КВАЗИКРИСТАЛЛОГРАФИЧЕСКИЕ ГРУППЫ В ПРОСТРАНСТВАХ МИНКОВСКОГО Р. М. Гарипов, В. А. Чуркин

Аннотация. Квазикристаллографические группы в смысле Новикова — Веселова, определенные в евклидовых пространствах, обобщаются на псевдоевклидовы и аффинные пространства. Доказано, что квазикристаллографические группы в пространствах Минковского являются проекциями кристаллографических групп в псевдоевклидовых пространствах, если группы поворотов квазикристаллографических групп удовлетворяют дополнительному условию. Построенный пример показывает, что это условие не может быть отброшено. Доказано, что любая квазикристаллографическая группа является проекцией кристаллографической группы в аффинном пространстве.

Ключевые слова: аффинное пространство, пространство Минковского, квазикристаллографическая группа, проекция, билинейная форма, обертывающая алгебра, модуль.

Введение

Кристаллографическая группа G в евклидовом или псевдоевклидовом пространстве R является подгруппой группы движений, обладающей следующими свойствами: 1) она дискретна; 2) векторы ее подгруппы трансляций порождают векторное пространство R (см. [1–3]). Поясним, что в группе аффинных преобразований пространства R имеется стандартная топология конечномерного многообразия и дискретность группы G понимается в топологическом смысле: единица группы отделена от остальных элементов некоторой окрестностью. В определении Новикова — Веселова $\kappa 6a3u\kappa pucmannorpa fuveckoŭ$ группы G условие дискретности заменяется более слабым требованием существования конечного базиса абелевой подгруппы трансляций $\overline{Z} \subset G$ [4]. Так как второе свойство сохраняется неизменным, мощность N этого базиса больше или равна размерности пространства n, т. е. $N \ge n$. Если N = n, то, как легко видеть, группа G дискретна, следовательно, квазикристаллографические группы включают в свой класс кристаллографические группы как частный случай. В некотором смысле верно и обратное утверждение. В данной работе будет доказано, что квазикристаллографические группы в пространствах Минковского $\mathbb{R}^{1,n-1}$, как правило, являются проекциями кристаллографических групп, но действующих в псевдоевклидовых пространствах более общего вида $\mathbb{R}^{p,N-p}$. Определения и методы вычисления кристаллографических групп частично переносятся на квазикристаллографические группы.

Квазикристаллографическим группам в евклидовых пространствах размерности 2 и 3 посвящены работы А. С. Пиунихина [5–7] и обзор [8].

Работа выполнена при финансовой поддержке Совета по грантам президента РФ и государственной поддержке ведущих научных школ (код проекта $\rm HIII-344.2008.1$).

§ 1. Поднятие квазикристаллографической группы

Напомним, что решетка конечномерного вещественного векторного пространства — это целочисленная оболочка базиса пространства, а квазирешетка — целочисленная оболочка конечной системы векторов, линейно независимой над полем рациональных чисел и содержащей базис пространства. Решетка является частным случаем квазирешетки. Псевдоевклидово пространство $R = \mathbb{R}^{p,q}$ типа (p,q) — это вещественное аффинное пространство размерности n = p + q, снабженное невырожденной симметричной билинейной формой $x \cdot y$ типа (p,q), которая в подходящем базисе имеет вид

$$x \cdot y = x_1 y_1 + \dots + x_p y_p - x_{p+1} y_{p+1} - \dots - x_{p+q} y_{p+q}.$$

Эта форма определяет на пространстве R псевдометрику

$$d(x,y) = \sqrt{(x-y) \cdot (x-y)}.$$

Группа I(R) всех преобразований пространства R, сохраняющих псевдометрику, называется $\mathit{группой}$ движений пространства R. Группа I(R) включает нормальную подгруппу T всех трансляций (паралельных переносов) $\bar{a}: x \mapsto a+x$ на векторы a, изоморфную \mathbb{R}^n , а также группу $O_{p,q}$ аффинных преобразований, оставляющих неподвижным начало системы координат. Элементы $A \in O_{p,q}$ можно рассматривать как линейные преобразования $x \mapsto Ax$, сохраняющие билинейную форму $x \cdot y$. Произвольное преобразование из I(R) (движение) имеет единственный вид $x \mapsto f(x) = a + Ax$, $f = \bar{a}A$, $A \in O_{p,q}$ (см. [4]). Матрицы из $O_{p,q}$ называются nceedoopmosonaльными. Когда псевдометрика не играет роли, пространство $\mathbb{R}^{p,q}$ будем обозначать также через \mathbb{R}^n .

Определение 1. Подгруппа G группы движений I(R) пространства R называется κ вазикристаллографической группой, если множество векторов Z подгруппы трансляций $\overline{Z} = G \cap T$ является квазирешеткой.

В частном случае, когда Z — решетка, квазикристаллографическая группа будет кристаллографической.

Замечание. Определение 1 квазикристаллографической группы сохраняет смысл в аффинном пространстве, при этом I(R) — группа всех аффинных преобразований. Теоремы 1–3 формулируются в этом общем случае.

Множество матриц A, входящих в элементы $\bar{t}A \in G$, обозначим через Γ и будем называть $\mathit{rpynnoй}$ $\mathit{nosopomos}$. В кристаллографии это множество называют $\mathit{movevhoй}$ $\mathit{rpynnoй}$, что является неточным переводом с немецкого языка слова die Punktgruppe. Пусть $G = G(\Gamma, Z)$ — квазикристаллографическая группа с множеством матриц $\Gamma \subset O_{p,q}$ и квазирешеткой Z. Подмножество $\overline{Z} \subset G$, очевидно, подгруппа. Покажем, что оно является нормальной подгруппой. Действительно, для любых $\bar{\tau} \in \overline{Z}$ и $\bar{t}A \in G$ имеем

$$(\bar{t}A)\bar{\tau}(\bar{t}A)^{-1}=\bar{t}A\bar{\tau}A^{-1}\bar{t}^{-1}=\bar{t}\,\overline{A\tau}AA^{-1}\bar{t}^{-1}=\overline{A\tau}\in\overline{Z},$$

здесь мы переставили матрицу и трансляцию по очевидной формуле

$$A\bar{\tau} = \overline{A\tau}A. \tag{1}$$

Этим мы доказали также, что $AZ\subset Z$ для любого $A\in \Gamma$. По той же формуле (1) получим, что соответствие $\bar{t}A\mapsto A$ является гомоморфизмом $G\mapsto O_{p,q}$. Отсюда следует, что Γ есть группа, изоморфная G/Z. В таком случае $A^{-1}\in \Gamma$ и по доказанному выше $A^{-1}Z\subset Z$, откуда $Z\subset AZ$. Таким образом, квазирешетка инвариантна относительно группы поворотов: AZ=Z для любого $A\in \Gamma$.

Теорема 1. Любая квазикристаллографическая группа G характеризуется группой поворотов Γ , квазирешеткой Z и представителями $\bar{\tau}_A A$ ($A \in \Gamma$) смежных классов группы G по нормальной подгруппе трансляций \overline{Z} , которые удовлетворяют соотношениям

$$AZ = Z, \quad \tau_A + A\tau_B - \tau_{AB} \in Z \quad \forall A, B \in \Gamma.$$
 (2)

Обратно, если произвольно заданы группа $\Gamma \subset O_{p,q}$, квазирешетка Z, которая порождает пространство R, и функция $\tau_A : \Gamma \to \mathbb{R}^n$, удовлетворяющие условиям (2), то существует, и притом единственная, квазикристаллографическая группа G с множествами Γ , Z и $\{\bar{\tau}_A A\}$.

Доказательство. Рассуждения те же, что и в случае кристаллографической группы [9]. Приведем их в целях связности изложения. Пусть G — квазикристаллографическая группа. Равенства AZ=Z мы уже установили. Для проверки остальных соотношений (2) достаточно преобразовать произведение $(\bar{\tau}_A A)(\bar{\tau}_B B)$ к виду $\overline{\tau_A + A \tau_B} A B$ по формуле (1), откуда вытекают $\tau_A + A \tau_B \in Z + \tau_{AB}$.

С целью доказательства обратного утверждения рассмотрим объединение $G = \bigcup \overline{Z} \bar{\tau}_A A$ по всем $A \in \Gamma$. Убедимся, что G и есть требуемая квазикристаллографическая группа. Непосредственно из (1) и (2) вытекает, что подмножество $G \subset I(R)$ содержит произведения своих элементов. Докажем, что оно содержит и обратные элементы $(\overline{m}\bar{\tau}_A A)^{-1} = \bar{a}\bar{\tau}_{A^{-1}} A^{-1}$, где $m \in Z$,

$$a = A^{-1}(-m - \tau_A) - \tau_{A^{-1}} = -A^{-1}(\tau_A + A\tau_{A^{-1}} - \tau_I) - A^{-1}\tau_I - A^{-1}m.$$

Подставив во второе соотношение (2) $B=A^{-1}$, получим, что вектор в последних скобках принадлежит Z, а подставив A=B=I — что $\tau_I\in Z$ (далее положим $\tau_I=0$). Тогда с учетом первого соотношения (2) имеем $a\in Z$. Таким образом, подмножество $G\subset I(R)$ является подгруппой. Справедливо включение $\overline{Z}\subset G$ в силу $\tau_I\in Z$. Как и выше, убеждаемся, что это включение нормально. \square

Пусть e_1, \ldots, e_N — базис квазирешетки Z квазикристаллографической группы $G=G(\Gamma,Z),\ N\geq n=\dim R$. Тогда для любой матрицы $A\in\Gamma$ вектор Ae_j единственным образом представляется в виде линейной комбинации с целыми коэффициентами векторов базиса:

$$Ae_j = \sum_{i=1}^{N} e_i a'_{ij} \quad (j = 1, \dots, N).$$
 (3)

Соответствие $A\mapsto A'=(a'_{ij})$ по формуле (3) является точным (т. е. инъективным) представлением группы Γ в группе унимодулярных матриц $GL(N,\mathbb{Z})$. В самом деле,

$$(BA)e_j = \sum_{i=1}^N (Be_i)a'_{ij} = \sum_{i=1}^N \left(\sum_{k=1}^N e_k b'_{ki}\right) a'_{ij} = \sum_{k=1}^N e_k (B'A')_{kj}.$$

Отсюда следует равенство гомоморфизма (BA)' = B'A'. Ядро гомоморфизма $A \mapsto A'$ состоит из матриц A, которые оставляют на месте каждый вектор базиса e_j . Так как этот базис порождает векторное пространство R, то A = I. Следовательно, представление $\pi : A \mapsto A'$ точно.

