СТАБИЛИЗИРУЕМОСТЬ В АСИМПТОТИЧЕСКИ КОНЕЧНОМЕРНЫХ ПОЛУГРУППАХ

К. В. Сторожук

Аннотация: Изучается полугруппа φ линейных операторов, действующих на банаховом пространстве X, удовлетворяющая условию: $\operatorname{codim} X_0 < \infty$, где $X_0 = \{x \in X \mid \varphi_t(x) \underset{t \to \infty}{\longrightarrow} 0\}$. Показано, что X_0 при этих условиях замкнуто. Установлены некоторые свойства асимптотического поведения подпространств, дополняющих X_0 в пространстве X.

Ключевые слова: полугруппа линейных операторов, инвариантное подпространство полугруппы.

Предварительные определения и формулировки результатов

Пусть X — банахово пространство, $\{\varphi_t: X \to X \mid t \geq 0\}$ — полугруппа линейных операторов, т. е. $\varphi_t \circ \varphi_q = \varphi_{t+q}$. Всюду предполагаем, что полугруппа действует непрерывно при $0 < t < \infty$, т. е. для каждого вектора $v \in X$ функция $t \mapsto \varphi_t(v)$ непрерывна при t > 0. Полугруппа называется *ограниченной*, если все операторы φ_t ограничены по норме некоторой константой $C < \infty$.

Для каждого вектора $v \in X$ будем писать $v_t = \varphi_t(v)$, такое же сокращение сделаем для произвольных подмножеств в X.

Положим $X_0=\{x\in X\mid x_t\underset{t\to\infty}{\longrightarrow}0\}.$ Пространство X_0 φ_t -инвариантно, т. е. $\varphi_t(X_0)\subset X_0.$

Говорим, что полугруппа acumnmomuчески конечномерна, если $codim X_0 = n < \infty$.

Несмотря на то, что пространство X_0 состоит из векторов, стремящихся к нулю в пределе, сужение полугруппы на X_0 не обязано быть ограниченной полугруппой (а пространство X_0 — замкнутым подпространством в X), пример 1. Однако для асимптотически счетномерных полугрупп X_0 замкнуто, а сужение $\varphi_t|_{X_0}$ — ограниченная полугруппа, даже если φ_t не ограничена на всем X (теорема 1). Для замкнутости X_0 достаточно также наличия в X замкнутого дополнительного к X_0 подпространства Y.

Предположим, что Y — такое подпространство. Из вышеизложенного следует, что норма в $X=X_0\oplus Y$ эквивалентна норме, задаваемой формулой $\|(x_0+y)\|:=|x_0|+|y|.$

Так как $\varphi_t(X_0)\subset X_0$, разложение операторов $\varphi_t:X\to X$ имеет вид

$$\varphi_t = \begin{pmatrix} \alpha_t & b_t \\ 0 & Q_t \end{pmatrix} : X_0 \times Y \to X_0 \times Y. \tag{1}$$

Существование φ_t -инвариантного подпространства Y, очевидно, равносильно существованию диагонального представления (1).

 $\mathit{Углом}\ (\mathit{pacmsopom})$ между двумя подпространствами A и $B\subset X$ назовем число

$$\angle(A,B) = \min\{\sup_{a \in A, |a| = 1} \{\rho(a,B)\}, \sup_{b \in B, |b| = 1} \{\rho(b,A)\}\}.$$

На множестве n-мерных подпространств пространства X угол играет роль метрики.

В теореме 2 доказано, что если φ_t — асимптотически конечномерная ограниченная полугруппа, то любое n-мерное подпространство $Y\subset X$, дополняющее X_0 в X, n-иm u m d u0 в u0. Т. е. положение пространства u0 в пространстве u0 изменяется под действием полугруппы все медленнее:

$$orall t \quad \sup_{q < t} \angle (Y_T, Y_{T+q}) o 0 \quad$$
при $T o \infty.$

При этом пространство Y не обязано быть cma6unusupyemыm, т. е. предельного положения Y_{∞} может и не быть. Если такое Y_{∞} существует, то оно, очевидно, φ_t -инвариантно. Также показано (замечание 3), что движение почти стабилизируемого, но не стабилизируемого пространства Y в пространстве X под действием полугруппы не может замедляться слишком быстро, оценка снизу скорости изменения угла такова:

$$\sum_{k=1}^{\infty} \angle(Y_{k+1}, Y_k) = \infty.$$

В теореме 3 доказано, что в случае слабой почти периодичности полугруппы, т. е. компактности замыканий орбит векторов в слабой топологии X (например, в случае ограниченной полугруппы на рефлексивном X) пространство Y стабилизируемо.

На основе критерия инвариантности конечномерного пространства как собственного пространства генератора полугруппы (лемма 6) мы строим пример 4, показывающий, что ограниченность полугруппы в теореме 2 существенна уже в случае $\operatorname{codim} X_0 = 2$.

В последнем пункте доказана теорема 2', обобщающая теорему 2 на случай асимптотически конечномерных полугрупп, для которых $\|\varphi_t\| = o(t)|_{t\to\infty}$ (это в точности те полугруппы, у которых слагаемое Q_t в представлении (1) ограничено). Из этой теоремы легко следует, что если $\operatorname{codim} X_0 = 1$ (случай, частый в приложениях), то ограниченность полугруппы в теореме 2 несущественна.

Отметим, что аналоги теорем 2 и 3 для C_0 -полугрупп операторов содержатся в статье [1], где они доказываются методами нестандартного анализа.

