ПРИНЦИП ОГРАНИЧЕННОСТИ ДЛЯ РЕШЕТОЧНО НОРМИРОВАННЫХ ПРОСТРАНСТВ

А. Е. Гутман, С. А. Лисовская

Аннотация. Рассматриваются три классических факта теории нормированных пространств: принцип ограниченности, теорема Банаха — Штейнгауза и принцип ограниченности на выпуклом компакте. С помощью методов булевозначного анализа доказываются точные аналоги этих теорем для случая решеточно нормированных пространств.

Ключевые слова: теорема Банаха — Штейнгауза, пространство Банаха — Канторовича, циклически компактное множество, булевозначный анализ.

Академику Ю. Г. Решетняку в связи с его 80-летием

В работе, базирующейся на традиционных определениях, обозначениях и фактах из теории решеточно нормированных пространств [1] и булевозначного анализа [2], мы доказываем точные аналоги трех классических теорем для случая произвольных решеточно нормированных пространств над расширенными пространствами Канторовича, а именно принцип ограниченности (2.4), теорему Банаха — Штейнгауза (2.6) и принцип ограниченности на выпуклом компакте (3.3). Эти теоремы, полученные методом «спуска», усиливают и обобщают аналогичные результаты И. Г. Ганиева и К. К. Кудайбергенова [3], установленные для случая пространств Банаха — Канторовича над решеткой измеримых функций. (Доказательства, приведенные в [3], получены с помощью специфической техники теории измеримых банаховых расслоений с лифтингом и не задействуют методы булевозначного анализа.)

Все векторные пространства по умолчанию предполагаются ненулевыми.

На протяжении всей статьи E — расширенное пространство Канторовича над \mathbb{R} ; E^{++} — множество порядковых единиц в E; 1_E — некоторый фиксированный элемент E^{++} ; ef — произведение элементов $e, f \in E$, соответствующее той операции умножения, относительно которой E является коммутативной упорядоченной алгеброй с мультипликативной единицей 1_E , причем $(\forall e, f \in E)(ef = 0 \Leftrightarrow e \perp f)$; B — полная булева алгебра всех порядковых проекторов в E; $\Pr(B)$ — множество всех разбиений единицы в E; $\mathbb{R}^{(B)}$ 0 — отделимый E0-значный универсум; $\mathbb{R}^{(B)}$ 1 — значение истинности в $\mathbb{R}^{(B)}$ 2 формулы φ 1 языка теории множеств; $\mathbb{R}^{(B)}$ 3 — синоним равенства $\mathbb{R}^{(B)}$ 4 = $\mathbb{R}^{(B)}$ 5 сус $\mathbb{R}^{(B)}$ 6 относительно $\mathbb{R}^{(B)}$ 6 е $\mathbb{R}^{(B)}$ 7 упорядоченное поле вещественных чисел внутри $\mathbb{R}^{(B)}$ 6, содержащее $\mathbb{R}^{(B)}$ 8 в виде подполя.

Работа поддержана Фондом содействия отечественной науке.

Множество всех экстенсиональных функций из X в Y, где $X,Y \subset \mathbb{V}^{(B)}$, мы обозначаем символом $\mathscr{E}(X,Y)$. В случае $\mathscr{X},\mathscr{Y} \in \mathbb{V}^{(B)}$ и $\mathscr{T} \subset \mathscr{E}(\mathscr{X}\downarrow,\mathscr{Y}\downarrow)$ положим $\mathscr{T}\uparrow\uparrow:=\{T\uparrow:T\in\mathscr{T}\}\uparrow$. При этом $\mathbb{V}^{(B)}\models[\mathscr{T}\uparrow\uparrow-$ некоторое множество функций из \mathscr{X} в \mathscr{Y}]. Если же $\mathbb{V}^{(B)}\models[\mathscr{X}\neq\varnothing$ и $\mathbb{T}-$ некоторое множество функций из \mathscr{X} в \mathscr{Y}], то $\mathbb{T}\downarrow\downarrow:=\{\tau\downarrow:\tau\in\mathbb{T}\downarrow\}\subset\mathscr{E}(\mathscr{X}\downarrow,\mathscr{Y}\downarrow)$.

1. Булевозначная реализация mix-полных E-нормированных пространств

Условимся называть (полным) E-нормированным пространством векторное пространство X над \mathbb{R} , снабженное нормой $|\cdot|: X \to E$, относительно которой X является (соответственно o-полным) d-разложимым решеточно нормированным пространством (см. [1, 2.1.1]), удовлетворяющим условию $|X|^{\perp\perp} = E$, где $|X| := \{|x|: x \in X\}$.

Пусть $X:=(X,|\cdot|)$ — произвольное E-нормированное пространство.

Будем говорить, что Y является E-нормированным подпространством X, и писать $Y \subset_E X$, если Y — векторное подпространство X и пара $(Y, \|\cdot\|_Y)$ является E-нормированным пространством. (При этом по умолчанию наделяем Y нормой $\|\cdot\|_Y$.) Как легко видеть, $Y \subset_E X$ тогда и только тогда, когда Y — векторное подпространство X, $(\forall \pi \in B)(\forall y \in Y)(\pi_X y \in Y)$ и $\|Y\|^{\perp \perp} = E$. В случае $Y \subset_E X$ будем также говорить, что X является расширением Y.

Формулы $x_n \to x$ и $\lim_{n \to \infty} x_n = x$ будут использоваться в качестве синонимов порядковой сходимости $\|x_n - x\| \to 0$ в E. Говорят, что подмножество $U \subset X$ аппроксимирует элемент $x \in X$, если $\inf\{\|u - x\| : u \in U\} = 0$. Множество U назовем всюду плотным в X, если U аппроксимирует каждый элемент X.

Для удобства будем снабжать индексом X знаки перемешиваний, вычисляемых в пространстве X: $\max_{i\in I} \pi_i x_i$. Пусть $U\subset X$. Символом $\max_X U$ обозначим \max -замыкание (в X) множества U, состоящее из всех элементов $x\in X$, представимых в виде $x=\max_{i\in I} \pi_i u_i$, где $(\pi_i)_{i\in I}\in \operatorname{Prt}(B),\ (u_i)_{i\in I}\subset U$. Множество U назовем \max -замкнутым (в X), если $\max_X U=U$. Будем говорить, что множество U является \min -полным (в X), если для любых $(\pi_i)_{i\in I}\in \operatorname{Prt}(B)$ и $(u_i)_{i\in I}\subset U$ существует такой элемент $u\in U$, что $u=\max_{i\in I} \pi_i u_i$.

