УДК 517.946

ТОПОЛОГИЧЕСКАЯ ПРОИЗВОДНАЯ ИНТЕГРАЛА ДИРИХЛЕ ПРИ ОБРАЗОВАНИИ ТОНКОЙ ПЕРЕМЫЧКИ С. А. Назаров, Я. Соколовски

Аннотация: Построена и обоснована асимптотика решения и соответствующего энергетического функционала смешанной краевой задачи для уравнения Пуассона в области с перемычкой, т. е. тонкой криволинейной полоской, соединяющей вне области два малых участка на ее границе. Поскольку асимптотический анализ инициирован запросами теории оптимизации форм, в отличие от других публикаций не вводятся упрощающие предположения об уплощенности границы вблизи зон присоединения.

Ключевые слова: асимптотика, тонкая перемычка, энергетический функционал, оптимизация формы.

1. Постановка задачи. Пусть Ω — область на плоскости \mathbb{R}^2 с гладкой границей $\partial\Omega$ и компактным замыканием $\overline{\Omega} = \partial\Omega \cup \Omega$. Пусть еще Γ — простая гладкая дуга, пересекающая $\partial\Omega$ в двух точках P^{\pm} под ненулевыми углами и имеющая концы внутри Ω . В окрестности дуги Γ введем естественные криволинейные координаты (ν, τ) , где τ — длина дуги вдоль Γ , а $|\nu|$ — расстояние до Γ . Будем считать, что точкам P^+ и P^- соответствуют значения $\tau = l$ и $\tau = -l$; здесь 2l — длина отрезка дуги Γ , расположенного вне Ω . Далее, допуская некоторую вольность, мы не будем различать точку и ее координату на Γ . Для функций $H_{\pm} \in C^{\infty}(\overline{\Gamma})$ таких, что $H := H_+ + H_- > 0$, определим криволинейную полоску

$$\Lambda_h = \{ x : \tau \in \Gamma, \, \zeta := h^{-1}\nu \in \omega(\tau) := (-H_-(\tau), H_+(\tau)) \}$$
(1)

и область

$$\Omega(h) = \Omega \cup \Lambda_h,\tag{2}$$

зависящие от малого геометрического параметра $h \in (0, h_0]$ (верхнюю грань $h_0 > 0$ фиксируем так, чтобы при $h \le h_0$ торцы полоски (1) содержались в Ω). Часть полоски Λ_h , расположенную вне Ω , называем *перемычкой* и обозначаем через $\Lambda(h) = \Lambda_h \setminus \overline{\Omega}$.

В сингулярно возмущенной области (2) — сочленении множеств с различными предельными размерностями — рассмотрим смешанную краевую задачу для уравнения Пуассона:

$$-\Delta_x u(h,x) = f(h,x), \quad x \in \Omega(h),$$

$$\partial_n u(h,x) = 0, \quad x \in \partial\Omega(h) \setminus \overline{\Sigma},$$

$$u(h,x) = 0, \quad x \in \Sigma,$$
(3)

© 2004 Назаров С. А., Соколовски Я.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 03–01–00835) и франко-русского центра по прикладной математике и информатике им. А. М. Ляпунова (проект 00–01).

в которой ∂_n — производная вдоль внешней нормали, а Σ — открытая дуга на $\partial\Omega$, причем mes₁ $\Sigma > 0$ и замкнутая дуга $\overline{\Sigma}$ не содержит точек P^{\pm} , т. е. $\overline{\Sigma} \cap \overline{\Lambda}_h$ — пустое множество при $h \in (0, h_0]$ и достаточно малом $h_0 > 0$. Задача (3) имеет единственное решение $u(h, \cdot) \in \mathring{H}^1(\Omega(h); \Sigma)$ при любой правой части $f(h, \cdot) \in L_2(\Omega(h))$. На самом деле речь следует вести о семействе задач и соответствующем семействе решений, параметризованных «относительной толщиной» $h \in (0, h_0]$ перемычки $\Lambda(h)$. Тем не менее, занимаясь построением асимптотики при $h \to +0$, параметр h > 0 можно считать малым, но фиксированным и говорить о задаче и ее решении в единственном числе.

Асимптотическое поведение решения u(h, x) определяется, в частности, зависимостью правой части уравнения $(3)_1$ от параметра h. Предположим, что

$$f(h,x) = ilde{f}(h,x) + \left\{egin{array}{cc} f_\Omega(x), & x\in\Omega; \ f_\Lambda(au), & x\in\Lambda(h). \end{array}
ight.$$

Здесь f_{Ω} и f_{Λ} — некоторые заданные функции на «теле» Ω и на «оси перемычки» $\Upsilon = (-l, l) \ni \tau$, а \tilde{f} — малый остаток, который можно не принимать во внимание при асимптотическом анализе. Точные требования к f_{Ω} , f_{Λ} и \tilde{f} предъявляются по мере необходимости. Подчеркнем особо, что все ограничения выполняются в наиболее разумной ситуации (ср. с замечанием 1 и с примером 1): функция f из (3)₁ вообще не зависит от параметра h и является гладкой в окрестности множества $\overline{\Omega}$, содержащей перемычку $\overline{\Lambda(h)}$.

Основной целью работы помимо построения и обоснования асимптотики решения u(h, x) при $h \to +0$ является определение главного члена разложения энергетического функционала (или, что то же, интеграла Дирихле от функции u) при образовании тонкой перемычки $\Lambda(h)$. Подобный вопрос тесно связан с теорией оптимизации форм (см. [1,2] и др.). Обычно условие оптимальности и соответствующие производные функционалов по Φ peine находятся при учете лишь малых *регулярных* возмущений границы области (контур $\partial \Omega$ сдвигается вдоль нормали на расстояния $hH_0(s)$, а функция H_0 гладко зависит от точки $s \in \partial \Omega$). Понятно, что в некоторых ситуациях более выгодным оказывается сингулярное возмущение границы — внутри области вырезается малое отверстие или область наращивается множеством с диаметром $O(h^{1/2})$. Поскольку появление отверстия изменяет число компонент связности границы, в [3] производные функционалов относительно подходящей геометрической характеристики отверстия названы топологическими. Для вычисления таких топологических производных применяется асимптотический анализ решений краевых задач в областях с сингулярно возмущенными границами (ср. [4,3] с [5–7] и др.).

В случае наращивания простейшим приемом, переделывающим односвязную область в многосвязную, является образование *перемычки*, т. е. как раз соединение двух точек на границе области при помощи тонкой полоски (1) (в пространственном случае правильнее говорить о *ручке*). В результате возникает сочленение сингулярно вырождающихся областей с различными предельными размерностями, асимптотический анализ которых проводился в [8–14] и др. Для таких сочленений характерно многообразие предельных и результирующих задач, из решений которых конструируется глобальное асимптотическое приближение к решению исходной задачи. Ввиду общей направленности статьи на вычисление асимптотики энергетического функционала явление пограничного слоя вблизи зон присоединения перемычки отходит на второй план, и основное внимание уделяется представлениям решения u(h, x) внутри исходной области Ω и на самой перемычке $\Lambda(h)$ (см. пп. 2 и 3 соответственно). В п. 4 производится сращивание асимптотических разложений и обсуждаются младшие члены асимптотики. В п. 5 выводится весовая априорная оценка решения задачи (3) в области $\Omega(h)$, вычисляются невязки, оставленные построенным двучленным асимптотическим приближением, и доказывается основная теорема 1 об асимптотике решения u(h, x). Ее следствия, касающиеся энергетического функционала, приведены в п. 6, где и вычисляется соответствующая *топологическая производная*.

Подчеркнем, что в предшествующих исследованиях при построении и оправдании асимптотики, включающей пограничные слои, использовалось упрощающее предположение об уплощенности границы *д*Ω вблизи оснований отростков. Процедура, применяемая для оптимизации форм, приводит к искривленным границам, и в настоящей статье рассмотрение общей ситуации существенно усложнило конструкцию глобального асимптотического приближения за счет привлечения разнообразных срезок и спрямляющих диффеоморфизмов.

2. Первая предельная задача. Пусть $v_0 \in H^1(\Omega(h); \Sigma)$ — решение предельной задачи, получающейся из задачи (3) переходом к h = 0, т. е. удалением перемычки из сочленения (2) и остатка \tilde{f} из формулы (4)₁:

$$-\Delta_x v_0(x) = f_{\Omega}(x), \quad x \in \Omega, \partial_n v_0(x) = 0, \ x \in \partial\Omega \setminus \overline{\Sigma}; \quad v_0(x) = 0, \ x \in \Sigma.$$
(5)

При этом предполагается, что правая часть уравнения $(5)_1$, фигурирующая в (4), принадлежит по крайней мере пространству $L_2(\Omega)$. Поскольку граница $\partial\Omega$ гладкая, решение v_0 попадает в класс H^2 всюду, кроме концов Q^{\pm} дуги Σ , в которых происходит смена типа краевого условия. Известно (см., например, вводную главу книги [15]), что для решения $v_0 \in H^1(\Omega)$ задачи (5) справедливы включение $d_Q \nabla_x^2 v_0 \in L_2(\Omega)$ и оценка

$$\|d_Q \nabla_x^2 v_0; L_2(\Omega)\| + \|v_0; H^1(\Omega)\| \le c \|f_\Omega; L_2(\Omega)\|,$$

где $d_Q(x) = \min\{\operatorname{dist}(x, Q^{\pm})\}$ — весовой множитель и $\nabla_x^2 v_0$ — совокупность вторых производных функции v_0 . Так как по предположению $P^{\pm} \notin \overline{\Sigma}$, соболевская теорема вложения $H^2(\Omega) \subset C(\Omega)$ устанавливает непрерывность решения v_0 в точках P^{\pm} , а также оценки

$$|v_0(P^{\pm})| \le c ||f_{\Omega}; L_2(\Omega)||.$$
 (6)

