, $k\in \mathbb{Z}$. Для каждого банахова комплекса A определены пространства когомологий

 $H^kA=\operatorname{Ker} d_A^k/\operatorname{Im} d_A^{k-1}$ и пространства редуцированных когомологий $\overline{H}^kA=$ $\operatorname{Ker} d_A^k / \overline{\operatorname{Im} d_A^{k-1}}$. Пространство $H^k A$ — топологическое векторное пространство, топология которого задана полунормой, индуцированной нормой пространства A^k , пространство $\overline{H}^k A$ банахово.

Для банахова комплекса A определен такой банахов комплекс WA = $(W^kA,d_{WA}^k)_{k\in\mathbb{Z}}$, для которого $W^kA=\mathrm{dom}\,d_A^k,d_{WA}^k=d_A^k$. Каждому морфизму банаховых комплексов $f:A\to B$ очевидным образом соответствует морфизм $Wf:WA\to WB$. Таким образом, W является функтором, действующим из категории банаховых комплексов в подкатегорию комплексов, чьи дифференциалы непрерывны.

Hadcmpoйкой над банаховым комплексом A называется банахов комплекс

 $SA = \left(S^k A, d_{SA}^k\right)$, для которого $S^k A = A^{k-1}$, $d_{SA}^k = -d_A^{k-1}$. Для банахов комплекса определен сопряженный банахов комплекс, для которого $(A^*)^k = (A^{-k})^*$, $d_{A^*}^k = \left(d_A^{-k-1}\right)^*$.

В дальнейшем в обозначениях будем опускать индексы в тех случаях, когда это не приводит к недоразумению.

Для произвольного банахова комплекса A определим банахов комплекс LA, полагая

$$L^k A = A^{k-1} \times A^k, \quad \|(a', a'')\|_{LA} = \{\|a'\|_A^2 + \|a''\|_A^2\}^{1/2}, \quad d_{LA}^k (a', a'') = (-a'', 0).$$

Для $a \in SWA$ положим $\gamma(a) = (a, da)$. Этим определен морфизм банаховых комплексов $\gamma:SWA\to LA$. Для каждого k отображение $\gamma^k:S^kWA\to L^kA$ является изометрией на замкнутое подпространство $\gamma^k(S^kWA)$ пространства L^kA . Дифференциалы комплексов SWA и LA непрерывны. Поэтому определен банахов комплекс $FA = LA/\gamma(SWA)$, имеющий непрерывные дифференциалы. Обозначим через $\varphi_A:LA\to FA$ каноническую проекцию.

Поскольку S, W и L — функторы, то и F является функтором. Этот функтор действует из категории банаховых комплексов в подкатегорию банаховых комплексов с непрерывными дифференциалами.

Формула $\psi_A a = \varphi_A(0,a)$ определяет морфизм $\psi_A : A \to FA$. Действительно, $\psi d_A a = \varphi(0, d_A a) = \varphi(-a, 0) = \varphi d_L(0, a) = d_{FA} \psi a.$

Лемма 3. Для каждого $k \in \mathbb{Z}$ оператор ψ_A^k отображает пространство A^k инъективно на плотное в F^kA множество.

Доказательство. Если $\psi a=0,$ то $(0,a)=(a',d_Aa')$ для некоторого $a'\in$ $\mathrm{dom}\,d_A$. Но тогда a'=0 и $a=d_Aa'=0$. Отображение ψ инъективно. Пусть $(a',a'')\in LA$ и $\varepsilon>0$. Ввиду плотной определенности оператора d_A найдется такое $a\in \mathrm{dom}\, d_A$, что $\|a'-a\|_A\leq \varepsilon$. Тогда $\|\varphi(a',a'')-\varphi(0,a''-d_Aa)\|_{FA}=$ $\|\varphi(a'-a,0)\|_{FA}\leq \varepsilon$. Установлена плотность пространства $\mathrm{Im}\,\psi_A$ в FA. Лемма доказана.

Предложение 1. Для произвольного банахова комплекса А и его морфизма $\alpha:A\to B$ в комплекс B c непрерывными дифференциалами существует единственный морфизм $\tilde{\alpha}:FA o B$ такой, что $\tilde{\alpha}\circ\psi_A=\alpha.$

Доказательство. Формула $\tilde{\alpha}^k \varphi^k(a',a'') = \alpha^k a'' - d_B \alpha^{k-1} a'$ задает непрерывные отображения $\tilde{\alpha}^k: F^k A \to B^k$. Так как $d_B \tilde{\alpha} \varphi(a', a'') = d_B \alpha^k a'' =$

 $\tilde{\alpha}\varphi(-a'',0)=\tilde{\alpha}\varphi d_{LA}(a',a'')=\tilde{\alpha}d_{FA}\varphi(a',a'')$, операторы $\tilde{\alpha}^k$ образуют морфизм $\tilde{\alpha}:FA\to B$. Единственность морфизма $\tilde{\alpha}$ следует из леммы 3. Предложение доказано.