Отметим, что mix-полнота является абсолютным свойством в следующем смысле: если X и \overline{X} — E-нормированные пространства и $U \subset X \subset_E \overline{X}$, то mix-полнота U в X равносильна mix-полноте U в \overline{X} . В случае, когда X является mix-полным в X (а тогда и в любом расширении X), пространство X называется mix-полным E-нормированным пространством. Как известно, всякое полное E-нормированное пространство является mix-полным.

Назовем mix-пололнением пространства X такое mix-полное E-нормированное пространство \overline{X} , что $X \subset_E \overline{X}$ и mix $_{\overline{X}} X = \overline{X}$. (Ясно, что $X = \overline{X}$ в случае mix-полного пространства X.) Любое E-нормированное пространство имеет mix-пополнение, причем единственное с точностью до изометрии (см. 1.6).

Следующее утверждение вытекает из [4, 1.5.2, 1.5.3].

1.1. Если \overline{X} — mix-пополнение E-нормированного пространства X, то любое всюду плотное подмножество X является всюду плотным в \overline{X} . B частности, X всюду плотно в \overline{X} .

Согласно теореме Гордона [2, 10.3.4, 10.4.1, 10.4.3 (2)] спуск $\mathscr{R}\downarrow$, снабженный спусками линейных операций и отношения порядка, является расширенным пространством Канторовича, линейно и порядково изоморфным E. Для удобства будем считать, что $E=\mathscr{R}\downarrow$, причем $\min_{i\in I} \pi_i e_i = \bigsqcup_{i\in I} \pi_i e_i$ для любых $(\pi_i)_{i\in I}\in \mathrm{Prt}(B)$ и $(e_i)_{i\in I}\subset E$. Также будем считать, что $1_E=1^{\wedge}$. (В этом случае

 $\Pr(B)$ и $(e_i)_{i\in I}\subset E$. Также будем считать, что $1_E=1^{\wedge}$. (В этом случае $\lambda\,1_E=\lambda^{\wedge}$ для всех $\lambda\in\mathbb{R}$ и спуск умножения из \mathscr{R} совпадает с умножением на E, соответствующим выбору 1_E в качестве мультипликативной единицы.) Формально можно начать с рассмотрения произвольной полной булевой алгебры B, после чего ввести $E:=\mathscr{R}\!\!\downarrow$, $1_E:=1^{\wedge}$ и затем превратить элементы $b\in B$ в порядковые проекторы на E, для всех $e\in E$ полагая be равным перемешиванию (e,0) относительно (b,b^{\perp}) , где b^{\perp} — дополнение b в B.

Нормированным пространством над подполем $F \subset \mathbb{R}$ назовем векторное пространство над F, снабженное \mathbb{R} -значной нормой, а банаховым пространством над F — полное нормированное пространство над F. Следующее утверждение достаточно очевидно.

1.2. Если $(X, +, \cdot, \|\cdot\|)$ — банахово пространство над подполем $F \subset \mathbb{R}$, то умножение $\cdot : F \times X \to X$ единственным образом продолжается до $\overline{\cdot} : \mathbb{R} \times X \to X$ так, что $(X, +, \overline{\cdot}, \|\cdot\|)$ является банаховым пространством над \mathbb{R} .

Пополнением нормированного пространства X над подполем $F \subset \mathbb{R}$ условимся называть банахово пространство над F (или, если угодно, над \mathbb{R} , см. 1.2), содержащее X в виде всюду плотного подпространства (над F). Отметим, что всякое нормированное пространство над F имеет пополнение, причем единственное с точностью до изометрии.

1.3. Если $\mathbb{V}^{(B)} \vDash [\mathscr{X} -$ векторное пространство над $\mathbb{R}^{\wedge}]$, то $\mathscr{X} \downarrow$ является векторным пространством над \mathbb{R} относительно спуска сложения и умножения $(\lambda, x) \mapsto \lambda x$, определенного формулой $\mathbb{V}^{(B)} \vDash [\lambda x = \lambda^{\wedge} x]$. Условимся по умолчанию снабжать $\mathscr{X} \downarrow$ упомянутыми операциями и тем самым считать $\mathscr{X} \downarrow$ векторным пространством над \mathbb{R} .

Если $\mathbb{V}^{(B)} \models [\mathscr{X} - \text{векторное} \text{ пространство над } \mathbb{R}^{\wedge}]$ и X — векторное подпространство $\mathscr{X} \downarrow$, то $\mathbb{V}^{(B)} \models [X \uparrow - \text{векторноe} \text{ подпространство } \mathscr{X}]$. Это обстоятельство позволяет в случае $\mathbb{V}^{(B)} \models [\mathscr{X} - \text{нормированноe} \text{ пространство над } \mathbb{R}^{\wedge}]$ по умолчанию считать, что $\mathbb{V}^{(B)} \models [X \uparrow - \text{нормированноe} \text{ пространство над } \mathbb{R}^{\wedge}]$.

Следующий факт вытекает (с учетом 1.2) из [2, 11.3.1, 11.3.2] (см. также [1, 8.3.1, 8.3.2]).

- **1.4. Теорема.** (1) Eсли $\mathscr{X} \in \mathbb{V}^{(B)}$ и $\mathbb{V}^{(B)} \models [\mathscr{X}$ банахово пространство над $\mathbb{R}^{\wedge}]$, то $\mathscr{X} \downarrow := (\mathscr{X} \downarrow, \| \cdot \|_{\mathscr{X}} \downarrow)$ является полным E-нормированным пространством. При этом $\min_{i \in I} \pi_i x_i = \bigsqcup_{i \in I} \pi_i x_i$ для любых $(x_i)_{i \in I} \subset \mathscr{X} \downarrow$ и $(\pi_i)_{i \in I} \in \operatorname{Prt}(B)$.
- (2) Всякое E-нормированное пространство X изометрично некоторому всюду плотному подпространству $\widetilde{X} \subset_E \mathscr{X} \downarrow$, где $\mathbb{V}^{(B)} \vDash [\mathscr{X}$ банахово пространство над $\mathbb{R}^{\wedge}]$. Такое пространство \mathscr{X} внутри $\mathbb{V}^{(B)}$ единственно c точностью до изометрии. При этом $\widetilde{X} = \mathscr{X} \downarrow$ в случае полного E-нормированного пространства X.
- **1.5. Теорема.** (1) Eсли $\mathbb{V}^{(B)} \models [\mathscr{X}$ нормированное пространство над $\mathbb{R}^{\wedge}]$, то $\mathscr{X} \downarrow := (\mathscr{X} \downarrow, \| \cdot \|_{\mathscr{X}} \downarrow)$ является mix-полным E-нормированным пространством. Eсли, кроме того, $X \subset_{E} \mathscr{X} \downarrow$, $(x_{i})_{i \in I} \subset X$ и $(\pi_{i})_{i \in I} \in \operatorname{Prt}(B)$, то существование $\min_{i \in I} \pi_{i} x_{i}$ равносильно включению $\underset{i \in I}{\sqcup} \pi_{i} x_{i} \in X$; при этом $\min_{i \in I} \pi_{i} x_{i} = \underset{i \in I}{\sqcup} \pi_{i} x_{i}$.