Тем не менее, далее понадобится более точная информация о поведении функции v_0 вблизи концов перемычки $\Lambda(h)$. Предположим, что при некотором $\mu \in (0,1)$ справедливо включение

$$d_P^{-\mu} f_\Omega \in L_2(\Omega),\tag{7}$$

где $d_P(x) = \min\{\operatorname{dist}(x, P^{\pm})\}$ — новый весовой множитель. Известные результаты о поведении решений эллиптических краевых задач вблизи границы (см. ту же вводную главу в [15]) доставляют формулы

$$v_{0}(x) = \sum_{\pm} \chi_{\Omega}(r_{\pm}) \{ v_{0}(P^{\pm}) + (s - s^{\pm}) \partial_{s} v_{0}(P^{\pm}) \} + \tilde{v}_{0}(x),$$

$$|v_{0}(P^{\pm})| + |\partial_{s} v_{0}(P^{\pm})| + \sum_{j=0}^{2} \left\| d_{P}^{-\mu - 2 + j} d_{Q}^{\delta_{j,2}} \nabla_{x}^{j} \tilde{v}_{0}; L_{2}(\Omega) \right\| \leq c N_{\Omega},$$
(8)

в которых $\delta_{j,k}$ — символ Кронекера, s — длина дуги на $\partial\Omega$, s^{\pm} — координаты точек $P^{\pm} \in \partial\Omega$, χ_{Ω} — срезающая функция из $C_0^{\infty}(\mathbb{R})$, равная единице при $r < r_0/2$ и нулю при $r > r_0$. Наконец, $r_{\pm} = \operatorname{dist}(x, P^{\pm})$ и

$$N_{\Omega} := \left\| d_P^{-\mu} f_{\Omega}; L_2(\Omega) \right\|. \tag{9}$$

Подчеркнем, что при гладкой функции f_{Ω} включение (7) выполняется, а норма (9) конечна.

3. Результирующая задача для перемычки. Для решения u(h, x) задачи (3), суженного на тонкую перемычку $\Lambda(h)$, примем обычный асимптотический анзац

$$u(h,x) \sim w_0(\tau) + hw_1(\zeta,\tau) + h^2 w_2(\zeta,\tau) + \dots$$
 (10)

(см. [16;17; 6, гл. 15; 18, гл. 1] и др.). Здесь w_j — функции, подлежащие определению, а τ — медленная продольная и $\zeta = h^{-1}\nu$ — быстрая поперечная переменные на перемычке. Оператор Лапласа, записанный в криволинейных координатах ν и τ , выглядит так:

$$\Delta_{(\nu,\tau)} = (1 + \nu k(\tau))^{-1} \{ \partial_{\nu} (1 + \nu k(\tau)) \partial_{\nu} + \partial_{\tau} (1 + \nu k(\tau))^{-1} \partial_{\tau} \}.$$
(11)

Здесь $k(\tau)$ — кривизна дуги Γ в точке τ . После растяжения координаты ν оператор Лапласа допускает расщепление

$$\Delta_{(\nu,\tau)} \sim h^{-2} \partial_{\zeta}^2 + h^{-1} L_1(\zeta,\tau,\partial_{\zeta}) + h^0 L_2(\zeta,\tau,\partial_{\zeta},\partial_{\tau}) + \dots,$$
(12)

причем

$$L_1(\zeta,\tau,\partial_{\zeta}) = k(\tau)\partial_{\zeta}, \quad L_2(\zeta,\tau,\partial_{\zeta},\partial_{\tau}) = \partial_{\tau}^2 - \zeta k(\tau)^2 \partial_{\zeta}.$$
 (13)

Кроме того, на верхнем и нижнем краях $\Upsilon_h^{\pm} = \{x : \tau \in (-l, l), \nu = \pm h H_{\pm}(\tau)\}$ полоски (1) производная $\partial_{n^{\pm}} = \partial/\partial n^{\pm}$ вдоль внешней нормали удовлетворяет соотношению

$$(1+h^2H'_{\pm}(\tau)^2)^{1/2}\partial_{n^{\pm}} = \pm \partial_{\nu} - (1+\nu k(\tau))^{-1}hH'_{\pm}(\tau)\partial_{\tau} \sim \pm h^{-1}\partial_{\zeta} - hH'_{\pm}(\tau)\partial_{\tau};$$
(14)

здесь $H'_{\pm}(\tau) = \partial_{\tau} H_{\pm}(\tau).$

Подставим формулы (10) и (12)–(14) в уравнение (3)₁ на перемычке и краевое условие (3)₂ на ее краях, а затем соберем коэффициенты при одинаковых степенях параметра h. В результате получится рекуррентная последовательность задач Неймана для обыкновенного дифференциального уравнения на отрезке $\omega(\tau)$ (см. (1)). Равенства

$$-\partial_\zeta^2 w_0(au)=0,\;\zeta\in\omega(au);\quad\pm\partial_\zeta w_0(au)=0,\;\zeta=\pm H_\pm(au),$$

составляющие первую из этих задач, выполняются автоматически, поскольку функция w_0 не зависит от ζ . Рассматривая вторую из задач,

$$-\partial_\zeta^2 w_1(\zeta, au)=-k(au)\partial_\zeta w_0(au)=0,\;\zeta\in\omega(au);\quad\pm\partial_\zeta w_1(\pm H_\pm(au), au)=0,$$

получающуюся согласно (13) и (14), обнаруживаем, что второй член w_1 анзаца (10) также не зависит от ζ . Наконец, третья задача, сформированная при учете предположения (4)₂ о правой части f(h, x),

$$\begin{aligned} -\partial_{\zeta}^2 w_2(\zeta,\tau) &= f_{\Lambda}(\tau) + \partial_{\tau}^2 w_0(\tau), \quad \zeta \in \omega(\tau), \\ \pm \partial_{\zeta} w_2(\pm H_{\pm}(\tau),\tau) &= H'_{\pm}(\tau) \partial_{\tau} w_0(\tau), \end{aligned}$$

имеет решение в том и только в том случае, если выполнено условие

$$\int\limits_{\omega(au)} ig\{ f_\Lambda(au) + \partial_ au^2 w_0(au) ig\} d\zeta + H'_+(au) \partial_ au w_0(au) + H'_-(au) \partial_ au w_0(au) = 0,$$

которое следует интерпретировать как обыкновенное дифференциальное уравнение на отрезке $\Upsilon = (-l, l)$ для функции w_0 . Дополним это уравнение

$$-\partial_{\tau}H(\tau)\partial_{\tau}w_0(\tau) = H(\tau)f_{\Lambda}(\tau), \quad \tau \in \Upsilon,$$
(15)

граничными условиями Дирихле

$$w_0(\pm l) = v_0(P^{\pm}),\tag{16}$$

возникающими в результате сравнения анзаца (10) с элементарным анзацем $u(h, x) \sim v_0(x)$, использованным в предыдущем разделе. При

$$f_{\Lambda} \in L_2(\Upsilon) \tag{17}$$

существует единственное решение $w_0 \in H^2(\Upsilon)$ задачи (15), (16) и согласно (6) верна оценка

$$\|w_0; H^2(\Upsilon)\| \leq c(\|f_\Lambda; L_2(\Upsilon)\| + \|f_\Omega; L_2(\Omega)\|) \leq c(N_\Lambda + N_\Omega),$$

где N_{Ω} — величина (9), превосходящая норму $||f_{\Omega}; L_2(\Omega)||$, а также

$$N_{\Lambda} := \|f_{\Lambda}; L_2(\Upsilon)\|. \tag{18}$$

Кроме того, благодаря элементарным теоремам вложения выполняется представление

$$w_0(\tau) = \sum_{\pm} \chi_{\Lambda}(\tau \mp l) \{ v_0(P^{\pm}) + (\tau \mp l) \partial_{\tau} w_0(\pm l) \} + \widetilde{w}_0(\tau),$$
(19)

причем при учете неравенств Харди имеем

$$|\partial_{\tau} w_0(\pm l)| + \sum_{j=0}^{2} \left\| d_P^{-2+j} \partial_{\tau}^j \widetilde{w}_0; L_2(\Upsilon) \right\| \le c \|w_0; H^2(\Upsilon)\| \le c(N_\Omega + N_\Lambda).$$
(20)

В (19) $\chi_{\Lambda}\in C^{\infty}(\mathbb{R})$ — срезающая функция, равная единице вблизи точки t=0и нулю при t>l/2.

4. Пограничные слои и последующие члены асимптотики. При определении граничных условий (16) неявно использовался тот факт, что главный член разложения, описывающего явление пограничного слоя вблизи точки P^{\pm} :

$$u(h,x) \sim z_0^{\pm} + h z_1^{\pm}(\xi^{\pm}) + \dots,$$
 (21)

оказывается постоянной $z_0^{\pm} = v_0(P^{\pm})$. Здесь понадобились быстрые переменные $\xi^{\pm} = h^{-1}(x - P^{\pm})$, а область Ξ^{\pm} , в которой решаются задачи для определения функций z_j^{\pm} из (21), является объединением полуплоскости \mathbb{R}^2_+ и полосы Π^{\pm} шириной $H(\pm l)$. Угол θ_{\pm} между осью полосы Π^{\pm} и прямой $\partial \mathbb{R}^2_+$ совпадает с углом между дугами Γ и $\partial \Omega$ в точке P^{\pm} . Через $\eta_{\pm} \in [0, \infty)$ обозначаем координату на полуоси, лежащей в \mathbb{R}^2_+ , а через ($\rho_{\pm}, \varphi_{\pm}$) — полярные координаты на \mathbb{R}^2_+ , причем $\rho_{\pm} = |\xi^{\pm}|, \varphi_{\pm} \in (0, \pi)$. Отметим, что $\rho_{\pm} \sim h^{-1}r_{\pm}$ и $\eta_{\pm} \sim h^{-1}(l \mp \tau)$, но точный смысл приведенным соотношениям будет придан в п. 5.