Трансляционную часть $\bar{\tau}_A$ представителя $\bar{\tau}_A A$ элемента из G/Z будем называть дробной трансляцией. Будем рассматривать только такие квазикристаллографические группы, у которых векторы дробных трансляций рационально выражаются через базис квазирешетки Z:

$$au_A = \sum_{i=1}^N au_A^i e_i, \quad au_A^i \in \mathbb{Q} \quad (i=1,\ldots,N).$$

Числа au_A^i определяются однозначно вектором au_A . Обозначим

$$au_A' = \left(au_A^1, \dots, au_A^N\right) \in \mathbb{Q}^N.$$

Если все векторы дробных трансляций нулевые, то квазикристаллографическая группа равна полупрямому произведению $G=\overline{Z} \leftthreetimes \Gamma$, которое в данном случае совпадает с $\overline{Z}\Gamma$. Такие группы G в кристаллографии называются $\mathit{cum-мop}\mathfrak{phimu}$.

Теорема 2. Квазикристаллографическая группа $G = G(\Gamma, Z)$ изоморфна кристаллографической группе $G' = G'(\Gamma', \mathbb{Z}^N)$ в пространстве \mathbb{R}^N , определяемой группой поворотов $\Gamma' = \pi(\Gamma)$, решеткой \mathbb{Z}^N и представителями $\bar{\tau}_{A'}A'$ $(A' \in \Gamma')$, где $\tau_{A'} = \tau'_A$, и этот изоморфизм задается соответствием σ :

$$\tau_A A \mapsto \tau_{A'} A', \quad e_i \mapsto e_i' = (0, \dots, 1, \dots, 0) \quad (A \in \Gamma; \ i = 1, \dots, N).$$

Доказательство. Группа G' удовлетворяет условиям (2). Действительно, $A'\mathbb{Z}^N=\mathbb{Z}^N$ в силу унимодулярности матриц $A'\in\Gamma'$. Выражения векторов τ_A через базис квазирешетки Z подставим в соотношения (2) группы G и учтем (3). В силу линейной независимости векторов e_1,\ldots,e_N над \mathbb{Q} получим

$$au_A^i + \sum_{i=1}^N a_{ij}' au_B^j - au_{AB}^i \in \mathbb{Z} \quad (i=1,\ldots,N).$$

Обозначив $\tau_{A'} = \tau'_A = (\tau^1_A, \dots, \tau^N_A) \in \mathbb{Q}^N$ и записав эти соотношения в векторной форме, с учетом равенства (AB)' = A'B' придем к соотношениям (2) для векторов дробных трансляций $\tau_{A'}$ группы G'. Квазирешетка \mathbb{Z}^N является решеткой в \mathbb{R}^N . Итак, G' — кристаллографическая группа.

Докажем, что группы G и G' изоморфны. Зафиксируем представителей $\bar{\tau}_A A$ ($A \in \Gamma$) смежных классов группы G по нормальной подгруппе \overline{Z} . Тогда элементы группы G единственным образом представляются в виде $\bar{a}\bar{\tau}_A A$, где $a \in Z$, поэтому соответствие σ по формуле $\bar{a}\bar{\tau}_A A \mapsto \bar{a}'\bar{\tau}_{A'} A'$ задает биекцию $G \mapsto G'$. Остается только проверить равенства гомоморфизма

$$\sigma((\bar{a}\bar{\tau}_A A)(\bar{b}\bar{\tau}_B B)) = (\bar{a}'\bar{\tau}_{A'} A')(\bar{b}'\bar{\tau}_{B'} B').$$

С помощью формулы (1) эти равенства сводятся к условию $\sigma(c) = c'$, где

$$c = a + \tau_A + A(b + \tau_B) - \tau_{AB},$$

а c' получается из c навешиванием штрихов над a, b, A, B. Выразив вектор c через базис квазирешетки Z с учетом (3) и выполнив замены $e_i \mapsto e_i'$, придем к требуемому равенству. \square

Изоморфизм σ поднимает квазикристаллографическую группу G, действующую в пространстве $R=\mathbb{R}^{p,q}$ размерности n=p+q, до кристаллографической группы G' в пространстве \mathbb{R}^N большей размерности.

§ 2. Проекции

Мы определим проекции квазикристаллографических групп с помощью вещественных идемпотентов (проекторов). Пусть линейное отображение $P:R\mapsto R$ — проектор на подпространство $\Pi\subset R$, т. е. $P^2=P,\ PR=\Pi$. Если проектор P перестановочен с каждой матрицей A из группы поворотов квазикристаллографической группы $G=G(\Gamma,Z)$, то подпространство Π и его дополнение $R\ominus\Pi=(I-P)R$ инвариантны относительно Γ и отображение

$$\bar{a}A \mapsto (P\bar{a}A)|_{\Pi} = (\overline{Pa}A)|_{\Pi}$$

является гомоморфизмом G в группу $\mathrm{Aff}(\Pi)$ аффинных преобразований подпространства Π . Действительно, по формуле (1), учитывая перестановочность P с A и B, имеем

$$\bar{a}A\bar{b}B \mapsto P\bar{a}A\bar{b}B = \overline{Pa}PA\bar{b}B = \overline{Pa}AP\bar{b}B = \overline{Pa}AP\bar{b}BP.$$

Так как P=I на Π и $\overline{Pb}B$ отображает $\Pi\to\Pi$, то сужение на Π этого произведения равно произведению сужений сомножителей $\overline{Pa}A$ и $\overline{Pb}B$. Утверждение доказано.

Но условие инвариантности относительно Γ обоих взаимно дополнительных подпространств Π и $\Pi_1 = R \ominus \Pi$ слишком стеснительно. Поэтому будем проектировать группу G на прямое дополнение Π_1 инвариантного подпространства Π параллельно Π , не предполагая Π_1 инвариантным. Проектор на Π_1 параллельно Π обозначим через P_1 . В подходящем базисе матрицы $A \in \Gamma$ имеют блочную структуру:

$$A=egin{pmatrix} A_{11} & 0 \ A_{21} & A_{22} \end{pmatrix},$$

подпространство Π_1 состоит из векторов $(X_1,0)$, а Π — из $(0,X_2)$. Тогда

$$P_1 = \left(egin{matrix} I & 0 \ 0 & 0 \end{matrix}
ight).$$

Отсюда следует, что матрицы P_1A и P_1 перестановочны: $P_1A \cdot P_1 = P_1 \cdot P_1A$, откуда $P_1A = P_1AP_1$. Благодаря этому равенству отображение

$$\sigma_1: \bar{a}A \mapsto (P_1\bar{a}A)|_{\Pi_1} = (\overline{P_1a}P_1A)|_{\Pi_1}$$

тоже является гомоморфизмом $G \mapsto \mathrm{Aff}(\Pi_1)$, в чем легко убедиться так же, как это сделано выше. В частности, соответствие матриц $\sigma_1: A \mapsto (P_1A)|_{\Pi_1}$ — гомоморфизм.

Определение 2. Образ $\sigma_1(G)$ будем называть *проекцией* группы G.

Если множество Z_1 векторов трансляций группы $\sigma_1(G)$ является квазирешеткой, то $\sigma_1(G)$ — квазикристаллографическая группа. Имеет место $Z_1 \supset P_1Z$, вообще говоря, $Z_1 \neq P_1Z$. В случае, когда гомоморфизм $\sigma_1: A \to A_1$ инъективен, проекция $\sigma_1(G)$ будет квазикристаллографической группой, определяемой множествами

$$\Gamma_1 = (P_1 \Gamma)|_{\Pi_1}, \quad Z_1 = P_1 Z, \quad \bar{\tau}_{A_1} A_1 \ (A_1 \in \Gamma_1),$$
 (4)

где $\tau_{A_1} = P_1 \tau_A$, $\sigma_1(A) = A_1$. В самом деле, множества (4) удовлетворяют условиям (2), что можно проверить умножением слева на проектор P_1 соотношений (2) для группы G, а проекция квазирешетки снова является квазирешеткой.

ПРИМЕР 1. Рассмотрим симморфную кристаллографическую группу $\Delta(\{A^n\},\mathbb{Z}^4)$, где

$$A = egin{pmatrix} 5 & 4 & 2 & 2 \ -2 & -2 & -1 & 0 \ 4 & 3 & 2 & 2 \ -2 & -2 & 0 & -1 \end{pmatrix}.$$

Матрица A имеет собственные числа и векторы λ_k , e_k (при k=1,2 вещественные, $\lambda_1\lambda_2=1$, при k=3,4 комплексно сопряженные, $|\lambda_3|=1$, $e_3=e_3'+ie_3''$). Подпространства Π_1 и Π_2 , натянутые на векторы e_1 , e_2 и e_3' , e_3'' соответственно, инвариантны относительно линейного отображения A. Собственные векторы нормируем так, чтобы на Π_1 и Π_2 метрическая билинейная форма пространства $\mathbb{R}^{1,3}$ относительно базиса e_1 , e_2 , e_3' , e_3'' имела вид $2y_1y_2$ и $-y_3^2-y_4^2$ соответственно. Обозначим через P_1 проектор на Π_1 параллельно Π_2 . Очевидно, P_1 и $P_2=I-P_1$ перестановочны с матрицей A. Проекция $P_1\Delta$ является квазикристаллографической группой на плоскости Минковского Π_1 :

$$A|_{\Pi_1}=\left(egin{array}{cc} \lambda_1 & 0 \ 0 & \lambda_1^{-1} \end{array}
ight), \quad \lambda_1=\sqrt{2}+1+\sqrt{2\sqrt{2}+2}.$$

Базис квазирешетки $P_1\mathbb{Z}^4$ состоит из проекций координатных ортов

$$\chi_1=p(\sqrt{2}+1+\sqrt{\sqrt{2}-1},\sqrt{2}+1-\sqrt{\sqrt{2}-1}),\; \chi_2=p(\sqrt{2}+\sqrt{\sqrt{2}-1},\sqrt{2}-\sqrt{\sqrt{2}-1}), \ \chi_3=p(\sqrt{\sqrt{2}+1},-\sqrt{\sqrt{2}+1}),\;\; \chi_4=p(1+\sqrt{\sqrt{2}-1},1-\sqrt{\sqrt{2}-1}), \$$
где $p=(2(\sqrt{2}-1))^{-1/2}.$

Аналогично $P_2\Delta$ является квазикристаллографической группой на евклидовой плоскости Π_2 :

$$A|_{\Pi_2} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}, \quad \alpha = \pi - \beta, \quad \beta = \arccos(\sqrt{2} - 1).$$

Квазирешетка $P_2\mathbb{Z}^4$ имеет базис

$$\psi_1=q(1-\sqrt{2},-\sqrt{\sqrt{2}+1}), \quad \psi_2=q(-\sqrt{2},-\sqrt{\sqrt{2}+1}), \ \psi_3=q(0,-\sqrt{\sqrt{2}-1}), \quad \psi_4=q(1,-\sqrt{\sqrt{2}+1}),$$

где $q=2^{-3/4}$. В обоих случаях квазирешетка всюду плотна на плоскости по евклидовой метрике.