Асимптотически конечномерные полугруппы

Лемма 1. Пусть φ_t — ограниченная полугруппа, $\|\varphi_t\| \leq C$. Пусть $v \in X$ и $m(v) = \inf_{t < \infty} \rho\{v_t, X_0\} = 0$ (т. е. среди векторов $\varphi_t(v)$ найдутся векторы, сколь угодно близкие к пространству X_0). Тогда $v \in X_0$. В частности, X_0 замкнуто в X.

ДОКАЗАТЕЛЬСТВО. Пусть $\varepsilon>0$. Если m(v)=0, то $|v_q-x|<\varepsilon$ для некоторых $q\geq 0$ и $x\in X_0$. Тогда $|v_{q+t}-x_t|< C\varepsilon$ для всех $t<\infty$. В то же время $|v_{q+t}|-|v_{q+t}-x_t|\leq |x_t|\underset{t\to\infty}{\to}0$. Поэтому $\limsup_{t\to\infty}\{|v_t|\}\leq C\varepsilon$. Число ε произвольно, поэтому $\limsup_{t\to\infty}\{|v_t|\}=0$ и $v\in X_0$. \square

Если $\operatorname{codim} X_0 < \infty$, то лемма справедлива и для неограниченной полугруппы φ_t . В работе [2] это доказано для полугруппы степеней оператора в комплексном пространстве. Там же есть контрпример к заключению леммы 1 в случае бесконечной коразмерности пространства X_0 и неограниченной полугруппы.

Приведем пример полугруппы с незамкнутым X_0 .

ПРИМЕР 1 (В. В. Иванов). Пространство X_0 неограниченной дискретной полугруппы $\{T^n: l_2 \to l_2 \mid n \in \mathbb{N}\}$, где $T(x_1, x_2, x_3, \dots) = (2x_2, 2x_3, 2x_4 \dots)$, содержит все финитные последовательности и поэтому плотно в l_2 . Однако читатель легко заметит, что $X_0 \neq l_2$.

Теорема 1. Пусть $\varphi_t: X \to X$ — асимптотически счетномерная полугруппа. Тогда подпространство X_0 замкнуто и $\operatorname{codim} X_0 < \infty$. Если φ_t — C_0 -полугруппа (т. е. для каждого $v \in X$ функция $t \mapsto v_t$ непрерывна в нуле), то $\varphi_t|_{X_0}:X_0\to X_0$ — ограниченная полугруппа.

Доказательство. Предположим, что $\varphi_t - C_0$ -полугруппа.

Известно [3], что переход к подпространствам счетной коразмерности сохраняет бочечность. Таким образом, для X_0 выполняется принцип равномерной ограниченности. Для любой точки $v \in X_0$ множество $\{v_t \mid t \geq 0\}$ ограничено, поэтому существует число $C < \infty$ такое, что $\|\varphi_t\|_{X_0} \| \le C$ для каждого t > 0. Операторы φ_t на $\mathrm{Cl}(X_0)$ ограничены той же константой. Из леммы 1, примененной к сужению полугруппы на пространство $\mathrm{Cl}(X_0)$, следует, что $X_0=\mathrm{Cl}(X_0)$. Полное фактор-пространство X/X_0 не может быть счетномерным, оно лишь конечномерно.

Если $\{\varphi_t\}$ не является C_0 -полугруппой, то вместо множества $\{v_t \mid t \geq 0\}$ можно рассмотреть множество $\{v_t \mid t \geq t_0\}$ для какого-нибудь $t_0 > 0$. Из принципа равномерной ограниченности следует, что все операторы φ_t , $t \ge t_0$, равномерно ограничены на X_0 . Из рассуждений, аналогичных доказательству леммы 1, замкнутость пространства X_0 следует и в этом случае. Теорема дока-

Замечание 1. Для C_0 -полугрупп пространство X_0 является банаховым образом, ибо оно полно относительно нормы $||x|| := \sup\{|x_t| \mid t \geq 0\} \geq |x|$. Тем самым принцип дополняемости тоже позволяет доказать замкнутость X_0 на основе предположения $\operatorname{codim} X_0 < \infty$. Вообще, наличие замкнутого (алгебраического) дополнения к X_0 в X влечет замкнутость X_0 .

Из теоремы 1 следует, что норма пространства в представлениях вида X= $X_0 \oplus Y$ эквивалентна норме прямого произведения. Поэтому лемма 1 и замечание 1 влекут

Следствие. Пусть асимптотически конечномерная полугруппа представлена выражением (1) и $y \in Y$. Если $\liminf Q_t(y) = 0$, то y = 0. Если полугруппа φ_t ограничена, то и полугруппа $Q_t:Y\to Y$ ограничена (обратное неверно, см. последний пункт статьи).

Лемма 2. Пусть φ_t — ограниченная полугруппа, $\|\varphi_t\| \le C$. Пусть $v \in X$. Функция $v \mapsto m(v) : X \to \mathbb{R}$, определенная в лемме 1, непрерывна.

Доказательство. Пусть x и $y \in X$. Для каждого $\delta > 0$ существует tтакое, что $|y_t| \leq m(y) + \delta$. Тогда

$$m(x) \le |x_t| = |y_t + (x - y)_t| \le |y_t| + C|x - y| \le m(y) + \delta + C|x - y|.$$

Выбор числа δ произволен, поэтому $m(x) \leq m(y) + C|x-y|$. Меняя местами x и y в этом рассуждении, получаем, что $|m(x) - m(y)| \leq C|x-y|$. \square

ЗАМЕЧАНИЕ 2. Условие ограниченности полугруппы в лемме 2 существенно. Приведем пример: $X=\mathbb{R}^2,\, \varphi_t(y,z)=(y+tz,z).$ Тогда $X_0=0.$ Функция $m:\mathbb{R}^2\to\mathbb{R}^2$ строго положительна вне нуля, но разрывна в точке $(1,0)\in\mathbb{R}^2,$ так как m(1,0)=1, а $m(1,-\varepsilon)=\varepsilon.$ Это наблюдение позволит построить «контрпример» к теореме 2 для неограниченной полугруппы (пример 4).