Для целей данной статьи нужна лишь примитивная информация о структуре решения u(h, x) в зонах присоединения перемычки $\Lambda(h)$. Тем не менее, второй член разложения (21) удается построить полностью при помощи двух гармонических в Ξ^{\pm} функций \mathbf{z}_{0}^{\pm} и \mathbf{z}_{1}^{\pm} с нулевыми данными Неймана на $\partial \Xi^{\pm}$, обладающих следующим асимптотическим поведением в двумерных цилиндрическом и коническом выходах области Ξ^{\pm} на бесконечность:

$$\mathbf{z}_{0}^{\pm}(\xi^{\pm}) = \mp H(\pm l)^{-1}\eta_{\pm} + a_{0}^{\pm} + O(\exp[-\pi H(\pm l)^{-1}\eta_{\pm}]), \quad \xi^{\pm} \in \Pi^{\pm} \setminus \mathbb{R}^{2}_{+}, \\
\mathbf{z}_{0}^{\pm}(\xi^{\pm}) = \pi^{-1}\ln\rho_{\pm} + O(\rho_{\pm}^{-1}), \quad \xi^{\pm} \in \mathbb{R}^{2}_{+}; \\
\mathbf{z}_{1}^{\pm}(\xi^{\pm}) = a_{1}^{\pm} + O(\exp[-\pi H(\pm l)^{-1}\eta_{\pm}]), \quad \xi^{\pm} \in \Pi^{\pm} \setminus \mathbb{R}^{2}_{+}, \\
\mathbf{z}_{1}^{\pm}(\xi^{\pm}) = \rho_{\pm}\cos\varphi_{\pm} + O(\rho_{\pm}^{-1}), \quad \xi^{\pm} \in \mathbb{R}^{2}_{+}.$$
(22)

В $(22)_{1,3} a_i^{\pm}$ — некоторые постоянные, зависящие от $H(\pm l)$ и θ_{\pm} . Слагаемые из правых частей формул $(22)_{1,3}$ и $(22)_{2,4}$ удовлетворяют однородным задачам Неймана в полосе и развернутом угле соответственно (см. [15, гл. 2]). Растущие на бесконечности решения \mathbf{z}_i^{\pm} однородной задачи Неймана в Ξ^{\pm} , как обычно, отыскиваются в виде сумм упомянутых слагаемых, умноженных на подходящие срезки (см. далее (39)), и решений $\hat{\mathbf{z}}_i^{\pm}$, компенсирующих образовавшиеся невязки и имеющих конечные интегралы Дирихле. Предписанные асимптотики в двух выходах на бесконечность согласованы: в обоих случаях $(22)_{1,2}$ и $(22)_{3,4}$ суммарный поток через усекающие поверхности равен нулю. «Энергетические» составляющие $\hat{\mathbf{z}}_i^{\pm}$ определены с точностью до аддитивной постоянной, и именно поэтому стало возможным удалить постоянное слагаемое из представлений $(22)_{2,4}$ в полуплоскости \mathbb{R}_+^2 .

Применим метод сращиваемых асимптотических разложений (см. [19, 5, 7] и др.). Так как

$$w_0(\tau) \sim v_0(P^{\pm}) + (\tau \mp l)\partial_{\tau}w_0(\pm l) \sim v_0(P^{\pm}) \mp h\eta_{\pm}\partial_{\tau}w_0(\pm l) \quad \mathbf{B} \Lambda(h),$$

при учете $(22)_1$ видим, что член $z_1^{\pm}(\xi^{\pm})$ анзаца (21) должен содержать выражение $\pm H(\pm l)\mathbf{z}_0^{\pm}(\xi^{\pm})\partial_{\tau}w_0(\pm l)$. Теперь, обращаясь к формуле $(22)_2$ в полуплоскости \mathbb{R}^2_+ , обнаруживаем, что ввиду соотношения

$$\pm hH(\pm l)\mathbf{z}_{0}^{\pm}(\xi^{\pm})\partial_{\tau}w_{0}(\pm l) \sim \pm hH(\pm l)\partial_{\tau}w_{0}(\pm l)\pi^{-1}\{\ln r_{\pm} - \ln h\}$$
 в Ω

второе слагаемое из анзаца

$$u(h,x) = v_0(x) + hv_1(x) + \dots,$$
 (23)

по сути дела принятого в п. 2 внутри области Ω , обязано иметь логарифмические особенности в точках P^{\pm} . Более точно, v_1 — решение задачи

$$-\Delta_x v_1(x) = 0, \ x \in \Omega, \quad v_1(x) = 0, \ x \in \Sigma,$$

$$\partial_n v_1(x) = \sum_{\pm} \mp H(\pm l) \partial_\tau w_0(\pm l) \delta(s - s^{\pm}), \quad x \in \partial\Omega \setminus \overline{\Sigma},$$
 (24)

допускающее представление

$$v_1(x) = \sum_{\pm} \chi_{\Omega}(r_{\pm}) \left\{ \pm \frac{1}{\pi} H(\pm l) \partial_\tau w_0(\pm l) \ln r_{\pm} + b_1^{\pm} \right\} + \tilde{v}_1(x).$$
(25)

Здесь δ — функция Дирака; $-\pi^{-1} \ln r_{\pm}$ — ядро Пуассона; b_1^{\pm} — постоянные, зависящие от H, w_0 и Ω , а $\tilde{v}_1 \in H^1(\Omega)$ — регулярная часть, причем $\tilde{v}_1(P^{\pm}) = 0$. Выполняются оценки

$$\begin{aligned} \left| b_{1}^{\pm} \right| + \sum_{j=0}^{2} \left\| d_{P}^{-1-\mu+j} d_{Q}^{\delta_{j,2}} \nabla_{x}^{j} \tilde{v}_{1}; L_{2}(\Omega) \right\| &\leq c \sum_{\pm} \left| \partial_{\tau} w_{0}(\pm l) \right| \\ &\leq c \| w_{0}; H^{2}(\Upsilon) \| \leq c (N_{\Lambda} + N_{\Omega}), \end{aligned}$$
(26)

в которых μ — произвольное число из интервала (0,1) (берем μ таким же, как и в (7)).

Итак, можно закончить построение пары членов разложения (21). Поскольку в силу (8)₁ и (25) справедлива формула

$$v_{0}(x) + hv_{1}(x) \sim v_{0}(P^{\pm}) + (s - s^{\pm})\partial_{s}v_{0}(P^{\pm}) + h\left\{\pm\pi^{-1}H(\pm l)\partial_{\tau}w_{0}(\pm l)\ln r_{\pm} + b_{1}^{\pm}\right\}$$

$$\sim v_{0}(P^{\pm}) + h\left\{\rho_{\pm}\cos\varphi_{\pm}\partial_{s}v_{0}(P^{\pm}) \pm \pi^{-1}H(\pm l)\partial_{\tau}w_{0}(\pm l)[\ln\rho_{\pm} + \ln h] + b_{1}^{\pm}\right\} \quad \text{B} \ \Omega,$$

(27)

при учете представлений (22)_{4,2} положим

$$z_{1}^{\pm}(\xi^{\pm}) = \mathbf{z}_{1}^{\pm}(\xi^{\pm})\partial_{s}v_{0}(P^{\pm}) \pm \pi^{-1}H(\pm l)\partial_{\tau}w_{0}(\pm l)\big[\mathbf{z}_{0}^{\pm}(\xi^{\pm}) + \ln h\big] + b_{1}^{\pm}.$$
 (28)

Подчеркнем, что на полуплоскости \mathbb{R}^2_+ отклонение суммы (28) от последней фигурной скобки из (27) составляет $O(\rho_{\pm}^{-1})$ при $\rho_{\pm} \to +\infty$.

Постоянная $v_0(P^{\pm})$ из (27) послужила правой частью граничного условия (16), а значит, и главным членом асимптотики $w_0(\tau)$ при $\tau \to \pm l$. Точно так же, выделяя постоянную в разложении функции (28) при $\Pi^{\pm} \ni \eta \to +\infty$, осуществляем сращивание и формируем граничное условие для второго слагаемого в анзаце (10):

$$w_1(\ln h, \pm l) = a_1^{\pm} \partial_s v_0(P^{\pm}) \pm \pi^{-1} H(\pm l) \partial_\tau w_0(\pm l) \left[a_0^{\pm} + \ln h \right] + b_1^{\pm}.$$
 (29)

Можно было бы продолжить описанную в п. 3 процедуру и вывести аналогичное (15) обыкновенное дифференциальное уравнение для w_1 , однако оно далее не понадобится. Подчеркнем, что из-за присутствия $\ln h$ в правой части (29) функция w_1 линейно зависит от этого большого параметра.

$$||u; L_2(\Omega)|| \le c ||\nabla_x u; L_2(\Omega)||.$$

Отсюда и из одномерного неравенства Харди с логарифмом

$$\int_{0}^{1} |U(r)|^{2} r^{-1} |\ln r|^{-2} dr \le 4 \int_{0}^{1} |U'(r)|^{2} r dr \quad \forall U \in C_{0}^{\infty}[0, 1)$$

вытекает, что

$$\left\| d_P^{-1}(1+|\ln d_P|)^{-1}u; L_2(\Omega) \right\| \le c \|u; H^1(\Omega)\| \le c \|\nabla_x u; L_2(\Omega)\|.$$
(30)

Рассмотрим часть

$$\Lambda_h^{\bullet} = \{ x \in \Lambda_h : |\tau| < l + 2\lambda h \}$$

криволинейной полоски (1), причем длину $\lambda > 0$ выберем так, чтобы концевые зоны $\Lambda_h^{\pm} = \{x \in \Lambda_h^{\bullet} : \pm \tau \in (l + \lambda h, l + 2\lambda h)\}$ попали внутрь области Ω . Так как $d_P(x)^{-1} \ge ch^{-1}$ при $x \in \Lambda_h^{\pm}$ и c > 0, выводим из (30) соотношение

$$h^{-1}(1+|\ln h|)^{-1} \|u; L_2(\Lambda_h^{\pm})\| \le c \|\nabla_x u; L_2(\Omega)\|.$$
(31)