Теорема 3. В аффинном пространстве любая квазикристаллографическая группа изоморфна проекции кристаллографической группы, причем эта проекция действует в пространстве той же размерности, что и исходная квазикристаллографическая группа.

Доказательство. Пусть $G = G(\Gamma, Z)$ — заданная квазикристаллографическая группа, действующая в пространстве \mathbb{R}^n , а $G' = G'(\Gamma', \mathbb{Z}^N)$ — изоморфная ей кристаллографическая группа в пространстве \mathbb{R}^N , построенная в теореме 2. Обозначим через E матрицу, столбцы которой составлены из координат векторов базиса e_1, \ldots, e_N квазирешетки Z: $E = (e_1 \ldots e_N)$. Тогда равенства (3) можно записать в матричной форме

$$AE = EA'. (5)$$

В самом деле, левая часть равенства (3) есть *j*-й столбец матрицы $AE = (Ae_1 \dots Ae_N)$, а правая часть равна *j*-му столбцу матрицы $(e_1 \dots e_N)A' = EA'$. Подпространство $\Pi \subset \mathbb{R}^N$, состоящее из векторов α , удовлетворяющих уравнению $E\alpha = 0$, имеет размерность N-n и инвариантно относительно группы Γ' : если $\alpha \in \Pi$, то в силу (5) $E(A'\alpha) = AE\alpha = 0$, следовательно, $A'\alpha \in \Pi$. Обозначим через P_1 проектор на некоторое прямое дополнение $\Pi_1 = \mathbb{R}^N \ominus \Pi$ параллельно Π , dim $\Pi_1 = n$. Тогда $\Pi = \{\alpha \mid P_1\alpha = 0\}$, $\Pi_1 = \{\alpha \mid P_1\alpha = \alpha\}$. Если $\alpha = (\alpha_1, \dots, \alpha_N) \in \mathbb{Q}^N$, то из $P_1\alpha = 0$ следует $\alpha = 0$, так как $\alpha \in \Pi$ и поэтому

$$E\alpha = e_1\alpha_1 + \cdots + e_N\alpha_N = 0,$$

откуда $\alpha=0$ в силу линейной независимости векторов e_1,\dots,e_N над полем $\mathbb Q.$

Рассмотрим проекцию группы G' на подпространство Π_1 параллельно Π , как это определено выше. Покажем, что гомоморфизм $\sigma_1: G' \mapsto \sigma_1(G')$ инъективен, следовательно, группа G', а вместе с ней и группа G, изоморфны проекции $\sigma_1(G')$. Этим утверждение теоремы будет доказано. Добавим, что группа $\sigma_1(G')$ задается множествами типа (4).

Найдем прежде всего ядро гомоморфизма $A'\mapsto (P_1A')|_{\Pi_1}$, т. е. множество матриц $A'\in\Gamma'$, удовлетворяющих условию $P_1A'x=x\ \forall x\in\Pi_1$. Положив здесь $x=P_1y,\ y\in\mathbb{R}^N$, это условие приведем к виду $P_1A'P_1=P_1$. Отсюда в силу равенства $P_1A'P_1=P_1A'$ имеем $P_1(A'-I)=0$. Если обозначим j-й столбец матрицы A'-I через b_j , то получим $P_1(A'-I)=P_1(b_1\dots b_N)=(P_1b_1\dots P_1b_N)=0$, откуда $b_1=\dots=b_N=0$, так как эти векторы рациональны, следовательно, A'=I. Таким образом, соответствие матриц инъективно. Тогда ядро гомоморфизма σ_1 может состоять только из трансляций на векторы a решетки \mathbb{Z}^N : $P_1a=0$. Но отсюда a=0. Инъективность гомоморфизма σ_1 установлена. \square

Характеризация углов поворота.

Теорема 4. Угол φ может быть углом гиперболического поворота двумерной квазикристаллографической группы в том и только том случае, когда $\exp \varphi$ и $\exp(-\varphi)$ — целые алгебраические числа над \mathbb{Q} .

ДОКАЗАТЕЛЬСТВО. Напомним, что гиперболический поворот на угол φ — это линейное преобразование вещественной плоскости \mathbb{R}^2 с матрицей

$$A = \left(egin{array}{cc} \mathop{
m ch} arphi & \mathop{
m sh} arphi \ \mathop{
m sh} arphi & \mathop{
m ch} arphi \end{array}
ight),$$

сохраняющее квадратичную форму $x_1^2 - x_2^2$. Его собственные значения суть $\lambda^{\pm 1} = \exp(\pm \varphi)$, а собственные прямые — изотропные прямые $x_1 = \pm x_2$ квадратичной формы с направляющими векторами $f_1 = (1, 1), f_2 = (1, -1)$.

Пусть G — двумерная квазикристаллографическая группа с квазирешеткой Z и A — гиперболический поворот из элемента группы G. Выберем $v=\alpha f_1+\beta f_2$ из Z. Можно считать, что $\alpha\beta\neq 0$ ввиду двумерности. Тогда $Z'=\langle A^kv\mid k\in\mathbb{Z}\rangle$ — минимальная A-инвариантная подгруппа свободной абелевой группы Z конечного ранга. Такие подгруппы конечно порождены, поэтому можно считать |k| ограниченным. Заменяя v подходящим сдвигом $A^{-m}v$, можно считать, что

$$Z' = \langle A^k v \mid 0 \leq k < N
angle$$
 и N минимально. Тогда $A^N v = \sum\limits_{k=0}^{N-1} a_k A^k v, \ a_k \in \mathbb{Z}.$

Отсюда следуют равенства

$$\lambda^N \alpha = \left(\sum_{k=0}^{N-1} a_k \lambda^k\right) \alpha, \quad \lambda^{-N} \beta = \left(\sum_{k=0}^{N-1} a_k \lambda^{-k}\right) \beta.$$

Сокращая α и β , получаем, что λ и λ^{-1} — целые алгебраические числа.

Предположим теперь, что φ вещественно и $\exp \varphi = \lambda$, $\exp(-\varphi) = \lambda^{-1}$ — целые алгебраические числа. Тогда

$$\lambda^{N} + a_1 \lambda^{N-1} + \dots + a_N = 0, \quad \lambda^{-m} + b_1 \lambda^{1-m} + \dots + b_m = 0$$

при подходящих целых рациональных a_k , b_l и минимальных натуральных N, m. Умножая второе равенство на λ^m , убедимся, что m=N и $a_N=b_N=\pm 1$ ввиду единственности минимального аннулирующего многочлена.

Выберем теперь квазирешетку Z в \mathbb{R}^2 с \mathbb{Z} -базисом $f_1, \lambda f_1, \ldots, \lambda^{N-1} f_1, f_2, \lambda^{-1} f_2, \ldots, \lambda^{1-N} f_2$. Пусть A — матрица гиперболического поворота на угол φ , приведенная выше. Тогда Z инвариантна относительно A в силу указанных условий на λ . Естественное расширение Z с помощью $\Gamma = \langle A \rangle$, т. е. $G = \overline{Z}\Gamma$, — требуемая квазикристаллографическая группа. \square

§ 3. Поднятие билинейной формы

В § 1 мы подняли квазикристаллографическую группу $G(\Gamma, Z)$ в пространстве $\mathbb{R}^n = \mathbb{R}^{p,q}$ до кристаллографической группы $G'(\Gamma', \mathbb{Z}^N)$ в большом пространстве $\mathbb{R}^N, N > n$. Метрическая форма $x \cdot y$ в \mathbb{R}^n тоже поднимается в \mathbb{R}^N в виде инвариантной относительно Γ' симметричной билинейной формы $\Phi(\alpha, \beta)$, но вырожденной ранга n. Однако в случае пространства Минковского удается поднять форму $x \cdot y$ типа (1, n-1) до невырожденной симметричной билинейной формы в \mathbb{R}^N , но более общего типа (p, N-p) при дополнительном условии, накладываемом на группу поворотов Γ . В евклидовых пространствах это поднятие выполняется без ограничений на Γ (см. [8]).

Теорема 5. Пусть $G = G(\Gamma, Z)$ — квазикристаллографическая группа в пространстве Минковского $\mathbb{R}^{1,n-1}$ с квазирешеткой Z ранга N и группой поворотов Γ . Предположим, что в пространстве не существует инвариантных изотропных прямых относительно группы Γ . Тогда действие группы G на квазирешетке Z сопряжением сохраняет некоторую невырожденную целочисленную симметричную билинейную форму на $\mathbb{R}^N \supset \mathbb{Z}^N$.

Доказательство теоремы 5 разобьем на несколько подготовительных шагов. Квазирешетка $Z=\mathbb{Z}e_1+\cdots+\mathbb{Z}e_N$ задает линейное отображение $P:\mathbb{R}^N\to\mathbb{R}^n$ по правилу

$$lpha = (lpha_1, \ldots, lpha_N) \mapsto P(lpha) = \sum_{i=1}^N lpha_i e_i.$$

(Это отображение не идемпотентно, не путать его с проектором P из $\S\,2!)$

Лемма 1. Im
$$P = \mathbb{R}^n$$
, $\mathbb{O}^N \cap \operatorname{Ker} P = \{0\}$.