Предложение 1 означает, что подкатегория банаховых комплексов с непрерывными дифференциалами рефлективна в категории банаховых комплексов.

Морфизм $j:A\to B$ банаховых комплексов будем называть вложением, если операторы j^k инъективны и выполнено следующее условие (Γ): если $ja\in \mathrm{dom}\, d_B$ и $d_Bja\in \mathrm{Im}\, j$, то $a\in \mathrm{dom}\, d_A$.

Вложение $j:A\to B$ банаховых комплексов будем называть допустимым, если для каждого $b\in {\rm dom}\, d_B$ существуют такие $a',a''\in A,$ что $ja'\in {\rm dom}\, d_B$ и $b=d_Bja'+ja''.$

Предложение 2. Для произвольного банахова комплекса A морфизм ψ_A : $A \to FA$ является допустимым вложением. Если $\alpha: A \to B$ — допустимое вложение и комплекс B имеет непрерывные дифференциалы, то морфизм $\tilde{\alpha}: FA \to B$ является топологическим изоморфизмом.

ДОКАЗАТЕЛЬСТВО. Инъективность операторов ψ_A^k установлена в лемме 3. Покажем, что выполнено условие (Г). Пусть $d_{FA}\psi_A a = \psi_A a_1$. Тогда $\varphi(0,a_1) = \varphi(-a,0)$ и, следовательно, $\varphi(a,a_1) = 0$, $a \in \text{dom } d_A$ и $d_A a = a_1$. Установлено, что ψ_A — вложение.

Пусть $\varphi(a_1, a_2)$ — произвольный элемент пространства $F^k A$. Тогда

$$\varphi(a_1,a_2) = \varphi(a_1,0) + \varphi(0,a_2) = \varphi d_L(0,-a_1) + \varphi(0,a_2) = d_{FA}\psi_A(-a_1) + \psi_A a_2.$$

Вложение ψ_A допустимо.

Пусть теперь $\alpha:A\to B$ — допустимое вложение и B — комплекс с непрерывными дифференциалами. В соответствии с доказательством предложения 1 морфизм $\tilde{\alpha}:FA\to B$ задан формулой $\tilde{\alpha}\varphi(a',a'')=\alpha a''-d_B\alpha a'$. Если $\tilde{\alpha}\varphi(a',a'')=0$, то по свойству (Γ) вложения α имеем $\alpha a'\in \mathrm{dom}\, d_A$ и $d_Aa'=a''$. В этом случае $\varphi(a',a'')=0$. Морфизм $\tilde{\alpha}$ инъективен.

Для произвольного $b \in B$ существуют такие a', a'', что $b = d_B \alpha a' + \alpha a''.$ Но тогда $b = \tilde{\alpha} \varphi(-a', a'')$. Установлено, что морфизм $\tilde{\alpha}$ сюръективен. По теореме Банаха $\tilde{\alpha}$ — топологический изоморфизм. Предложение доказано.

Следствие. Если A — банахов комплекс c непрерывными дифференциалами, то $\psi_A:A\to FA$ — топологический изоморфизм.

Пусть $j:A\to B$ — произвольное допустимое вложение. Для $b\in W^kB$, $b=d_Bja'+ja''$ положим $\chi_j^kb=\varphi(-a',a'')$. Элемент χ_j^kb не зависит от выбора представления элемента b в виде $b=d_Bja'+ja''$. В самом деле, пусть $b=d_Bja_1+ja_2$ — второе такое представление. Тогда $j(a_2-a'')=d_Bj(a'-a_1)$. В силу условия (Γ) $d_A(a'-a_1)=a_2-a''$. Следовательно, $\varphi(-a',a'')=\varphi(-a_1,a_2)$.

Лемма 4. Для произвольного допустимого вложения $j: A \to B$ и произвольного $k \in \mathbb{Z}$ существует константа C_k , удовлетворяющая следующему условию: для любого $b \in W^k B$ существуют такие $a', a'' \in A$, что $b = d_B j a' + j a''$ и $\|a'\|_A \leq C_k \|b\|_{WB}$, $\|a''\|_A \leq C_k \|b\|_{WB}$.

Доказательство. Операторы $d_B^k \circ j^k$ замкнуты, и поэтому пространства $X^k = \mathrm{dom} \big(d_B^k \circ j^k \big)$ банаховы. Формула $\alpha(a',a'') = d_B j a' + j a''$ задает сюръективный непрерывный оператор $\alpha: X^{k-1} \times X^k \to W^k B$. Используя теорему Банаха о гомоморфизме, заключаем, что искомая константа C_k существует. Лемма доказана.