Пусть $\mathscr{X} \in C_0^{\infty}(-l-2\lambda h, l+2\lambda h)$ — срезающая функция, равная единице при $|\tau| < l + \lambda h$; ясно, что ее можно подчинить неравенствам

$$\left|\partial_{\tau}^{k} \mathscr{X}(h,\tau)\right| \le c_{k} h^{-k}, \quad k = 0, 1, \dots$$
(32)

В силу (32) и (31)

$$\begin{aligned} \left\| \nabla_x(\mathscr{X}u); L_2(\Lambda_h^{\bullet}) \right\| &\leq c \Big\{ \left\| \nabla_x u; L_2(\Lambda_h^{\bullet}) \right\| + h^{-1} \sum_{\pm} \left\| u; L_2(\Lambda_h^{\pm}) \right\| \Big\} \\ &\leq c(1 + |\ln h|) \| \nabla_x u; L_2(\Omega(h)) \|. \end{aligned}$$

Для оценки нормы u на перемычке осталось применить известное весовое неравенство Фридрихса — Пуанкаре к произведению $\mathscr{X}u$, аннулирующемуся на торцах тонкой полоски Λ_h^{\bullet} :

$$\left\|(h+d_P)^{-1}\mathscr{X}u;L_2\left(\Lambda_h^{ullet}
ight)
ight\|\leq c \left\|
abla_x(\mathscr{X}u);L_2\left(\Lambda_h^{ullet}
ight)
ight\|.$$

Эта формула получается повторением процедуры вывода весового анизотропного неравенства Корна для тонких искривленных пластин и стержней (см. [20; 18, §3.3, 3.4] и др.). Поскольку здесь рассматривается скалярное поле, общая процедура претерпевает существенные упрощения и мы лишь формулируем результат.

Предложение 1. Справедливо неравенство

$$\|du; L_2(\Omega)\| \le c \|\nabla_x u; L_2(\Omega)\|,$$

в котором постоянная с не зависит от функции $u \in \overset{\circ}{H}{}^{1}(\Omega(h); \Sigma)$ и параметра $h \in (0, h_0]$, а весовой множитель d определен следующим образом:

$$d(h,x) = \begin{cases} d_P(x)^{-1}(1+|\ln d_P(x)|)^{-1}, & x \in \Omega;\\ (h+d_P(x))^{-1}(1+|\ln h|)^{-1}, & x \in \Lambda(h). \end{cases}$$
(33)

Составим глобальное асимптотическое приближение $\mathscr{U}(h,x)$ к решению u(h,x) задачи (3). С этой целью введем срезающие функции

$$\mathscr{X}_{\Omega}(h,x) = 1 - \sum_{\pm} \chi_{\Omega}(h^{-1}r_{\pm}), \quad \mathscr{X}_{\Lambda}(h,x) = 1 - \sum_{\pm} \chi_{\Lambda}(h^{-1}(\tau \mp l)), \qquad (34)$$

соответственно равные единице всюду на Ω и $\Lambda(h)$, за исключением малых окрестностей точек P^{\pm} . Ясно, что срезки (34) подчиняются подобным (32) неравенствам. Пусть еще $x \mapsto \varkappa_{\pm}(h, x)$ — диффеоморфизм, переводящий множество

$$\Omega^{\pm}(h) = \{ x \in \Omega(h) : r_{\pm} < r_0, \ x \in \Omega; \ l \mp \tau < r_0, \ x \in \Lambda(h) \} \cup (\partial \Omega \cap \Lambda_h)$$

в часть области Ξ^{\pm} , возникшей в п. 4 при исследовании явления пограничного слоя. По построению диффеоморфизм \varkappa_{\pm} в непосредственной близости от P^{\pm}

мало отличается от растяжения координат в h раз. Более того, так как включение $\varkappa_{\pm} \in H^1_{\infty}(\Omega(h))$ достаточно для дальнейших целей, упомянутый диффеоморфизм можно соорудить следующим образом: сначала спрямить контур $\partial\Omega$, рассматривая координаты (n, s) как декартовы (размер r_0 берем достаточно малым), затем сделать замену переменной $s \mapsto a(h, n, s)s + b(h, n, s)$, выравнивая ширину криволинейной полоски, но считая непрерывные кусочно гладкие коэффициенты a и b постоянными при n < 0, и, наконец, растянуть координаты в h раз. Такие действия обеспечивают оценки

$$|\varkappa_{\pm}(h,x) - h^{-1}(x - P^{\pm})| \leq c \cdot \begin{cases} (h+r_{\pm}), & x \in \Omega, \\ (h+l \mp \tau), & x \in \Lambda(h), \end{cases}$$

$$|\nabla_x \varkappa_{\pm}(h,x) - h^{-1} \mathbb{I}_2| \leq c \cdot \begin{cases} (h+r_{\pm}), & x \in \Omega, \\ (h+l \mp \tau), & x \in \Lambda(h), \end{cases}$$
(35)

здесь \mathbb{I}_2 — единичная матрица размером 2×2 .

В соответствии с анзацами (10), (23) и (21) асимптотическое решение \mathscr{U} определяется по формулам

$$\mathscr{U}(h,x) = \mathscr{V}(h,x) + h \sum_{\pm} \chi_{\Omega}(r_{\pm}) \tilde{z}_{1}^{\pm}(\varkappa_{\pm}(h,x)), \quad x \in \Omega,$$

$$\mathscr{U}(h,x) = \mathscr{W}(h,x) + h \sum_{\pm} \chi_{\Lambda}(\tau \mp l) \tilde{z}_{1}^{\pm}(\varkappa_{\pm}(h,x)), \quad x \in \Lambda,$$
(36)

в которых основные составляющие имеют вид

$$\begin{split} \mathscr{V}(h,x) &= \mathscr{X}_{\Omega}(h,x) \{ \widetilde{v}_{0}(x) + h \widetilde{v}_{1}(x) \} \\ &+ \sum_{\pm} \chi_{\Omega}(r_{\pm}) \{ v_{0}(P^{\pm}) + h \big(b_{1}^{\pm} + \pi^{-1} H(\pm l) \partial_{\tau} w_{0}(\pm l) \ln h \big) + (1 - \chi_{\Omega}(h^{-1}r_{\pm})) \mathscr{Y}^{\pm}(x) \}, \end{split}$$

$$\mathscr{W}(h,x) = \mathscr{X}_{\Lambda}(h,x) \{ \widetilde{w}_{0}(\tau) + h\widetilde{w}_{1}(\ln h,\tau) \}
+ \sum_{\pm} \chi_{\Lambda}(\tau \mp l) \{ w_{0}(\pm l) + hw_{1}(\ln h,\pm l) + (1 - \chi_{\Lambda}(h^{-1}(\tau \mp l))) \mathscr{Z}^{\pm}(\tau) \}, \quad (37)
\mathscr{Y}^{\pm}(x) := (s - s_{\pm}) \partial_{s} v_{0}(P^{\pm}) + \pi^{-1} H(\pm l) \partial_{\tau} w_{0}(\pm l) (\ln r_{\pm} - \ln h),
\mathscr{Z}^{\pm}(\tau) := (\tau \mp l) \partial_{\tau} w_{0}(\pm l).$$

Здесь \tilde{v}_0 , \tilde{v}_1 и \tilde{w}_0 — остатки в представлениях (8)₁, (25) и (19), а w_1 — произвольная (далее берем ее линейной) функция переменной τ , удовлетворяющая граничным условиям (29), причем

$$w_1(\ln h, au) = \widetilde{w}_1(\ln h, au) + \sum_{\pm} \chi_\Lambda(au \mp l) w_1(\ln h,\pm l).$$

Обращаем внимание на то, что в $(37)_1$ постоянные, взятые из (8) и (25), не умножаются на срезающие функции, поскольку согласованы со значениями w_0 и w_1 в точках $\tau = \pm l$, а появление множителя \mathscr{X}_{Ω} при функциях \tilde{v}_0 и \tilde{v}_1 , исчезающих в точках P^{\pm} , не привносит существенных погрешностей. В то же время остальные слагаемые, выделенные в (8) и (25), умножены на срезку $1 - \chi_{\Omega}(h^{-1}r_{\pm})$, которая отличается от единицы лишь в зоне $\{x \in \Omega : r_{\pm} < r_0h\}$ действия пограничного слоя (сказанное касается и формулы $(37)_2$). Все это сделано для того, чтобы, во-первых, приближение \mathscr{U} было достаточно гладким и, во-вторых, слагаемые, не убывающие на бесконечности, исчезли из составляющих \mathbf{z}_0^{\pm} и \mathbf{z}_1^{\pm} в формуле (28). Таким образом, вместо (28) следует взять сумму

$$\tilde{z}_{1}^{\pm}(\xi^{\pm}) = \tilde{\mathbf{z}}_{1}^{\pm}(\xi^{\pm})\partial_{s}v_{0}(P^{\pm}) \pm \pi^{-1}H(\pm l)\partial_{\tau}w_{0}(\pm l)\tilde{\mathbf{z}}_{0}^{\pm}(\xi^{\pm}),$$
(38)

где в соответствии с разложениями (22)

$$\tilde{\mathbf{z}}_{0}^{\pm}(\xi^{\pm}) = \mathbf{z}_{0}^{\pm}(\xi^{\pm}) - a_{0}^{\pm} \pm (1 - \chi_{\Lambda}(\eta_{\pm}))H(\pm l)^{-1}\eta_{\pm}, \quad \xi^{\pm} \in \Pi^{\pm} \setminus \mathbb{R}_{+}^{2}, \\
\tilde{\mathbf{z}}_{0}^{\pm}(\xi^{\pm}) = \mathbf{z}_{0}^{\pm}(\xi^{\pm}) - (1 - \chi_{\Omega}(\rho_{\pm}))\pi^{-1}\ln\rho_{\pm}, \quad \xi^{\pm} \in \mathbb{R}_{+}^{2}; \\
\tilde{\mathbf{z}}_{1}^{\pm}(\xi^{\pm}) = \mathbf{z}_{1}^{\pm}(\xi^{\pm}) - a_{1}^{\pm}, \quad \xi^{\pm} \in \Pi^{\pm} \setminus \mathbb{R}_{+}^{2}, \\
\tilde{\mathbf{z}}_{1}^{\pm}(\xi^{\pm}) = \mathbf{z}_{1}^{\pm}(\xi^{\pm}) - (1 - \chi_{\Omega}(\rho_{\pm}))\rho_{\pm}\cos\varphi_{\pm}, \quad \xi^{\pm} \in \mathbb{R}_{+}^{2}.$$
(39)

Подчеркнем, наконец, что функции (39) отличаются от введенных в п. 3 «энергетических решений» $\hat{\mathbf{z}}_i^{\pm}$ лишь постоянными, вычтенными на полуплоскости \mathbb{R}^2_+ . Сами $\tilde{\mathbf{z}}_i^{\pm}$ не являются непрерывными, однако комбинации (36) сохраняют необходимую гладкость ввиду осуществленного сращивания асимптотических разложений.