ДОКАЗАТЕЛЬСТВО. Im $P=\mathbb{R}^n$, так как \mathbb{R} -оболочка системы e_1,\ldots,e_N совпадает с \mathbb{R}^n . Отсюда dim Ker P=N-n. Кроме того, сужение P на \mathbb{Q}^N — изоморфизм, поскольку при α_1,\ldots,α_N из \mathbb{Q} имеем

$$\sum_{i=1}^N lpha_i e_i = 0 \Longleftrightarrow lpha_1 = \dots = lpha_N = 0.$$

Это означает, что $\operatorname{Ker} P$ — «иррациональное» подпространство: $\mathbb{Q}^N \cap \operatorname{Ker} P = \{0\}$. Лемма 1 доказана. \square

Зададим на \mathbb{R}^N симметричную билинейную форму Φ по правилу

$$\Phi(\alpha, \beta) = P(\alpha) \cdot P(\beta).$$

Здесь \cdot — скалярное произведение в пространстве Минковского $\mathbb{R}^{1,n-1}$.

Лемма 2. $\operatorname{Ker} \Phi = \operatorname{Ker} P$, $\mathbb{Q}^N \cap \operatorname{Ker} \Phi = \{0\}$.

Доказательство. $\operatorname{Ker} \Phi = \{ \alpha \in \mathbb{R}^N \mid \Phi(\alpha, \beta) = 0 \, \forall \beta \in \mathbb{R}^N \} = \{ \alpha \in \mathbb{R}^N \mid P(\alpha) \cdot P(\beta) = 0 \, \forall \beta \in \mathbb{R}^N \} = \{ \alpha \in \mathbb{R}^N \mid P(\alpha) \perp \mathbb{R}^n \} = \{ \alpha \in \mathbb{R}^N \mid P(\alpha) = 0 \} = \operatorname{Ker} P.$

Второе равенство следует из леммы 1. Лемма 2 доказана. \square

Следующий шаг — описание действия группы G сопряжением на квазирешетке Z и на $\mathbb{R}^N.$

Если $f=\bar{u}A\in G=G(\Gamma,Z)$ и $x\in Z$, то легко проверить, что $f\bar{x}f^{-1}=\overline{Ax}$. Таким образом, действие G сопряжением на Z сводится к действию матричной группы Γ на векторы трансляций умножением.

Пусть $Z=\mathbb{Z}e_1+\cdots+\mathbb{Z}e_N$ — квазирешетка из \mathbb{R}^n , и пусть

$$Ae_j = \sum_i e_i a'_{ij}, \quad a'_{ij} \in \mathbb{Z}.$$

Тогда соответствие $A\mapsto A'=(a'_{ij})$ — изоморфизм между Γ и $\Gamma'=\{A'\mid A\in \Gamma\}$, подгруппой из $GL(N,\mathbb{Z})$, действующей естественно на столбцы из \mathbb{R}^N .

Лемма 3. PA' = AP, форма Φ инвариантна относительно Γ' .

Доказательство. Пусть e_1',\dots,e_N' — стандартный базис $\mathbb{R}^N,\ Pe_j'=e_j.$ Тогда

$$A'e'_j = \sum_i e'_i a'_{ij}, \quad PA'e'_j = \sum_i e_i a'_{ij} = Ae_j = APe'_j$$

для всех j. Следовательно, PA' = AP.

Далее, $\Phi(A'(\alpha), A'(\beta)) = PA'(\alpha) \cdot PA'(\beta) = AP(\alpha) \cdot AP(\beta) = P(\alpha) \cdot P(\beta) = \Phi(\alpha, \beta)$, поскольку $A \in \Gamma$ сохраняет скалярное произведение. Лемма 3 доказана. \square

Следующий шаг — замена вещественнозначной формы Φ рациональнозначной формой Φ_V , инвариантной относительно Γ' и невырожденной на минимальном Γ' -инвариантном подпространстве V из \mathbb{Q}^N .

Лемма 4. Пусть V — минимальное Γ' -инвариантное подпространство из \mathbb{Q}^N и $\Phi \neq 0$ на V, т. е. существуют α, β из V такие, что $\Phi(\alpha, \beta) \neq 0$. Тогда на пространстве \mathbb{Q}^N существует рациональнозначная Γ' -инвариантная симметричная билинейная форма Φ_V , невырожденная на V.

Доказательство. Пусть

$$P(lpha) = \sum_{i=1}^N lpha_i e_i, \quad P(eta) = \sum_{j=1}^N eta_j e_j.$$

Тогда

$$\Phi(lpha,eta) = P(lpha) \cdot P(eta) = \sum_i \sum_j lpha_i eta_j (e_i \cdot e_j).$$

Числа $e_i \cdot e_j$ вещественны. Выберем среди них базис над \mathbb{Q} . Пусть это числа $\delta_1, \ldots, \delta_s$. Тогда

$$e_i \cdot e_j = \sum_{k=1}^s \gamma_{ij}^k \delta_k, \quad \gamma_{ij}^k = \gamma_{ji}^k \in \mathbb{Q}.$$

Отсюда

$$P(lpha) \cdot P(eta) = \sum_i \sum_j lpha_i eta_j \Biggl(\sum_{k=1}^s \gamma_{ij}^k \delta_k \Biggr) = \sum_k \Bigl(\sum_i \sum_j lpha_i eta_j \gamma_{ij}^k \Bigr) \delta_k.$$

Обозначим $\Phi_k(\alpha,\beta) = \sum\limits_i \sum\limits_j \gamma_{ij}^k \alpha_i \beta_j$. Тогда Φ_k — рациональнозначная симметричная билинейная форма на \mathbb{Q}^N , разложение $\Phi = \sum\limits_k \Phi_k \delta_k$ в пространстве форм над \mathbb{Q} однозначно ввиду линейной независимости δ_1,\ldots,δ_s над \mathbb{Q} . Поскольку Φ инвариантна относительно $\Gamma' \subset GL_N(\mathbb{Z})$, все Φ_k инвариантны относительно Γ' . По предположению $\Phi \neq 0$ на V. Поэтому существуют рациональные числа ρ_1,\ldots,ρ_s , близкие к вещественным числам δ_1,\ldots,δ_s такие, что $\Phi_V = \sum\limits_k \Phi_k \rho_k$ — симметричная билинейная рациональнозначная форма на \mathbb{Q}^N , не равная нулю на V. Форма Φ_V инвариантна относительно Γ' , поскольку таковы все формы Φ_k . Поэтому ядро W сужения Φ_V на V является Γ' -инвариантным подпространством из V. Ввиду минимальности V либо W = V, либо W = 0. В первом случае Φ_V равна нулю на V, что противоречит ее выбору. Следовательно, W = 0, т. е. Φ_V невырожденна на V. Лемма 4 доказана. \square

Закончим доказательство теоремы 5.

Предположим, что в пространстве $\mathbb{R}^{1,n-1}$ нет Γ -инвариантных световых (изотропных) прямых. Выберем в пространстве \mathbb{Q}^N произвольное минимальное Γ' -инвариантное подпространство V. Допустим, что $\Phi=0$ на V. Пусть lpha
eq 0из V. Тогда $P(\alpha) \neq 0$ по лемме 1. Но $P(\alpha) \cdot P(\alpha) = \Phi(\alpha, \alpha) = 0$, т. е. $P(\alpha)$ изотропный вектор. Пусть $\overline{V}-\mathbb{R}$ -оболочка P(V). Тогда $\overline{V}-$ вещественное подпространство пространства Минковского $\mathbb{R}^{1,n-1}$, содержащее всюду плотное подмножество изотропных векторов. Можно утверждать, что и подпространство \overline{V} состоит из изотропных векторов ввиду непрерывности скалярного произведения, $\dim_R \overline{V} = 1$. Кроме того, пространство \overline{V} инвариантно относительно Γ , поскольку из включения $A'V\subset V$ следует включение $PA'V\subset PV$, откуда $APV\subset PV$ ввиду леммы 3, а тогда $A\overline{V}\subset \overline{V}$ ввиду непрерывности линейных преобразований A из группы Γ . Но это противоречит предположению об отсутствии Γ -инвариантных световых прямых в $\mathbb{R}^{1,n-1}$. Следовательно, $\Phi \neq 0$ на V. По лемме 4 существует рациональнозначная Γ' -инвариантная симметричная билинейная форма Φ_V , невырожденная на V. Тогда ортогональное дополнение V^{\perp} к пространству V в \mathbb{Q}^N тоже инвариантно относительно Γ' и $\mathbb{Q}^N = V \oplus V^\perp$. Если $V^\perp \neq 0$, то V^\perp содержит минимальное Γ' -инвариантное подпространство W, для которого найдется рациональнозначная Γ' -инвариантная симметричная билинейная форма Φ_W , невырожденная на W. Снова можно взять ортогональное дополнение W^{\perp} к подпространству W в пространстве V^{\perp} и т. д. Ввиду конечномерности пространство \mathbb{Q}^N распадается в прямую сумму минимальных Γ' -инвариантных подпространств, каждое из которых обладает своей рациональнозначной Γ' -инвариантной невырожденной симметричной билинейной формой. Прямая сумма таких форм после умножения на подходящее целое число даст требуемую форму из теоремы 2 в пространствах \mathbb{Q}^N и \mathbb{R}^N .

Доказательство теоремы 5 завершено.

ПРИМЕР 2. Этот пример показывает, что условие на группу поворотов Γ в теореме 5 не может быть отброшено. Не всякая *квази*кристаллографическая группа в псевдоевклидовом пространстве является проекцией подходящей кристаллографической группы в псевдоевклидовом пространстве (в теореме 3 речь

идет о более общих пространствах). Кроме того, он показывает, что существуют квазикристаллографические группы на плоскости Минковского, обладающие недискретной группой поворотов.

