ЭКСПОНЕНЦИАЛЬНО УБЫВАЮЩИЕ ВСПЛЕСКИ, ИМЕЮЩИЕ РАВНОМЕРНО ОГРАНИЧЕННЫЕ КОНСТАНТЫ НЕОПРЕДЕЛЕННОСТИ ПО ПАРАМЕТРУ, ОПРЕДЕЛЯЮЩЕМУ ГЛАДКОСТЬ

Е. А. Лебедева

Аннотация. Построено семейство всплеск-функций, масштабирующие функции которых имеют экспоненциальное убывание и равномерно ограниченные константы неопределенности по параметру, определяющему гладкость.

Ключевые слова: всплеск, масштабирующая функция, маска, всплеск Мейера, ряд Фурье, средние Валле-Пуссена, константа неопределенности.

В работе [1] для широкого класса ортогональных масштабирующих функций и всплесков (например, всплесков Добеши и всплесков Баттла — Лемарье) доказано, что константы неопределенности стремятся к бесконечности с ростом гладкости. Однако в работах [2] и [3] построено семейство модифицированных всплесков Добеши, причем локализованность по времени и частоте автокорреляционной функции, построенной для масштабирующей функции данного всплеска, сохраняется с возрастанием гладкости. Следует выяснить, можно ли построить семейство всплесков, масштабирующие функции которых имеют, как и сплайн-всплески, экспоненциальное убывание на бесконечности и убывание порядка $O(\omega^{-l})$ при $|\omega| \to \infty$ в частотной области, причем константы неопределенности масштабирующих функций равномерно ограничены по параметру l, определяющему гладкость. Основное содержание данной работы составляет построение такого семейства всплесков.

§ 1. Основные обозначения, определения и вспомогательные результаты

Далее [x] — целая часть числа x, $C^k_{[a,b]}$ — пространство всех k раз непрерывно дифференцируемых функций, заданных на отрезке [a,b], с нормой $\|f\|_{C^k}:=\sum_{j=0}^k \max_{x\in[a,b]}|f^{(j)}(x)|,$ $C^0[a,b]=C[a,b].$

Модуль непрерывности функции $f \in C_{[a,b]}$ определяется соотношением

$$\omega(h,f) := \sup_{\substack{x,x+x_1 \in [a,b],\ 0 < |x_1| \leq h}} |f(x+x_1) - f(x)|$$

и удовлетворяет свойству $\omega(h,f)\to 0$ при $h\to 0;\ \chi_M$ — характеристическая функция множества $M;\ \zeta(x):=\sum\limits_{n=1}^\infty n^{-x}$ — дзета-функция Римана.

Преобразование Фурье и обратное преобразование Фурье выбраны в виде

$$\hat{f}(w) := \int\limits_{\mathbb{R}} f(t)e^{-itw} \, dt, \quad f(t) := rac{1}{2\pi} \int\limits_{\mathbb{R}} \hat{f}(w)e^{itw} \, dw$$

соответственно.

Средние Валле-Пуссена функции f имеют вид

$$V_N(f,w) := \int\limits_{-\pi}^{\pi} f(t+w) P_N(t) \, dt,$$

где $P_N(t):=(\cos Nt-\cos 2Nt)N^{-1}(2\sin 0,5t)^{-2}$ — ядро Валле-Пуссена. Средние Фейера для функции f имеют вид

$$\sigma_N(f,w) := \int\limits_{-\pi}^{\pi} f(t+w) F_N(t) \, dt,$$

где $F_N(t):=2(N+1)^{-1}(\sin 0,5(N+1)t)^2(2\sin 0,5t)^{-2}$ — ядро Фейера. Средние Валле-Пуссена и Фейера связаны соотношением

$$V_N(f, w) = 2\sigma_{2N-1}(f, w) - \sigma_{N-1}(f, w). \tag{1}$$

Для аппроксимации функций средними Валле-Пуссена полезен следующий результат.

Теорема 1 [4, с. 123–127]. Если $f \in C_{[-\pi,\pi]}$, то

$$||V_{\lceil \frac{N+1}{2} \rceil}(f, \cdot) - f(\cdot)||_{C[-\pi;\pi]} \le K\omega(1/N, f),$$

где K — абсолютная константа (например, K = 44).

Пусть $\theta(w)$ — нечетная функция, равная $\pi/4$ при $w > \pi/3$. В дальнейшем предполагается, что θ — неубывающая дважды непрерывно дифференцируемая функция. Пусть w_0 — параметр, изменяющийся в промежутке $\pi/3 < w_0 < \pi/2$, $w_1 := \pi - w_0$. Масштабирующая функция Мейера φ^M определяется так:

$$\widehat{\varphi^M}(w) := \begin{cases} 1, & |w| \le 2w_0, \\ \cos(\frac{\pi}{4} + \theta(\frac{\pi}{3(\pi - 2w_0)}(w - \pi))), & 2w_0 < |w| \le 2w_1, \\ 0, & |w| > 2w_1. \end{cases}$$

 $\mathit{Macкa}\ \mathit{Meŭepa} - 2\pi$ -периодическая функция, определяемая на отрезке $[-\pi;\ \pi]$ следующим образом:

$$m^{M}(w) := \widehat{\varphi^{M}}(2w) = \begin{cases} 1, & |w| \leq w_{0}, \\ \cos(\frac{\pi}{4} + \theta(\frac{\pi}{3(\pi - 2w_{0})}(2w - \pi))), & w_{0} < |w| \leq w_{1}, \\ 0, & w_{1} < |w| \leq \pi. \end{cases}$$
(2)

Константа неопределенности функции f равна $\Delta_f \Delta_{\hat{f}}$, где

$$\Delta_f^2 := \|f\|_{L^2(\mathbb{R})}^{-2} \int\limits_{\mathbb{R}} (t-t_{0f})^2 |f(t)|^2 \, dt, \quad \Delta_{\hat{f}}^2 := \|\hat{f}\|_{L^2(\mathbb{R})}^{-2} \int\limits_{\mathbb{R}} (w-w_{0\hat{f}})^2 |\hat{f}(w)|^2 \, dw,$$

$$t_{0f}:=\|f\|_{L^2(\mathbb{R})}^{-2}\int\limits_{\mathbb{D}}t|f(t)|^2\,dt,\quad w_{0\hat{f}}:=\|\hat{f}\|_{L^2(\mathbb{R})}^{-2}\int\limits_{\mathbb{D}}w|\hat{f}(w)|^2\,dw.$$

Числа $\pm e^{i\bar{w}}$ называются парой симметричных корней маски m, если $m(\overline{w})=m(\overline{w}+\pi)=0$. Множество различных комплексных чисел $B:=\{b_1,\ldots,b_n\}$ называется циклическим, если $b_{j+1}=b_j^2,\ j=1,\ldots,n,\ b_{n+1}=b_1$. Циклическое множество B называется циклом маски m, если $m(w+\pi)=0$ для всех w таких, что $\exp(iw)=b_j$ для некоторого $j=1,\ldots,n$. Тривиальным циклом называется множество $\{1\}$. Маска называется чистой, если она не имеет ни пары симметричных нулей, ни циклов.

Показатель Гёльдера α_f функции f, заданной на отрезке [a,b], определяется так:

$$\alpha_f := k + \sup_{\beta \in \mathbb{R}} \{ \beta \in \mathbb{R} \mid |f^{(k)}(x_1) - f^{(k)}(x_2)| \le C_\beta |x_1 - x_2|^\beta, \ x_1, x_2 \in [a, b] \},$$

где $k:=\max_{h\in\mathbb{Z}}\{h\mid f\in C^h[a,b]\}.$

Гладкость функции характеризуется также числом

$$\theta_{\hat{f}} := \sup_{\beta \in \mathbb{R}} \{ \beta \in \mathbb{R} \mid |\hat{f}(w)| \le C(|w|+1)^{-\beta} \}.$$

Для введенных характеристик гладкости, как известно, справедливо неравенство $\theta_{\hat{f}}-1 \leq \alpha_f \leq \theta_{\hat{f}}$. Пусть $\theta(m)$ означает $\theta_{\widehat{\varphi}}$, где φ — масштабирующая функция, соответствующая маске m. Для нахождения $\theta(m)$ может быть использован следующий результат.

Теорема 2 [5, лемма 7.4.2, предложение 7.4.4]. Пусть маска m представлена в виде $m(w) = \left(\cos\frac{w}{2}\right)^{L+1} m_c(w)$, где m_c — чистая маска. Тогда $\theta(m) = L+1+\theta(m_c)$ и $\theta(m_c) = \lim_{k\to\infty} \theta_k$, где

$$\theta_k := -\frac{1}{k} \log_2 \|m_c(w) \dots m_c(2^{k-1}w)\|_{\infty}.$$
 (3)

§ 2. Сходимость семейства масок к маске Мейера

Рассмотрим 2π -периодический тригонометрический полином

$$m_l(w) := \left(\cos rac{w}{2}
ight)^{2l} rac{V_{\left[rac{N(l)+1}{2}
ight]}ig(m_l^M,wig)}{V_{\left[rac{N(l)+1}{2}
ight]}ig(m_l^M,0ig)},$$

где

$$m_l^M(w) := \frac{m^M(w)}{\left(\cos \frac{w}{2}\right)^{2l}}, \quad l \in \mathbb{N}.$$

Последовательность N(l) будет определена позднее в предложении 1. Обозначим

$$v_l(w) := V_{\lceil \frac{N(l)+1}{2} \rceil} (m_l^M, w).$$

Так как $m_l^M \in C[-\pi;\pi]$, по теореме 1

$$||v_l - m_l^M||_{C[-\pi;\pi]} \le K\omega((N(l))^{-1}, m_l^M).$$

Также из непрерывности функции m_l^M следует, что

$$\omega\left((N(l))^{-1}, m_l^M\right) \to 0$$
 при $N(l) \to \infty$.