Лемма 5. Для произвольного допустимого вложения $j:A\to B$ операторы $\chi_j^k:W^kB\to F^kA$ образуют вложение комплекса WB в FA.

Доказательство. Линейность отображений χ_j^k легко следует из определений. Если $\chi_j b = 0, \ b = d_B j a' + j a'',$ то $\varphi(-a', a'') = 0$ и поэтому $a' \in WA, \ da' = -a'', \ b = -j da' + j a'' = 0.$ Установлено, что отображения χ_j^k инъективны. По лемме 4 эти отображения непрерывны.

Пусть $b \in WB$ и $b = d_B j a' + j a''$. Тогда

$$d_{FA}\chi_j b = d_{FA}\varphi(-a', a'') = \varphi d_{LA}(-a', a'') = \varphi(-a'', 0),$$
$$\chi_j d_B b = \chi_j d_B j a'' = \varphi(-a'', 0).$$

Установлено, что χ_j — морфизм комплексов. Лемма доказана.

Замечание. Тождественное вложение $Id_A:A\to A$ является допустимым вложением. Будем использовать обозначение χ_A вместо χ_{Id_A} . Легко проверить, что для произвольного допустимого вложения $j:A\to B$ $\chi_j\circ W(j)=\chi_A, F(j)\circ \chi_j=\chi_B$. Кроме того, $\chi_A:WA\to FA$ является ограничением оператора $\psi_A:A\to FA$.

Лемма 6. Для произвольного допустимого вложения $j:A\to B$ отображения $H^k(j):H^kA\to H^kB$ являются топологическими изоморфизмами.

Доказательство. Будем обозначать символом [z] элемент когомологий, представленный циклом z. Пусть $[z] \in H^kA$ и H(j)[z] = 0. Тогда $jz = d_Bb$ для некоторого $b \in WB$. Представим элемент b в виде $b = d_Bja' + ja''$. Так как $jz = d_Bja''$, по условию (Γ) $a'' \in WA$ и $z = d_Aa''$, [z] = 0. Установлено, что отображения $H^k(j)$ инъективны.

Пусть $h \in H^kB$. Найдется такой цикл $u \in WB$, что [u] = h и $\|u\|_B \le 2\|h\|_{HB}$. По лемме 4 $u = d_Bja' + ja''$, где $\|a'\|_A \le C_k\|u\|_B$, $\|a''\|_A \le C_k\|u\|_B$. Тогда $d_Bja'' = 0$. По свойству (Γ) $a'' \in WA$ и $d_Aa'' = 0$. Кроме того, [ja''] = h и $\|[a'']\|_{HA} \le 2C_k\|h\|_{HB}$. Установлено, что отображения $H^k(j)$ сюръективны и отображения $(H^k(j))^{-1}$ непрерывны. Непрерывность отображений $H^k(j)$ следует из непрерывности отображений j^k . Лемма доказана.

Лемма 7. Для произвольного допустимого вложения $j:A\to B$ отображения $H^k(\chi_j):H^kB\to H^kFA$ являются топологическими изоморфизмами.

Доказательство. Согласно сделанному выше замечанию $H(\chi_j)\circ H(j)=H(\psi_A)$. По предложению 2 ψ_A — допустимое вложение. По лемме 6 H(j) и $H(\psi_A)$ — топологические изоморфизмы. Следовательно, $H(\chi_j)$ — топологический изоморфизм. Лемма доказана.

Теорема 1. Пусть $j:A\to B$ — произвольное допустимое вложение. Тогда 1) если для некоторого k операторы $d_B^k\circ j^k$ и $d_B^{k-1}\circ j^{k-1}$ компактно разрешимы и $\dim H^kB<\infty$, то оператор $\chi_j^k:W^kB\to F^kA$ компактен;

- 2) если χ_j^k компактный оператор, то оператор $d_B^k \circ j^k$ компактно разрешим;
- j) если χ_j^k компактный оператор и оператор d_A^{k-1} нормально разрешим, то $d_B^{k-1}\circ j^{k-1}$ компактно разрешимый оператор и $\dim H^kB<\infty$.

Доказательство. 1. Пусть b_n — произвольная ограниченная последовательность в W^kB . Так как вложение j допустимо, то $\operatorname{Im} d_B^k = \operatorname{Im} (d_B^k \circ j^k)$. В силу компактной разрешимости оператора $d_B^k \circ j$ найдется частично сходящаяся в A^k последовательность a_n , для которой $d_B^k j a_n = d_B^k b_n$. Переходя к подпоследовательности, будем считать, что последовательность a_n сходится в A^k .