Построим сначала вещественное расширение степени 4 для поля рациональных чисел \mathbb{Q} , кольцо целых алгебраических чисел которого содержит обратимые в нем числа $\lambda > 1$ и $\mu = \lambda + \lambda^{-1}$. Положим $\mu = 3 + \sqrt{8}$. Тогда

$$\mu^{-1} = 3 - \sqrt{8}, \quad \mu + \mu^{-1} = 6, \quad \mu^2 = 6\mu - 1.$$

Так как $\mu > 2$, многочлен $x^2 - \mu x + 1$ имеет вещественные корни $\lambda > 1$ и λ^{-1} , $\lambda + \lambda^{-1} = \mu$. Поскольку $0 < \mu^{-1} < 1$, сопряженный многочлен $x^2 - \mu^{-1} x + 1$ имеет мнимые корни $\varepsilon = \exp(i\varphi)$ и $\varepsilon^{-1} = \exp(-i\varphi)$, $\varepsilon + \varepsilon^{-1} = 2\cos\varphi = \mu^{-1}$. Пусть теперь $f(x) = (x^2 - \mu x + 1)(x^2 - \mu^{-1} x + 1) = x^4 - (\mu + \mu^{-1})x^3 + 3x^2 - (\mu + \mu^{-1})x + 1 = x^4 - 6x^3 + 3x^2 - 6x + 1$. Тогда f(x) неприводим над $\mathbb Q$ и его корни — обратимые целые алгебраические числа $\lambda, \lambda^{-1}, \varepsilon, \varepsilon^{-1}$.

Пусть Λ — подкольцо поля вещественных чисел, порожденное степенями λ . Тогда Λ имеет \mathbb{Z} -базис $1, \lambda, \lambda^2, \lambda^3$, поскольку $\lambda^4 = 6\lambda^3 - 3\lambda^2 + 6\lambda - 1$. Пусть теперь $V = \mathbb{R} \otimes_{\mathbb{Z}} \Lambda$ — вещественная алгебра с базисом $1, \lambda, \lambda^2, \lambda^3$ и той же таблицей умножения.

Обозначим через $L_\lambda:v\mapsto \lambda v,\ v\in V,$ линейный оператор умножения на $\lambda.$ Тогда в базисе $1,\lambda,\lambda^2,\lambda^3$ матрица оператора L_λ имеет вид

$$L = egin{pmatrix} 0 & 0 & 0 & -1 \ 1 & 0 & 0 & 6 \ 0 & 1 & 0 & -3 \ 0 & 0 & 1 & 6 \end{pmatrix},$$

ее характеристический многочлен совпадает с f(x) и имеет корни λ , λ^{-1} , $\cos \varphi \pm i \sin \varphi$, $\sin \varphi \neq 0$. Поэтому в подходящем базисе v_1, \ldots, v_4 алгебры V матрица оператора L_{λ} имеет вид

$$P = \begin{pmatrix} D & 0 \\ 0 & R \end{pmatrix}, \quad D = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}, \quad R = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}.$$

Пусть $L_\mu: v\mapsto \mu v,\,v\in V,$ — линейный оператор умножения на $\mu=\lambda+\lambda^{-1}.$ Тогда в базисе v_1,\dots,v_4 матрица L_μ имеет вид

$$Q = \begin{pmatrix} D & 0 \\ 0 & R \end{pmatrix} + \begin{pmatrix} D^{-1} & 0 \\ 0 & R^{-1} \end{pmatrix} = \begin{pmatrix} D + D^{-1} & 0 \\ 0 & R + R^{-1} \end{pmatrix} = \begin{pmatrix} \mu I & 0 \\ 0 & \nu I \end{pmatrix},$$

$$I=egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}$$
, где $\mu=\lambda+\lambda^{-1}>2,\,
u=2\cosarphi=arepsilon+arepsilon^{-1}=\mu^{-1}<1,\, \mu
u=1.$

Предположим, что существует билинейная форма на пространстве V, инвариантная относительно операторов L_λ и L_μ , и пусть Φ — ее матрица в базисе v_1,\dots,v_4 . Тогда

- (1) $P^{\top}\Phi P = \Phi$.
- (2) $Q^{\top}\Phi Q = \Phi$.

Используем сначала равенство (2), предварительно разбив матрицу Φ на клетки порядка 2:

$$\begin{pmatrix} \mu I & 0 \\ 0 & \nu I \end{pmatrix}^\top \begin{pmatrix} X & Z \\ Y & T \end{pmatrix} \begin{pmatrix} \mu I & 0 \\ 0 & \nu I \end{pmatrix} = \begin{pmatrix} \mu^2 X & \mu \nu Z \\ \nu \mu Y & \nu^2 T \end{pmatrix} = \begin{pmatrix} X & Z \\ Y & T \end{pmatrix}$$

тогда и только тогда, когда $\mu^2X=X,\ \nu^2T=T,$ так как $\mu\nu=1.$ Но $\mu^2=6\mu-1\neq 1,$ поэтому X=0. Аналогично $\nu^2=\mu^{-2}\neq 1,$ поэтому T=0. Значит, $\Phi=\begin{pmatrix} 0&Z\\Y&0 \end{pmatrix}.$ Теперь используем равенство (1). Аналогично предыдущему

$$\begin{pmatrix} D & 0 \\ 0 & R \end{pmatrix}^\top \begin{pmatrix} 0 & Z \\ Y & 0 \end{pmatrix} \begin{pmatrix} D & 0 \\ 0 & R \end{pmatrix} = \begin{pmatrix} 0 & D^\top Z R \\ R^\top Y D & 0 \end{pmatrix} = \begin{pmatrix} 0 & Z \\ Y & 0 \end{pmatrix}$$

тогда и только тогда, когда $R^{\top}YD=Y,\ D^{\top}ZR=Z,$ равносильно, $RY=YD,\ ZR=D^{-1}Z.$ Если $Y\neq 0,$ то ненулевые столбцы Y — вещественные собственные векторы для матрицы поворота R на угол $\varphi\neq k\pi,\ k\in\mathbb{Z},$ что невозможно. Следовательно, Y=0. Аналогично если $Z\neq 0,$ то ненулевые строки Z — вещественные собственные векторы для той же матрицы поворота R, что невозможно. Следовательно, Z=0, и форма Φ нулевая.

Построим теперь требуемый пример двумерной квазикристаллографической группы $G=G(\Gamma,\ Z)$ на плоскости Минковского. Пусть $e_1=(1,0),$ $e_2=(0,\ 1)$ — базис \mathbb{R}^2 . Квазирешетку Z из \mathbb{R}^2 зададим как \mathbb{Z} -оболочку двенадцати векторов:

$$f_1 = e_1, \ f_2 = \lambda e_1, \ f_3 = \lambda^2 e_1, \ f_4 = \lambda^3 e_1, \ f_5 = t e_1, \ f_6 = \lambda t e_1, \ f_7 = \lambda^2 t e_1,$$
 $f_8 = \lambda^3 t e_1, \ f_9 = e_2, \ f_{10} = \lambda e_2, \ f_{11} = \lambda^2 e_2, \ f_{12} = \lambda^3 e_2.$

Здесь t — вещественное число такое, что числа λ и t алгебраически независимы над \mathbb{Q} . Очевидно, $Z \simeq \Lambda \oplus \Lambda \oplus \Lambda \simeq \mathbb{Z}^{12}$.

Будем считать, что система координат e_1 , e_2 изотропна, т. е. на \mathbb{R}^2 задана симметричная билинейная форма $x \cdot y = x_1 y_2 + x_2 y_1$ типа (1,1). Тогда она инвариантна относительно операторов

$$R_{\lambda}: \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} \lambda x_1 \\ \lambda^{-1} x_2 \end{pmatrix}, \quad R_{\mu}: \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} \mu x_1 \\ \mu^{-1} x_2 \end{pmatrix},$$

задающих гиперболические повороты плоскости Минковского. Пусть Γ — группа, порожденная поворотами R_{λ} и R_{μ} . Очевидно, квазирешетка Z инвариантна относительно Γ . Пусть группа G — естественное расщепляемое расширение Z посредством Γ .

Покажем, что на Z не существует невырожденной билинейной формы, инвариантной относительно индуцированного действия Γ .

Вычислим сначала матрицы операторов R_{λ} и R_{μ} в базисе f_1, \ldots, f_{12} . Имеем

$$f_1 \overset{R_\lambda}{\longmapsto} f_2 \overset{R_\lambda}{\longmapsto} f_3 \overset{R_\lambda}{\longmapsto} f_4 \overset{R_\lambda}{\longmapsto} \left(\begin{matrix} \lambda^4 \\ 0 \end{matrix} \right) = -f_1 + 6f_2 - 3f_3 + 6f_4.$$

Аналогично

$$f_5 \stackrel{R_\lambda}{\longmapsto} f_6 \stackrel{R_\lambda}{\longmapsto} f_7 \stackrel{R_\lambda}{\longmapsto} f_8 \stackrel{R_\lambda}{\longmapsto} \left(egin{array}{c} \lambda^4 t \ 0 \end{array}
ight) = -f_5 + 6f_6 - 3f_7 + 6f_8.$$

На последней части базиса f_9, \ldots, f_{12} оператор R_{λ} действует умножением на λ^{-1} , поэтому

$$f_9 \overset{R_\lambda}{\longmapsto} \left(egin{array}{c} 0 \ \lambda^{-1} \end{array}
ight) = 6f_9 - 3f_{10} + 6f_{11} - f_{12}, \quad f_9 \overset{R_\lambda}{\longmapsto} f_8, \quad f_{10} \overset{R_\lambda}{\longmapsto} f_9, \quad f_{12} \overset{R_\lambda}{\longmapsto} f_{11}.$$

Значит, матрица R_{λ} в базисе $f_1, \dots, f_8, \dots, f_{12}$ имеет вид

$$\begin{pmatrix} L & 0 & 0 \\ 0 & L & 0 \\ 0 & 0 & L^{-1} \end{pmatrix}, \quad L = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 6 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 6 \end{pmatrix}.$$

Аналогично матрица $R_{\mu}, \, \mu = \lambda + \lambda^{-1}$ в том же базисе имеет вид

$$egin{pmatrix} M & 0 & 0 \ 0 & M & 0 \ 0 & 0 & M^{-1} \end{pmatrix}, \quad M = L + L^{-1}.$$

Предположим, что некоторая билинейная форма Ψ на Z инвариантна относительно R_{λ} и R_{μ} . Разобьем матрицу формы Ψ в базисе f_1,\ldots,f_{12} на 9 клеток X_{ij} порядка 4 и используем равенства инвариантности формы Ψ . Для R_{λ} получаем

$$\begin{pmatrix} L & 0 & 0 \\ 0 & L & 0 \\ 0 & 0 & L^{-1} \end{pmatrix}^{\top} \begin{pmatrix} X_{11} & X_{12} & X_{13} \\ X_{21} & X_{22} & X_{23} \\ X_{31} & X_{32} & X_{33} \end{pmatrix} \begin{pmatrix} L & 0 & 0 \\ 0 & L & 0 \\ 0 & 0 & L^{-1} \end{pmatrix} = \begin{pmatrix} X_{11} & X_{12} & X_{13} \\ X_{21} & X_{22} & X_{23} \\ X_{31} & X_{32} & X_{33} \end{pmatrix}.$$

Отсюда $L^{\top}X_{ij}L=X_{ij}$ при $1\leq i,j\leq 2$. Аналогично для R_{μ} получаем $M^{\top}X_{ij}M=X_{ij}$ при $1\leq i,j\leq 2$. Ясно, что L и M — матрицы операторов L_{λ} , L_{μ} и уже показано, что в пространстве \mathbb{R}^4 не существует ненулевой билинейной формы, инвариантной одновременно относительно них. Поэтому $X_{ij}=0$ при $1\leq i,j\leq 2$. Но тогда первые 8 столбцов матрицы Ψ фактически принадлежат \mathbb{R}^4 и потому линейно зависимы, следовательно, форма Ψ вырожденна.