Из определения функции m_l^M вытекает, что если $N(l) \to \infty$ при $l \to \infty$, то $\omega \left((N(l))^{-1}, m_l^M \right)$ является возрастающей последовательностью по l.

Найдем N(l) такое, что $\omega \big((N(l))^{-1}, m_l^M \big) \to 0$ при $l \to \infty$. По определению модуля непрерывности

$$\omega((N(l))^{-1}, m^M) = \sup_{\substack{-\pi \leq w, w+h \leq \pi, \\ 0 < |h| \leq (N(l))^{-1}}} \left| m_l^M(w+h) - m_l^M(w) \right|.$$

Так как $m_l^M \in C[-\pi;\pi]$, по теореме Лагранжа $\omega(h,m_l^M) \leq h \max_{[-\pi,\pi]} |{(m_l^M)}'|$. Оценим $|{(m_l^M)}'|$. Имеем

$$ig(m_l^Mig)'(w) = \left(\cosrac{w}{2}
ight)^{-2l} \left((m^M)'(w) + l \operatorname{tg}rac{w}{2} m^M(w)
ight).$$

Так как $m^M(w) = 0$ при $w_1 \le w \le \pi$ и $|m^M| \le 1$, то

$$\left| \left(m_l^M \right)'(w) \right| \leq \left(\cos \frac{w_1}{2} \right)^{-2l} \left(\max_{[-\pi,\pi]} |(m^M)'| + l \operatorname{tg} \frac{w_1}{2} \right) = b^l (M_1 + l(b-1)^{0,5}),$$

где $b:=\left(\cos\frac{w_1}{2}\right)^{-2}$ и $M_1:=\max_{w\in[-\pi,\pi]}|(m^M)'(w)|.$ Таким образом,

$$\omega((N(l))^{-1}, m^M) \leq (N(l))^{-1} b^l (M_1 + l(b-1)^{0,5}).$$

Итак, получено следующее

Предложение 1. Если $N(l) \geq \frac{b^l(l(b-1)^{0.5} + M_1)}{\varepsilon}$, где $\varepsilon > 0$, то

$$\left\| v_l - m_l^M \right\|_{C[-\pi;\pi]} < K\varepsilon, \tag{4}$$

где K — абсолютная константа (допустим, K = 44).

Например,

если
$$N(l) \ge b^{3l}(l(b-1)^{0.5} + M_1)$$
, то $\|v_l - m_l^M\|_{C[-\pi:\pi]} < Kb^{-2l}$. (5)

В дальнейшем предполагаем, что N(l) удовлетворяет (5).

Обозначим

$$\alpha(l, w) := v_l(w) - m_l^M(w) \quad \text{if} \quad \alpha(l) := Kb^{-2l}.$$
 (6)

Тогда из (5) следует, что

$$|\alpha(l,w)| < |\alpha(l)|$$
 и $l\alpha(l) \to 0$ при $l \to \infty$. (7)

Заметим, что $N_0(l):=b^{3l}(l(b-1)^{0.5}+M)$ — возрастающая положительная функция, следовательно, обратная функция $l\mapsto l(N_0)$ существует, возрастает и неотрицательна.

Из (4) получим

Следствие 1. В условиях предложения 1 справедливо неравенство

$$\left\| \left(\cos \frac{\cdot}{2} \right)^{2l} v_l(\cdot) - m^M(\cdot) \right\|_{C[-\pi;\pi]} < K\varepsilon.$$

Доказательство. Действительно,

$$\left| \left(\cos \frac{w}{2} \right)^{2l} v_l(w) - m^M(w) \right| \le \left| v_l(w) - m_l^M(w) \right| \le K\varepsilon. \quad \Box$$

Замечание 1. Из неравенства (4) следует, что $v_l(0) \to m_l^M(0) = 1$ при $l \to \infty$, поэтому $0 < d < c \le m_l^M(0)$ начиная с некоторого l_0 , где $c := \inf_{l \ge l_0} v_l(0)$, а d - абсолютная константа. Не умаляя общности, можно рассматривать вводимые семейства функций $(m_l, m_l^M$ и др.) начиная с номера l_0 .

Поэтому имеет место

Следствие 2. Имеет место сходимость

$$||m_l - m^M||_{C[-\pi;\pi]} \to 0$$
 при $l \to \infty$.

Доказательство. Так как $m^M(0) = 1$ и $|m_M| \le 1$, то

$$|m_{l}(w) - m^{M}(w)| = \left| \left(\cos \frac{w}{2} \right)^{2l} \frac{v_{l}(w)}{v_{l}(0)} - \frac{m^{M}(w)}{m^{M}(0)} \right|$$

$$\leq \frac{1}{|v_{l}(0)|} \left| \left(\cos \frac{w}{2} \right)^{2l} v_{l}(w) - m^{M}(w) \right| + m^{M}(w) \left| \frac{1}{v_{l}(0)} - \frac{1}{m^{M}(0)} \right|$$

$$\leq \frac{K\varepsilon}{c} + \frac{1}{v_{l}(0)} |v_{l}(0) - 1| \leq \frac{2K\varepsilon}{c}. \quad \Box$$

Поскольку m_l — тригонометрический полином и $m_l(0)=1$, по предложению 2.4.1 из [5] бесконечное произведение $\prod_{j=1}^{\infty} m_l(\frac{w}{2^j})$ сходится абсолютно и равномерно на любом компакте. (Считаем, что бесконечное произведение сходится и в случае, когда оно равно нулю.) Поэтому функция m_l является маской для стабильной, но не ортогональной масштабирующей функции φ_l , преобразование Фурье которой определяется равенством $\widehat{\varphi}_l(w) := \prod_{j=1}^{\infty} m_l\left(\frac{w}{2^j}\right)$. Утверждение о том, что функции $\varphi_l(\cdot + 2\pi k), k \in \mathbb{Z}$, образуют базис Рисса в замыкании своей линейной оболочки, доказано в лемме 3 (неравенство (17)).

§ 3. Рост гладкости (на основании свойств маски)

Оценим показатель гладкости функции φ_l . Для этого представим маску в виде $m_l(w) = \left(\cos\frac{w}{2}\right)^{2l} m_{0,l}(w)$, где $m_{0,l}(w) := \frac{v_l(w)}{v_l(0)}$. Докажем, что $m_{0,l}$ является чистой маской. Другими словами, вспоминая, что $v_l(w) := V_{\left[\frac{N(l)+1}{2}\right]}(m_l^M, w)$, докажем, что для каждого $l \in \mathbb{N}$ существует $N(l) \geq N_0(l)$, для которого $V_{\left[\frac{N(l)+1}{2}\right]}(m_l^M, \pi) \neq 0$. Предположим, что это условие не выполняется и можно найти такой номер n_0 , что $V_n(m_l^M, \pi) = 0$ для всех $n > n_0$.

Вспоминая определение средних Фейера для функции m_l^M , получим

$$\sigma_{2n-1}ig(m_l^M,\piig) = rac{1}{\pi}\int\limits_{-\pi}^{\pi}m_l^M(t+\pi)rac{1}{n}rac{(\sin nt)^2}{(2\sin 0,5t)^2}\,dt,$$

$$egin{aligned} \sigma_{n-1}ig(m_l^M,\piig) &= rac{1}{\pi}\int\limits_{-\pi}^{\pi}m_l^M(t+\pi)rac{2}{n}rac{(\sin 0,5nt)^2}{(2\sin 0,5t)^2}\,dt \ &= rac{2}{\pi}\int\limits_{0}^{\pi}m_l^M(2u)rac{2}{n}rac{(\sin(un-0,5\pi n))^2}{(2\cos u)^2}\,du = rac{1}{\pi}\int\limits_{-\pi}^{\pi}m_l^M(2u)rac{1}{k}rac{(\sin(2uk))^2}{(2\cos u)^2}\,du, \end{aligned}$$

где предпоследнее равенство получено с помощью подстановки $u=0,5(t+\pi),$ а последнее следует из четности функции m_l^M и записано для четных n=2k, $k \in \mathbb{N}$.