Поскольку $\chi_j^k j a_n = \varphi(0,a_n)$, последовательность $\chi_j^k j a_n$ сходится в $F^k A$. Пусть $z_n = b_n - j^k a_n$. Последовательность z_n ограничена в B^k , и $d_B^k z_n = 0$. Так как $\dim H^k B < \infty$, то в $\ker d_B^k$ найдется такое конечномерное подпространство H, что $\ker d_B^k = \operatorname{Im} d_B^{k-1} \oplus H$. Представим каждый элемент z_n в виде $z_n = u_n + h_n$, где $u_n \in \operatorname{Im} d_B^{k-1}$ и $h_n \in H$. Последовательность h_n ограничена в B и лежит в конечномерном пространстве, значит, она частично сходится в B. Поскольку $d_B^k h_n = 0$, последовательность h_n частично сходится в $W^k B$. В силу непрерывности отображения χ_j^k частично сходится последовательность $\chi_j^k h_n$. Переходя к подпоследовательности, будем считать, что последовательность $\chi_j^k h_n$ сходится.

Последовательность u_n ограничена в B^k и лежит в $\mathrm{Im}\, d_B^{k-1}=\mathrm{Im} \big(d_B^{k-1}\circ j^{k-1}\big)$. В силу компактной разрешимости оператора $d_B^{k-1}\circ j^{k-1}$ существует частично сходящаяся в A^{k-1} последовательность v_n , для которой $d_B^{k-1}j^{k-1}v_n=u_n$. Поскольку $\chi_j^k u_n=\varphi(-v_n,0)$, последовательность $\chi_j^k (u_n)$ частично сходится. Но тогда частично сходится и последовательность $\chi_j^k b_n=\chi_j^k j^k a_n+\chi_j^k h_n+\chi_j^k u_n$. Установлено, что оператор χ_j^k компактен.

- 2. Пусть a_n произвольная ограниченная последовательность в $\mathrm{dom}(d_B^k \circ j^k)$. Последовательность $j^k a_n$ ограничена в $W^k B$, $\chi_j^k j^k a_n = \varphi(0,a_n)$ и оператор χ_j^k компактен, так что последовательность $\varphi(0,a_n)$ частично сходится в $F^k A$. Это означает существование такой последовательности c_n в $W^{k-1} A$, что последовательность $(c_n,a_n+d_A^{k-1}c_n)$ частично сходится в A и $d_B^k j^k (a_n+d_A^{k-1}c_n)=d_B^k j^k a_n$. По лемме 1 оператор $d_B^k \circ j^k$ компактно разрешим.
- 3. Пусть a_n произвольная ограниченная последовательность в $\mathrm{dom}(d_B^{k-1}\circ j^{k-1})$. Тогда $d_B^{k-1}j^{k-1}a_n$ ограниченная последовательность в W^kB . В силу компактности оператора χ_j^k можно считать, что последовательность $\varphi(-a_n,0)$ сходится в F^kA . Тогда найдется такая последовательность c_n в $W^{k-1}A$, что последовательность $(c_n-a_n,d_A^{k-1}c_n)$ сходится в L^kA . В силу нормальной разрешимости оператора d_A^{k-1} найдется такая сходящаяся в $W^{k-1}A$ последовательность x_n , что $d_A^{k-1}x_n=d_A^{k-1}c_n$. Тогда последовательность $a_n-c_n+x_n$ сходится в A^{k-1} и $d_B^{k-1}j^{k-1}(a_n-c_n+x_n)=d_B^{k-1}j^{k-1}a_n$. По лемме 1 оператор $d_B^{k-1}\circ j^{k-1}$ компактно разрешим.

Из условия нормальной разрешимости оператора d_A^{k-1} следует, что пространство H^kA отделимо (хаусдорфово). По лемме 6 отделимо пространство H^kB . Из условия компактности оператора χ_j^k вытекает, что оператор $H^k(\chi_j)$: $H^kB \to H^kFA$ компактен. По лемме 7 $H^k(\chi_j)$ — топологический изоморфизм. Но тогда $\dim H^kB < \infty$. Теорема доказана.

Пусть A^* — банахов комплекс, сопряженный к банахову комплексу A. Определим спаривание пространств L^kA и $L^{-k}S^{-1}A^*$, полагая

$$\langle (a', a''), (f', f'') \rangle = \langle a', f'' \rangle + \langle a'', f' \rangle. \tag{1}$$

Лемма 8. Для произвольного банахова комплекса A комплекс $LS^{-1}A^*$ сопряжен к комплексу LA относительно спаривания (1). При этом подпространство $\gamma_{S^{-1}A^*}(W^{-k-1}A^*)$ является аннулятором подпространства $\gamma_A(W^{k-1}SA)$.