- (2) Всякое E-нормированное пространство X изометрично некоторому подпространству $\widetilde{X} \subset_E \mathscr{X} \downarrow$, где $\mathbb{V}^{(B)} \vDash [\mathscr{X} -$ нормированное пространство над $\mathbb{R}^{\wedge}]$ и $\mathscr{X} = \widetilde{X} \uparrow$. Такое пространство \mathscr{X} внутри $\mathbb{V}^{(B)}$ единственно c точностью до изометрии. При этом $\mathscr{X} \downarrow$ является mix-пополнением \widetilde{X} . В частности, если X mix-полное E-нормированное пространство, то $\widetilde{X} = \mathscr{X} \downarrow$.
- \triangleleft (1) Пусть $\mathbb{V}^{(B)} \vDash [\mathscr{Y} \text{пополнение } \mathscr{X}]$. В частности, $\mathbb{V}^{(B)} \vDash [\mathscr{X} \text{векторное}$ подпространство банахова пространства \mathscr{Y} над \mathbb{R}^{\wedge}]. Тогда $\mathscr{X} \downarrow$ является тіх-полным E-нормированным подпространством $\mathscr{Y} \downarrow$. Действительно, замкнутость $\mathscr{X} \downarrow$ относительно линейных операций достаточно очевидна, условие $(\forall \, \pi \in B)(\forall \, x \in \mathscr{X} \downarrow)(\pi_{\mathscr{Y} \downarrow} \, x \in \mathscr{X} \downarrow)$ и тіх-полнота $\mathscr{X} \downarrow$ вытекают из равенства сус $\mathscr{X} \downarrow = \mathscr{X} \downarrow$, а соотношение $\|\mathscr{X} \downarrow\|^{\perp \perp} = E$ обеспечивается неявным предположением $\mathbb{V}^{(B)} \vDash [\mathscr{X} \neq \{0\}]$. Наконец, если $X \subset_E \mathscr{X} \downarrow$, $(x_i)_{i \in I} \subset X$ и $(\pi_i)_{i \in I} \in \text{Prt}(B)$, то $x := \bigsqcup_{i \in I} \pi_i x_i = \min_{i \in I} x_i x_i$, причем как существование $\max_{i \in I} x_i x_i$, так и включение $x \in X$ влекут равенство $x = \min_{i \in I} x_i x_i$.
- (2) Согласно 1.4 (2) всякое E-нормированное пространство X изометрично некоторому подпространству $\widetilde{X} \subset_E \mathscr{Y} \downarrow$, где $\mathbb{V}^{(B)} \vDash [\mathscr{Y}$ банахово пространство над \mathbb{R}^{\wedge}]. Положим $\mathscr{X} := \widetilde{X} \uparrow$. Тогда $\mathbb{V}^{(B)} \vDash [\mathscr{X}$ нормированное пространство над \mathbb{R}^{\wedge}] (см. 1.3). Согласно (1) спуск $\mathscr{X} \downarrow$ является mix-полным E-нормированным пространством, причем $\widetilde{X} \subset_E \mathscr{X} \downarrow = \widetilde{X} \uparrow \downarrow = \operatorname{cyc} \widetilde{X} = \min_{\mathscr{X} \downarrow} \widetilde{X}$.

Если $\mathbb{V}^{(B)} \models [\mathscr{X} \text{ и } \mathscr{Y} - \text{нормированные пространства над } \mathbb{R}^{\wedge}], \ X \subset_{\mathbb{E}} \mathscr{X} \downarrow, \ Y \subset_{\mathbb{E}} \mathscr{Y} \downarrow, \ \mathscr{X} = X \uparrow, \ \mathscr{Y} = Y \uparrow \text{ и } f - \text{изометрия } X \text{ на } Y, \text{ то, как легко видеть,} \ f \in \mathscr{E}(X,Y) \text{ и } \mathbb{V}^{(B)} \models [f \uparrow - \text{изометрия } \mathscr{X} \text{ на } \mathscr{Y}]. \ \triangleright$

В дальнейшем при рассмотрении какого-либо нормированного пространства \mathscr{X} над \mathbb{R}^{\wedge} внутри $\mathbb{V}^{(B)}$ условимся снабжать $\mathscr{X}\downarrow$ спусками линейных операций и нормой $|\cdot|:=||\cdot||_{\mathscr{X}}\downarrow$ и тем самым считать $\mathscr{X}\downarrow$ (mix-полным) E-нормированным пространством.

- **1.6.** Следствие. Любое E-нормированное пространство имеет mix-пополнение. Если Y и Z mix-пополнения E-нормированного пространства X, то пространства Y и Z изометричны, причем существует такая изометрия $f:Y\to Z$, что f(x)=x для всех $x\in X$.
- ⊲ Существование тих-пополнения вытекает из 1.5 (2). Пусть Y и Z тих-пополнения X. Для $y \in Y$ положим $f(y) := \min_{i \in I} x_i x_i$, где $(\pi_i)_{i \in I} \in \operatorname{Prt}(B)$ и $(x_i)_{i \in I} \subset X$ таковы, что $y = \min_{i \in I} x_i x_i$. Элементарные выкладки показывают, что такое определение функции $f: Y \to Z$ корректно, откуда сразу следует равенство f(x) = x для всех $x \in X$. Проверка того факта, что f является изометрией Y на Z, также не составляет труда. ⊳
- **1.7. Теорема.** Пусть $\mathscr{X} \in \mathbb{V}^{(B)}$, $\mathbb{V}^{(B)} \models [\mathscr{X}$ нормированное пространство над \mathbb{R}^{\wedge}], и пусть X всюду плотное E-нормированное подпространство $\mathscr{X} \downarrow$. Тогда следующие свойства подмножества $U \subset X$ равносильны:
 - (a) U всюду плотно в X;
 - (b) U всюду плотно в $\mathscr{X}\downarrow$;
 - (c) $\mathbb{V}^{(B)} \models [U \uparrow \text{ всюду плотно в } X \uparrow];$
 - (d) $\mathbb{V}^{(B)} \models [U \uparrow \text{ всюду плотно в } \mathcal{X}].$