Вычислим невязки, порождаемые приближением $\mathscr{U} \in \overset{\circ}{H}^1(\Omega(h); \Sigma)$ в уравнении (3)₁ и краевом условии (3)₂. Для разности $\mathscr{R} = u - \mathscr{U}$ получаем соотношения

$$-\Delta_{x}\mathscr{R} = f - \mathscr{X}_{\Omega}f_{\Omega} + [\Delta_{x}, \mathscr{X}_{\Omega}](\tilde{v}_{0} + h\tilde{v}_{1}) + h\sum_{\pm} [\Delta_{x}, \chi_{\Omega}(r_{\pm})]\tilde{z}_{1}^{\pm} + \sum_{\pm} \chi_{\Omega}(r_{\pm}) \{h\Delta_{x}\tilde{z}_{1}^{\pm} - [\Delta_{x}, \chi_{\Omega}(h^{-1}r_{\pm})]\mathscr{Y}^{\pm}\} \quad \text{B} \ \Omega(h),$$

$$\tag{40}$$

$$egin{aligned} &-\Delta_x \mathscr{R} = f + \mathscr{X}_\Lambda \Delta_x (w_0 + h w_1) + [\Delta_x, \mathscr{X}_\Lambda] (\widetilde{w}_0 + h \widetilde{w}_1) + h \sum_{\pm} [\Delta_x, \chi_\Lambda (au \mp l)] \widetilde{z}_1^{\pm} \ &+ \sum_{\pm} \chi_\Lambda (au \mp l) ig\{ h \Delta_x \widetilde{z}_1^{\pm} - [\Delta_x, \chi_\Lambda (h^{-1}(au \mp l))] \mathscr{Z}^{\pm} ig\} \quad ext{b} \; \Lambda(h). \end{aligned}$$

Здесь [A, B] = AB - BA — коммутатор операторов A и B, величины \mathscr{Y}^{\pm} и \mathscr{X}^{\pm} введены в $(37)_3$, а при преобразовании членов учтено расположение носителей срезок и их производных. Аналогично

$$\partial_{n}\mathscr{R} = -[\partial_{n},\mathscr{X}_{\Omega}](\tilde{v}_{0} + h\tilde{v}_{1}) -h\sum_{\pm} [\partial_{n},\chi_{\Omega}(r_{\pm})]\tilde{z}_{1}^{\pm} - \sum_{\pm} \chi_{\Omega}(r_{\pm}) \{h\partial_{n}\tilde{z}_{1}^{\pm} - [\partial_{n},\chi_{\Omega}(h^{-1}r_{\pm})]\mathscr{Y}^{\pm}\} \quad \mathbf{B} \ \partial\Omega \setminus \overline{\Lambda}_{h},$$

$$\tag{41}$$

$$\begin{split} \partial_{n}\mathscr{R} &= -\mathscr{X}_{\Lambda}\partial_{n}(w_{0} + hw_{1}) - [\partial_{n},\mathscr{X}_{\Lambda}](\widetilde{w}_{0} + h\widetilde{w}_{1}) - h\sum_{\pm} [\partial_{n},\chi_{\Lambda}(\tau \mp l)]\widetilde{z}_{1}^{\pm} \\ &- \sum_{\pm} \chi_{\Lambda}(\tau \mp l) \big\{ h\partial_{n}\widetilde{z}_{1}^{\pm} - [\partial_{n},\chi_{\Lambda}(h^{-1}(\tau \mp l))]\mathscr{Z}^{\pm} \big\} \quad \text{ha} \ \Upsilon_{h}^{\pm} \setminus \overline{\Omega}. \end{split}$$

Умножив уравнения (40) на $\mathscr{R} \in \overset{\circ}{H}{}^{1}(\Omega(h); \Sigma)$ и проинтегрировав по частям в $\Omega(h)$ при учете краевых условий (41), приходим к формуле

$$(\nabla_x \mathscr{R}, \nabla_x \mathscr{R})_{\Omega(h)} = \dots, \tag{42}$$

где $(,)_{\Xi}$ — скалярное произведение в $L_2(\Xi)$, а многоточие обозначает линейно зависящие от \mathscr{R} интегралы, которые будут уточнены и обработаны поочередно. Начнем с оценки

$$\begin{split} |(f - \mathscr{X}_{\Omega} f_{\Omega}, \mathscr{R})_{\Omega}| &\leq c(\|d_P(1+|\ln d_P|)(1-\mathscr{X}_{\Omega}) f_{\Omega}; L_2(\Omega)\| \\ &+ \|d_P(1+|\ln d_P|)\tilde{f}; L_2(\Omega)\|) \|d_P^{-1}(1+|\ln d_P|)^{-1}\mathscr{R}; L_2(\Omega)\| \\ &\leq ch^{1+\mu}(1+|\ln h|)(N_{\Omega}+\widetilde{N}_{\Omega}) \|\nabla_x \mathscr{R}; L_2(\Omega)\|, \end{split}$$

Здесь использованы предложение 1, определение (9) и соотношение $d_P(x) \leq ch$ на носителе разности $1 - \mathscr{X}_{\Omega}$ (см. (34)), а также введено следующее условие малости остатка в представлении (4): величина

$$\widetilde{N}_{\Omega} := h^{-1-\mu} (1+|\ln h|)^{-1} \|d_P (1+|\ln d_P|) \widetilde{f}; L_2(\Omega)\|$$
(43)

имеет порядок $1 = h^0$.

Помимо прежних соображений, очередные две оценки опираются на неравенства (8)₂, (26) и (20), относящиеся к остаткам \tilde{v}_i и коэффициентам комбинации (28):

$$\begin{split} |([\Delta_x,\mathscr{X}_{\Omega}](\tilde{v}_0+h\tilde{v}_1),\mathscr{R})_{\Omega} - ([\partial_n,\mathscr{X}_{\Omega}](\tilde{v}_0+h\tilde{v}_1),\mathscr{R})_{\partial\Omega}| \\ &\leq ch^{1+\mu}(1+|\ln h|)(N_{\Omega}+(1+|\ln h|)N_{\Lambda})\|\nabla_x\mathscr{R}; L_2(\Omega(h))\|, \end{split}$$

$$\begin{split} h \Big| \big([\Delta_x, \chi_{\Omega}(r_{\pm})] \tilde{z}_1^{\pm}, \mathscr{R} \big)_{\Omega} - ([\partial_n, \chi_{\Omega}(r_{\pm})] \tilde{z}_1^{\pm}, \mathscr{R})_{\partial \Omega \setminus \Lambda_h} \Big| \\ & \leq ch^2 (1 + |\ln h|) (N_{\Omega} + N_{\Lambda}) \| \nabla_x \mathscr{R}; L_2(\Omega(h)) \|. \end{split}$$

Подчеркнем, что во втором случае учтена скорость убывания $O(\rho_{\pm}^{-1}) = O(hr_{\pm}^{-1})$ остатков в разложениях (22)_{2,4}, а в первом — формулы (32) для производных срезки \mathscr{X}_{Ω} и элементарные следовые неравенства

$$\left\| d_P^{i-\mu-3/2} \tilde{v}_i; L_2(\partial \Omega) \right\| \le c \sum_{j=0}^1 \left\| d_P^{i-\mu-2+j} \nabla_x^j \tilde{v}_i; L_2(\Omega) \right\|, \quad i=0,1.$$

Отложив рассмотрение последних слагаемых в (40) и (41), заметим, что аналогично предыдущему оценки

$$\begin{split} |([\Delta_x,\mathscr{X}_{\Lambda}](\widetilde{w}_0+h\widetilde{w}_1),\mathscr{R})_{\Lambda(h)}-([\partial_n,\mathscr{X}_{\Lambda}](\widetilde{w}_0+h\widetilde{w}_1),\mathscr{R})_{\partial\Lambda(h)}|\\ &\leq c\{h^{3/2}(1+|\ln h|)+h^2(1+|\ln h|)^2\}(N_{\Omega}+N_{\Lambda})\|\nabla_x\mathscr{R};L_2(\Omega(h))\|, \end{split}$$

$$\begin{split} h \Big| \big([\Delta_x, \chi_{\Lambda}(\tau \mp l)] \tilde{z}_1^{\pm}, \mathscr{R} \big)_{\Lambda(h)} - \big([\partial_n, \chi_{\Lambda}(\tau \mp l)] \tilde{z}_1^{\pm}, \mathscr{R} \big)_{\partial \Lambda(h)} \Big| \\ & \leq c h^{1/2} (1 + |\ln h|) \exp\{-\delta/h\} (N_{\Omega} + N_{\Lambda}) \| \nabla_x \mathscr{R}; L_2(\Omega(h)) \| \end{split}$$