Тогда на основании (1) и определения средних Фейера имеем

$$egin{aligned} V_nig(m_l^M,\piig) &= 2\sigma_{2n-1}ig(m_l^M,\piig) - \sigma_{n-1}ig(m_l^M,\piig) \ &= rac{1}{\pi}\int\limits_{-\pi}^{\pi} 2\sin^2rac{t}{2}ig(m_{l+1}^M(t+\pi) - m_{l+1}^M(2t)ig)rac{1}{2k}rac{(\sin 2kt)^2}{(2\sin 0,5t)^2}\,dt = \sigma_{4k-1}(g_l,0), \end{aligned}$$

где $g_l(t):=2\sin^2\frac{t}{2}ig(m_{l+1}^M(t+\pi)-m_{l+1}^M(2t)ig).$ Таким образом, существует $k_0=[0,5n_0]+1$ такое, что $\sigma_{4k-1}(g_l,0)=0$ при

Так как $\sigma_m(f,w)=(m+1)^{-1}(S_0(f,w)+\cdots+S_m(f,w))$, где $S_m(f,\cdot)-m$ -я частичная сумма ряда Фурье функции f, то

$$(4k+4)\sigma_{4k+3}(g_l,0) - 4k\sigma_{4k-1}(g_l,0) = \sum_{j=0}^{3} S_{4k+j}(g_l,0)$$

и, следовательно, $\sum_{i=0}^3 S_{4k+j}(g_l,0)=0$. Поскольку g_l — четная функция, имеем

$$\sum_{j=0}^{3} S_{4k+j}(g_l,0) = 2a_0 + 4\sum_{m=1}^{4k} a_m + 3a_{4k+1} + 2a_{4k+2} + a_{4k+3},$$

где $a_m=\pi^{-1}\int\limits_{-\infty}^{\pi}g_l(w)\cos mw\,dw.$ Тогда

$$2a_0 + 4\sum_{m=1}^{4k} a_m + 3a_{4k+1} + 2a_{4k+2} + a_{4k+3} = 0.$$

Заменяя в последнем равенстве k на k+1, получим

$$2a_0 + 4\sum_{m=1}^{4k+4} a_m + 3a_{4k+5} + 2a_{4k+6} + a_{4k+7} = 0.$$

Вычитаем из последнего равенства предпоследнее:

$$a_{4k+1} + 2a_{4k+2} + 3a_{4k+3} + 4a_{4k+4} + 3a_{4k+5} + 2a_{4k+6} + a_{4k+7} = 0.$$

Используя определение a_m и равенство $\cos x + \cos y = 2\cos 0, 5(x+y)\cos 0, 5(x-y),$ приходим к равенству

$$\int\limits_{-\pi}^{\pi} 2g_l(t)(\cos 3t + 2\cos 2t + 3\cos t + 4)\cos(4k+4)t\,dt = 0.$$

Обозначим $h_l(t):=2g_l(t)(\cos 3t+2\cos 2t+3\cos t+4),$ тогда $\int\limits_{-\pi}^{\pi}h_l(t)\cos (4k+4)t\,dt=0.$

Преобразуем последний интеграл:

$$\int\limits_{-\pi}^{\pi}h_l(t)\cos(4k+4)t\,dt = 0, 5\int\limits_{-2\pi}^{2\pi}h_l(0,5t)\cos2(k+1)t\,dt = 0, 5\left(\int\limits_{0}^{2\pi}+\int\limits_{-2\pi}^{0}
ight) \ = 0, 5\int\limits_{-\pi}^{\pi}(h_l(0,5(t+\pi))+h_l(0,5(t+\pi)))\cos2(k+1)t\,dt.$$

Применяя аналогичные рассуждения к последнему интегралу, окончательно получим

$$\int\limits_{-\pi}^{\pi} h_l(t) \cos(4k+4)t \, dt = \int\limits_{-\pi}^{\pi} q_l(t) (-1)^k \cos(k+1)t \, dt,$$

где

$$q_l(t) := rac{1}{4} \left(h_l \left(rac{t+3\pi}{4}
ight) + h_l \left(rac{t+\pi}{4}
ight) + h_l \left(rac{t-\pi}{4}
ight) + h_l \left(rac{t-3\pi}{4}
ight)
ight).$$

Тогда

$$\int\limits_{-\pi}^{\pi}q_l(t)\cos kt\,dt=0\quad \text{для всех }k\geq [0,5n_0]+2. \tag{8}$$

Так как по определению q_l — четная функция, то $b_m=0$ для всех $m\in\mathbb{N}$, где $b_m:=\pi^{-1}\int\limits_{-\pi}^{\pi}q_l(t)\sin mt\,dt$. Из определения функции θ следует, что q_l — непрерывно дифференцируемая функция. Тогда ряд Фурье, построенный по q_l , сходится к q_l , поэтому из (8) получаем, что q_l — тригонометрический полином: $q_l(t)=\sum\limits_{m=0}^{[0,5n_0]+2}c_m\cos mt$. Из определения функции q_l и того, что маска Мейера m^M не является тригонометрическим полиномом, следует, что функция q_l не будет тригонометрическим полиномом. Полученное противоречие означает, что для любого n_0 существует n_{1l} ($n_0,n_{1l}\in\mathbb{N}$) такое, что $V_{n_{1l}}$ (m_l^M,π) $\neq 0$ и $n_{1l}\geq n_0$. Таким образом, при $N(l)=n_{1l}$ соответствующая маска m_{0l} будет чистой, что и требовалось доказать.

Так как m_{0l} — чистая маска, для оценки показателя гладкости функции φ_l можно воспользоваться теоремой 2. Найдем $\lim_{k\to\infty}\theta_k$ для $m_{0,l}(w)$, где θ_k определены в теореме 2. Из замечания 1, равенства (1), а также свойства средних Фейера быть ограниченными теми же константами, что и порождающие их функции (см., например, [6, с. 610]), последовательно имеем

$$|m_{0,l}(w)| \leq \frac{1}{c}|v_l(w)| \leq \frac{1}{c} \max_{w} \left\{ 2\sigma_{2[\frac{N(l)+1}{2}]-1} \left(m_l^M, w\right), \sigma_{[\frac{N(l)+1}{2}]-1} \left(m_l^M, w\right) \right\}$$

и $\sup_w \sigma_n \left(m_l^M, w \right) \leq \sup_w m_l^M(w)$ для любого $n \in \mathbb{N}$. Из определения функции m_l^M следует, что m_l^M четная, $m_l^M(w) \leq \left(\cos \frac{w}{2}\right)^{-2l}$ при $0 \leq w \leq w_1$ и $m_l^M(w) \leq 0$ при $w_1 < w \leq \pi$.

Определим четную функцию $f_{0,l}$ такую, что $f_{0,l}(w) := \frac{2}{c} \left(\cos \frac{w}{2}\right)^{-2l}$ при $0 \le w \le w_1$ и $f_{0,l}(w) := 0$ при $w_1 < w \le \pi$. Таким образом, $\sup_w |m_{0,l}(w)| \le \sup_w f_{0,l}(w)$, поэтому $\theta_k(m_{0,l}) \ge \theta_k(f_{0,l})$.

По определению функции f_{0l} имеем

$$||f_{0l}(w)\dots f_{0l}(2^{k-1}w)||_{\infty} = f_{0l}(w_1)\dots f_{0l}\left(\frac{w_1}{2^{k-1}}\right) = \frac{(2/c)^k}{(\cos w_1/2\dots\cos w_1/2^k)^{2l}}.$$

Тогда на основании (3) получим

$$heta_k(f_{0l}) = -rac{1}{k}\log_2\Bigl(rac{2}{c}\Bigr)^k - 2l\log_2\Bigl|\cosrac{w_1}{2}\ldots\cosrac{w_1}{2^k}\Bigr|^{-rac{1}{k}}
ightarrow \log_2\Bigl(rac{c}{2}\Bigr)$$
 при $k o\infty$.

При предельном переходе использовалось тождество $\prod\limits_{i=1}^{\infty}\cos\frac{w}{2^{j}}=\frac{\sin w}{w}$

Таким образом, $\theta(m_{0,l}) \ge \log_2\left(\frac{c}{2}\right)$. Для $m_{0,l}$ кратность тривиального цикла равна 2l. Окончательно, $2l-1+\log_2\left(\frac{c}{2}\right) \le \alpha_{\varphi_l} \le 2l+\log_2\left(\frac{c}{2}\right)$. Таким образом, $\alpha_{\varphi_l} \to \infty$ при $l \to \infty$.

§ 4. Сходимость неортогонализованных масштабирующих функций к масштабирующей функции Мейера

Лемма 1. Для любого $w\in\mathbb{R}$ имеет место сходимость $|\widehat{\varphi_l}(w)-\widehat{\varphi^M}(w)|\to 0$ при $l\to\infty.$

Доказательство. Фиксируем $w \in \mathbb{R}$, находим $D \in \mathbb{N}$ так, чтобы $|w|/2^D < 2w_0, w_0$ — параметр, входящий в определение маски Мейера m^M . Тогда

$$\begin{split} |\widehat{\varphi_{l}}(w) - \widehat{\varphi^{M}}(w)| &= \left| \prod_{j=1}^{\infty} m_{l} \left(\frac{w}{2^{j}} \right) - \prod_{j=1}^{\infty} m^{M} \left(\frac{w}{2^{j}} \right) \right| \\ &= \left| \prod_{j=1}^{D} m_{l} \left(\frac{w}{2^{j}} \right) \prod_{j=1}^{\infty} m_{l} \left(\frac{w}{2^{D}2^{j}} \right) - \prod_{j=1}^{D} m^{M} \left(\frac{w}{2^{j}} \right) \prod_{j=1}^{\infty} m^{M} \left(\frac{w}{2^{D}2^{j}} \right) \right| \\ &\leq \left| \prod_{j=1}^{D} m_{l} \left(\frac{w}{2^{j}} \right) - \prod_{j=1}^{D} m^{M} \left(\frac{w}{2^{j}} \right) \right| \prod_{j=1}^{\infty} m_{l} \left(\frac{w}{2^{D}2^{j}} \right) \\ &+ \left| \prod_{j=1}^{\infty} m_{l} \left(\frac{w}{2^{D}2^{j}} \right) - \prod_{j=1}^{\infty} m^{M} \left(\frac{w}{2^{D}2^{j}} \right) \right| \prod_{j=1}^{D} m^{M} \left(\frac{w}{2^{j}} \right) \\ &= \left| \prod_{j=1}^{D} m_{l} \left(\frac{w}{2^{j}} \right) - \prod_{j=1}^{D} m^{M} \left(\frac{w}{2^{j}} \right) \right| \widehat{\varphi_{l}} \left(\frac{w}{2^{D}} \right) + \left| \widehat{\varphi_{l}} \left(\frac{w}{2^{D}} \right) - 1 \right| \widehat{\varphi^{M}}(w). \end{split}$$