- \triangleleft Импликация (a) \Rightarrow (b) вытекает из [4, 1.5.2].
- (b) \Rightarrow (d). Из [4, 1.5.5, 1.5.6] следует, что множество U всюду плотно в $\mathscr{X}\downarrow$ тогда и только тогда, когда ($\forall x \in \mathscr{X}\downarrow$)($\forall e \in E^{++}$)($\exists u \in \min_{\mathscr{X}\downarrow} U$) $|x-u| \leqslant e$. С учетом 1.5 (1) последнее утверждение равносильно ($\forall x \in \mathscr{X}\downarrow$)($\forall e \in E^{++}$) ($\exists u \in \operatorname{cyc} U$) $\mathbb{V}^{(B)} \models [\|x-u\| \leqslant e]$, что в силу равенств ($\operatorname{cyc} U$) $\uparrow = (U\uparrow\downarrow)\uparrow = U\uparrow$ означает $\mathbb{V}^{(B)} \models [(\forall x \in \mathscr{X})(\forall e \in \mathscr{R}^{++})(\exists u \in U\uparrow) ||x-u|| \leqslant e]$.

Импликация (d)⇒(c) очевидна.

(c) \Rightarrow (a). Из (c) следует $\mathbb{V}^{(B)} \models [(\forall x \in X \uparrow)(\forall e \in \mathscr{R}^{++})(\exists u \in U \uparrow) ||x - u|| \leqslant e]$ или, что то же самое, $(\forall x \in X \uparrow \downarrow)(\forall e \in E^{++})(\exists u \in \operatorname{cyc} U) ||x - u|| \leqslant e$. Согласно [4, 1.5.5, 1.5.6] и 1.5 (1) последнее означает, что множество U всюду плотно в $X \uparrow \downarrow$, а значит, и в X. \triangleright

Следующее утверждение вытекает из [2, 10.3.8, 10.3.9].

- **1.8. Теорема.** Пусть $\mathbb{V}^{(B)} \models [\mathscr{X} \text{нормированное пространство над } \mathbb{R}^{\wedge}].$
- (1) Если $s: \mathbb{N} \to \mathscr{X} \downarrow$ и $x \in \mathscr{X} \downarrow$, то $\mathbb{V}^{(B)} \models [s \uparrow : \mathbb{N}^{\wedge} \to \mathscr{X}]$ и сходимость $s(n) \to x$ в $\mathscr{X} \downarrow$ равносильна $\mathbb{V}^{(B)} \models [s \uparrow (n) \to x]$.
- (2) Если $\mathbb{V}^{(B)} \vDash [\sigma : \mathbb{N}^{\wedge} \to \mathscr{X} \text{ и } x \in \mathscr{X}], \text{ то } \sigma \mathbb{J} : \mathbb{N} \to \mathscr{X} \mathbb{J} \text{ и сходимость} \sigma \mathbb{J}(n) \to x \text{ в } \mathscr{X} \mathbb{J} \text{ равносильна } \mathbb{V}^{(B)} \vDash [\sigma(n) \to x].$

2. Принцип ограниченности и теорема Банаха — Штейнгауза для *E*-нормированных пространств

Пусть X и Y-E-нормированные пространства. Линейный оператор $T:X\to Y$ называется *ограниченным*, если существует такой элемент $c\in E^+$, что $|Tx|\leqslant c\,|x|$ для всех $x\in X$. Множество всех ограниченных линейных операторов из X в Y условимся обозначать символом $\mathscr{L}(X,Y)$. Для $T\in \mathscr{L}(X,Y)$ полагают $|T|:=\inf\{c\in E^+: (\forall\,x\in X)\,|Tx|\leqslant c\,|x|\}$. Как легко видеть, $|Tx|\leqslant |T||x|$ для всех $x\in X$.

Если X и Y — нормированные пространства над подполем $F \subset \mathbb{R}$, то символом $\mathscr{L}(X,Y)$ обозначается множество всех ограниченных линейных (точнее, F-линейных) операторов из X в Y, а норма $\|T\| \in \mathbb{R}$ оператора $T \in \mathscr{L}(X,Y)$ определяется традиционной формулой inf $\{c \in \mathbb{R}^+ : (\forall x \in X) \ \|Tx\| \leqslant c\|x\|\}$.

Если $\mathbb{V}^{(B)} \models [\mathscr{X}, \mathscr{Y} -$ нормированные пространства над \mathbb{R}^{\wedge} и $\tau \in \mathscr{L}(\mathscr{X}, \mathscr{Y})]$, то записи $\mathscr{L}(\mathscr{X}, \mathscr{Y})$ и $\|\tau\|$ будут символизировать те элементы $L \in \mathbb{V}^{(B)}$ и $e \in E$, для которых $\mathbb{V}^{(B)} \models [L = \mathscr{L}(\mathscr{X}, \mathscr{Y})]$ и $\mathbb{V}^{(B)} \models [e = \|\tau\|]$.

- **2.1. Теорема.** Пусть $\mathbb{V}^{(B)} \models [\mathscr{X}, \mathscr{Y}$ нормированные пространства над $\mathbb{R}^{\wedge}]$, $X \subset_{\mathbb{E}} \mathscr{X} \downarrow$, $Y \subset_{\mathbb{E}} \mathscr{Y} \downarrow$. Учитывая 1.3, будем рассматривать $X \uparrow$ и $Y \uparrow$ как нормированные подпространства \mathscr{X} и \mathscr{Y} над \mathbb{R}^{\wedge} внутри $\mathbb{V}^{(B)}$.
 - (1) Если $T \in \mathcal{L}(X,Y)$, то $T \in \mathcal{E}(X,Y)$, $\mathbb{V}^{(B)} \models [T \uparrow \in \mathcal{L}(X \uparrow, Y \uparrow)]$ и $|T| = ||T \uparrow||$.
 - (2) Если $\mathbb{V}^{(B)} \models [\tau \in \mathcal{L}(\mathcal{X}, \mathcal{Y})], \text{ то } \tau \downarrow \in \mathcal{L}(\mathcal{X}\downarrow, \mathcal{Y}\downarrow) \text{ и } [\tau\downarrow] = ||\tau||.$
 - (3) Если $\mathbb{V}^{(B)} \models [\tau \in \mathcal{L}(X \uparrow, Y \uparrow)]$, то $\tau \downarrow |_X \in \mathcal{L}(X, Y \uparrow \downarrow)$ и $|\tau \downarrow |_X| = ||\tau||$.
- (4) Для любого оператора $T \in \mathcal{L}(X,Y)$ существует единственный элемент $\tau \in \mathbb{V}^{(B)}$ такой, что $\mathbb{V}^{(B)} \models [\tau \in \mathcal{L}(X\uparrow,Y\uparrow)]$ и $\tau \downarrow |_X = T$. При этом $\tau = T\uparrow$, $|T| = ||\tau||$.
- Arr Достаточно привлечь [1, 8.3.3] и воспользоваться внутри $\mathbb{V}^{(B)}$ тем фактом, что любой оператор $\tau \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$, действующий в нормированных пространствах \mathcal{X} и \mathcal{Y} над \mathbb{R}^{\wedge} , имеет единственное продолжение $\bar{\tau} \in \mathcal{L}(\overline{\mathcal{X}}, \overline{\mathcal{Y}})$, $\|\bar{\tau}\| = \|\tau\|$, где $\overline{\mathcal{X}}$ и $\overline{\mathcal{Y}}$ пополнения \mathcal{X} и \mathcal{Y} . \triangleright