Следующее соглашение позволит нам избежать выписывания лишних констант в неравенствах. Будем говорить, что величина F имеет порядок величины H, если существует константа $k \in \mathbb{R}$ такая, что в описываемых условиях $F \leq k \cdot H$.

Лемма 3. Пусть φ_t — асимптотически конечномерная ограниченная полугруппа, $Y\subset X$ — n-мерное подпространство такое, что $X_0\oplus Y=X, e^1,\dots,e^n$ — базис пространства Y. Существует такое k>0, что для каждого $t\geq 0$ и вектора $y_t=\beta_1e_t^1+\dots+\beta_ne_t^n$ выполнено $|y_t|\geq k(|\beta_1|+\dots+|\beta_n|)$.

Доказательство. Имеем

$$\frac{|y_t|}{|\beta_1|+\cdots+|\beta_n|} = \frac{|y_t|}{|y|} \cdot \frac{|y|}{|\beta_1|+\cdots+|\beta_n|}.$$

Ограниченность снизу первого множителя следует из леммы 2 и конечномерности пространства Y, ограниченность снизу второго множителя очевидна. \square

Согласно этой лемме коэффициенты β_i в разложении $y_t = \beta_1 e_t^1 + \dots + \beta_n e_t^n$ не могут быть слишком велики, если $|y_t| \le 1$.

Следствие. Пусть Z-n-мерное подпространство в X. Угол $\angle(Y_t,Z)$ имеет порядок максимального расстояния от вектора e_t^i до Z, $i=1,\ldots,n$.

Теорема 2. Пусть φ_t — асимптотически конечномерная ограниченная полугруппа на пространстве $X, Y \subset X$ — n-мерное подпространство такое, что $X_0 \oplus Y = X$. Тогда Y почти стабилизируемо, т. е. для каждого $t < \infty$ будет $\sup_{s < t} \angle(Y_T, Y_{T+s}) \to 0$ при $T \to \infty$.

Доказательство. Представим действие полугруппы $\varphi: X_0 \times Y \to X_0 \times Y$ формулой (1). Заметим, что $Q_t: Y \to Y$ — полугруппа.

Пусть e^1, \ldots, e^n — базис пространства $Y \subset X$. Отображения $Q_s : Y \to Y$ в этом базисе задаются матрицей $(q_{ij})_s$, ее столбцы состоят из координат проекций векторов e^i_s на пространство Y парадлельно пространству X_0 :

$$\begin{pmatrix} e_s^1 \\ \vdots \\ e_s^n \end{pmatrix} = \begin{pmatrix} q_{11} & \cdots & q_{1n} \\ \cdots & \cdots & \cdots \\ q_{n1} & \cdots & q_{nn} \end{pmatrix}_s \begin{pmatrix} e^1 \\ \vdots \\ e^n \end{pmatrix} + \begin{pmatrix} x^1(s) \\ \vdots \\ x^n(s) \end{pmatrix}, \quad x^i(s) = b_s(e^i) \in X_0. \quad (2)$$

Применяя к выражению (2) оператор φ_T , получаем, что для каждого $s \in [0,t]$

$$\begin{pmatrix} e_{T+s}^1 \\ \vdots \\ e_{T+s}^n \end{pmatrix} = \begin{pmatrix} q_{11} & \cdots & q_{1n} \\ \cdots & \cdots & \cdots \\ q_{n1} & \cdots & q_{nn} \end{pmatrix}_s \begin{pmatrix} e_T^1 \\ \vdots \\ e_T^n \end{pmatrix} + \begin{pmatrix} x^1(s)_T \\ \vdots \\ x^n(s)_T \end{pmatrix}.$$
(3)

Векторы первого слагаемого правой части равенства (3) лежат в пространстве Y_T . По следствию леммы 3 угол $\angle(Y_{T+s},Y_T)$ имеет порядок $f(s,T):=\max\{|x^1(s)_T|,\ldots,|x^n(s)_T|\}$. Однако все $x^i(s)$ лежат в X_0 , поэтому $f(s,T) \underset{T\to\infty}{\to} 0$.

Пусть $\varphi - C_0$ -полугруппа, т. е. функции вида $t \mapsto v_t$ непрерывны и в нуле. Тогда множества $\{x^i(s) \mid s \in [0,t]\} \subset X_0$ компактны, будучи непрерывными образами отрезка [0,t]. В силу принципа равномерной ограниченности $\sup\{f(s,T)\mid s\in[0,t]\}\underset{T\rightarrow\infty}{\longrightarrow}0$. Для C_0 -полугрупп теорема 2 доказана.

Если φ_t не C_0 -полугруппа, то функции $x^i(s)$ могут быть разрывными в нуле, поэтому множества $\{x(s) \mid s \in [0,t]\}$ не обязаны быть компактными. В этом случае применим несколько искусственный прием: в качестве начального Y рассмотрим пространство Y, уже сдвинутое действием полугруппы φ_t , т. е. пространство $Y_p,\, p>0.$ Тогда для каждого $e^i\in Y_p$ функция $t\mapsto e^i_t$ непрерывна и в нуле, так как существуют вектор $u^i \in Y$ такой, что $e^i = u^i_p$ и, следовательно, $e^i_t=u^i_{p+t}$. Поэтому функции $x^i(s)=b_s(e^i)=b_{p+s}(u^i)$ непрерывны при $s\geq 0,$ а не только при s > 0. Теорема 2 доказана полностью.