Осталось доказать недискретность группы Γ как подгруппы группы движений плоскости Минковского. Достаточно показать несоизмеримость гиперболических углов $\eta = \log \lambda$ и $\theta = \log \mu$ поворотов R_λ и R_μ . Предположим противное. Тогда найдутся такие натуральные числа k и l, что $k\eta = l\theta$, $k\log \lambda = l\log \mu$, $\lambda^k = \mu^l$, $\lambda^k = (\lambda + \lambda^{-1})^l$, $\lambda^{k+l} = (\lambda^2 + 1)^l$. Многочлен $x^{k+l} - (x^2 + 1)^l$ имеет целые коэффициенты, аннулирует λ и должен делиться на минимальный аннулирующий над $\mathbb Q$ многочлен $f(x) = x^4 - 6x^3 + 3x^2 - 6x + 1$ для λ . Но тогда $\varepsilon = \exp(i\varphi)$ тоже должен быть его корнем. Заметим, что $\pi/3 < \varphi < \pi/2$, $|\varepsilon^2 + 1| < 1$. С другой стороны, $|\varepsilon^{k+l}| = 1$ и тогда ε не может быть корнем уравнения $x^{k+l} = (x^2 + 1)^l$.

§ 4. Задача классификации

Удобно перейти к матричным обозначениям. Прямоугольную матрицу E размера $n \times N$, $n \le N$, столбцы которой составлены из координат векторов базиса e_1, \ldots, e_N квазирешетки Z, назовем базисом квазирешетки. Тогда $Z = E\mathbb{Z}^N$. Базис E квазирешетки квазикристаллографической группы характеризуется свойствами: 1) ранг матрицы E равен n; 2) ($\forall \alpha \in \mathbb{Q}^N$) $E\alpha = 0 \Rightarrow \alpha = 0$. Матрица E сохраняет эти свойства при умножении слева на неособенную (т. е. обратимую) комплексную матрицу, а справа — на неособенную рациональную матрицу.

Изоморфизм квазикристаллографических групп является слишком слабым отношением эквивалентности, он не сохраняет размерность пространства, на котором действуют эти группы (см. теорему 2). Поэтому рассмотрим частный вид

изоморфизма, а именно квазикристаллографические группы G и G', действующие в аффинном пространстве \mathbb{R}^n , будем называть аффинно подобными и обозначать через $G \sim G'$, если существует аффинное преобразование $\bar{f}F$ пространства \mathbb{R}^n такое, что $G' = (\bar{f}F)G(\bar{f}F)^{-1}$. Аффинное подобие $G(\Gamma,Z) \sim G'(\Gamma',Z')$ влечет равенства

$$\Gamma' = F\Gamma F^{-1}, \quad Z' = FZ. \tag{6}$$

Если $Z=E\mathbb{Z}^N$ — квазирешетка, то $Z'=(FE)\mathbb{Z}^N$ тоже квазирешетка. В самом деле, 1) ранг матрицы FE равен n; 2) если $\alpha\in\mathbb{Q}^N$, то

$$(FE)\alpha = F(E\alpha) = 0 \Rightarrow E\alpha = 0 \Rightarrow \alpha = 0.$$

Следовательно, аффинное подобие не выводит из класса квазикристаллографических групп, сохраняет размерность пространства и ранг квазирешетки N.

Согласно (6) группы поворотов квазикристаллографических групп определены с точностью до подобия линейных групп, а квазирешетка Z при заданной группе Γ — с точностью до умножения слева на элементы нормализатора $N(\Gamma)$ группы Γ . Нормализатор $N(\Gamma)$ состоит из всех матриц $A \in GL(n,\mathbb{C})$, перестановочных с группой Γ , а централизатор $C(\Gamma)$ — из всех неособенных комплексных матриц, перестановочных с каждым элементом группы Γ .

Самая важная задача — найти все квазирешетки Z при заданной группе поворотов Γ . В случае кристаллографических групп N=n имеем

$$AE = EA', \quad A' \in GL(N, \mathbb{Z}).$$
 (7)

Базис E решетки находится из условия целочисленности матрицы $A' = A^E = E^{-1}AE$ ($\det A' = \det A = \pm 1$) для каждого порождающего элемента A группы Γ . В случае квазикристаллографических групп выражение $A' = A^E$ заменяется более общим равенством (7). Итак, пусть матрица E обладает указанными выше двумя свойствами базиса квазирешетки. Тогда рациональная матрица A' однозначно определяется равенством (7) при заданных A и E, но существует не всегда. Если для каждого порождающего элемента A группы поворотов Γ квазикристаллографической группы найдется унимодулярная матрица A', удовлетворяющая равенству (7), то матрица E, очевидно, будет базисом инвариантной относительно Γ квазирешетки.

Для вычислительных целей необходимо задать отношение эквивалентности в множестве квазирешеток. Одно отношение мы уже ввели. Оно вытекает из отношения аффинного подобия квазикристаллографических групп и непосредственно следует из равенств (6) при $\Gamma' = \Gamma$. Сформулируем его явно.

Определение 3. Квазирешетки Z и Z' квазикристаллографических групп с одной и той же группой поворотов Γ называются Γ -эквивалентными, и это обозначается через $Z' \stackrel{\Gamma}{\sim} Z$, если существует матрица $B \in N(\Gamma)$ такая, что Z' = BZ. Соответственно Γ -эквивалентное преобразование их базисов $E \to E'$ сводится к умножению слева на элемент нормализатора $N(\Gamma)$, а справа — на унимодулярную матрицу.

Теперь заметим, что если $A, B \in \Gamma$, то в силу AZ = Z и BZ = Z имеем

$$(A-B)Z \subset AZ - BZ = Z - Z = Z.$$

Следовательно, решетка Z отображается в себя всеми элементами \mathbb{Z} -линейной оболочки группы Γ , состоящей из всех конечных линейных комбинаций матриц

из Γ с целыми коэффициентами. Такую оболочку Γ . Вейль называет *обертывающим кольцом* группы Γ и обозначает через $[\Gamma]$. Определено умножение матриц из кольца $[\Gamma]$ на векторы решетки $Z:(\alpha,x)\to \alpha x$. Очевидно, аксиомы модуля удовлетворены:

$$\alpha(x+y) = \alpha x + \alpha y, \quad (\alpha+\beta)x = \alpha x + \beta x, \quad (\alpha\beta)x = \alpha(\beta x),$$

кроме того, $1 \in [\Gamma]$ (это единичная матрица I) и 1x = x. Итак, квазирешетка Z, инвариантная относительно группы Γ , является также модулем над обертывающим кольцом $[\Gamma]$. Этот модуль конечно порожден, так как любой его элемент представляется в виде линейной комбинации векторов базиса квазирешетки e_1, \ldots, e_N с коэффициентами из $[\Gamma]$ (даже из подкольца $\mathbb{Z} \cdot I \subset [\Gamma]$). Но это представление не однозначно, поэтому базис квазирешетки не является базисом модуля. Гомоморфизм групп $\Gamma \to \Gamma'$, определенный равенством (7), продолжается до гомоморфизма обертывающих колец $[\Gamma] \to [\Gamma']$.

Новое отношение эквивалентности квазирешеток доставляет изоморфизм модулей: $[\Gamma]$ -модули Z и Z' изоморфны тогда и только тогда, когда существует элемент $B \in C(\Gamma)$ такой, что Z' = BZ. Действительно, изоморфизм $\varphi: Z \to Z'$ является линейным отображением $\varphi(x) = Bx$ квазирешеток, удовлетворяющим условию $\varphi(\alpha x) = \alpha \varphi(x) \ \forall \alpha \in [\Gamma]$. Это значит, что матрица B перестановочна с α . Так как $\Gamma \subset [\Gamma]$, то $B \in C(\Gamma)$. Обратно, если $B \in C(\Gamma)$, то линейное отображение $\varphi(x) = Bx$ задает изоморфизм, потому что тогда матрица B перестановочна с каждым элементом кольца $[\Gamma]$. Утверждение доказано. Поскольку $C(\Gamma) \subset N(\Gamma)$, изоморфизм $[\Gamma]$ -модулей влечет Γ -эквивалентность квазирешеток.

Проблема классификации модулей изучалась в ряде работ. Существенные результаты получены для модулей над дедекиндовыми кольцами (см. ссылки в [10]). В этих работах рассматриваются отношения эквивалентности, которые применительно к квазикристаллографическим группам можно сформулировать так: [Г]-модули Z_1 и Z_2 эквивалентны, если существуют неособенные α_1 , $\alpha_2 \in$ [Г] такие, что $\alpha_1 Z_1 = \alpha_2 Z_2$. Обертывающие кольца групп Γ , как правило, не являются дедекиндовыми.