обеспечиваются формулами (20), (29) и (22)_{1,3}. При этом возникшие степени величины $(1 + |\ln h|)$ обусловлены аналогичными множителями из (29) и (33)₂, а экспонента $\exp\{-\delta/h\}$ с $\delta = 2^{-1}\pi r_0 \max\{H_{\pm}(\pm l)^{-1}\} > 0$ — экспоненциальным затуханием остатков в представлениях (22)_{1,3} и равенством $\partial_t \chi_{\Lambda}(t) = 0$ при $t \in [0, r_0/2]$. Так как функция w_1 зависит лишь от медленной переменной τ , прямые вычисления нормы показывают, что в силу формул (33) и (29), содержащих $\ln h$, выполняется соотношение где $I(w,\mathscr{R}) := (\mathscr{X}_{\Lambda} \Delta_x w, \mathscr{R})_{\Lambda(h)} - (\mathscr{X}_{\Lambda} \partial_n w, \mathscr{R})_{\partial \Lambda(h)}.$

Теперь обработаем выражение $I(w_0, \mathscr{R})$. Положим

$$\overline{\mathscr{R}}(\tau) := h^{-1} H(\tau)^{-1} \int_{\omega(\tau)} \mathscr{R}(\nu, \tau) \, d\nu.$$

Ввиду одномерного неравенства Пуанкаре справедливо соотношение

 $\|\mathscr{X}_{\Lambda}(\mathscr{R}-\overline{\mathscr{R}});L_{2}(\Lambda(h))\| \leq ch\|\mathscr{X}_{\Lambda}\partial_{\nu}\mathscr{R};L_{2}(\Lambda(h))\| \leq Ch\|\nabla_{x}\mathscr{R};L_{2}(\Lambda(h))\|.$

Кроме того,

$$\begin{split} h^{-1/2} \| \mathscr{X}_{\Lambda}(\mathscr{R} - \overline{\mathscr{R}}); L_{2}(\partial \Lambda(h)) \| \\ & \leq c \{ h^{-1} \| \mathscr{X}_{\Lambda}(\mathscr{R} - \overline{\mathscr{R}}); L_{2}(\Lambda(h)) \| + \| \mathscr{X}_{\Lambda} \partial_{\nu} \mathscr{R}; L_{2}(\Lambda(h)) \| \}, \\ & \| \mathscr{X}_{\Lambda} \overline{\mathscr{R}}; L_{2}(\Upsilon) \| \leq c h^{-1/2} \| \mathscr{X}_{\Lambda} \mathscr{R}; L_{2}(\Lambda(h)) \|. \end{split}$$

Заметим, что $\|\Delta_x w_0; L_2(\Upsilon)\| \le c(N_\Omega + N_\Lambda)$ и $\|\partial_n w_0; L_2(\Upsilon)\| \le ch(N_\Omega + N_\Lambda)$ в силу (12) и (14), и продолжим преобразования при помощи указанных выше неравенств:

$$\begin{split} |I(w_0,\mathscr{R}) - I(w_0,\overline{\mathscr{R}})| &= |I(w_0,\mathscr{R} - \overline{\mathscr{R}})| \\ &\leq c\{\|\Delta w_0; L_2(\Lambda(h))\|\|\mathscr{X}_{\Lambda}(\mathscr{R} - \overline{\mathscr{R}}); L_2(\Lambda(h))\| \\ &+ \|\partial_{\nu}w_0; L_2(\partial\Lambda(h) \setminus \Omega)\|\|\mathscr{X}_{\Lambda}(\mathscr{R} - \overline{\mathscr{R}}); L_2(\partial\Lambda(h))\|\} \\ &\leq c\{h^{1/2}h + h^1h^{1/2}\}(N_{\Omega} + N_{\Lambda})\|\nabla_{x}\mathscr{R}; L_2(\Omega(h))\|. \end{split}$$

Теперь, принимая во внимание уравнение (15) и формулы (11) и (14) для лапласиана в $\Lambda(h)$ и производной по нормали на $\Upsilon^\pm_h,$ обнаруживаем, что

$$\begin{aligned} \left| I(w_0, \overline{\mathscr{R}}) + h \int_{-l}^{l} \mathscr{X}_{\Lambda}(\tau) H(\tau) f_{\Lambda}(\tau) \overline{\mathscr{R}}(\tau) \, d\tau \right| \\ \leq \left| \int_{-l}^{l} \left\{ \int_{-H_{-}(\tau)}^{H_{+}(\tau)} \mathscr{X}_{\Lambda}(\tau) \overline{\mathscr{R}}(\tau) (-\partial_{\tau}(1+\nu k(\tau)))^{-1} \partial_{\tau} w_0(\tau) - (1+\nu k(\tau)) f_{\Lambda}(\tau)) \, d\nu \right\} d\tau \\ + h \sum_{\pm} \int_{-l}^{l} \mathscr{X}_{\Lambda}(\tau) \overline{\mathscr{R}}(\tau) (1+h^2 H'_{\pm}(\tau)^2)^{-1/2} \\ \times (1 \pm h H_{\pm}(\tau) k(\tau)) H'_{\pm}(\tau) \partial_{\tau} w_0(\tau) (1+h^2 H'_{\pm}(\tau)^2)^{1/2} \, d\tau \right| \\ \leq \left| \int_{-l}^{l} \mathscr{X}_{\Lambda}(\tau) \overline{\mathscr{R}}(\tau) (-\partial_{\tau} H(\tau) \partial_{\tau} w_0(\tau) - f_{\Lambda}(\tau)) \, d\tau \right| \\ + c \| w_0; H^2(\Upsilon) \| (h^{1/2} \| \nu \mathscr{X}_{\Lambda} \overline{\mathscr{R}}; L_2(\Lambda(h)) \| + h^2 \| \mathscr{X}_{\Lambda} \overline{\mathscr{R}}; L_2(\Omega(h)) \| . \end{aligned}$$

Конкретизируем условие малости остатка в представлении (4)₂, предположив, что

$$\tilde{f}(h,x) = \tilde{f}_{0}(h,x) + \tilde{f}_{\perp}(h,\nu,\tau),$$

$$\int_{-hH_{-}(\tau)}^{hH_{+}(\tau)} \tilde{f}_{\perp}(h,\nu,\tau)d\nu = 0, \quad \tau \in (-l-2h\lambda, l+2h\lambda),$$

$$\tilde{N}_{\Lambda} := (1+|\ln h|)^{-1} \{h^{-3/2} \|\tilde{f}_{0}; L_{2}(\Lambda(h))\| + h^{-1/2} \|\tilde{f}_{\perp}; L_{2}(\Lambda(h))\|\};$$
(44)

при этом величина \widetilde{N}_{Λ} имеет первый порядок, а введение в $(44)_2$ длины $\lambda > 0$ преследует те же цели, что и ранее в (31).

Замечание 1. Для гладкой в окрестности перемычки $\Lambda(h)$ функции f,записанной при помощи переменных ν и $\tau,$ имеем

$$egin{aligned} & ilde{f}_\perp=0, \quad ilde{f}_0(
u, au)=f(
u, au)-f(0, au), \ &\| ilde{f}_0;L_2(\Lambda(h))\|\leq ch^{3/2}\max\{|
abla_xf(
u, au)|:x\in\overline{\Lambda}_h\}. \end{aligned}$$

Основываясь на предположениях (44), получаем еще одну оценку

$$\begin{split} \left| (f,\mathscr{R})_{\Lambda(h)} - h \int_{-l}^{l} \mathscr{X}_{\Lambda}(\tau) H(\tau) f_{\Lambda}(\tau) \overline{\mathscr{R}}(\tau) \, d\tau \right| \\ &= \left| ((1 - \mathscr{X}_{\Lambda}) f, \mathscr{R})_{\Lambda(h)} + (\mathscr{X}_{\Lambda} \tilde{f}_{0}, \mathscr{R})_{\Lambda(h)} + (\mathscr{X}_{\Lambda} f_{\Lambda}, \mathscr{R} - (1 + \nu k)^{-1} \overline{\mathscr{R}})_{\Lambda(h)} \right. \\ &+ (\tilde{f}_{\perp}, \mathscr{X}_{\Lambda} (\mathscr{R} - \overline{\mathscr{R}}) (1 + \nu k)^{-1})_{\Lambda(h)} + (\tilde{f}_{\perp}, \mathscr{X}_{\Lambda} \overline{\mathscr{R}} \nu k (1 + \nu k)^{-1})_{\Lambda(h)} | \\ &\leq c (N_{\Lambda} + (1 + |\ln h|) \widetilde{N}_{\Lambda}) \{ h^{3/2} \| d_{p}^{-1} \mathscr{R}; L_{2}(\Lambda(h)) \| \\ &+ h^{1/2} \| \mathscr{X}_{\Lambda} (\mathscr{R} - \overline{\mathscr{R}}); L_{2}(\Lambda(h)) \| + h^{2} \| \overline{\mathscr{R}}; L_{2}(\Upsilon) \| \} \\ &\leq c h^{3/2} (1 + |\ln h|) (N_{\Lambda} + (1 + |\ln h|) \widetilde{N}_{\Lambda}) \| \nabla_{x} \mathscr{R}; L_{2}(\Omega(h)) \|. \end{split}$$