- **2.2.** Лемма. Пусть \overline{X} и \overline{Y} mix-пополнения E-нормированных пространств X и Y. Тогда любой оператор $T \in \mathcal{L}(X,Y)$ имеет единственное продолжение $\overline{T} \in \mathcal{L}(\overline{X},\overline{Y})$; при этом $|T| = |\overline{T}|$.
- ⊲ Благодаря 1.5 (2) можно считать, что $X \subset_E \overline{X} = \mathscr{X} \downarrow$ и $Y \subset_E \overline{Y} = \mathscr{Y} \downarrow$, где $\mathbb{V}^{(B)} \vDash [\mathscr{X}$ и \mathscr{Y} нормированные пространства над \mathbb{R}^{\wedge}], $\mathscr{X} = X \uparrow$ и $\mathscr{Y} = Y \uparrow$. Согласно 2.1 (1) всякий оператор $T \in \mathscr{L}(X,Y)$ экстенсионален. Положим $\overline{T} := T \uparrow \downarrow : X \uparrow \downarrow \to Y \uparrow \downarrow$. Из 2.1 следует, что $\overline{T} \in \mathscr{L}(\overline{X}, \overline{Y})$, $\overline{T}|_X = T$ и $|T| = |\overline{T}|$. Утверждение о единственности \overline{T} вытекает из 2.1 (4). ⊳
- **2.3.** Следующее косметическое обобщение принципа ограниченности легко вывести из классической формулировки этого принципа [5, 7.2.5].

Пусть X и Y — нормированные пространства над некоторым подполем поля \mathbb{R} , причем X является полным, и пусть $\mathscr{T} \subset \mathscr{L}(X,Y)$. Если $\sup_{T \in \mathscr{T}} \|Tx\| < \infty$ для всех $x \in X$, то $\sup_{T \in \mathscr{T}} \|T\| < \infty$.

- **2.4. Теорема.** Пусть X и Y-E-нормированные пространства, причем X является полным, и пусть $\mathcal{T} \subset \mathcal{L}(X,Y)$. Если для каждого элемента $x \in X$ множество $\{|Tx| : T \in \mathcal{T}\}$ порядково ограничено, то множество $\{|T| : T \in \mathcal{T}\}$ порядково ограничено.
- \triangleleft Пусть \overline{Y} mix-пополнение пространства Y (см. 1.6). Тогда подмножество $\mathscr{T} \subset \mathscr{L}(X,Y)$ является также подмножеством $\mathscr{L}(X,\overline{Y})$, причем нормы любого оператора $T \in \mathscr{T}$, вычисленные в $\mathscr{L}(X,Y)$ и $\mathscr{L}(X,\overline{Y})$, совпадают.

Согласно 1.4 (2) и 1.5 (2) можно считать, что $X = \mathscr{X} \downarrow$ и $\overline{Y} = \mathscr{Y} \downarrow$, где $\mathbb{V}^{(B)} \vDash [\mathscr{X} -$ банахово пространство над \mathbb{R}^{\wedge} , $\mathscr{Y} -$ нормированное пространство над \mathbb{R}^{\wedge}]. Пусть ($\forall x \in X$)($\exists e \in E$)($\forall T \in \mathscr{T}$) $|Tx| \leqslant e$ (согласно условию теоремы). Тогда с учетом соотношения $\mathbb{V}^{(B)} \vDash [|Tx| = ||T \uparrow x||]$ имеем

$$(\forall x \in \mathscr{X} \downarrow)(\exists e \in E)(\forall \tau \in \{T \uparrow : T \in \mathscr{T}\}) \ \mathbb{V}^{(B)} \vDash [\|\tau x\| \leqslant e].$$

Используя равенство $\mathscr{T}\uparrow\uparrow=\{T\uparrow:T\in\mathscr{T}\}\uparrow$, получаем

$$\mathbb{V}^{(B)} \vDash [(\forall \, x \in \mathscr{X})(\exists \, e \in \mathscr{R} \,)(\forall \, \tau \in \mathscr{T} \! \uparrow \! \uparrow) \, \, \|\tau x\| \leqslant e].$$

Кроме того, из 2.1 следует $\mathbb{V}^{(B)} \models [\mathscr{T}\uparrow\uparrow \subset \mathscr{L}(\mathscr{X},\mathscr{Y})]$. Применяя утверждение 2.3 внутри $\mathbb{V}^{(B)}$, последовательно выводим $\mathbb{V}^{(B)} \models [(\exists e \in \mathscr{R})(\forall \tau \in \mathscr{T}\uparrow\uparrow) \ \|\tau\| \leqslant e];$ $(\exists e \in E)(\forall \tau \in \{T\uparrow: T\in \mathscr{T}\}) \ \mathbb{V}^{(B)} \models [\|\tau\| \leqslant e];$ $(\exists e \in E)(\forall T\in \mathscr{T}) \ \|T\uparrow\| \leqslant e.$ Остается заметить, что $\|T\| = \|T\uparrow\|$ согласно 2.1 (1). \triangleright

2.5. Следующее обобщение теоремы Банаха — Штейнгауза легко выводится из классической версии этой теоремы [5, 7.2.9].

Пусть X и Y — нормированные пространства над некоторым подполем поля \mathbb{R} , причем Y является полным, $(T_n)_{n\in\mathbb{N}}\subset \mathscr{L}(X,Y),\ U$ — всюду плотное подмножество X, для каждого элемента $u\in U$ существует предел $\lim_{n\to\infty}T_nu\in Y$ и имеется такое число $c\in\mathbb{R}^+$, что $\|T_n\|\leqslant c$ для всех $n\in\mathbb{N}$. Тогда существует такой оператор $T\in\mathscr{L}(X,Y)$, что $\|T\|\leqslant c$ и $\lim_{n\to\infty}T_nx=Tx$ для всех $x\in X$.