Однопорожденные группы поворотов. Рассмотрим однопорожденную группу поворотов $\Gamma = \langle A \rangle$, состоящую из степеней псевдоортогональной матрицы A порядка n. В этом случае обертывающее кольцо $[\Gamma]$ состоит из многочленов с целыми коэффициентами от матрицы A. Согласно равенству (7) матрице A соответствует унимодулярная матрица A' порядка $N \geq n$, характеристический многочлен которой $p(\lambda) = \det(\lambda I - A')$ имеет целые коэффициенты, старший коэффициент 1 и младший коэффициент ± 1 . Тогда инвариантные множители $\psi_1(\lambda), \ldots, \psi_t(\lambda)$ матрицы $\lambda I - A'$, которые делят $p(\lambda)$:

$$p(\lambda) = \psi_1(\lambda) \dots \psi_t(\lambda), \quad \psi_k(\lambda)$$
 делит $\psi_{k-1}(\lambda) \quad (k=2,\dots,t),$

будут иметь целые коэффициенты, старший коэффициент 1 и младшие коэффициенты ± 1 . Элементарные делители тоже обладают этими свойствами. Первый множитель $\psi_1(\lambda)$ является минимальным многочленом матрицы A'. Он удовлетворяет условию $\psi_1(A')=0$ и среди таких многочленов имеет наименьшую степень $\deg \psi_1(\lambda)$. Если $\deg \psi_1(\lambda)=N$, то $\psi_1(\lambda)=p(\lambda)$ (t=1). В этом случае матрица A' называется циклической. Достаточное условие цикличности — отсутствие кратных корней характеристического многочлена.

Преобразованием подобия $A' \to T^{-1}A'T$ с помощью рациональной матрицы T матрица A' приводится к блочно диагональному виду, причем каждому

элементарному делителю

$$\varphi_j(\lambda)^{\gamma_j} = \lambda^m + a_1 \lambda^{m-1} + \dots + a_{m-1} \lambda + a_m,$$

где $\varphi_j(\lambda)$ — неприводимый над $\mathbb Q$ многочлен, соответствует циклический унимодулярный блок

$$\begin{pmatrix} 0 & 0 & \dots & 0 & -a_m \\ 1 & 0 & \dots & 0 & -a_{m-1} \\ 0 & 1 & \dots & 0 & -a_{m-2} \\ \vdots & \vdots & \dots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & -a_1 \end{pmatrix},$$
(8)

характеристический многочлен которого совпадает с элементарным делителем, m, a_1, \ldots, a_m зависят от j (см. [11, гл. VII, § 4, теорема 8]).

Теперь равенство (7) преобразуем так:

$$A(ET) = EA'T = (ET)(T^{-1}A'T).$$

Таким образом, заменой базиса квазирешетки $E\mapsto ET$ матрица A' приводится к указанной квазидиагональной форме

$$A' = \left(egin{array}{ccc} A'_1 & & & \ & \ddots & & \ & & A'_u \end{array}
ight).$$

Обозначим $m_j = \deg \varphi_j(\lambda)^{\gamma_j}$ $(j=1,\ldots,u)$. Соответственно разобьем базис E на блоки размерами $n \times m_j$:

$$E = (E_1 \dots E_u).$$

Тогда равенство (7) примет вид

$$A(E_1...E_u) = (AE_1...AE_u) = (E_1A'_1...E_uA'_u).$$

Отсюда

$$AE_j = E_j A'_j, \quad A'_j \in GL(m_j, \mathbb{Z}), \quad j = 1, \dots, u.$$

Таким образом, $[\Gamma]$ -модуль Z разлагается в прямую сумму $Z_1 \oplus \cdots \oplus Z_u$. Далее будем рассматривать равенство (7) с циклическими матрицами A', характеристические многочлены которых являются степенью неприводимого над \mathbb{Q} многочлена. Тогда модули Z неразложимы.

Пусть $p(\lambda) = \det(\lambda I - A')$. Согласно гомоморфизму обертывающих колец имеем $p(A) \to p(A')$,

$$p(A)E = Ep(A') = 0 \Rightarrow p(A) = 0.$$

Если e — собственный вектор матрицы A, соответствующий собственному числу λ , то $p(A)e=p(\lambda)e=0$, отсюда $p(\lambda)=0$. Следовательно, каждое собственное число матрицы A является собственным числом матрицы A' и поэтому будет целым алгебраическим числом над \mathbb{Q} .

Далее рассмотрим только матрицы A, имеющие различные собственные числа. Тогда сопряжением $A \mapsto C^{-1}AC$ с помощью комплексной матрицы C можно привести матрицу A к диагональной форме. Соответственно преобразуется равенство (7):

$$C^{-1}AE = (C^{-1}AC)C^{-1}E = (C^{-1}E)A'.$$

Таким образом, заменой базиса квазирешетки $E\mapsto C^{-1}E$ получим

$$AE = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} \begin{pmatrix} e^1 \\ \vdots \\ e^n \end{pmatrix} = \begin{pmatrix} \lambda_1 e^1 \\ \vdots \\ \lambda_n e^n \end{pmatrix} = \begin{pmatrix} e^1 \\ \vdots \\ e^n \end{pmatrix} A' = \begin{pmatrix} e^1 A' \\ \vdots \\ e^n A' \end{pmatrix}.$$

Отсюда

$$\lambda_k e^k = e^k A' \quad (k = 1, \dots, n).$$

Следовательно, строки e^1, \ldots, e^n базиса E являются левыми собственными векторами матрицы A', соответствующими собственным числам $\lambda_1, \ldots, \lambda_n$ матрицы A.

Взяв значение (8) (с m = N) матрицы A', найдем базис E:

$$E = \begin{pmatrix} e_1^1 & & \\ & \ddots & \\ & & e_1^n \end{pmatrix} \begin{pmatrix} 1 & \lambda_1 & \dots & \lambda_1^{N-1} \\ & \ddots & \dots & \ddots \\ 1 & \lambda_n & \dots & \lambda_n^{N-1} \end{pmatrix} \stackrel{\Gamma}{\sim} \begin{pmatrix} 1 & \lambda_1 & \dots & \lambda_1^{N-1} \\ & \ddots & \dots & \ddots \\ 1 & \lambda_n & \dots & \lambda_n^{N-1} \end{pmatrix}, \quad (8')$$

диагональный множитель слева принадлежит централизатору $C(\Gamma)$ и может быть отброшен. Поскольку $\lambda_1, \ldots, \lambda_n$ различны по предположению, ранг матрицы E равен n. Пусть $\alpha = (\alpha_1, \ldots, \alpha_N) \in \mathbb{Q}^N$. Тогда

$$Elpha=egin{pmatrix} g(\lambda_1)\ dots\ g(\lambda_n) \end{pmatrix}, \quad$$
где $g(\lambda)=lpha_1+lpha_2\lambda+\cdots+lpha_N\lambda^{N-1}.$

Числа $\lambda_1,\ldots,\lambda_n$ являются корнями характеристического многочлена $p(\lambda)=\varphi(\lambda)^\gamma$ матрицы A' и удовлетворяют уравнению $\varphi(\lambda)=0$. Если $\gamma>1$, то, положив $g(\lambda)=\varphi(\lambda)$, получим противоречие со вторым свойством базиса квазирешетки: $E\alpha=0\Rightarrow\alpha=0$ для всех $\alpha\in\mathbb{Q}^N$. Следовательно, $\gamma=1$, и поэтому многочлен $p(\lambda)$ неприводим над \mathbb{Q} . Отсюда следует, что он не имеет кратных корней и, следовательно, матрица A' циклична. Таким образом, предположения о матрице A' сводятся к неприводимости над \mathbb{Q} ее характеристического многочлена.

Поставим теперь задачу: найти все базисы инвариантных квазирешеток при заданной матрице A. Расширим кольцо $[\Gamma]$ до обертывающей алгебры $[\Gamma]_{\mathbb{Q}}$ над \mathbb{Q} , состоящей из всех конечных линейных комбинаций матриц из Γ с рациональными коэффициентами. В рассматриваемом случае однопорожденной группы $\Gamma = \langle A \rangle$ алгебра $[\Gamma]_{\mathbb{Q}}$ состоит из $\alpha(A)$, где $\alpha(\lambda) \in \mathbb{Q}[\lambda]$. Гомоморфизм $A \mapsto A'$ согласно (7), очевидно, продолжается до гомоморфизма обертывающих алгебр $[\Gamma]_{\mathbb{Q}} \mapsto [\Gamma']_{\mathbb{Q}}$.

Предложение 1. Если $\alpha \in [\Gamma]_{\mathbb{Q}}$ и $\alpha \neq 0$, то $\det \alpha \neq 0$ и $\alpha^{-1} \in [\Gamma]_{\mathbb{Q}}$. Образ α' при соответствии (7) $\alpha \to \alpha'$ тоже обратим, и $\alpha'^{-1} \in [\Gamma']_{\mathbb{Q}}$.

Доказательство. Алгебра $[\Gamma]_{\mathbb{Q}}$ состоит из матриц

$$\alpha = \alpha(A) = \begin{pmatrix} \alpha(\lambda_1) & & \\ & \ddots & \\ & & \alpha(\lambda_n) \end{pmatrix}, \quad \alpha(\lambda) \in \mathbb{Q}[\lambda], \quad \deg \alpha(\lambda) < N.$$

Если многочлен $\alpha(\lambda)$ ненулевой, то $\alpha(\lambda_k) \neq 0$ для любого $k=1,\ldots,n$, так как λ_k являются целыми алгебраическими числами степени N, поэтому матрица α

обратима. Найдется многочлен $\beta(\lambda) \in \mathbb{Q}[\lambda]$ такой, что $\alpha(\lambda_k)\beta(\lambda_k) = 1$ для всех $k = 1, \ldots, n$. Тогда $I = \alpha(A)\beta(A) \to I = \alpha(A')\beta(A')$, следовательно, $\alpha(A)^{-1} = \beta(A) \in [\Gamma]_{\mathbb{Q}}$, существует $\alpha(A')^{-1} = \beta(A')$ и принадлежит $[\Gamma']_{\mathbb{Q}}$. \square

Будем искать инвариантные квазирешетки с точностью до *подобия*, т. е. умножения слева на неособенные элементы $\alpha \in [\Gamma]_{\mathbb{Q}}$ ($\det \alpha \neq 0$). Поскольку такие α принадлежат централизатору $C(\Gamma)$, это отношение подобия сильнее, чем Γ -эквивалентность.