Так как $\|m_l-m^M\|_{C[-\pi;\pi]} \to 0$ при $l \to \infty$, то

$$\left| \prod_{j=1}^D m_l \left(\frac{w}{2^j} \right) - \prod_{j=1}^D m^M \left(\frac{w}{2^j} \right) \right| \to 0 \text{ при } l \to \infty.$$

Также заметим, что $\widehat{\varphi^M}(w)$ не зависит от l и $\widehat{\varphi^M}(w) \leq 1$. Если доказать, что $\widehat{\varphi}_l\left(\frac{w}{2^D}\right) \to 1$ при $l \to \infty$, то $\widehat{\varphi}_l\left(\frac{w}{2^D}\right)$ будет ограничено по l. Таким образом, достаточно доказать $\widehat{\varphi}(w) \to 1$ при $l \to \infty$ для фиксированного $|w| < 2w_0$. Имеем

$$\widehat{\varphi}_l(w) - 1 = \prod_{j=1}^{\infty} m_l\left(\frac{w}{2^j}\right) - 1 = e^{\ln\prod_{j=1}^{\infty} m_l\left(\frac{w}{2^j}\right)} - 1 = e^{\sum_{j=1}^{\infty} \ln m_l\left(\frac{w}{2^j}\right)} - 1.$$

Докажем, что $\sum\limits_{j=1}^{\infty} \ln m_l \left(rac{w}{2^j}
ight) o 0$ при $l o \infty$. Так как $\ln m_l (0) = 0$, то

$$\sum_{j=1}^{\infty} \ln m_l \left(\frac{w}{2^j}\right) = \sum_{j=1}^{\infty} \left(\ln m_l \left(\frac{w}{2^j}\right) - \ln m_l(0)\right).$$

По теореме Лагранжа

$$\ln m_l\left(rac{w}{2^j}
ight) - \ln m_l(0) = rac{w}{2^j} \left(\ln m_l(w)
ight)_{w=w_j^*}', \quad$$
где $0 < w_j^* < rac{w}{2^j},$

$$(\ln m_l(w))'_{w=w_j^*} = \frac{m'_l(w_j^*)}{m_l(w_j^*)} = \frac{\left(\left(\cos\frac{w}{2}\right)^{2l}v_l(w)\right)'_{w=w_j^*}v_l(0)}{v_l(0)\left(\cos\frac{w_j^*}{2}\right)^{2l}v_l(w_j^*)}$$

$$= \frac{-l\left(\cos\frac{w_j^*}{2}\right)^{2l-1}\sin\frac{w_j^*}{2}v_l(w_j^*) + \left(\cos\frac{w_j^*}{2}\right)^{2l}v_l'(w_j^*)}{\left(\cos\frac{w_j^*}{2}\right)^{2l}v_l(w_j^*)} = -l\operatorname{tg}\frac{w_j^*}{2} + \frac{v_l'(w_j^*)}{v_l(w_j^*)}.$$
 (9)

Напомним, что

$$v_l(w) = \int\limits_{-\pi}^{\pi} m_l^M(w+x) P_{\left[rac{N(l)+1}{2}
ight]}(x) \, dx.$$

Этот интеграл удовлетворяет достаточным условиям дифференцирования интеграла по параметру. Действительно, функция $m_l^M(w+x)P_{\left[\frac{N(l)+1}{2}\right]}(x)$ определена на квадрате $[-\pi;\pi] \times [-\pi;\pi]$ и непрерывна по x. Производная $\left(m_l^M(w+x)P_{\left[\frac{N(l)+1}{2}\right]}(x)\right)_w'$ существует во всей области определения и непрерывна по (x,w). Таким образом.

$$v'_{l}(w) = \int_{-\pi}^{\pi} \left(m_{l}^{M}\right)'(w+x) P_{\left[\frac{N(l)+1}{2}\right]}(x) dx = V_{\left[\frac{N(l)+1}{2}\right]}(\left(m_{l}^{M}\right)', w). \tag{10}$$

Обозначим $v_{1l}(w):=V_{\left[\frac{N(l)+1}{2}\right]}\left(\left(m_l^M\right)',w\right)$. Оценим $\left\|v_{1l}-\left(m_l^M\right)'\right\|_{C[-\pi;\pi]}$. По теореме 1

 $\left\|v_{1l}-\left(m_l^M\right)'\right\|_{C[-\pi;\pi]} \leq K\omega\left(1/N(l),\left(m_l^M\right)'\right).$

По теореме Лагранжа $\omega \left(h, \left(m_l^M\right)'\right) \leq h \max_{[-\pi, \, \pi]} \left| \left(m_l^M\right)'' \right|$. Далее,

$$\begin{aligned} \left| \left(m_l^M \right)''(w) \right| &= \left| \left(\frac{m^M(w)}{\left(\cos \frac{w}{2} \right)^{2l}} \right)'' \right| = \left(\cos \frac{w}{2} \right)^{-2l} \left((m^M)''(w) + 2l \operatorname{tg} \frac{w}{2} (m^M)'(w) \right) \\ &+ \left(\frac{l}{2} \left(\cos \frac{w}{2} \right)^{-2} + l^2 \operatorname{tg}^2 \frac{w}{2} \right) m^M(w) \right) \\ &\leq b^l (M_2 + 2l(b-1)^{0.5} M_1 + 0.5lb^2 + (b-1)l^2), \end{aligned}$$

где
$$b = \left(\cos\frac{w_1}{2}\right)^{-2}$$
, $M_k := \max_{[-\pi, \pi]} (m^M)^{(k)}$.

На основании (5) имеем

$$||v_{1l} - (m_l^M)'||_{C[-\pi;\pi]} \le K\omega(1/N, (m_l^M)') \le K\gamma(l),$$

где

$$\gamma(l) := K \frac{M_2 + (2(b-1)^{0.5}M_1 + 0.5b^2)l + (b-1)l^2}{b^{2l}((b-1)^{0.5}l + M_1)}, \ \gamma(l,w) := v_{1l}(w) - (m_l^M)'(w).$$
(11)

Тогда

$$|\gamma(l,w)| \le \gamma(l)$$
 и $\gamma(l) \to 0$ при $l \to \infty$. (12)

Последнее соотношение верно, так как K — абсолютная константа (см. теорему 1) и $b,\ M_1,\ M_2$ зависят только от выбора m^M .

Из (6) и равенства $(m_l^M)'(w) = l \operatorname{tg} \frac{w}{2} m_l^M(w)$, верного при $|w| \le 2w_0$, а также определения функции $\gamma(l,w)$ (11), учитывая, что на основании (10) $v_l' = v_{1l}$ и продолжая (9), получим

$$(\ln m_l(w))'_{w=w_j^*} = -l \operatorname{tg} \frac{w_j^*}{2} + \frac{\left(m_l^M\right)'(w_j^*) + \left(v_l'(w_j^*) - \left(m_l^M\right)'(w_j^*)\right)}{m_l^M(w_j^*) + \left(v_l(w_j^*) - m_l^M(w_j^*)\right)}$$

$$= \frac{-l \operatorname{tg} \frac{w_j^*}{2} m_l^M(w_j^*) - l \operatorname{tg} \frac{w_j^*}{2} \alpha(l, w_j^*) + \left(m_l^M\right)'(w_j^*) + \gamma(l, w_j^*)}{m_l^M(w_j^*) + \alpha(l, w_j^*)}$$

$$= \frac{-l \operatorname{tg} \frac{w_j^*}{2} \alpha(l, w_j^*) + \gamma(l, w_j^*)}{m_l^M(w_j^*) + \alpha(l, w_j^*)}.$$

Поэтому из (7), (12) и неравенств $0 < w_i^* < \frac{w}{2i}$, $|w| < 2w_0$ имеем

$$\left| (\ln m_l(w))'_{w=w_j^*} \right| \le \frac{l \left| \operatorname{tg} \frac{w_j^*}{2} \left| \alpha(l) + \gamma(l) \right|}{\left| m_l^M(w_j^*) \right| - \alpha(l)} \le 2(l\alpha(l) + \gamma(l)). \tag{13}$$

Таким образом, на основании свойств (7) и (12) получим

$$\sum_{j=1}^{\infty} \ln m_l \left(\frac{w}{2^j}\right) \leq 2 \left(l\alpha(l) + \gamma(l)\right) \sum_{j=1}^{\infty} \frac{w}{2^j} \leq 2w_0 (l\alpha(l) + \gamma(l)) \to 0 \ \text{при } l \to \infty. \quad \Box$$

Замечание 2. Из доказательства леммы 1 следует равномерная сходимость $\widehat{\varphi}_l$ к $\widehat{\varphi^M}$ по l на любом ограниченном подмножестве $\mathbb R$.