2.6. Теорема. Пусть X и Y-E-нормированные пространства, причем Y является полным, $(T_n)_{n\in\mathbb{N}}\subset \mathscr{L}(X,Y),\, U-$ всюду плотное подмножество X, для каждого элемента $u\in U$ существует предел $\lim_{n\to\infty} T_n u\in Y$ и имеется такой элемент $c\in E^+$, что $|T_n|\leqslant c$ для всех $n\in\mathbb{N}$. Тогда существует такой оператор $T\in\mathscr{L}(X,Y)$, что $|T|\leqslant c$ и $\lim_{n\to\infty} T_n x=Tx$ для всех $x\in X$.

 \vartriangleleft Предварительно докажем сформулированное утверждение для случая, когда пространство X является mix-полным.

Учитывая 1.4(2) и 1.5(2), можем считать, что $X = \mathscr{X} \downarrow$ и $Y = \mathscr{Y} \downarrow$, где $\mathbb{V}^{(B)} \models [\mathscr{X} \text{ и } \mathscr{Y} - \text{нормированные пространства над } \mathbb{R}^{\wedge}$, причем \mathscr{Y} полно].

Положим $s(n):=T_n\uparrow$ для $n\in\mathbb{N}$. Из 2.1 следует, что $s:\mathbb{N}\to\mathscr{L}(\mathscr{X},\mathscr{Y})\downarrow$ и $\mathscr{L}(X,Y)=\mathscr{L}(\mathscr{X},\mathscr{Y})\downarrow\downarrow$, а значит, $\mathbb{V}^{(B)}\vDash[s\uparrow\colon\mathbb{N}^\wedge\to\mathscr{L}(\mathscr{X},\mathscr{Y})]$ и $\mathbb{V}^{(B)}\vDash[s\uparrow(n^\wedge)=T_n\uparrow]$ для всех $n\in\mathbb{N}$.

Согласно 1.7 имеем $\mathbb{V}^{(B)} \models [U \uparrow \text{ всюду плотно в } \mathscr{X}]$. Кроме того, $||T_n \uparrow || = ||T_n|| \leqslant c$ для всех $n \in \mathbb{N}$ (см. 2.1 (1)), тем самым $(\forall n \in \mathbb{N}) \ \mathbb{V}^{(B)} \models [||s \uparrow (n^{\wedge})|| \leqslant c]$, т.е. $\mathbb{V}^{(B)} \models [(\forall n \in \mathbb{N}^{\wedge}) \ ||s \uparrow (n)|| \leqslant c]$. Наконец, по условию теоремы имеем $(\forall u \in U)(\exists y \in Y) \ s(n)u \to y$, откуда с учетом 1.8 (1) следует, что $(\forall u \in U)(\exists y \in Y) \ \mathbb{V}^{(B)} \models [s \uparrow (n)u \to y]$, т.е. $\mathbb{V}^{(B)} \models [(\forall u \in U \uparrow)(\exists y \in \mathscr{Y}) \ s \uparrow (n)u \to y]$.

Применяя 2.5 внутри $\mathbb{V}^{(B)}$, получаем $\mathbb{V}^{(B)} \models [(\exists \tau) \ \tau \in \mathscr{L}(\mathscr{X},\mathscr{Y}), \ ||\tau|| \leqslant c,$ $(\forall x \in \mathscr{X}) \ s \uparrow (n) x \to \tau x]$, а значит, найдется такой элемент $\tau \in \mathscr{L}(\mathscr{X},\mathscr{Y}) \downarrow$, что $||\tau|| \leqslant c$ и $(\forall x \in X) \ \mathbb{V}^{(B)} \models [s \uparrow (n) x \to \tau x]$. Положим $T := \tau \downarrow$. Тогда с учетом 1.8 (1) и 2.1 (2) имеем $T \in \mathscr{L}(X,Y), \ |T| \leqslant c$ и $(\forall x \in X) \ T_n x \to T x$.

Пусть теперь X — произвольное (не обязательно mix-полное) E-нормированное пространство и пусть \overline{X} — mix-пополнение X (см. 1.6). Поскольку пространство Y является полным, оно mix-полно и поэтому совпадает со своим mix-пополнением. Согласно 2.2 для каждого $n \in \mathbb{N}$ существует (единственное) продолжение $\overline{T}_n \in \mathcal{L}(\overline{X},Y)$ оператора $T_n \in \mathcal{L}(X,Y)$, причем $|\overline{T}_n| = |T_n| \leqslant c$. Кроме того, будучи всюду плотным в X, множество U всюду плотно в \overline{X} (см. 1.1). Наконец, для каждого элемента $u \in U$ имеем ($\forall n \in \mathbb{N}$) $\overline{T}_n u = T_n u$, а значит, существует предел $\lim_{n \to \infty} \overline{T}_n u = \lim_{n \to \infty} T_n u \in Y$.

Таким образом, условия доказываемой теоремы выполняются для \overline{X} , Y, $(\overline{T}_n)_{n\in\mathbb{N}},\ U$ и c, причем пространство \overline{X} является mix-полным. Следовательно, существует такой оператор $\overline{T}\in\mathscr{L}(\overline{X},Y)$, что $|\overline{T}|\leqslant c$ и $\lim_{n\to\infty}\overline{T}_nx=\overline{T}x$ для всех $x\in\overline{X}$. Полагая $T:=\overline{T}|_X$, получаем искомый оператор $T\in\mathscr{L}(X,Y)$. \triangleright

3. Принцип ограниченности на выпуклом mix-компактном множестве

Пусть X-E-нормированное пространство, $(x_n)_{n\in\mathbb{N}}\subset X$ и $x\in X$. Будем говорить, что последовательность $(x_n)_{n\in\mathbb{N}}$ аппроксимирует x, если для любого $k\in\mathbb{N}$ множество $\{x_n:n\geqslant k\}$ аппроксимирует x, т. е. $(\forall\, k\in\mathbb{N})$ inf $\|x_n-x\|=0$.

Множество $K \subset X$ назовем mix-компактным, если K является mix-полным и для любой последовательности $(x_n)_{n \in \mathbb{N}} \subset K$ существует элемент $x \in K$ такой, что $(x_n)_{n \in \mathbb{N}}$ аппроксимирует x. (Ясно, что в случае $E = \mathbb{R}$ mix-компактность равносильна компактности в топологии нормы.)

3.1. Как легко видеть, mix-компактность является абсолютным свойством в следующем смысле.

Eсли X и \overline{X} — E-нормированные пространства и $K \subset X \subset_E \overline{X}$, то mix-компактность K в X равносильна mix-компактности K в \overline{X} .