Доказательство. С точностью до обозначений эта лемма совпадает со следующим известным утверждением [3, гл. III, $\S 5$, п. 5]: пусть T — плотно определенный оператор, тогда обратный график оператора $-T^*$ совпадает с аннулятором графика оператора T. Лемма доказана.

Следствие. Спаривание (1) индуцирует спаривание

$$\langle a, \varphi_{A^*}(f, g) \rangle = -\langle a, g \rangle + \langle d_A a, f \rangle \tag{2}$$

пространств $W^k A$ и $F^{-k} A^*$, а также спаривание

$$\langle \varphi_A(a_1, a_2), f \rangle = -\langle a_1, d_{A^*} f \rangle + \langle a_2, f \rangle \tag{3}$$

пространств F^kA и $W^{-k}A^*$. Относительно этих спариваний пространство $F^{-k}A^*$ сопряжено к W^kA , а пространство $W^{-k}A^*$ сопряжено к F^kA .

Вложение $j:A\to B$ будем называть *регулярным*, если существуют морфизм $R:B\to A$ и последовательность непрерывных операторов $\Pi=(\Pi^k:B^k\to A^{k-1})_{k\in\mathbb{Z}}$ такие, что

$$b = jRb + d_B j\Pi b + j\Pi d_B b \tag{4}$$

для каждого $b \in WB$.

Каждое регулярное вложение допустимо. Для регулярного вложения j

$$\chi_j b = \varphi(-\Pi b, Rb + \Pi d_B b). \tag{5}$$

Если $a \in \text{dom}(d_B \circ j)$, то по формуле (4)

$$ja = jRja + d_Bj\Pi ja + j\Pi d_B ja. \tag{6}$$

Поскольку все слагаемые в (6), кроме $d_B j \Pi j a$, принадлежат Im j, по условию (Γ) $d_B j \Pi j a = j d_A \Pi j a$. Поэтому

$$a = Rja + d_A \Pi ja + \Pi d_B ja \tag{7}$$

для любого $a \in \text{dom}(d_B \circ j)$.

Если $a \in WA$, то формула (7) дает равенство

$$a = Rja + d_A \Pi ja + \Pi j d_A a. \tag{8}$$

Формулы (4) и (8) означают, что $W(j):WA\to WB$ и $W(R):WB\to WA-$ взаимно обратные гомотопические эквивалентности коцепных комплексов WA и WB.

Вложение $j:A\to B$ назовем *плотным*, если $j(W^kA)$ плотно в W^kB для каждого $k\in\mathbb{Z}.$

Лемма 9. Для любого плотного регулярного вложения $j:A\to B$ морфизм $j^*:B^*\to A^*$ является регулярным вложением.

Доказательство. Из условия плотности вложения j следует, что подпространство $\operatorname{Im} j^k$ плотно в B^k . Поэтому морфизм j^* инъективен. Покажем, что для j^* выполнено условие (Γ). Пусть $f \in B^*$, $j^*f \in \operatorname{dom} d_A^*$ и $d_A^*j^*f = j^*g$. Тогда для любого $a \in \operatorname{dom} d_A$ выполнено равенство $\langle jd_Aa, f \rangle = \langle ja, g \rangle$. Ввиду плотности подпространства j(WA) в WB получаем, что $\langle d_Bb, f \rangle = \langle b, g \rangle$ для любого $b \in \operatorname{dom} d_B$. Но тогда $f \in \operatorname{dom} d_B^*$ и $d_B^*f = g$.

Пусть для вложения j выполнена формула (4). Для произвольных $f \in WA^*$ и $a \in WA$ по формуле (8) имеем

$$\langle d_A a, j^* \Pi^* f \rangle = \langle \Pi j d_A a, f \rangle = \langle a - R j a - d_A \Pi j a, f \rangle = \langle a, f - j^* R^* f - j^* \Pi^* d_A^* f \rangle.$$

Следовательно, $j^*\Pi^*f\in \mathrm{dom}\, d_A^*$ и

$$d_A^* j^* \Pi^* f = f - j^* R^* f - j^* \Pi^* d_A^* f.$$
(9)

Лемма доказана.

Лемма 10. Если $j:A\to B$ — плотное регулярное вложение, то $(\chi_j^k)^*=-\chi_{j^*}^{-k}$.