Лемма 2. Имеет место сходимость $\|\widehat{\varphi}_l - \widehat{\varphi^M}\|_{L^2(\mathbb{R})} \to 0$ при $l \to \infty$.

ДОКАЗАТЕЛЬСТВО. Докажем, что существует функция ξ такая, что $\xi \in L^2(\mathbb{R})$ и $|\widehat{\varphi}_l(w)| \leq \xi(w)$. Действительно,

$$\widehat{\varphi}_l(w) = \prod_{i=1}^{\infty} \left(\cos^2 \frac{w}{2^{j+1}}\right)^l v_l(w2^{-j}) v_l^{-1}(0) = \left(\frac{2}{w} \sin \frac{w}{2}\right)^{2l} \prod_{i=1}^{\infty} \frac{v_l(w2^{-j})}{v_l(0)}.$$

Обозначим $\widehat{\varphi_{0l}}(w) := \prod_{j=1}^{\infty} \frac{v_l(w2^{-j})}{v_l(0)}$. На основе доказательства предложения 7.4.4 из [5] получим $|\widehat{\varphi_{0l}}(w)| = w^{-2\theta(m_{0,l})} \max_{|w| < 2w_0} \widehat{\varphi_{0l}}(w)$, где $\theta(m_{0,l})$ определена в теореме 2, в § 3 доказано, что $\theta(m_{0,l}) \geq \log_2\left(\frac{c}{2}\right)$.

Используя (9) и (13) при $|w| < 2w_0$, имеем

$$\begin{split} |\widehat{\varphi_{0,l}}(w)| &= \left| \prod_{j=1}^{\infty} \frac{v_l(w2^{-j})}{v_l(0)} \right| = \exp\left(\sum_{j=1}^{\infty} |\ln v_l(w2^{-j}) - \ln(v_l(0))| \right) \\ &= \exp\left(\sum_{j=1}^{\infty} \frac{|w|}{2^j} \left| \frac{v'_l(w_j^*)}{v_l(w_j^*)} \right| \right) = \exp\left(\sum_{j=1}^{\infty} \frac{|w|}{2^j} \left| l \operatorname{tg} \frac{w_j^*}{2} + (\ln m_l(w))'_{w=w_j^*} \right| \right) \\ &\leq \exp\left(\sum_{j=1}^{\infty} \frac{|w|}{2^j} \left(l \operatorname{tg} \frac{|w|_j^*}{2} + |(\ln m_l(w))'|_{w=w_j^*} \right) \right) \\ &\leq \exp\left(\sum_{j=1}^{\infty} \frac{|w|}{2^j} \left(l + 2(l\alpha(l) + \gamma(l)) \right) \right) \leq \exp\left(2w_0 \left(l + 1 \right) \right), \end{split}$$

где $0 < w_j^* < \frac{w}{2^j}$. Применяя данную оценку и результаты $\S 3$, для $|w| \ge 1$ получим $|\widehat{\varphi}_{0l}(w)| \le |w|^{2\log_2\frac{2}{c}}e^{2w_0(l+1)}$. Таким образом, при $|w| > 4e^{2w_0}$ выполняется

$$|\widehat{\varphi_l}(w)| \leq |w|^{-2l+2\log_2\frac{2}{c}} (4e^{2w_0})^l e^{2w_0} \leq e^{2w_0} |w|^{-l+2\log_2\frac{2}{c}}.$$

Из замечания 2 к лемме 1 следует, что $|\widehat{\varphi}_l(w)| \le 1 + \varepsilon(l)$ при $|w| \le 4e^{2w_0}$, где $\varepsilon(l) \to 0$ при $l \to \infty$.

Следовательно,

$$\varphi_l(w) \le \xi_l(w) := \begin{cases} 1 + \varepsilon(l), & |w| \le 4e^{2w_0}, \\ e^{2w_0}|w|^{-l + \log_2 \frac{2}{c}}, & |w| > 4e^{2w_0}. \end{cases}$$
(14)

Значит, искомую функцию ξ можно определить так:

$$\xi(w) := \begin{cases} 1 + \nu, & |w| \le 4e^{2w_0}, \\ e^{2w_0} |w|^{-l_1 + 2\log_2 \frac{2}{c}}, & |w| > 4e^{2w_0}, \end{cases}$$

где ν — абсолютная константа, $\nu>0,\ l_1:=\max\{l_0,2\log_2\frac{2}{c}+2\}$. Тогда доказательство леммы 2 следует из теоремы Лебега и леммы 1. \square

\S 5. Равномерная ограниченность частотных радиусов функций φ_l^\perp

Определим $\widehat{\varphi_{l^{\perp}}}:=\widehat{\varphi_{l}}\Phi_{l}^{-0,5}$, где $\Phi_{l}(w):=\sum\limits_{k\in\mathbb{Z}}|\widehat{\varphi_{l}}(w+2\pi k)|^{2}$. Тогда, как известно (см., например, [5, предложение 4.2.1]), φ_{l}^{\perp} — ортонормированная масштабирующая функция, порождающая тот же кратномасштабный анализ, что и φ_{l} . Маска для функции φ_{l}^{\perp} определяется так: $m_{l}^{\perp}(\cdot):=m_{l}(\cdot)\Phi_{l}^{0,5}(\cdot)\Phi_{l}^{-0,5}(2\cdot)$.

Лемма 3. Для любого $l \in \mathbb{N}$ имеет место неравенство $\Delta^2_{\widehat{\varphi}_l^{\perp}} \leq C_1$, где C_1 абсолютная константа.

Доказательство. Оценим 2π -периодическую функцию Φ_l . Пусть $w\in [-\pi;\pi]$. Тогда из леммы 1 следует, что $|\widehat{\varphi}(w)|\geq \left(\frac{1}{\sqrt{2}}-\varepsilon(l)\right)$, где $\varepsilon(l)\to 0$ при $l\to 0$. Имеем

$$\Phi_l(w) = |\widehat{\varphi}_l(w)|^2 + \sum_{k \in \mathbb{Z}. k \neq 0} |\widehat{\varphi}_l(w + 2\pi k)|^2 \ge \left(\frac{1}{\sqrt{2}} - \varepsilon(l)\right)^2. \tag{15}$$

С другой стороны, если $p:=\left[\frac{4e^{2w_0}+\pi}{2\pi}\right]+1$, то из (14) получим

$$\sum_{k \in \mathbb{Z}} |\widehat{\varphi}_{l}(w+2\pi k)|^{2} = \sum_{|k| \le p} + \sum_{|k| > p} \le e^{4w_{0}} \sum_{|k| > p} |w+2\pi k|^{-2l+4\log_{2}\frac{2}{c}} + (1+\varepsilon(l))^{2}(2p+1) \le (2p+1)(1+\varepsilon(l))^{2} + \frac{e^{4w_{0}}\zeta\left(-2l+4\log_{2}\frac{c}{2}\right)}{(2\pi)^{2l-4\log_{2}\frac{c}{2}}} \le (2p+1)(1+\varepsilon(l))^{2} + R, \quad (16)$$

где R — абсолютная константа. В последнем равенстве использована ограниченность на луче $(2,+\infty)$ функции Римана.

Обозначим $A(l):=\left(\frac{1}{\sqrt{2}}-\varepsilon(l)\right)^2,\ B(l):=(2p+1)(1+\varepsilon(l))^2+R.$ Так как $\varepsilon(l)\to 0$ при $l\to\infty$, то $A(l)\ge A>0$ и $B(l)\le B$, где A и B — абсолютные константы. Таким образом,

$$0 < A \le A(l) \le \Phi_l \le B(l) \le B. \tag{17}$$

Тем самым из (15) и (14) имеем

$$\begin{split} &\int\limits_{\mathbb{R}} w^2 \big| \widehat{\varphi_l^{\perp}}(w) \big|^2 \, dw = \int\limits_{\mathbb{R}} w^2 \frac{|\widehat{\varphi_l}(w)|^2}{\Phi_l(w)} \, dw \leq A^{-1} \int\limits_{\mathbb{R}} w^2 \, |\widehat{\varphi_l}(w)|^2 \, dw \\ &\leq A^{-1} \bigg(\int\limits_{|w| < 4e^{2w_0}} w^2 \, (1 + \varepsilon(l))^2 \, dw + \int\limits_{|w| > 4e^{2w_0}} e^{4w_0} |w|^{-2l + 4\log_2 \frac{2}{c} + 2} \, dw \bigg) \\ &\leq A^{-1} \left(\frac{2}{3} (4e^{2w_0})^3 \, (1 + \varepsilon(l))^2 + \frac{2e^{4w_0}}{2l - 4\log_2 \frac{2}{c} - 3} |4e^{2w_0}|^{-2l + 4\log_2 \frac{2}{c} + 3} \right) \leq 2\pi C_1, \end{split}$$

где C_1 — абсолютная константа.