ЗАМЕЧАНИЕ 3. Если скорость стабилизации пространства Y достаточно велика, то пространство стабилизируемо, т. е. стремится к некоторому предельному стабильному положению Y_{∞} . В самом деле, пространство G(X,n)n-мерных подпространств банахова пространства X с угловой метрикой полно. Поэтому если, например, последовательность $Y_k \in G(X, n)$ фундаментальна, то эта последовательность имеет предел $Y_{\infty} \in G(X,n)$. Из теоремы 2 следует, что колебание функции $Y_t: t \to G(X,n)$ на отрезке [k,k+1] мало при больших k. Тем самым $Y_{\infty} = \lim_{t \to \infty} Y_t$.

В частности, если Y нестабилизируемо, то ряд $\sum_{k=1}^{\infty} \angle(Y_{k+1}, Y_k)$ расходится. В то же время может быть так, что Y стабилизируемо, а ряд расходится. Это следует из того, что условие Коши слабее условия абсолютной сходимости ряда. Проиллюстрируем два последних вывода.

ПРИМЕР 2. Пусть $X=C[0,1],\; (\varphi_t f)(x)=x^t f(x)$ [1]. Здесь $X_0=\{f\in$ $C[0,1] \mid f(1) = 0\}$, codim $X_0 = 1$. Инвариантных дополняющих пространств нет. Значит, для любой функции $f \in X$ если $f(1) \neq 0$, то ряд $\sum \|f_{k+1} - f_k\|$ расходится. Проведем непосредственную выкладку для функции $f(x) \equiv 1$:

$$||f_{k+1} - f_k||_X = \sup_{x \in [0,1]} |x^{k+1} - x^k| = \frac{1}{k+1} \left(\frac{k}{k+1}\right)^k \underset{k \to \infty}{\sim} \frac{1}{ek},$$
$$\sum ||f_{k+1} - f_k|| = \infty.$$

ПРИМЕР 3. Пусть X — подпространство пространства $C[0,\infty)$, состоящее из функций, имеющих предел в бесконечности, $(\varphi_t f)(x) = f(x+t)$. Тогда X_0 пространство функций, стремящихся к нулю. Пространство постоянных функций инвариантно. Пусть $f(x)=1+rac{\sin\pi x}{x}$. Последовательность $f_k(x)$ сходится к единице равномерно, поэтому пространство Y, натянутое на вектор $f \in X$, стабилизируемо. Однако $||f_{k+1} - f_k|| \sim \frac{2}{k}$ и соответствующий ряд расходится.

Анализ эволюции векторов в слабой топологии

Обсудим теперь некоторые факты, касающиеся поведения векторов под действием полугруппы в слабой топологии пространства X.

Обозначим символом Cl_σ операцию слабого замыкания. Для каждого числа $0 \le r < \infty$ и вектора $e \in X$ положим $E_r = \{e_t \mid t \ge r\}$. В частности, E_0 — орбита вектора e под действием полугруппы φ_t .

Лемма 4. Пусть φ_t — асимптотически конечномерная ограниченная полугруппа, $e \notin X_0$. Тогда $\operatorname{Cl}_{\sigma}(E_0) \cap X_0 = \emptyset$.

Доказательство. Пусть $X=X_0\oplus Y,\ e\in Y,\ e\neq 0$. Непрерывный оператор проектирования $P:X=X_0\times Y\to Y$ непрерывен и в слабой топологии. В то же время на конечномерном Y слабая и сильная топологии совпадают. Пользуясь леммой 1, легко увидеть, что проекция орбиты E_0 вектора e на Y отделена от нуля, поэтому само $E_0\subset P^{-1}P(E_0)$ отделено от X_0 даже в слабой топологии. \square

Лемма 5. Пусть $e\in X$. Множество $E_\infty=\bigcap_{r<\infty}\mathrm{Cl}_\sigma(E_r)$ (быть может, пустое), φ_t -инвариантно, т. е. $E_{\infty+t}=E_\infty$ для всякого t.

Доказательство. Условие $z \in E_{\infty}$ означает, что

$$\forall \varepsilon > 0 \,\forall f_1, \dots, f_k \in X' \,\forall r < \infty \,\exists T > r : |f_i(z - e_T)| < \varepsilon. \tag{4}$$

Для функционала $f \in X'$ определим функционал $f^t \in X'$ условием $f^t(x) := f(x_t)$. Тогда, применяя условие (4) к функционалам $f_1^t, \ldots, f_k^t \in X'$, получаем, что существует сколь угодно большое число T такое, что для каждого $i=1,\ldots,k$ выполнено неравенство $\left|f_i^t(z-e_T)\right| < \varepsilon$. Но $f_i^t(z-e_T) = f_i(z_t-e_{T+t})$. Итак, для вектора z_t выполнено условие (4) и $z_t \in E_{\infty}$. \square

Теорема 3. Пусть φ_t — асимптотически конечномерная ограниченная полугруппа такая, что для каждого вектора $e \in Y$ его орбита E_0 слабо предкомпактна. Тогда пространство Y стабилизируемо, т. е. существует φ_t -инвариантное подпространство Y_{∞} такое, что $X = X_0 \oplus Y_{\infty}$ и $\angle(Y_T, Y_{\infty}) \underset{T \to \infty}{\to} 0$. В частности, если X рефлексивно, то Y стабилизируемо.