- **3.2.** Теорема. Пусть $\mathbb{V}^{(B)} \models [\mathscr{X} \text{нормированное пространство над } \mathbb{R}^{\wedge}].$
- (1) Подмножество $K \subset \mathscr{X} \downarrow$ mix-компактно тогда и только тогда, когда K является mix-полным и $\mathbb{V}^{(B)} \models [K \uparrow \text{компактное подмножество } \mathscr{X}].$
- (2) $\mathbb{V}^{(B)} \models [\mathscr{K} \text{компактное подмножество } \mathscr{X}]$ тогда и только тогда, когда $\mathscr{K} \downarrow \text{mix-компактное подмножество } \mathscr{X} \downarrow$.

- ⊲ (1) Компактность множества $K \uparrow$ внутри $\mathbb{V}^{(B)}$ равносильна соотношению $\mathbb{V}^{(B)} \models [\ (\forall \sigma : \mathbb{N}^{\wedge} \to K \uparrow) (\exists x \in K \uparrow) (\forall k \in \mathbb{N}^{\wedge}) \text{ inf } \{\|\sigma(n) x\| : n \geqslant k\} = 0],$ которое с учетом [2, 5.7.8] и равенства сус K = K (см. 1.5 (1)) переписывается в виде $(\forall s : \mathbb{N} \to K) (\exists x \in K) (\forall k \in \mathbb{N}) \varphi$, где $\varphi := (\mathbb{V}^{(B)} \models [\inf \{\|s \uparrow(n) x\| : n \geqslant k^{\wedge}\} = 0])$, причем $\varphi \Leftrightarrow \mathbb{V}^{(B)} \models [(\forall e \in \mathscr{R}^+) ((\forall n \geqslant k^{\wedge}) (e \leqslant \|s \uparrow(n) x\|) \Rightarrow e = 0)] \Leftrightarrow (\forall e \in E^+) ((\forall n \geqslant k) (e \leqslant \|s(n) x\|) \Rightarrow e = 0) \Leftrightarrow \inf \{\|s(n) x\| : n \geqslant k\} = 0.$
- (2) Положим $K := \mathcal{K} \downarrow$. Если $\mathbb{V}^{(B)} \models [\mathcal{K} \text{компактное подмножество } \mathcal{X}]$, то, учитывая очевидную mix-полноту множества K и применяя (1), заключаем, что K является mix-компактным подмножеством $\mathcal{X} \downarrow$. Если же $K \text{mix-ком-пактное подмножество } \mathcal{X} \downarrow$, то с учетом равенства $K \uparrow = \mathcal{K}$ имеем $\mathbb{V}^{(B)} \models [\mathcal{K} \text{компактное подмножество } \mathcal{X} \mid$ согласно (1). \triangleright

Пусть X — нормированное пространство над \mathbb{R} , и пусть F — подполе \mathbb{R} . Множество $U \subset X$ назовем F-выпуклым, если $(1-\lambda)u+\lambda v \in U$ для всех $u,v \in U$ и $\lambda \in [0,1]_F$, где $[0,1]_F := F \cap [0,1]$. Выпуклыми подмножествами X, как обычно, считаются \mathbb{R} -выпуклые множества. Как легко видеть, если множество $U \subset X$ замкнуто и F-выпукло, то U — выпуклое подмножество X.

Следующая теорема является аналогом классического принципа ограниченности на выпуклом компакте (ср. [6, 2.9]).

- **3.3. Теорема.** Пусть X и Y E-нормированные пространства, пусть $\mathcal{T} \subset \mathcal{L}(X,Y)$, и пусть K выпуклое mix-компактное подмножество X. Если множество { $|Tx|: T \in \mathcal{T}$ } порядково ограничено для каждого элемента $x \in K$, то множество { $|Tx|: T \in \mathcal{T}$, $x \in K$ } порядково ограничено.
- ⊲ Принимая во внимание 1.4 (2) и 1.2, можно считать, что X и Y всюду плотные E-нормированные подпространства спусков $\mathscr{X} \downarrow$ и $\mathscr{Y} \downarrow$ соответственно, где $\mathbb{V}^{(B)} \models [\mathscr{X}$ и \mathscr{Y} банаховы пространства над \mathscr{B}]. Из 1.7 следует, что $\mathbb{V}^{(B)} \models [X \uparrow]$ всюду плотно в \mathscr{X}] и $\mathbb{V}^{(B)} \models [Y \uparrow]$ всюду плотно в \mathscr{Y}]. Пусть $\mathscr{K} := K \uparrow$. Согласно 3.2 (1) имеем $\mathbb{V}^{(B)} \models [\mathscr{K}$ компактное подмножество \mathscr{X}].

По условию теоремы $(\forall x,y \in K)(\forall \lambda \in [0,1]_{\mathbb{R}})(\exists z \in K) z = (1^{\wedge} - \lambda^{\wedge})x + \lambda^{\wedge}y.$ Заметим, что $\mathbb{V}^{(B)} \models [([0,1]_{\mathbb{R}})^{\wedge} = [0^{\wedge},1^{\wedge}]_{\mathbb{R}^{\wedge}}]$ в силу ограниченности формулы $\varphi(S,0,1,\mathbb{R})$, определяющей равенство $S=[0,1]_{\mathbb{R}}$ (см. [2,4.2.9]). Следовательно,

$$\mathbb{V}^{(B)} \vDash [(\forall x, y \in \mathscr{K})(\forall \lambda \in [0^{\wedge}, 1^{\wedge}]_{\mathbb{R}^{\wedge}})(\exists z \in \mathscr{K}) \ z = (1^{\wedge} - \lambda)x + \lambda y],$$

т. е. $\mathbb{V}^{(B)} \models [\mathscr{K} - \mathbb{R}^{\wedge}$ -выпуклое подмножество \mathscr{X}]. Поскольку $\mathbb{V}^{(B)} \models [\mathscr{K}$ замкнуто в \mathscr{X}], заключаем, что $\mathbb{V}^{(B)} \models [\mathscr{K} -$ выпуклое подмножество \mathscr{X}].