Так как $\widehat{\varphi_l^{\perp}}$ — четная функция, то частотный центр $w_{0\widehat{\varphi_l^{\perp}}}$ равен 0, поэтому

$$\Delta^2_{\widehat{arphi_l^\perp}} = rac{1}{2\pi} \int\limits_{\mathbb{R}} w^2 ig| \widehat{arphi_l^\perp}(w) ig|^2 dw.$$

Поскольку

$$\lim_{l \to \infty} \frac{1}{A} \left(\frac{2}{3} (4e^{2w_0})^3 \left(1 + \varepsilon(l) \right)^2 + \frac{2e^{4w_0} |4e^{2w_0}|^{-2l + 4\log_2 \frac{2}{c} + 3}}{2l - 4\log_2 \frac{2}{c} - 3} \right) = \frac{2(4e^{2w_0})^3}{3A},$$

имеем
$$\lim_{l\to\infty} \Delta^2_{\widehat{\varphi_l^\perp}} \leq \frac{1}{3A\pi} (4e^{2w_0})^3$$
. \square

Замечание 3. Так как m_l — тригонометрический полином, то φ_l имеет компактный носитель. Следовательно, учитывая соотношение (17), получаем, что φ_l^{\perp} убывает на бесконечности экспоненциально (см., например, [5, замечание 4.2.2]).

\S 6. Равномерная ограниченность временных радиусов функций φ_l^\perp

Лемма 4. Пусть преобразование Фурье масштабирующей функции, имеющей ортонормированные целые сдвиги, определяется равенством

$$\widehat{arphi}(w) = \prod_{j=1}^{\infty} m\Big(rac{w}{2^j}\Big)$$

и бесконечное произведение допускает почленное дифференцирование на любом ограниченном множестве. Тогда

$$\left(\int\limits_{\mathbb{R}} t^2 |\varphi(t)|^2 dt\right)^{0.5} \le J \left(\int\limits_{-\pi}^{\pi} |m'(w)| dw\right)^{0.5},$$

где $J = (2\pi)^{-0.5}(2^{0.5} + 1)$.

Доказательство. Так как $\widehat{\varphi}'(w)=iw\widehat{\varphi}(w)$, то по теореме Планшереля $\int\limits_{\mathbb{R}}t^2|\varphi(t)|^2\,dt=\frac{1}{2\pi}\int\limits_{\mathbb{R}}|\widehat{\varphi}'(w)|^2\,dw.$ Пусть $w\in[-(2N+1)\pi;(2N+1)\pi]$. Из определения функции $\widehat{\varphi}(w)$ следует, что

$$\widehat{arphi}'(w) = \left(\sum_{l \in \mathbb{N}} 2^{-l} rac{m'(2^{-l}w)}{m(2^{-l}w)}
ight) \prod_{p=1}^{\infty} m(2^{-p}w).$$

Так как $|m(w)| \le 1$, то

$$\begin{split} |\widehat{\varphi}'(w)| &\leq \sum_{l \in \mathbb{N}} 2^{-l} |m'(2^{-l}w)| \prod_{p=l+1}^{\infty} |m(2^{-p}w)| \\ &= \sum_{l \in \mathbb{N}} 2^{-l} |m'(2^{-l}w)| \prod_{p=1}^{\infty} |m(2^{-p-l}w)| = \sum_{l \in \mathbb{N}} 2^{-l} |m'(2^{-l}w)| \cdot |\widehat{\varphi}(2^{-l}w)|. \end{split}$$

Положим $a_l(w):=|m'(2^{-l}w)|\,|\widehat{\varphi}(2^{-l}w)|.$ Тогда на основании неравенства Коши — Буняковского получим

$$\left| \sum_{l \in \mathbb{N}} 2^{-l} a_l(w) \right|^2 \le \sum_{l \in \mathbb{N}} 2^{-2lq} \sum_{l \in \mathbb{N}} 2^{-2l(1-q)} a_l^2(w),$$

где $0 < q < \frac{1}{2}$. Поэтому

$$\left(\int_{-(2N+1)\pi}^{(2N+1)\pi} |\widehat{\varphi}'(w)|^2 dw\right)^{0.5} \leq \left(\int_{-(2N+1)\pi}^{(2N+1)\pi} \left|\sum_{l \in \mathbb{N}} 2^{-l} a_l(w)\right|^2 dw\right)^{0.5} \\
\leq \left(\sum_{l \in \mathbb{N}} 2^{-2lq}\right)^{0.5} \left(\sum_{l \in \mathbb{N}} 2^{-2l(1-q)} \int_{-(2N+1)\pi}^{(2N+1)\pi} a_l^2(w) dw\right)^{0.5} \\
= \left(\sum_{l \in \mathbb{N}} 2^{-2lq}\right)^{0.5} \left(\sum_{l \in \mathbb{N}} 2^{-l(1-2q)} \int_{-2^{-l}(2N+1)\pi}^{2^{-l}(2N+1)\pi} |m'(w)|^2 \cdot |\widehat{\varphi}(w)|^2 dw\right)^{0.5}$$

$$\leq (2(1-2^{-2q})(1-2^{-(1-2q)}))^{-0.5} \left(\int_{-(2N+1)\pi}^{(2N+1)\pi} |m'(w)|^2 |\widehat{\varphi}(w)|^2 dw \right)^{0.5}.$$

Так как $m' - 2\pi$ -периодическая функция, то

$$\int_{-(2N+1)\pi}^{(2N+1)\pi} |m'(w)|^2 |\widehat{\varphi}(w)|^2 dw$$

$$= \int_{-\pi}^{\pi} |m'(w)|^2 \sum_{k=-N}^{N} |\widehat{\varphi}(w+2\pi k)|^2 dw \le \int_{-\pi}^{\pi} |m'(w)|^2 \sum_{k\in\mathbb{Z}} |\widehat{\varphi}(w+2\pi k)|^2 dw.$$

Поскольку φ имеет ортонормированные целые сдвиги, то $\sum\limits_{k\in\mathbb{Z}}|\widehat{\varphi}(w+2\pi k)|^2=1$ и, следовательно,

$$\left(\int_{-(2N+1)\pi}^{(2N+1)\pi} |\widehat{\varphi}'(w)|^2 dw\right)^{0.5} \le (2(1-2^{-2q})(1-2^{-(1-2q)}))^{-0.5} \int_{-\pi}^{\pi} |m'(w)|^2 dw.$$

Так как последнее неравенство выполняется для любого $N\in\mathbb{N}$, для любого 0< q<0,5 и $\min_{0< q<0,5}(2(1-2^{-2q})(1-2^{-(1-2q)}))^{-0,5}=(2(1-2^{-0,5})(1-2^{-0,5}))^{-0,5}=2^{0,5}+1$, то

$$\left(\int\limits_{\mathbb{R}}|\widehat{arphi}'(w)|^2\,dw
ight)^{0,5}\leq \left(2^{0,5}+1
ight)\int\limits_{-\pi}^{\pi}|m'(w)|^2\,dw.$$

Поэтому

$$\left(\int\limits_{\mathbb{R}} t^2 |\varphi(t)|^2 \, dt\right)^{0,5} \leq \left(2\pi\right)^{-0,5} \left(2^{0,5}+1\right) \left(\int\limits_{-\pi}^{\pi} |m'(w)|^2 \, dw\right)^{0,5}. \quad \Box$$

Замечание 4. Доказанная лемма является усилением леммы 1.5.9 из [5]. Усиление заключается в замене требования дифференцируемости бесконечного произведения на всем множестве \mathbb{R} требованием дифференцируемости бесконечного произведения на любом ограниченном множестве.

Лемма 5. Для любого $l \in \mathbb{N}$ имеет место оценка $\Delta_{\varphi_l^{\perp}}^2 \leq C_2$, где C_2 – абсолютная константа.

ДОКАЗАТЕЛЬСТВО. По известному свойству преобразования Фурье $\hat{f}'(w)=iw\hat{f}(w)$ имеем

$$\begin{split} \int\limits_{\mathbb{R}} (t-t_{0\varphi_{l}^{\perp}})^{2} \big| \varphi_{l}^{\perp}(t) \big|^{2} \, dt &= \int\limits_{\mathbb{R}} t^{2} \big| \widehat{\varphi_{1,l}^{\perp}}(t) \big|^{2} \, dt = \int\limits_{\mathbb{R}} \big| \widehat{(\varphi_{1,l}^{\perp})}'(w) \big|^{2} \, dw \\ &= 2\pi \int\limits_{\mathbb{R}} \big| \big(\widehat{\varphi_{1,l}^{\perp}} \big)'(w) \big|^{2} \, dw = 2\pi \int\limits_{\mathbb{R}} \left| \frac{d}{dw} \left(\frac{1}{2\pi} e^{-it_{0\varphi_{l}^{\perp}} w} \widehat{\varphi_{l}^{\perp}}(w) \right) \right|^{2} \, dw \\ &= \frac{1}{2\pi} \int\limits_{\mathbb{R}} \big| \big(\big(\widehat{\varphi_{l}^{\perp}} \big)'(w) - it_{0\varphi_{l}^{\perp}} \widehat{\varphi_{l}^{\perp}}(w) \big) e^{-it_{0\varphi_{l}^{\perp}} w} \big|^{2} \, dw \end{split}$$

$$\begin{split} &=\frac{1}{2\pi}\int\limits_{\mathbb{R}}\left(\left|\left(\widehat{\varphi_{l}^{\perp}}\right)'(w)\right|^{2}+t_{0\varphi_{l}^{\perp}}^{2}\left|\widehat{\varphi_{l}^{\perp}}(w)\right|^{2}\right)dw\\ &=\frac{1}{2\pi}\int\limits_{\mathbb{R}}\left|\left(\widehat{\varphi_{l}^{\perp}}\right)'(w)\right|^{2}dw+t_{0\varphi_{l}^{\perp}}^{2}=\frac{1}{2\pi}\|\left(\widehat{\varphi_{l}}\right)'\|_{L^{2}(\mathbb{R})}^{2}+t_{0\varphi_{l}^{\perp}}^{2}, \end{split}$$