Идея доказательства (одномерный случай): вектор z из непустого множества $E_{\infty} = \bigcap_{r < \infty} \operatorname{Cl}_{\sigma}(E_r)$ можно приближать выпуклыми комбинациями векторов вида e_{t_j} со сколь угодно большими t_j . Из теоремы 2 следует, что такие комбинации меняются сколь угодно медленно. Значит, вектор z не меняется вообще. Многомерный случай сложнее лишь технически: необходимо учитывать движение пространства Y относительно самого себя.

Доказательство. Рассмотрим максимальный набор векторов $e^1=e, e^2=\varphi_{p_2}e^1,\dots,e^s=\varphi_{p_s}e^1,\ s\leq n,$ проекции которых на пространство Y линейно независимы. Нетрудно видеть, что эти проекции образуют базис некоторого s-мерного подпространства $Y^s\subset Y$, инвариантного относительно действия полугруппы $Q_t:Y\to Y$. Будем считать, что s=n. (В общем случае пространство Y представляется в виде прямой суммы подпространств вида Y^s и описываемая ниже процедура проделывается с каждым из них.)

Множество $\mathrm{Cl}_\sigma(E_0)$ компактно в слабой топологии. Значит, пересечение E_∞ семейства вложенных множеств $\bigcap_{r<\infty}\mathrm{Cl}_\sigma(E_r)$ непусто. Пусть $z^1\in E_\infty$. По лемме $4\ z^1\notin X_0$.

По теореме Мазура слабое замыкание множества лежит в замыкании его выпуклой оболочки. Таким образом, из условия « $z^1 \in \mathrm{Cl}_\sigma(E_T) \ \forall T < \infty$ » следует, что, каково бы ни было $\varepsilon > 0$, для любого $T < \infty$ существуют числа $\alpha_1, \ldots, \alpha_m \geq 0, \sum \alpha_k = 1$ и векторы $e^1_{t_1}, \ldots, e^1_{t_m}, t_j > T$, такие, что

$$z^1 - \sum_{k=1}^m \alpha_k e^1_{t_k} = \tilde{\varepsilon}^1, \quad |\tilde{\varepsilon}^1| < \varepsilon.$$

Применив к последнему выражению оператор φ_{p_i} и обозначив $z^i=z^1_{p_i},$ $i=1\dots,n$ (напомним, что $e^i=e^1_{p_i},$ $i=1,\dots,n$), получим

$$z^{i} - \sum_{k=1}^{m} \alpha_{k} e_{t_{k}}^{i} = \tilde{\varepsilon}^{i}, \quad |\tilde{\varepsilon}^{i}| \leq C\varepsilon.$$
 (5)

Согласно формуле (3)

$$e^i_{t_k+t} = \sum_{i=1}^n q_{ij} e^j_{t_k} + x^i_{t_k},$$

где $x^1, \ldots, x^n \in X_0$. Поэтому

$$\sum_{k=1}^{m} \alpha_k e_{t_k+t}^i = \sum_{k=1}^{m} \alpha_k \left(\sum_{j=1}^{n} q_{ij} e_{t_k}^j + x_{t_k}^i \right) = \sum_{j=1}^{n} q_{ij} \sum_{k=1}^{m} \alpha_k e_{t_k}^j + \sum_{k=1}^{m} \alpha_k x_{t_k}^i$$

$$= \sum_{j=1}^{n} q_{ij} (z^j - \tilde{\varepsilon}^j) + \sum_{k=1}^{m} \alpha_k x_{t_k}^i = \sum_{j=1}^{n} q_{ij} z^j - \sum_{j=1}^{n} q_{ij} \tilde{\varepsilon}^j + \sum_{k=1}^{m} \alpha_k x_{t_k}^i. \quad (6)$$

Заметим, что

$$\left| \sum_{k=1}^{m} \alpha_k x_{t_k}^i \right| \le \max_{k=1,\dots,m} \left| x_{t_k}^i \right|.$$

Из (5) и (6) следует, что

$$\left| z_t^i - \sum_{j=1}^n q_{ij} z^j \right| < \left| \sum_{j=1}^n q_{ij} \tilde{\varepsilon}^j \right| + \left| \tilde{\varepsilon}^i \right| + \max_{k=1,\dots,m} \left| x_{t_k}^i \right|. \tag{7}$$

Так как $t_k > T$, то, выбирая T достаточно большим, можно добиться того, чтобы вся правая часть неравенства (7) была порядка ε . Но левая часть неравенства (7) не зависит от ε , поэтому

$$z_t^i = \sum_{j=1}^n q_{ij} z^j.$$

Следовательно, для каждого t>0 вектор z_t^i лежит в линейной оболочке векторов z^1,\dots,z^n , значит, пространство Y_∞ , натянутое на векторы z^1,\dots,z^n , инвариантно. Остальное очевидно. Теорема доказана.

Из леммы 5 следует, что Y_{∞} является линейной оболочкой множества $E_{\infty}.$

Инфинитезимальный критерий инвариантности и нестабилизируемость

В этом пункте мы приводим инфинитезимальный критерий инвариантности конечномерных подпространств и на его основе строим асимптотически двумерную полугруппу (пример 4), у которой есть и стабильное, и нестабилизируемые подпространства, дополняющие X_0 в X.

Для каждой полугруппы $\varphi_t:X\to X$ обозначим через $\varphi:X\to X$ инфинитезимальный оператор, порождающий полугруппу φ_t , т. е. $v\in\operatorname{dom}\varphi$, если существует предел

$$\varphi(v) = \lim_{t \to 0} \frac{\varphi_t(v) - v}{t}.$$

Все используемые ниже в доказательствах свойства φ можно найти, например, в [4].

Лемма 6 (критерий инвариантности). Пусть φ_t — полугруппа. Все конечномерные φ_t -инвариантные подпространства X суть собственные конечномерные подпространства порождающего оператора φ , лежащие в dom φ .