Итак, осталось разобраться с последними членами в $(40)_{1,2}$ и $(41)_{1,2}$. Поскольку на \mathbb{R}^2_+ к функции $\tilde{z}^{\pm}_1(\varkappa_{\pm}(h,\cdot))$ можно без каких-либо последствий прибавить постоянную и, значит, сделать ее непрерывной (см. комментарии к формулам (39)), после интегрирования по частям соответствующие слагаемые из правой части (42) превращаются в сумму

$$h \big(\nabla_x \tilde{z}_1^{\pm}(\varkappa_{\pm}(h,\cdot)), \nabla_x(\chi^{\pm}\mathscr{R}) \big)_{\Omega(h)} - ([\Delta_x, \chi_{\Omega}(h^{-1}r_{\pm})]\mathscr{Y}^{\pm}, \chi^{\pm}\mathscr{R})_{\Omega} + ([\partial_n, \chi_{\Omega}(h^{-1}r_{\pm})]\mathscr{Y}^{\pm}, \chi^{\pm}\mathscr{R})_{\partial\Omega\setminus\Lambda_h} - ([\Delta_x, \chi_{\Lambda}(h^{-1}(\tau \mp l))]\mathscr{X}^{\pm}, \chi^{\pm}\mathscr{R})_{\Lambda(h)} + ([\partial_n, \chi_{\Lambda}(h^{-1}(\tau \mp l))]\mathscr{X}^{\pm}, \chi^{\pm}\mathscr{R})_{\partial\Lambda_h\setminus\Omega};$$

$$(45)$$

здесь $\chi^{\pm}(x) = \chi^{\pm}(r_{\pm})$ в Ω и $\chi^{\pm}(x) = \chi^{\pm}(\tau \mp l)$ на $\Lambda(h)$, а \mathscr{Y}^{\pm} и \mathscr{Z}^{\pm} указаны в (37)₃. Перейдем в (45) к координатам $\xi^{\pm} = \varkappa_{\pm}(h, x)$. В результате получим интегралы по области Ξ^{\pm} и ее границе с «пробной» функцией $\xi^{\pm} \mapsto \chi^{\pm}(\varkappa_{\pm}^{-1}(h,\xi^{\pm}))\mathscr{R}(\varkappa_{\pm}^{-1}(h,\xi^{\pm}))$. Так как величина $\tilde{z}_{1}^{\pm}(\xi^{\pm})$ убывает при $|\xi^{\pm}| \to +\infty$ не медленнее $O(|\xi^{\pm}|^{-1})$ (см. (22) и (39)), а остальные подынтегральные выражения имеют носители на множестве $\{x : r_{\pm} < ch\}$, в силу соотношений (35) ошибки, совершаемые при удалении якобиана и при заменах

$$abla_x \mapsto h^{-1} \nabla_{\xi^{\pm}}, \quad \partial_n \mapsto h^{-1} \partial_{n(\xi^{\pm})};$$

$$h^{-1}(\tau \mp l) \mapsto \mp \xi^{\pm}$$
 на $\Pi^{\pm} \setminus \mathbb{R}^2_+, \quad h^{-1}r_{\pm} \mapsto \rho^{\pm}$ на $\mathbb{R}^2_+,$

оцениваются сверху выражением

$$ch^2(1+|\ln h|)ig(N_\Omega+N_\Lambdaig)\|
abla_x\mathscr{R};L_2(\Omega(h))\|$$

Получающаяся в результате замен сумма интегралов равна нулю, так как представляет собой фрагмент интегрального тождества, которому удовлетворяет функция \tilde{z}_1^{\pm} (ср. с определениями (38) и (39)). Проверим упомянутые оценки на примере первого скалярного произведения в (45):

$$h \Big| \big(\nabla_x \tilde{z}_1^{\pm}(\varkappa_{\pm}(h, \cdot)), \nabla_x(\chi^{\pm}\mathscr{R}) \big)_{\Omega(h)} - \sum_{\pm} \big(\nabla_{\xi} \tilde{z}_1^{\pm}, \nabla_{\xi} \mathscr{R}^{\pm} \big)_{\Xi^{\pm}} \Big|$$

$$\leq h \Big| \sum_{\pm} \big(\big\{ |\det X_{\pm}|^{-1} X_{\pm}^{\top} X_{\pm} - \mathbb{I}_2 \big\} \big(\nabla_{\xi} \tilde{z}_1^{\pm}, \nabla_{\xi} \mathscr{R}^{\pm} \big)_{\Xi^{\pm}} \Big|. \quad (46)$$

При этом \top — знак транспонирования, $X_{\pm}(h,\xi^{\pm})$ — матрица Якоби для замены $x \mapsto \xi^{\pm}$, det $X_{\pm}(h,\xi^{\pm})$ — соответствующий якобиан и $\mathscr{R}^{\pm}(\xi^{\pm}) = \chi^{\pm}(x)\mathscr{R}(x)$. Благодаря формулам (35)₂ и (22), (38), (39) имеем

$$\begin{aligned} ||\det X_{\pm}(h,\xi^{\pm})|^{-1}X_{\pm}(h,\xi^{\pm})^{\top}X_{\pm}(h,\xi^{\pm}) - \mathbb{I}_{2}| &\leq ch^{2}(1+|\xi^{\pm}|)^{2}, \\ \left|\nabla_{\xi}\tilde{z}_{1}^{\pm}(\xi^{\pm})\right| &\leq c(1+|\ln h|)(N_{\Omega}+N_{\Lambda})(1+|\xi^{\pm}|)^{-2}, \end{aligned}$$

а значит, выражение (46) не превосходит

$$\begin{split} ch^3 \bigg| \sum_{\pm} \int_{\Xi^{\pm}} (1 + |\xi^{\pm}|)^2 \bigg| \nabla_{\xi} \tilde{z}_1^{\pm}(\xi^{\pm}) \Big| |\nabla_{\xi} \mathscr{R}^{\pm}(\xi^{\pm})| \, d\xi^{\pm} \bigg| \\ & \leq ch^2 (1 + |\ln h|) \big(N_{\Omega} + N_{\Lambda} \big) \sum_{\pm} \| \nabla_{\xi} \mathscr{R}^{\pm}; L_2(\Xi^{\pm}) \|. \end{split}$$

Теперь искомая оценка выводится при учете обратных замен $\xi^{\pm} \mapsto x$ в последних нормах.

Итак, найдены мажоранты для всех членов, составляющих правую часть равенства (42). Нетрудно усмотреть, что при $\mu = 1/2$ порядки малости в целом выравниваются, но наихудшим остается $h^{3/2}(1 + |\ln h|)^2$. Вспоминая, что $\mathscr{R} = u - \mathscr{U}$, формулируем результат при учете предложения 1.

Теорема 1. Пусть функция f удовлетворяет условиям (4), (17), (44)_{1,2} и (7) при $\mu = 1/2$. Тогда решение $u \in \overset{\circ}{H}^{1}(\Omega(h); \Sigma)$ задачи (3) и его асимптотическое приближение (36) связаны неравенством

$$\|d(u-\mathscr{U}); L_{2}(\Omega)\| + \|\nabla_{x}(u-\mathscr{U}); L_{2}(\Omega)\| \le Ch^{3/2}(1+|\ln h|)^{2}\{N_{\Omega}+\widetilde{N}_{\Omega}+N_{\Lambda}+\widetilde{N}_{\Lambda}\},$$
(47)

в котором d — весовой множитель (33), N_{Ω} и \tilde{N}_{Ω} — величины (9) и (43) при $\mu = 1/2$, а N_{Λ} и \tilde{N}_{Λ} определены согласно (18) и (44)₃. Постоянная C не зависит ни от параметра $h \in (0, h_0]$, ни от составляющих в разложениях (4) и (44)₁ правой части f.

Замечание 2. Если число μ из (7) и (26) оказалось меньше 1/2, то множитель при фигурной скобке в (47) становится равным $Ch^{\mu}(1 + |\ln h|)$.

6. Асимптотика энергетического функционала. В силу формулы Грина энергетический функционал

$$E_h(u) = \int_{\Omega(h)} \{ |\nabla_x u(h, x)|^2 - 2u(h, x)f(h, x) \} dx,$$
(48)

вычисленный на решении и задачи (3), удовлетворяет равенствам

$$E_{h}(u) = -\int_{\Omega(h)} |\nabla_{x} u(h, x)|^{2} dx = -\int_{\Omega(h)} u(h, x) f(h, x) dx.$$
(49)

Опираясь на оценку (47), заменим u на \mathscr{U} в последнем интеграле из (49) и устраним из асимптотического решения (36) и его составляющих (37)₁ и (37)₂ пограничный слой \tilde{z}_1^{\pm} и все срезающие функции. Совершаемая при этом ошибка не превышает точности асимптотического приближения. Убедимся в сказанном на примере пограничного слоя, заметив, что ввиду неравенства $|\tilde{z}_1^{\pm}(\xi^{\pm})| \leq c |\xi^{\pm}|^{-1}$ (см. (22)) верна оценка

$$\begin{split} \left| \int_{\Omega(h)} f\chi^{\pm}h\tilde{z}_{1}^{\pm} dx \right| &\leq h \bigg| \int_{\Omega(h)} \chi^{\pm}(h+d_{P})^{-1} |f|^{2} dx \bigg|^{1/2} \bigg| \int_{\Omega(h)} \chi^{\pm}(h+d_{P}) \big| \tilde{z}_{1}^{\pm} \big|^{2} dx \bigg|^{1/2} \\ &\leq ch^{2}(1+|\ln h|)^{2} \{N_{\Omega}+\tilde{N}_{\Omega}+N_{\Lambda}+\tilde{N}_{\Lambda}\}^{2}. \end{split}$$

Здесь использованы формулы (4), (7), (17), (44) и (9), (18), (43) для правой части f. Остальные погрешности оцениваются при помощи тех же приемов, что и в предыдущем разделе. Итак,

$$E_{h}(u) = -\int_{\Omega} \{v_{0}(x) + hv_{1}(x)\} f_{\Omega}(x) dx - \int_{\Lambda(h)} w_{0}(\tau) f_{\Lambda}(\tau) dx + O(h^{3/2}(1 + |\ln h|)^{2})$$

$$= E_{0}(v_{0}) - h \int_{\Omega} v_{1}(x) f_{\Omega}(x) dx - h \int_{\Upsilon} H(\tau) w_{0}(\tau) f_{\Lambda}(\tau) d\tau + O(h^{3/2}(1 + |\ln h|)^{2}).$$
(50)

Поскольку функци
и w_0 и v_1 удовлетворяют задачам (15), (16)
и (24) соответственно, имеем

$$\begin{split} &-\int_{\Upsilon} w_0 H f_{\Lambda} \, d\tau \\ &= \int_{\Upsilon} w_0 \partial_{\tau} H \partial_{\tau} w_0 \, d\tau = -\int_{\Upsilon} H(\tau) |\partial_{\tau} w_0(\tau)|^2 d\tau + \sum_{\pm} \pm v_0(P^{\pm}) H(\pm l) \partial_{\tau} w_0(\pm l), \\ &- \int_{\Omega} v_1 f_{\Omega} \, dx = \int_{\Omega} v_1 \Delta_x v_0 \, dx = -\sum_{\pm} \pm H(\pm l) \partial_{\tau} w_0(\pm l) v_0(P^{\pm}). \end{split}$$

Из-за присутствия δ -функций в краевом условии (24)₂ последнее равенство следует интерпретировать в рамках теории распределений; альтернативой являются интегрирование по частям в области $\{x \in \Omega : r_{\pm} > \delta\}$ и предельный переход при $\delta \to +0$. Осталось подставить полученные формулы в соотношение (50).