где $arphi_{1,l}^{\perp} = arphi_l^{\perp}(t+t_{0arphi_l^{\perp}}).$ Оценим $t_{0arphi_l^{\perp}}$:

$$\begin{split} |t_{0\varphi_l^{\perp}}| &= \left|\int\limits_{\mathbb{R}} t \big|\varphi_l^{\perp}(t)\big|^2 \, dt \right| = \left|\int\limits_{|t| \leq 1} + \int\limits_{|t| > 1} \right| \leq \int\limits_{\mathbb{R}} \left|\varphi_l^{\perp}(t)\right|^2 dt \\ &+ \int\limits_{\mathbb{R}} \left|t\varphi_l^{\perp}(t)\right|^2 dt = 1 + \frac{1}{2\pi} \int\limits_{\mathbb{R}} \left|\left(\widehat{\varphi_l^{\perp}}\right)'(w)\right|^2 dw = 1 + \frac{1}{2\pi} \left\|\left(\widehat{\varphi_l^{\perp}}\right)'\right\|_{L^2(\mathbb{R})}^2. \end{split}$$

Поэтому

$$\int\limits_{\mathbb{D}} (t-t_{0\varphi_l^\perp})^2 \left|\varphi_l^\perp(t)\right|^2 dt \leq \frac{1}{2\pi} \left\| \left(\widehat{\varphi_l^\perp}\right)' \right\|_{L^2(\mathbb{R})}^2 + \left(1 + \frac{1}{2\pi} \left\| \left(\widehat{\varphi_l^\perp}\right)' \right\|_{L^2(\mathbb{R})}^2 \right)^2.$$

Таким образом, для доказательства ограниченности $\Delta_{\varphi_l^{\perp}}$ достаточно доказать ограниченность по l последовательности $\|(\widehat{\varphi_l^{\perp}})'\|_{L^2(\mathbb{R})}$. Для этого воспользуемся леммой 4 и докажем равномерную по l ограниченность функций $(m_l^{\perp})'(w) = (m_l(w)\Phi_l^{0,5}(w)\Phi_l^{-0,5}(2w))'$. Пользуясь (17), получим

$$\begin{aligned} \left| \left(m_l^{\perp} \right)'(w) \right| &= \left| \left(m_l(w) \Phi_l^{0,5}(w) \Phi_l^{-0,5}(2w) \right)' \right| = \left| \left(m_l'(w) \Phi_l^{0,5}(w) \Phi_l^{0,5}(2w) + m_l(w) \left(\Phi_l^{0,5}(w) \right)' \Phi_l^{0,5}(2w) - m_l(w) \Phi_l^{0,5}(w) \left(\Phi_l^{0,5}(2w) \right)' \right) \Phi_l^{-1}(2w) \right| \\ &\leq \left| m_l'(w) \right| \left| \Phi_l^{0,5}(w) \Phi_l^{-0,5}(2w) \right| + \left| m_l(w) \right| \left| \left(\Phi_l^{0,5}(w) \right)' \Phi_l^{-0,5}(2w) \right| \\ &+ \left| m_l(w) \right| \left| \left(\Phi_l^{0,5}(2w) \right)' \Phi_l^{0,5}(w) \Phi_l^{-1}(2w) \right| \leq B^{0,5} A^{-0,5} \left| m_l'(w) \right| + A^{-0,5} \left| m_l(w) \left(\Phi_l^{0,5}(2w) \right)' \right|. \end{aligned}$$

$$+ A^{-1} B^{0,5} \left| m_l(w) \left(\Phi_l^{0,5}(2w) \right)' \right|. \tag{18}$$

Докажем ограниченность по l семейства $|m_l'(w)|$. Из (6), (10), определения $v_{1,l}$ и (11) следует, что

$$\begin{split} m_l'(w) &= \left(\cos^{2l}\left(\frac{w}{2}\right)\frac{v_l(w)}{v_l(0)}\right)' = \frac{1}{v_l(0)}\cos^{2l}\left(\frac{w}{2}\right)\left[-l\operatorname{tg}\left(\frac{w}{2}\right)v_l(w) + v_l'(w)\right] \\ &= \frac{1}{v_l(0)}\cos^{2l}\left(\frac{w}{2}\right)\left[-l\operatorname{tg}\left(\frac{w}{2}\right)m_l^M(w) - l\operatorname{tg}\left(\frac{w}{2}\right)\alpha(w,\,l) + \left(m_l^M\right)'(w) + \gamma(w,\,l)\right] \\ &= \frac{1}{v_l(0)}\cos^{2l}\left(\frac{w}{2}\right)\left[-l\operatorname{tg}\left(\frac{w}{2}\right)m^M(w)\cos^{-2l}\left(\frac{w}{2}\right) - l\operatorname{tg}\left(\frac{w}{2}\right)\alpha(w,\,l) \\ &+ l\operatorname{tg}\left(\frac{w}{2}\right)m^M(w)\cos^{-2l}\left(\frac{w}{2}\right) + (m^M)'(w)\cos^{-2l}\left(\frac{w}{2}\right) + \gamma(w,\,l)\right] \\ &= \frac{1}{v_l(0)}\left[-l\sin\left(\frac{w}{2}\right)\cos^{2l-1}\left(\frac{w}{2}\right)\alpha(w,\,l) + (m^M)'(w) + \cos^{2l}\left(\frac{w}{2}\right)\gamma(w,\,l)\right]. \end{split}$$

Из данных равенств имеем $|m_l'(w)| \leq \frac{1}{c}(l\alpha(l) + M_1 + \gamma(l))$. Ограниченность m_l' следует из последнего неравенства и свойств (7) и (12). Таким образом,

$$|m_l'(w)| \le M',\tag{19}$$

где M' — абсолютная константа.

Установим ограниченность по l семейства $|(\Phi_l^{0,5}(w))'|$. Так как $\widehat{\varphi}_l$ действительнозначна, имеем

$$\left(\Phi_l^{0,5}\right)'(w) = \left(\left(\sum_{k \in \mathbb{Z}} (\widehat{\varphi}_l(w+2\pi k))^2\right)^{0,5}\right)' = \Phi_l^{-0,5}(w) \sum_{k \in \mathbb{Z}} \widehat{\varphi}_l(w+2\pi k) (\widehat{\varphi}_l)'(w+2\pi k).$$

Тогда для модуля данного выражения получим

$$\left|\left(\Phi_l^{0,5}\right)'(w)\right| \leq \left|\Phi_l^{-0,5}(w)\right| \sum_{k \in \mathbb{Z}} |\widehat{\varphi_l}(w+2\pi k)| |(\widehat{\varphi_l})'(w+2\pi k)|.$$

Из (17) следует, что $|\Phi_l^{-0,5}| \le A^{-0,5}$. Далее,

$$(\widehat{\varphi}_l)'(w) = \left(\prod_{j=1}^{\infty} m_l\left(\frac{w}{2^j}\right)\right)' = \sum_{j_0=1}^{\infty} 2^{-j_0} \prod_{j=1, j \neq j_0}^{\infty} m_l\left(\frac{w}{2^j}\right) m_l'\left(\frac{w}{2^j}\right).$$

Так как $|m_I'| \leq M'$, то

$$\begin{aligned} |(\widehat{\varphi}_{l})'(w)| &\leq M' \sum_{j_{0}=1}^{\infty} \frac{\prod\limits_{j=1}^{j_{0}-1} \left| m_{l} \left(\frac{w}{2^{j}} \right) \right| \prod\limits_{j=j_{0}+1}^{\infty} \left| m_{l} \left(\frac{w}{2^{j}} \right) \right|}{2^{j_{0}}} &\leq M' \sum_{j_{0}=1}^{\infty} \frac{(1+\alpha(l))^{j_{0}-1}}{2^{j_{0}}} \\ &\times \left| \widehat{\varphi}_{l} \left(\frac{w}{2^{j_{0}}} \right) \right| &\leq \frac{M' \left(1+\varepsilon(l) \right)}{(1+\alpha(l))} \sum_{j_{0}=1}^{\infty} \left(\frac{1+\alpha(l)}{2} \right)^{j_{0}} &= \frac{M' \left(1+\varepsilon(l) \right)}{(1-\alpha(l))}. \end{aligned}$$

Последнее равенство получено с использованием формулы $\sum\limits_{j=1}^{\infty}q^j=q/(1-q)$ при |q|<1. В данном случае $q=0,5(1+\alpha(l))$, требование |q|<1 выполняется, так как $\alpha(l)\to 0$ при $l\to\infty$. Два последних неравенства вытекают из следствия 2, оценки (12) и свойств функций m^M и $\widehat{\varphi^M}\colon 0\le m^M\le 1$ и $0\le \widehat{\varphi^M}\le 1$. Из (16) при том же определении p следует, что

$$\sum_{k \in \mathbb{Z}} |\widehat{\varphi}_l(w + 2\pi k)| = \sum_{|k| \le p} + \sum_{|k| > p} \le e^{2w_0} \sum_{|k| > p} |w + 2\pi k|^{-l + 2\log_2 \frac{2}{c}} + (2p + 1)(1 + \varepsilon(l)) \le (2p + 1)(1 + \varepsilon(l)) + 2e^{2w_0} (2\pi)^{-l + 2\log_2 \frac{2}{c}} \zeta(l - 2\log_2(2/c)).$$

Таким образом,

$$\left| \left(\Phi_l^{0,5}(w) \right)' \right| \le \frac{M'(1+\varepsilon(l))}{A^{0,5}(1-\alpha(l))} \left[(2p+1)(1+\varepsilon(l)) + \frac{2e^{2w_0}\zeta \left(l - 2\log_2 \frac{2}{c} \right)}{(2\pi)^{l-2\log_2 \frac{2}{c}}} \right]. \tag{20}$$

Так как в ходе доказательства была установлена равномерная по w сходимость ряда $\sum\limits_{k\in\mathbb{Z}}((\widehat{\varphi}_l(w+2\pi k))^2)'$, то тем самым обеспечена законность почленного дифференцирования ряда $\sum\limits_{k\in\mathbb{Z}}(\widehat{\varphi}_l(w+2\pi k))^2$.