Доказательство. Пусть $Y\subset \mathrm{dom}\, \varphi$ и $\varphi(Y)\subset Y$. Для каждого $y\in Y$ будет $y_t=\sum_{n=0}^\infty \frac{t^n\varphi^n(y)}{n!}\in Y$. Поэтому $Y_t\subset Y$. Обратно, пусть $\mathrm{dim}\, Y<\infty$ и $Y_t\subset Y$ для каждого $t<\infty$. Сужения $\psi_t=\varphi_t|_Y:Y\to Y$ образуют полугруппу, действующую на Y. Пространство Y конечномерно, поэтому $\psi_t=e^{t\psi}$ и инфинитезимальный оператор $\psi:Y\to Y$ определен всюду. Но ψ — сужение оператора φ . \square

Пусть α_t — полугруппа на пространстве X. Если $Q_t: B \to B$ — некоторая полугруппа с порождающим оператором Q и $P: B \to X$ — непрерывный оператор, то оператор $\varphi = \begin{pmatrix} \alpha & P \\ 0 & Q \end{pmatrix}$ порождает полугруппу $\varphi_t: X \times B \to X \times B$, задаваемую формулами

$$\varphi_t \begin{pmatrix} x \\ b \end{pmatrix} = \begin{pmatrix} \alpha_t & \int\limits_0^t \alpha_s PQ_{t-s} ds \\ 0 & Q_t \end{pmatrix} \begin{pmatrix} x \\ b \end{pmatrix}. \tag{8}$$

Пусть $B=\mathbb{R}^2,\,Q_t:\mathbb{R}^2\to\mathbb{R}^2$ задается, как в замечании 2:

$$Q_t \begin{pmatrix} y \\ z \end{pmatrix} = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \begin{pmatrix} y \\ z \end{pmatrix} = \begin{pmatrix} y + tz \\ z \end{pmatrix}. \tag{9}$$

Пусть $g \in X$. Отображение $P: B \to X$ определим формулой

$$P(y,z) = y \cdot g. \tag{10}$$

Полугруппу $\varphi_t: X \times B \to X \times B$ определим формулой (8). Соответствующие порождающие операторы таковы:

$$Q = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad \varphi \begin{pmatrix} f \\ y \\ z \end{pmatrix} = \begin{pmatrix} \alpha(f) + yg \\ z \\ 0 \end{pmatrix}.$$
 (11)

Любое пространство Y, дополняющее X в $X \times \mathbb{R}^2$, является линейной оболочкой векторов (k,1,0) и (l,0,1) для некоторых $k,l \in X$. Выясним, каким условиям должны удовлетворять k и l, чтобы Y было φ_t -инвариантным.

Лемма 7. Пусть $\alpha_t: X \to X$ — полугруппа, $g \in X$, Q_t и P(y,z) определены формулами (9) и (10). Пусть полугруппа $\varphi_t: X \times \mathbb{R}^2 \to X \times \mathbb{R}^2$ определена формулой (8). Векторы u = (k,1,0) и v = (l,0,1) порождают φ_t -инвариантное подпространство Y тогда и только тогда, когда $k,l \in \operatorname{dom} \alpha, g = -\alpha(k), k = \alpha(l)$.

ДОКАЗАТЕЛЬСТВО. Пусть u,v — базис φ_t -инвариантного пространства Y. Из леммы 6 и формулы (11) следует, что $k,l \in \operatorname{dom} \alpha$ и $\varphi(u) = (\alpha(k) + g, 0, 0) = 0$, т. е. $\alpha(k) + g = 0$. Далее, $\varphi(v) = (\alpha(l), 1, 0) = v$, т. е. $\alpha(l) = k$. \square

ПРИМЕР 4. Полугруппа сдвигов на $X=C_0(\mathbb{R}_+)$ асимптотически нульмерна:

$$X = X_0 = C_0(\mathbb{R}_+) = \{ f \in C(\mathbb{R}_+) \mid f(x) \to 0 \}, \quad (\alpha_t f)(x) = f(x+t), \quad \alpha(f) = f'.$$

Пусть $g(x) \in X$ и операторы Q_t и P такие, как в формулах (9) и (10). Формула (8) определяет асимптотически двумерную полугруппу $\varphi_t: X \times \mathbb{R}^2 \to X \times \mathbb{R}^2$:

$$\varphi_t \begin{pmatrix} f(x) \\ y \\ z \end{pmatrix} = \begin{pmatrix} f(x+t) + \int\limits_0^t g(x+s)(y+(t-s)z) \, ds \\ y+tz \\ z \end{pmatrix}. \tag{12}$$

Из леммы 7 и равенства $\alpha(f) = f'$ следует, что полугруппа φ_t обладает инвариантным дополняющим X пространством тогда и только тогда, когда у функции g(x) найдутся первая и вторая первообразные, имеющие нулевой предел.

Рассмотрим в качестве g(x) функцию $\frac{\sin(x)}{x}$. Функции $k(x)=-\mathrm{Si}(x)+\frac{\pi}{2}$ и $l(x)=x(\frac{\pi}{2}-\mathrm{Si}(x))-\cos x$ удовлетворяют условиям леммы 7. Исследуя асимптотику интегрального синуса, можно убедиться, что k(x) и l(x) стремятся к нулю, т. е. лежат в Х. Таким образом, соответствующая полугруппа имеет двумерное инвариантное подпространство, дополняющее X в $X \times \mathbb{R}^2$. Покажем, что подпространство $Y=0\times\mathbb{R}^2\subset X\times\mathbb{R}^2$ нестабилизируемо.