Предложение 2. Пусть AE = EA' -равенство (7). Тогда все базисы инвариантных относительно группы $\Gamma = \langle A \rangle$ квазирешеток имеют вид ET, где рациональная матрица T находится из условия целочисленности $T^{-1}A'T$. Матрица T определена c точностью до умножения слева на неособенные элементы $\alpha \in [\Gamma']_{\mathbb{Q}}$ ($\Gamma' = \langle A' \rangle$), а справа — на унимодулярные матрицы.

Доказательство. Запишем равенство (7) для базиса E_1 другой инвариантной квазирешетки группы Γ : $AE_1=E_1A_1'$. Так как матрица A_1' имеет тот же характеристический многочлен, что и A', который однозначно определяется собственным числом λ_1 матрицы A, и матрица A_1' циклична, как и A', то матрицы A' и A_1' подобны: $\exists T \in GL(N,\mathbb{Q}), \ A' = TA_1'T^{-1}$. Подставив это выражение A' в (7) и умножив полученное равенство справа на T, получим $A(ET)=(ET)A_1'$. Отсюда и из $AE_1=E_1A_1'$ следует $E_1=ET$, так как базис E_1 однозначно определен матрицами A и A_1' (строки E_1 являются левыми собственными векторами матрицы A_1' , нормировка которых соответствует умножению слева базиса E_1 на элемент централизатора). Этим первое утверждение доказано.

Пусть базис ET подобен ET_1 , т. е. найдется неособенный элемент $\alpha=\alpha(A)\in [\Gamma]_{\mathbb Q}$ такой, что $ET_1=\alpha ET$. Тогда

$$\alpha ET = \alpha(A)ET = E\alpha(A')T = ET_1,$$

откуда $\alpha(A')T=T_1$, так как эти матрицы рациональны. Умножение T справа на унимодулярную матрицу не меняет квазирешетки $ET\mathbb{Z}^N$. \square

Евклидова плоскость. Точки (x,y) евклидовой плоскости отождествим с комплексными числами x+iy. Рассмотрим группу $\Gamma=\langle A \rangle$ с порождающим элементом

$$A = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$$

— поворотом плоскости на угол φ . Переходя к комплексным числам, равенство (7) приведем к виду

$$\lambda e = eA', \quad A' \in GL(N, \mathbb{Z}),$$
 (9)

где $\lambda = \exp(i\varphi), \ |\lambda| = 1, \ e = e^1 + ie^2$. Базисом квазирешетки становится комплексная матрица-строка $e = (e_1 \dots e_N)$, которую можно отождествить с множеством комплексных чисел e_1, \dots, e_N , линейно независимых над \mathbb{Z} . Централизатор группы Γ равен \mathbb{C} , обертывающая алгебра $[\Gamma]_{\mathbb{Q}}$ совпадает с полем $\mathbb{Q}(\lambda)$. Число λ является корнем неприводимого над \mathbb{Q} многочлена $p(\lambda) = \det(\lambda I - A')$. Все числа в равенстве (9) естественно считать принадлежащими конечному расширению K поля \mathbb{Q} степени N. Так как число $\lambda \in K$ имеет степень N, то $K = \mathbb{Q}(\lambda)$. Тогда решетка Z будет абелевой группой ранга N по сложению, содержащейся в поле K. Кольцо $\mathbb{Z}[\lambda] \subset K$ обладает свойством: $\alpha Z \subset Z \ \forall \alpha \in \mathbb{Z}[\lambda]$. Обратно, если элемент $\alpha \in K$ удовлетворяет соотношению $\alpha Z \subset Z$, то $\alpha \in \mathbb{Z}[\lambda]$ в силу $1 \in Z = \mathbb{Z}[\lambda]$ (см. (8')).

По терминологии [12] решетка Z называется полным модулем, а кольцо $\mathbb{Z}[\lambda]$ — кольцом множителей модуля Z. Два модуля Z и Z_1 называются подобными, если существует ненулевой элемент $\alpha \in K$ такой, что $Z_1 = \alpha Z$. В теории чисел значительное место занимает вычисление классов подобных модулей в различных полях. Основная теорема гласит, что при заданном кольце множителей существует лишь конечное число различных классов подобных модулей, имеющих это кольцо множителей (см. [12, гл. II, §6, теорема 3]). Отсюда вытекает, что на евклидовой плоскости существует лишь конечное число квазирешеток (с точностью до подобия), инвариантных относительно заданной однопорожденной группы поворотов.

Плоскость Минковского. Рассмотрим неприводимый над \mathbb{Q} многочлен

$$p(\lambda) = \lambda^4 - 2\lambda^3 - 2\lambda + 1$$

и матрицу (8) с этим характеристическим многочленом:

$$A' = egin{pmatrix} 0 & 0 & 0 & -1 \ 1 & 0 & 0 & 2 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 2 \end{pmatrix}.$$

Эта матрица принадлежит типу (1,3) и имеет четыре различных собственных числа: λ_1 , $\lambda_2=\lambda_1^{-1}$ вещественные, $\lambda_3=\bar{\lambda}_4$ комплексно сопряженные, $|\lambda_3|=1$. Взяв λ_1 и λ_2 в качестве собственных чисел матрицы A, получим гиперболический поворот плоскости Минковского:

$$A = \left(egin{array}{cc} \lambda_1 & 0 \ 0 & \lambda_2 \end{array}
ight),$$

а выбрав λ_3 (или λ_4), будем иметь поворот $A=(\lambda_3)$ евклидовой плоскости. В обоих случаях в равенстве (7) матрица A' будет одной и той же, а различными будут базисы E согласно формуле (8').

По предложению 2 все инвариантные квазирешетки группы $\Gamma = \langle A \rangle$ имеют базисы вида ET, где рациональная матрица T определяется только матрицей A' и будет одной и той же как для плоскости Минковского, так и для евклидовой плоскости. Отсюда следует, что на плоскости Минковского существует лишь конечное число инвариантных относительно $\Gamma = \langle A \rangle$ квазирешеток (с точностью до умножения слева на неособенные элементы $\alpha \in [\Gamma]_{\mathbb{Q}}$), как и на евклидовой плоскости.

B качестве примера вычислим матрицы T частного вида

$$T = egin{pmatrix} t & t_{12} & t_{13} & t_{14} \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Имеем

$$T^{-1}A'T = \left(egin{array}{cccc} -t_{12} & t^{-1}c_{12} & t^{-1}c_{13} & t^{-1}c_{14} \ t & t_{12} & t_{13} & t_{14} + 2 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 2 \end{array}
ight),$$

где $c_{12}=-t_{12}^2-t_{13},\,c_{13}=-t_{12}t_{13}-t_{14},\,c_{14}=-1-t_{12}(t_{14}+2)-2t_{14}.$ Из условия целочисленности матрицы $T^{-1}A'T$ следует, что

$$t, t_{12}, t_{13}, t_{14} \in \mathbb{Z}, c_{12} \equiv 0, c_{13} \equiv 0, c_{14} \equiv 0 \pmod{t}.$$

Эта система сравнений легко решается:

$$t_{13} \equiv -t_{12}^2, \ t_{14} \equiv t_{12}^3, \ f(t_{12}) \stackrel{\text{onp}}{=} 1 + 2t_{12} + 2t_{12}^3 + t_{12}^4 \equiv 0 \pmod{t}.$$

Произвольно задав целое t_{12} , найдем t как делитель числа $f(t_{12})$. Как видим, матриц T получается бесконечно много. Однако согласно сказанному выше среди них имеется лишь конечное число попарно не эквивалентных.

Таким образом, справедливо следующее общее свойство однопорожденных групп поворотов в пространстве \mathbb{R}^n .

Теорема 6. Пусть матрица A имеет различные собственные числа, являющиеся корнями неприводимого над \mathbb{Q} многочлена $p(\lambda) \in \mathbb{Z}[\lambda]$ со старшим коэффициентом 1 и младшим коэффициентом 1. Тогда существует лишь конечное число инвариантных относительно группы $\Gamma = \langle A \rangle$ минимальных квазирешеток C точностью до умножения слева на неособенные элементы алгебры $[\Gamma]_{\mathbb{Q}}$.

ЛИТЕРАТУРА

- 1. Гарипов Р. М. Группы орнаментов на плоскости Минковского // Алгебра и логика. 2003. Т. 42, N 6. С. 655–682.
- **2.** Гарипов Р. М. Кристаллографические классы в пространстве Минковского $R_{1,2}$ // Докл. РАН. 2006. Т. 409, № 3. С. 300–304.
- Гарипов Р. М. Кристаллографические классы в 4-мерном пространстве Минковского // Алгебра и логика. 2008. Т. 47, № 1. С. 31–53.
- **4.** Новиков С. П., Тайманов И. А. Современные геометрические структуры и поля. М.: МЦНМО, 2005.
- Пиунихин С. А. О квазикристаллографических группах в смысле Новикова // Мат. заметки. 1990. Т. 47, № 5. С. 81–87.
- Пиунихин С. А. Несколько новых результатов о квазикристаллографических группах в смысле Новикова // Мат. заметки. 1990. Т. 48, № 3. С. 100–107.
- Пиунихин С. А. Связь между различными определениями квазикристаллографических групп // Мат. заметки. 1992. Т. 52, № 6. С. 74–80.
- Ле Ты Куок Тханг, Пиунихин С. А., Садов В. А. Геометрия квазикристаллов // Успехи мат. наук. 1993. Т. 48, № 1. С. 41–102.
- Гарипов Р. М. Алгебраический метод вычисления кристаллографических групп // Сиб. журн. индустр. математики. 2001. Т. 4, № 1. С. 52–72.
- **10.** *Милнор Д.* Введение в алгебраическую K-теорию. М.: Мир, 1974.
- **11.** Гантмахер Ф. Р. Теория матриц. М.: Наука, 1967.
- 12. Боревич З. И., Шафаревич И. Р. Теория чисел. М.: Мир, 1985.

Статья поступила 25 апреля 2008 г.

Гарипов Равиль Мухамедзянович Институт гидродинамики им. М. А. Лаврентьева СО РАН, Пр. Академика Лаврентьева, 15, Новосибирск 630090 R.M.Garipov@mail.ru

Чуркин Валерий Авдеевич Институт математики им. С. Л. Соболева СО РАН, пр. Академика Коптюга, 4, Новосибирск 630090 churkin@math.nsc.ru