Доказательство. Пусть $b \in W^k B, \ f \in W^{-k} A^*$. Используя равенства (5) и (3), получаем

$$\langle \chi_i b, f \rangle = \langle \varphi(-\Pi b, Rb + \Pi d_B b, f \rangle = \langle \Pi b, d_{A^*} f \rangle + \langle Rb + \Pi d_B b, f \rangle.$$

Аналогично равенства (9), (5) и (2) дают

$$\begin{split} \langle b, \chi_{j^*} f \rangle &= \langle b, \varphi(-\Pi^* f, R^* f + \Pi^* d_A^* f) \rangle \\ &= -\langle b, R^* f + \Pi^* d_A^* f \rangle - \langle d_B b, \Pi^* f \rangle = -\langle R b + \Pi d_B b, f \rangle - \langle \Pi b, d_{A^*} f \rangle. \end{split}$$

Лемма доказана.

Теорема 2. Для плотного регулярного вложения $j:A\to B$ оператор $\chi_j^k:W^kA\to F^kA$ компактен тогда и только тогда, когда операторы $d_B^k\circ j^k$ и $d_B^{k-1}\circ j^{k-1}$ компактно разрешимы и $\dim H^kB<\infty$.

Доказательство. В теореме 1 доказаны достаточность указанных условий для компактности оператора χ^k_j и необходимость одного из условий, а именно условия компактной разрешимости оператора $d^k_B \circ j^k$. Докажем необходимость остальных условий.

Пусть оператор χ_j^k компактен. По лемме 10 компактен оператор $\chi_{j^*}^{-k}$. По теореме 1 компактно разрешим оператор $d_{A^*}^{-k}\circ(j^*)^{-k}=(d_A^{k-1})^*\circ(j^k)^*=(j^k\circ d_A^{k-1})^*$. Так как $j^k\circ d_A^{k-1}\subset d_B^{k-1}\circ j^{k-1}$ и подпространство $\mathrm{Im}(j^k\circ d_A^{k-1})$ плотно в $\mathrm{Im}(d_B^{k-1}\circ j^{k-1})$ ввиду плотности вложения j, то $(d_B^{k-1}\circ j^{k-1})^*\subset (j^k\circ d_A^{k-1})^*$ и $\mathrm{Ker}(d_B^{k-1}\circ j^{k-1})^*=\mathrm{Ker}(j^k\circ d_A^{k-1})^*$. При этих условиях из компактной разрешимости оператора $(j^k\circ d_A^{k-1})^*$ следует компактная разрешимость оператора $(d_B^{k-1}\circ j^{k-1})^*$. По лемме 2 компактно разрешим оператор $d_B^{k-1}\circ j^{k-1}$.

Из компактной разрешимости оператора $d_B^{k-1} \circ j^{k-1}$ следует его нормальная разрешимость. А поскольку $\operatorname{Im}(d_B^{k-1} \circ j^{k-1}) = \operatorname{Im} d_B^{k-1}$, нормально разрешим и оператор d_B^{k-1} . По теореме 1 $\dim H^{k-1}B < \infty$. Теорема доказана.

Теорема 3. Пусть $j:A\to B$ — регулярное вложение, для которого операторы R^k и Π^k компактны для каждого $k\in\mathbb{Z}$. Тогда операторы χ^k_j компактны.

Доказательство. Пусть a_n — ограниченная в $\mathrm{dom}(d_B \circ j)$ последовательность. По формуле (7) $a_n = Rja_n + \Pi d_Bja_n + d_A\Pi ja_n$. В силу компактности операторов R и Π последовательность $a'_n = Rja_n + \Pi d_Bja_n$ частично сходится в A. Так как $d_Bjd_A\Pi ja_n = d_Bd_Bj\Pi ja_n = 0$, то $d_Bja_n = d_Bja'_n$ и по лемме 1 оператор d_Bj компактно разрешим.

Как отмечено в доказательстве теоремы 2, из компактной разрешимости оператора $d_B \circ j$ следует нормальная разрешимость оператора d_B . Поэтому пространства когомологий H^kB отделимы (банаховы). Для произвольной ограниченной последовательности h_n в H^kB выберем ограниченную последовательность циклов z_n такую, что $[z_n] = h_n$. По формуле (4) $z_n = jRz_n + d_Bj\Pi b$, $[z_n] = [jRz_n]$. В силу компактности оператора R последовательность $[jRz_n]$ частично сходится. Установлено, что всякая ограниченная последовательность в банаховом пространстве H^kB частично сходится. Это возможно только в том случае, когда $\dim H^kB < \infty$. По теореме 1 операторы χ_j^k компактны. Теорема доказана.

ПРИМЕР. Пусть $T:X\to Y$ — плотно определенный замкнутый оператор. Рассмотрим комплекс A, для которого $A^0=X$, $A^1=Y$, $A^k=0$ при $k\neq 0,1$, $d^0_A=T$. В этом случае оператор χ^0_A совпадает с тождественным вложением dom T в X. По теореме 1 оператор этого вложения компактен тогда и только тогда, когда оператор T компактно разрешим и dim Ker $T<\infty$. Оператор χ^1_A является композицией канонического вложения слагаемого Y в сумму $X\oplus Y$ и канонической проекции $X\oplus Y\to X\oplus Y/\Gamma$, где Γ — график оператор T. По теореме 2 этот оператор компактен тогда и только тогда, когда оператор T компактно разрешим и $\dim(Y/\operatorname{Im} T)<\infty$.