Утверждение. Пусть $g(x) = \frac{\sin(x)}{x}$. Пространство $Y = (0 \times \mathbb{R}^2) \subset X \times \mathbb{R}^2$ не является почти стабилизируемым относительно действия полугруппы (12).

Доказательство. Для вектора $u \in Y_t$ обозначим через R(u) вектор, соединяющий u с проекцией u на пространство Y_{t+1} параллельно X. В ключевом рассуждении теоремы 2 использовалось то, что $R(u) \underset{t \to \infty}{\to} 0$ для любого $u \in Y_t$, причем сходимость равномерна, т. е.

$$\max \left\{ \frac{|R(u)|}{|u|} \mid 0 \neq u \in Y_t \right\} \underset{t \to \infty}{\longrightarrow} 0.$$

Оказывается, равномерность может не иметь места, если полугруппа неограниченная. В нашем примере это именно так. Действительно, пусть v(t) = $\varphi_t(0,-t,1)$. Подставляя вектор v(t) в формулу (12), убеждаемся, что

$$v(t)=egin{pmatrix} -\int\limits_0^trac{\sin(x+s)}{x+s}s\,ds\ 0\ 1 \end{pmatrix},\quad R(v(t))=v(t)-v(t+1)=egin{pmatrix} \int\limits_t^{t+1}rac{\sin(x+s)}{x+s}s\,ds\ 0\ 0 \end{pmatrix}.$$

Величина

$$\int_{a}^{b} \frac{\sin(x+s)}{x+s} s \, ds = \cos|_{b+x}^{a+x} - x \operatorname{Si}|_{b+x}^{a+x}$$

ограничена при всех $x,a,b\geq 0$, поскольку $\mathrm{Si}(p)\sim \frac{\pi}{2}-\frac{\cos p}{p}$ при $p\to\infty$. Тогда $\frac{|R(v(t))|}{|v(t)|} \not\to 0$ при $t \to \infty,$ так как

$$|R(v(t))| = \left\| \int\limits_t^{t+1} \frac{\sin(x+s)}{x+s} s \, ds \right\|_Y = \max_{x \ge 0} \left| \int\limits_t^{t+1} \frac{\sin(x+s)}{x+s} s \, ds \right| \stackrel{x:=0}{\ge} |\cos|_{t+1}^t| \not\to 0.$$

Итак, расстояние от вектора $v(t)=arphi_t(0,-t,1)$ до его проекции v(t+1) на пространство Y_{t+1} достаточно велико.

Из формулы (12) следует, что все элементы пространства Y_t имеют вид

$$\begin{pmatrix} h_{a,b}^t(x) \\ a \\ b \end{pmatrix} = \begin{pmatrix} \int_0^t \frac{\sin(x+s)}{x+s} \cdot (a-sb) \, ds \\ 0 \\ a \\ b \end{pmatrix}. \tag{13}$$

Мы показали, что существует положительная константа K такая, что найдется сколь угодно большой номер $t<\infty$ такой, что расстояние от вектора $v(t)=\left(h_{0,1}^t,0,1\right)\in Y_t$ до его проекции $\left(h_{0,1}^{t+1},0,1\right)$ на Y_{t+1} больше K. Осталось заметить, что для таких t расстояние от v(t) до всех других векторов $\left(h_{y,z}^{t+1},y,z\right)\in Y_{t+1}$:

$$\rho_X \{ v(t) - (h_{y,z}^{t+1}, y, z) \} = \max_{0 < x < \infty} \{ |h_{0,1}^t - h_{y,z}^{t+1}| \} + \sqrt{y^2 + (z - 1)^2}, \tag{14}$$

тоже ограничено снизу при всех $(y,z) \in \mathbb{R}^2$. Это следует из того, что при (y,z), близких к (0,1), первое слагаемое в (14) не может сразу стать малым (необходимая оценка проста и оставляется читателю), а при дальнейшем удалении (y,z) от (0,1) становится существенным второе слагаемое.

Симметричные рассуждения показывают, что расстояние от вектора $\left(h_{0,1}^{t+1},0,1\right)$ до пространства Y_t тоже ограничено снизу. Итак, $\angle(Y_t,Y_{t+1}) \not\to 0$ при $t\to\infty$.

Стабилизируемость в медленно растущих полугруппах

В данном пункте все полугруппы асимптотически конечномерны.

Условие ограниченности полугруппы $Q_t:Y\to Y$ в представлении (1) не зависит от выбора подпространства Y, дополняющего X_0 в X. Назовем здесь такие полугруппы медленно растущими. Анализируя в представлении (8) верхний правый элемент матрицы, нетрудно провести оценки, показывающие, что условие медленного роста полугруппы φ_t равносильно условию $\|\varphi_t\|=o(t)|_{t\to\infty}$.

ПРИМЕР 5. Рассмотрим полугруппу, определенную формулой (8), где $X_0=C_0(\mathbb{R}_+)$ такое же, как в примере 4, $Y=\mathbb{R},\ P(y)=g\cdot y$, где $g\in X_0$:

$$\varphi_t \left(\frac{f(x)}{y} \right) = \left(\frac{f(x+t) + y \cdot \int\limits_0^t g(x+s) \, ds}{y} \right).$$
(15)

Функция g(x) может быть такой, что интеграл от нее может достигать произвольно больших значений. В то же время порядок роста $\|\varphi_t\|$ определяется скоростью роста функции $\int\limits_0^t g(t)\,dt$. Поэтому полугруппа (15) не обязана быть ограниченной. В то же время $\|\varphi_t\|=o(t)$ при $t\to\infty$, так как $g(x)\to 0$. Например, если $g(x)=\frac{1}{x+1}$, то, полагая в (15) $f\equiv 0$ и y=1, получим

$$\varphi_t(0,1) = \left(\ln \frac{x+1+t}{x+1}, 1\right), \quad \|\varphi_t\| \ge \sim \sup \left\{\ln \frac{x+1+t}{x+1} \mid x \ge 0\right\} \sim \ln t.$$

Таким образом, класс медленно растущих полугрупп шире класса ограниченных полугрупп. Покажем, что для этого класса заключение теоремы 2 также справедливо.