Установим законность почленного дифференцирования бесконечного произведения, определяющего функцию $\widehat{\varphi_l^{\perp}}$, на произвольном ограниченном множестве. Для этого достаточно (см., например, [7, с. 171]) проверить равномерную по w сходимость последовательности $\left(\prod_{i=1}^n m_l^{\perp}\left(\frac{w}{2^j}\right)\right)'$. Докажем равномерную по w из ограниченного множества фундаментальность данной последовательности. Пусть $n>m,\,|w|< D.$ Имеем

$$\left| \left(\prod_{j=1}^{n} m_{l}^{\perp} \left(\frac{w}{2^{j}} \right) \right)' - \left(\prod_{j=1}^{m} m_{l}^{\perp} \left(\frac{w}{2^{j}} \right) \right)' \right| \\
\leq \left| \sum_{j_{0}=1}^{m} 2^{-j_{0}} \left(\prod_{j=1, j \neq j_{0}}^{n} m_{l}^{\perp} \left(\frac{w}{2^{j}} \right) \left(m_{l}^{\perp} \right)' \left(\frac{w}{2^{j_{0}}} \right) - \prod_{j=1, j \neq j_{0}}^{m} m_{l}^{\perp} \left(\frac{w}{2^{j}} \right) \left(m_{l}^{\perp} \right)' \left(\frac{w}{2^{j_{0}}} \right) \right| \\
+ \left| \sum_{j_{0}=m+1}^{n} 2^{-j_{0}} \prod_{j=1, j \neq j_{0}}^{n} m_{l}^{\perp} \left(\frac{w}{2^{j}} \right) \left(m_{l}^{\perp} \right)' \left(\frac{w}{2^{j_{0}}} \right) \right|.$$

Обозначим первое и второе слагаемые последней суммы $F_1(w)$ и $F_2(w)$ соответственно. Оценим каждое из них. Равномерная ограниченность $|(m_l^\perp)'(w)|$ по l и w доказана выше. Пусть $K_0 := \sup_{w \in \mathbb{R}, l \in \mathbb{N}} |(m_l^\perp)'(w)|$. Неравенство $|m_l^\perp(w)| \leq 1$ следует из свойств маски. Тогда для второго слагаемого получим $F_2(w) \leq K_0 \sum_{j_0=m+1}^n 2^{-j_0} \leq K_0 2^{-m}$. Оценим первое слагаемое:

$$F_{1}(w) \leq K_{0} \sum_{j_{0}=1}^{m} 2^{-j_{0}} \left| \prod_{j=1, j \neq j_{0}}^{n} m_{l}^{\perp} \left(\frac{w}{2^{j}} \right) - \prod_{j=1, j \neq j_{0}}^{m} m_{l}^{\perp} \left(\frac{w}{2^{j}} \right) \right|$$

$$\leq K_{0} \sum_{j_{0}=1}^{m} 2^{-j_{0}} \left| \prod_{j=m+1}^{n} m_{l}^{\perp} \left(\frac{w}{2^{j}} \right) - 1 \right|.$$

Последнее неравенство следует из свойства маски $\left|m_l^\perp\right| \leq 1$. Пусть m выбрано пока так, чтобы $\frac{|w|}{2^m} < w_0$. Обозначим $w' := \frac{w}{2^m}$. Тогда

$$\begin{split} \left| \prod_{j=m+1}^{n} m_{l}^{\perp} \left(\frac{w}{2^{j}} \right) - 1 \right| &= \left| \prod_{j=1}^{n-m} m_{l}^{\perp} \left(\frac{w'}{2^{j}} \right) - 1 \right| = \left| \frac{\prod_{j=1}^{\infty} m_{l}^{\perp} \left(\frac{w'}{2^{j}} \right)}{\prod_{j=n-m+1}^{\infty} m_{l}^{\perp} \left(\frac{w'}{2^{j}} \right)} - 1 \right| \\ &= \left| \frac{\widehat{\varphi}_{l}^{\perp}(w')}{\widehat{\varphi}_{l}^{\perp} \left(\frac{w'}{2^{n-m}} \right)} - 1 \right| = \left| \frac{\widehat{\varphi}_{l}(w') \Phi_{l}^{0,5} \left(\frac{w'}{2^{n-m}} \right)}{\widehat{\varphi}_{l} \left(\frac{w'}{2^{n-m}} \right) \Phi_{l}^{0,5}(w')} - 1 \right| \\ &= \left| \frac{\widehat{\varphi}_{l}(w') \Phi_{l}^{0,5} \left(\frac{w'}{2^{n-m}} \right) - \widehat{\varphi}_{l} \left(\frac{w'}{2^{n-m}} \right) \Phi_{l}^{0,5}(w')}{\widehat{\varphi}_{l} \left(\frac{w'}{2^{n-m}} \right) \Phi_{l}^{0,5}(w')} \right| \\ &\leq 2A^{-0.5} \left| \widehat{\varphi}_{l}(w') \Phi_{l}^{0,5} \left(\frac{w'}{2^{n-m}} \right) - \widehat{\varphi}_{l} \left(\frac{w'}{2^{n-m}} \right) \Phi_{l}^{0,5}(w') \right|. \end{split}$$

Так как $\widehat{\varphi}_l$ и $\Phi_l^{0,5}$ непрерывны, а $\widehat{\varphi}_l(0) = \Phi_l^{0,5}(0) = 1$, то для любого $\varepsilon > 0$ существует $\delta(\varepsilon)$ такое, что при $|w'| < \delta$ выполняется $|\widehat{\varphi}_l(w) - 1| < \frac{1}{8}A^{0,5}B^{-0,5}\varepsilon$, $|\Phi_l^{0,5}(w) - 1| < \frac{1}{16}A^{0,5}\varepsilon$. Выберем m так, чтобы $\frac{|w|}{2^m} < \min\{\delta, w_0\}$, тогда

$$2A^{-0.5} \left| \widehat{\varphi}_l(w') \Phi_l^{0.5} \left(\frac{w'}{2^{n-m}} \right) - \widehat{\varphi}_l \left(\frac{w'}{2^{n-m}} \right) \Phi_l^{0.5}(w') \right| \le \varepsilon.$$

Следовательно, $F_1(w) \le \varepsilon \sum_{j_0=1}^m 2^{-j_0} \le \varepsilon$.

Таким образом, почленная дифференцируемость бесконечного произведения, определяющего функцию $\widehat{\varphi_l}^\perp$, на произвольном ограниченном множестве установлена.

На основании неравенства (18) с помощью оценок (19) и (20) получаем ограниченность по l семейства функций $(m_l^{\perp})'(w)$, а следовательно, и ограниченность по l временных радиусов констант неопределенности построенного семейства. \square

Автор выражает благодарность профессору И. Я. Новикову за постановку данной задачи.

ЛИТЕРАТУРА

- Chui C. K., Wang J. High-order orthonormal scaling functions and wavelets give poor time-frequency localization // J. Fourier Anal. Appl. 1996. V. 2, N 5. P. 415–426.
- Novikov I. Ya. Modified Daubechies wavelets preserving localization with growth of smoothness // East J. Approx. 1995. V. 1, N 3. P. 314–348.
- 3. Новиков И. Я. Константы неопределенности для модифицированных всплесков Добеши // Изв. Тульск. гос. ун-та. Сер. Математика. Механика. Информатика. 1998. Т. 4, № 1. С. 107–111.
- 4. Кашин Б. С., Саакян А. А. Ортогональные ряды. М.: АЦФ, 1999.
- 5. Новиков И. Я., Протасов В. Ю., Скопина М. А. Теория всплесков. М.: Физматлит, 2005.
- Фихтенгольц Г. М. Курс интегрального и дифференциального исчисления. М.: Физматгиз, 1959. Т. 2.
- 7. Рудин У. Основы функционального анализа. М.: Мир, 1976.

Cтатья поступила 19 января 2007 г., окончательный вариант -1 октября 2007 г.

Лебедева Елена Александровна

Курский гос. университет, ул. Радищева, 33, Курск305000, ГСП ealebedeva2004@mail.ru