Пусть M — замкнутое компактное n-мерное гладкое многообразие. Будем использовать обозначение D'(M,E) для пространства сечений распределений дифференцируемого векторного расслоения E над M. Пусть $pdo_m(E \to F)$ — множество всех классических псевдодифференциальных операторов порядка m, действующих из сечений расслоения E в сечения расслоения F. На замкнутом компактном многообразии каждый оператор $T \in pdo_m(E \to F)$ является оператором, действующим из D'(M,E) в D'(M,F). При этом он переводит $C^\infty(M,E)$ в $C^\infty(M,F)$. Будем рассматривать псевдодифференциальные операторы как операторы, действующие в общих соболевских пространствах $H_p^s(M,E)$ [4, п. 1.2.1.2]. Так как $H_p^s(M,E) \subset D'(M,E)$, для любых $s,r \in \mathbb{R}$ и $p,q \in (1,\infty)$ определено сужение $T:H_p^s(M,E) \to H_q^r(M,F)$ оператора $T:D'(M,E) \to D'(M,F)$. При этом предполагаем, что для этого сужения dom $T=\left\{u \in H_p^s(M,E): Tu \in H_q^r(M,F)\right\}$. Для каждого $T \in pdo_m(E \to F)$ оператор $T:H_p^s(M,E) \to H_q^r(M,F)$ замкнут и плотно определен. Если при этом r=s-m и p=q, то этот оператор непрерывен [4, п. 2.3.2.5].

Для пространств $H_p^s(M,E)$ справедлива следующая теорема вложения [5, п. 4.6.2]: если $r \leq s$ и $\frac{1}{p} - \frac{1}{q} \leq \frac{s-r}{n}$, то $H_p^s(M,E) \subset H_q^r(M,F)$, причем оператор этого вложения непрерывен. Если при этом r < s, то оператор вложения компактен [4, п. 1.2.1.2].

Пусть $E=(E^k,P^k)_{k\in\mathbb{Z}}$ — дифференциальный комплекс над $M,P^k\in do_m(E^k\to E^{k+1})$ — дифференциальные операторы порядка m>0 (m одно и то же для всех k). Рассматривая P^k как операторы $P^k:H^r_p(M,E^k)\to H^r_p(M,E^{k+1})$, получаем банахов комплекс $H^r_p(M,E)=(H^r_p(M,E^k),P^k)_{k\in\mathbb{Z}}$.

Формула $\lambda^k \varphi(u_1, u_2) = u_2 - P^{k-1} u_1$ корректно определяет линейное отображение $\lambda^k : F^k H_p^r(M, E) \to D'(M, E^k)$. Легко проверить, что это отображение инъективно и $\text{Im } \lambda^k$ совпадает с пространством

$$\widetilde{F}^kH^r_p(M,E)=\{u\in D'(M,E^k):\|u\|_{\widetilde{F}}<\infty\},$$

где

$$\|u\|_{\widetilde{F}} = \inf_{v \in D'(M, E^{k-1})} \{ \|u + P^{k-1}v\|_{H_p^r}^2 + \|v\|_{H_p^r}^2 \}^{1/2}.$$

Отображение λ^k является изометрией пространства $F^kH^r_p(M,E)$ на пространство $\widetilde{F}^kH^r_n(M,E)$, снабженное нормой $\|\cdot\|_{\widetilde{F}}$.

Теорема 4. Пусть E — эллиптический дифференциальный комплекс над M,

$$s \le r + m, \quad \frac{1}{p} - \frac{1}{q} \le \frac{r + m - s}{n}. \tag{10}$$

Тогда $W^k H^r_p(M,E) \subset \widetilde{F}^k H^s_q(M,E)$, причем оператор этого вложения непрерывен. Если к тому же s < r + m, то этот оператор компактен.

ДОКАЗАТЕЛЬСТВО. По теореме вложения $H^s_q(M,E)\subset H^{s-m}_q(M,E)$ и поэтому определено вложение $j:H^s_q(M,E)\to H^{s-m}_q(M,E)$ банаховых комплексов.

Эллиптический комплекс E обладает параметриксом [6, п. 2.6.4]. Значит, существуют такие псевдодифференциальные операторы $R^k \in pdo_{-\infty}(E^k \to E^k)$ и $V^k \in pdo_{-m}(E^k \to E^{k-1})$, что

$$PVu + VPu = u - Ru \tag{11}$$

для любого $u \in D'(M, E)$.