Теорема 2'. Заключение теоремы 2 верно для всех медленно растущих полугрупп.

Доказательство. Пусть
$$X=X_0\oplus Y,\,\dim Y<\infty,\, \varphi_t=\left(egin{array}{cc} lpha_t & b_t \\ 0 & Q_t \end{array}\right)$$
.

Рассмотрим сначала случай $\dim Y = 1$. Этот случай содержит основную идею общего доказательства, но особенно прост, полугруппа $Q_t: Y \to Y$ в этом случае есть $\exp(ct)$ для некоторого $c \in \mathbb{R}$. По условию теоремы $c \leq 0$. Согласно следствию теоремы 1 c=0. Пусть $y\in Y$ и t>0. Тогда $y_t=x(t)+y$, где $x(t) \in X_0$. Таким образом, $|y_t| \ge |y|$. В то же время

$$|arphi_T(y_t) - arphi_T(y)| = |arphi_T(y_t - y)| = |arphi_T(x(t))| \underset{T o \infty}{ o} 0.$$

Это показывает, что угол между прямыми Y_t и Y_{T+t} стремится к нулю при больших T.

Переходя к общему случаю, заметим, что если полугруппа $Q_t:Y\to Y$ ограничена, то она ограничена и снизу, причем равномерно. Это выводится из следствия теоремы 1, а также леммы 2, примененной к самой конечномерной полугруппе $Q_t: Y \to Y$. Итак, существует $k < \infty$ такое, что $|y| \le k|Q_t(y)|$ для всех $y \in Y$ и t > 0. Значит, тем более $|y| \le k |\varphi_t(y)|$.

Пусть t>0. Шар $B\subset Y$ радиуса k компактен, и его образ B_t также компактен. Тогда множество $A := X_0 \cap (B_t - B) = \{u - v \in X_0 \mid u \in B_t, v \in B\}$ тоже компактно. Множество A играет в оставшейся части доказательства ту же роль, что и точка x(t) в доказательстве одномерного случая.

Пусть $z \in Y_T$, |z| = 1. Рассмотрим вектор $y \in Y$ такой, что $z = y_T$. Тогда $|y| \leq k$, т. е. $y \in B$. Существует $x \in X_0$ такой, что $y+x \in Y_t$. Тогда $x \in A$. В то же время $z + x_T = (y + x)_T \in Y_{T+t}$. Поэтому

$$\rho(z, Y_{T+t}) < x_T < |A_T| := \sup\{|x| \mid x \in A_T\}.$$

Число $|A_T|$ не зависит от выбора $y_T,$ так что $\angle(Y_T,Y_{T+t}) \leq |A_T|$ по определению угла. Но множество A компактно и лежит в X_0 , откуда $|A_T| \underset{T \to \infty}{\longrightarrow} 0$. Следовательно, и $\angle(Y_T,Y_{T+t}) \underset{T \to \infty}{\longrightarrow} 0$. Осталось еще раз применить принцип равномерной ограниченности, рассуждая, как при завершении доказательства теоремы 2. \square

Пример 4 показывает, что условие медленного роста полугруппы Q_t в теореме 2' существенно уже в случае $\operatorname{codim} X_0 = 2$. Однако для асимптотически odномерных полугрупп φ_t можно не требовать ничего. В самом деле, как уже отмечено, отображение $Q_t: Y \to Y$ в представлениях (1) такой полугруппы есть умножение на число e^{ct} . Операторы $\psi_t := e^{-ct} \varphi_t$ также образуют полугруппу, «гомотетичную» исходной и притом медленно растущую. Из теоремы 2' следует, что подпространство Y почти стабилизируемо в полугруппе ψ_t , а значит, и в полугруппе φ_t . Если при этом полугруппа ψ_t неограниченная (например, как в примере 5), то угол между прямой Y_t и пространством X_0 стремится к нулю.

Заметим напоследок, что если асимптотически конечномерная полугруппа медленно растет, но неограниченная, то стабильных подпространств, дополняющих X_0 , не существует. В самом деле, представление (1) такой полугруппы не может быть диагональным, ибо прямое произведение ограниченных полугрупп ограничено.

Автор благодарит Э. Ю. Емельянова за полезные обсуждения и ссылки.

ЛИТЕРАТУРА

- **1.** *Емельянов Э. Ю.* Условия асимптотической конечномерности C_0 -полугруппы // Сиб. мат. журн. 2003. Т. 44, № 5. С. 1015–1020.
- Emel'yanow E. Yu., Wolff M. P. H. Quasi constricted linear operators on Banach spaces // Studia Math. 2001. V. 144, N 2. P. 169–179.
- 3. Levin M., Saxon S. Every countable-codimensional subspace of a barrelled space is barrelled // Proc. Amer. Math. Soc. 1971. V. 29, N 1. P. 91–96.
- **4.** *Хилле* Э., Филлипс Р. Функциональный анализ и полугруппы. М.: Изд-во иностр. лит., 1062

Статья поступила 1 ноября 2002 г.

Сторожук Константин Валерьевич Институт математики им. С. Л. Соболева СО РАН, пр. Академика Коптюга, 4, Новосибирск 630090 stork@math.nsc.ru