Предложение 2. При ограничениях, наложенных в теореме 1 на правую часть f задачи (3), для энергетического функционала (48) справедливо асимптотическое разложение

$$E_h(u) = E_0(v_0) - h \int_{\Upsilon} H(\tau) |\partial_\tau w_0(\tau)|^2 d\tau + \widetilde{E}_h(u), \qquad (51)$$

в котором

c

$$|\widetilde{E}_h(u)| \leq ch^{3/2}(1+|\ln h|)^2 \{N_\Omega+\widetilde{N}_\Omega+N_\Lambda+\widetilde{N}_\Lambda\}^2,$$

постоянная c не зависит от h и f, а выражение

$$E_0(v_0) = \int_{\Omega} \{ |\nabla_x v_0(x)|^2 - 2v_0(x) f_\Omega(x) \} \, dx = -\int_{\Omega} |\nabla_x v_0(x)|^2 \, dx \tag{52}$$

является энергетическим функционалом для предельной задачи (5).

Замечание 3. В асимптотической формуле (51) отсутствуют какие-либо характеристики пограничного слоя. Эта формула сохраняется и в случае малых, размером O(h), возмущений границы вблизи зон присоединения перемычки $\Lambda(h)$ к области Ω (ср. с сингулярными возмущениями границ, изученными в [6]). В частности, можно сгладить углы, образовавшиеся при пересечении границы $\partial\Omega$ криволинейной полоской (1).

Обращаем внимание на то, что ввиду разложения (10) вычитаемое в правой части формулы (51) есть не что иное, как главный член интеграла Дирихле от решения u(h, x), суженного на перемычку. Аналогичный интеграл по области Ω фигурирует в главном члене (52) асимптотики (51). Формулу (51) можно переписать в виде

$$\left. \frac{dE_h}{dh}(u) \right|_{h=0} = -\int_{\Upsilon} H(\tau) |\partial_\tau w_0(\tau)|^2 \, d\tau, \tag{53}$$

и в согласии с предшествующими исследованиями (см. [3,4] и др.) выражение (53) следует интерпретировать как *топологическую производную* функционала (48) при образовании перемычки шириной $hH(\tau)$.

ПРИМЕР 1. Пусть $\Omega = \{x : x_1^2 + x_2^2 \in (1,4)\}$ — кольцо, а на его большей окружности $\Sigma = \mathbb{S}_2^1 := \{x : x_1^2 + x_2^2 = 4\}$ назначены условия Дирихле (3)₃. Правая часть

$$f(x) = x_2 \{ 5 + 2(x_1^2 + x_2^2)^2 - 7(x_1^2 + x_2^2) \}$$

не зависит от параметра h и подобрана так, что решение предельной задачи (5),

$$v_0(x) = rac{x_2}{24} igg\{ 13 - rac{4}{x_1^2 + x_2^2} - 15(x_1^2 + x_2^2) + 7(x_1^2 + x_2^2)^2 - (x_1^2 + x_2^2)^3 igg\},$$

обращается в нуль на меньшей окружности \mathbb{S}^1_1 вместе со своими первыми и вторыми производными. При учете такого свойства функции v_0 результаты [1] устанавливают, что энергетический функционал (48) в области

$$\widehat{\Omega}(h) = \left\{ x : \left(x_1^2 + x_2^2 \right)^{1/2} \in (1 - hR(s), 2) \right\},\$$

полученной гладким возмущением внутренней части границы (т. е. $R \in C^{\infty}(\mathbb{S}^{1}_{1})$ и R > 0), отличается от предельного функционала (52) на величину $O(h^{3})$. Кроме того, согласно [6, гл. 2] функционал (52) также увеличивается на $O(h^{3})$ в случае сингулярного возмущения границы вблизи произвольной точки на \mathbb{S}^{1}_{1} , когда к внутренней окружности кольца Ω «приклеивается» бугорок с диаметром $h^{1/2}$ и с площадью O(h) того же порядка, что и mes₂($\widehat{\Omega}(h) \setminus \Omega$) или mes₂ $\Lambda(h)$. Тем не менее, при образовании прямолинейной перемычки $\Lambda(h) = \Lambda_h \setminus \overline{\Omega}$,

$$\Lambda_h = \{x : |x_1| < h/2, |x_2| < 3/2\}$$

приращение функционала имеет порядок h^1 (предложение 2), поскольку для рассматриваемого случая в результирующей задаче (15), (16)

$$l = 1, \quad au = x_2, \quad f_{\Lambda}(x_2) = x_2 \{ 5 + 2x_2^4 - 7x_2^2 \}, \quad v_0(P^{\pm}) = 0,$$

а значит,

$$w_0(x_2) = rac{x_2}{420} ig\{ 223 - 350 x_2^2 + 147 x_2^4 - 20 x_2^6 ig\}$$

и топологическая производная (53) отлична от нуля.

u

ЛИТЕРАТУРА

- Sokolowski J., Zolesio J.-P. Introduction to shape optimization. Shape sensitivity analysis. Berlin: Springer Verl., 1992.
- 2. Delfour M. C., Zolésio J.-P. Shapes and Geometries: Analysis, Differential Calculus, and Optimization. Philadelphia: SIAM Ser. Adv. Design Control, 2001.
- Sokolowski J., Żochowski A. On the topological derivative in shape optimization // SIAM J. Control Optimization. 1999. V. 37, N 4. P. 1251–1272.
- Nazarov S. A., Sokolowski J. Asymptotic analysis of shape functionals // J. Math. Pures Appl. 2003. V. 82, N 2. P. 125–196.
- Ильин А. М. Согласование асимптотических разложений решений краевых задач. М.: Наука, 1989.
- Мазья В. Г., Назаров С. А., Пламеневский Б. А. Асимптотика решений эллиптических краевых задач при сингулярном возмущении области. Тбилиси: Изд-во ТГУ, 1981.
- Назаров С. А. Асимптотические условия в точках, самосопряженные расширения операторов и метод сращиваемых асимптотических разложений // Тр. Санкт-Петербург. мат. о-ва. 1998. Т. 5. С. 112–183.
- 8. Мазья В. Г., Назаров С. А., Пламеневский Б. А. Задача Дирихле в областях с тонкими перемычками // Сиб. мат. журн. 1984. Т. 25, № 1. С. 161–179.
- 9. Ciarlet P. G. Plates and junctions in elastic multi-structures: An asymptotic analysis. Paris: Masson, 1988.
- Kozlov V. A., Maz'ya V. G., Movchan A. B. Asymptotic analysis of a mixed boundary value problem in a multistructure // Asymptotic Anal. 1994. V. 8. P. 105–143.
- Назаров С. А. Соединения сингулярно вырождающихся областей различных предельных размерностей // 1. Тр. семинара им. И. Г. Петровского. М.: Изд-во Моск. ун-та, 1995. Вып. 18. С. 3–78; 2. Там же. М.: Изд-во Моск. ун-та, 1997. Вып. 20. С. 155–195.
- Nazarov S. A. Junction problems of bee-on-ceiling type in the theory of anisotropic elasticity // C. R. Acad. Sci. Paris. Sér. 1. 1995. V. 320, N 11. P. 1419–1424.
- 13. Аргатов И. И., Назаров С. А. Асимптотический анализ на соединениях областей различных предельных размерностей. Тело, пронзенное тонким стержнем // Изв. РАН. Сер. мат. 1996. Т. 60, № 1. С. 3–36.
- Kozlov V. A., Maz'ya V. G., Movchan A. B. Asymptotic analysis of fields in multi-structures. Oxford: Clarendon Press, 1999.
- **15.** Назаров С. А., Пламеневский Б. А. Эллиптические задачи в областях с кусочно гладкой границей. М.: Наука, 1991.
- 16. Джавадов М. Г. Асимптотика решения краевой задачи для эллиптических уравнений второго порядка в тонких областях // Дифференц. уравнения. 1968 Т. 4, № 10. С. 1901– 1909.
- 17. Назаров С. А. Об особенностях градиента решения задачи Неймана в вершине тонкого конуса // Мат. заметки. 1987. Т. 42, № 1. С. 79–93.
- **18.** Назаров С. А. Асимптотическая теория тонких пластин и стержней. Понижение размерности и интегральные оценки. Новосибирск: Научная книга, 2002.
- 19. Ван-Дайк М. Методы возмущений в механике жидкости. М.: Мир, 1967.
- 20. Назаров С. А. Асимптотический анализ произвольно анизотропной пластины переменной толщины (пологой оболочки) // Мат. сб. 2000. Т. 191, № 77. С. 129–159.

Статья поступила 21 января 2003 г.

Назаров Сергей Александрович ИПМаш РАН, В. О. Большой пр., 61, Санкт-Петербург 199178 serna@snark.ipme.ru

Соколовски Ян (Sokolowski Jan) Institut Elie Cartan, Laboratoire de Mathematiques Universite Henri Poincare Nancy I, BP 239, 54506 Vandoeuvre-Les-Nancy Cedex, France sokolows@iecn.u-nancy.fr