Операторы

$$R^k: H^{s-m}_q(M,E^k) \rightarrow H^s_q(M,E^k), \quad V^k: H^{s-m}_q(M,E^k) \rightarrow H^s_q(M,E^{k-1})$$

непрерывны. Поэтому из формулы (11) следует, что вложение j регулярно. Следовательно, операторы $\chi_j^k: W^k H_q^{s-m}(M,E) \to F^k H_q^s(M,E)$ непрерывны. Легко проверить, что отображение $\lambda^k \circ \chi^k$ совпадает с тождественным вложением $W^k H_q^{s-m}(M,E) \to \widetilde{F}^k H_q^s(M,E)$. По теореме вложения $H_p^r(M,E^k) \subset H_q^{s-m}(M,E^k)$, если выполнены условия (10), причем оператор этого вложения непрерывен. Этот оператор компактен, если при этом r>s-m. Значит, $W^k H_p^r(M,E) \subset W^k H_q^{s-m}(M,E) \subset \widetilde{F}^k H_q^s(M,E)$. Оператор этого вложения непрерывен, если выполнены условия (10), и компактен, если к тому же r>s-m. Теорема доказана.

В частном случае, когда $E=\Lambda T^*M$ — комплекс де Рама на многообразии $M,\ r=s=0$, теорема 4 совпадает с основным результатом работы [1]: если $1/p-1/q\le 1/n$, то $W^kL_p(M,E)\subset \widetilde F^kL_q(M,E)$ и оператор этого вложения компактен.

Покажем, что этот результат Киченассами справедлив для компактных многообразий с краем. Пусть M — компактное n-мерное гладкое многообразие, $L_p(M)$ — банахов L_p -комплекс де Рама на M. Можно считать, что M — область с гладкой границей в некотором компактном замкнутом многообразии \widetilde{M} . В качестве \widetilde{M} можно рассмотреть дубль многообразия M. Как и в случае замкнутого многообразия \widetilde{M} , определены пространства $\widetilde{F}^k L_p(M)$, состоящие из тех потоков ω на int M, для которых $\|\omega\|_{\widetilde{F}} < \infty$, где

$$\|\omega\|_{\widetilde{F}} = \inf_{\varphi \in L_p^{k-1}(M)} \{\|\omega - d\varphi\|_{L_p}^2 + \|\varphi\|_{L_p}^2\}^{1/2}.$$

Существует непрерывный оператор $\alpha:W^kL_p(M)\to W^kL_p(\widetilde{M})$ такой, что $\alpha\omega|_M=\omega$ для каждой формы $\omega\in W^kL_p(M)$ [7]. Пусть $\beta:\widetilde{F}^kL_q(\widetilde{M})\to\widetilde{F}^kL_q(M)$ — оператор ограничения, $i:W^kL_p(\widetilde{M})\to\widetilde{F}^kL_q(\widetilde{M})$ — оператор вложения. При $1/p-1/q\le 1/n$ оператор $\beta\circ i\circ\alpha:W^kL_p(M)\to\widetilde{F}^kL_q(M)$ определен и компактен. Этот оператор совпадает с оператором вложения $W^kL_p(M)\to\widetilde{F}^kL_q(M)$.

ЛИТЕРАТУРА

- 1. Kichenassamy S. Compactness theorems for differential forms $/\!/$ Comm. Pure Appl. Math. 1989. V. 42, N 1. P. 47–53.
- 2. Гольдштейн В. М., Кузьминов В. И., Шведов И. А. О нормальной и компактной разрешимости линейных операторов // Сиб. мат. журн. 1989. Т. 30, № 5. С. 49–59.
- 3. Като Т. Теория возмущений линейных операторов. М.: Мир, 1972.
- 4. Ремпель Ш., Шульце Б. В. Теория индекса эллиптических задач. М.: Мир, 1986.

- **5.** *Трибель X.* Теория интерполяции, функциональные пространства, дифференциальные операторы. М.: Мир, 1980.
- **6.** Тарханов Н. Н. Метод параметрикса в теории дифференциальных комплексов. Новосибирск: Наука, 1990.
- 7. Гольдштейн В. М., Кузьминов В. И., Шведов И. А. Интегральное представление интеграла дифференциальной формы // Функциональный анализ и математическая физика. Новосибирск: Ин-т математики СО РАН, 1985.

Статья поступила 1 ноября 2002 г.

Кузъминов Владимир Иванович, Шведов Игоръ Александрович Институт математики им. С. Л. Соболева СО РАН, пр. Коптюга, 4, Новосибирск 630090 kuzminov@math.nsc.ru, shvedov@math.nsc.ru