По условию теоремы имеем $(\forall x \in K)(\exists e \in E)(\forall T \in \mathcal{T}) |Tx| \leq e$, а значит,

$$(\forall \, x \in K)(\exists \, e \in E)(\forall \, \tau \in \{T \uparrow : T \in \mathscr{T}\}) \,\, \mathbb{V}^{(B)} \vDash [\, \|\tau x\| \leqslant e\,]$$

или, что то же самое, $\mathbb{V}^{(B)} \vDash [(\forall x \in \mathscr{K})(\exists e \in \mathscr{R})(\forall \tau \in \mathscr{T}\uparrow\uparrow) \mid \mid \tau x \mid \mid \leqslant e \mid$. Согласно 2.1 $\mathbb{V}^{(B)} \vDash [\mathscr{T}\uparrow\uparrow] \subset \mathscr{L}(X\uparrow,Y\uparrow)]$. Поскольку $\mathbb{V}^{(B)} \vDash [X\uparrow]$ всюду плотно в \mathscr{X}] и $\mathbb{V}^{(B)} \vDash [\mathscr{Y} -$ банахово пространство], внутри $\mathbb{V}^{(B)}$ каждый ограниченный оператор $\tau \in \mathscr{L}(X\uparrow,Y\uparrow)$ имеет единственное продолжение $\bar{\tau} \in \mathscr{L}(\mathscr{X},\mathscr{Y})$. Пусть $\bar{\mathscr{T}}$ такой элемент $\mathbb{V}^{(B)}$, что $\mathbb{V}^{(B)} \vDash [\bar{\mathscr{T}} = \{\bar{\tau} : \tau \in \mathscr{T}\uparrow\uparrow\}]$. Тогда $\mathbb{V}^{(B)} \vDash [\bar{\mathscr{T}} \subset \mathscr{L}(\mathscr{X},\mathscr{Y})]$ и $\mathbb{V}^{(B)} \vDash [(\forall x \in \mathscr{K})(\exists e \in \mathscr{R})(\forall \tau \in \bar{\mathscr{T}}) \mid |\tau x|| \leqslant e$].

Таким образом, $\mathscr{X}, \mathscr{Y}, \overline{\mathscr{T}}$ и \mathscr{K} удовлетворяют внутри $\mathbb{V}^{(B)}$ условиям принципа ограниченности на выпуклом компакте (см. [6, 2.9]). Используя этот принцип внутри $\mathbb{V}^{(B)}$, заключаем, что $\mathbb{V}^{(B)} \vDash [(\exists \, e \in \mathscr{R})(\forall \, \tau \in \overline{\mathscr{T}})(\forall \, x \in \mathscr{K}) \, \|\tau x\| \leqslant e \,]$. Поскольку $\mathbb{V}^{(B)} \vDash [\mathscr{K} \subset X \uparrow]$, последнее соотношение справедливо и для $\mathscr{T} \uparrow \uparrow$,

т. е. $\mathbb{V}^{(B)} \models [(\exists e \in \mathscr{R})(\forall \tau \in \mathscr{T}\uparrow\uparrow)(\forall x \in \mathscr{K}) \ \|\tau x\| \leqslant e]$, откуда следует, что $(\exists e \in E)(\forall \tau \in \{T\uparrow: T\in \mathscr{T}\})(\forall x \in K) \ \mathbb{V}^{(B)} \models [\|\tau x\| \leqslant e]$ или, что то же самое, $(\exists e \in E)(\forall T\in \mathscr{T})(\forall x \in K) \ |Tx| \leqslant e$. \triangleright

В завершение покажем (см. 3.4), что понятие циклически компактного подмножества B-циклического банахова пространства (см. [1, 7.3.1, 7.3.3, 8.5.1]) является в определенном смысле частным случаем понятия mix-компактного подмножества E-нормированного пространства.

Для удобства предварительно напомним соответствующие определения.

Согласно [1, 8.3.5] под B-циклическим банаховым пространством можно понимать E-нормированное подпространство $X:=\{x\in \overline{X}: (\exists \lambda\in \mathbb{R}^+) \mid x\mid \leqslant \lambda\, 1_E\}$ какого-либо полного E-нормированного пространства \overline{X} , снабженное \mathbb{R} -значной нормой $\|x\|:=\inf\{\lambda\in \mathbb{R}^+: |x|\leqslant \lambda\, 1_E\}$.

Обозначим через $\mathrm{Prt}_{\mathbb{N}}(B)$ множество всех последовательностей $\nu: \mathbb{N} \to B$, являющихся разбиениями единицы булевой алгебры B. Для $\nu_1, \nu_2 \in \mathrm{Prt}_{\mathbb{N}}(B)$ формула $\nu_1 \ll \nu_2$ служит сокращением следующего утверждения: если $m, n \in \mathbb{N}$ и $\nu_1(m) \wedge \nu_2(n) \neq 0_B$, то m < n.

Пусть X-B-циклическое банахово пространство.

Для mix-полного подмножества $K \subset X$, последовательности $s: \mathbb{N} \to K$ и разбиения $\nu \in \operatorname{Prt}_{\mathbb{N}}(B)$ полагают $s_{\nu} := \min_{n \in \mathbb{N}} \nu(n) s(n)$. Циклической подпоследовательностью последовательности $s: \mathbb{N} \to K$ называется всякая последовательность вида $(s_{\nu_k})_{k \in \mathbb{N}}$, где $(\nu_k)_{k \in \mathbb{N}} \subset \operatorname{Prt}_{\mathbb{N}}(B)$ и $(\forall k \in \mathbb{N}) \ \nu_k \ll \nu_{k+1}$.

Подмножество $K \subset X$ называется *циклически компактным* (см. [1, 8.5.1]), если K является тіх-полным и любая последовательность элементов K имеет циклическую подпоследовательность, сходящуюся по норме $\|\cdot\|$ к некоторому элементу K.

- **3.4. Теорема.** Пусть X B-циклическое банахово пространство. Подмножество $K \subset X$ является циклически компактным тогда и только тогда, когда K mix-компактно.
- \triangleleft (\Rightarrow) Пусть K циклически компактное подмножество X. Рассмотрим произвольную последовательность $s: \mathbb{N} \to K$. По определению циклической компактности найдутся последовательность $(\nu_k)_{k \in \mathbb{N}} \subset \operatorname{Prt}_{\mathbb{N}}(B)$ и элемент $x \in K$ такие, что $(\forall k \in \mathbb{N})(\nu_k \ll \nu_{k+1})$ и $\|s_{\nu_k} x\| \to 0$. Прямой анализ этих соотношений показывает, что $\{|\varkappa x| : \varkappa \in \max_{x} \{s(n) : n \geqslant k\}\} = 0$ для всех $k \in \mathbb{N}$, а значит, последовательность s аппроксимирует элемент $x \in K$, поскольку в случае $\varkappa = \max_{n \geqslant k} \pi_n s(n)$, где $(\pi_n)_{n \geqslant k} \in \operatorname{Prt}(B)$, имеем

$$\pi_m(\inf_{n\geqslant k}|s(n)-x|)\leqslant \pi_m|s(m)-x|=|\pi_ms(m)-\pi_mx|=\pi_m|\varkappa-x|\leqslant |\varkappa-x|$$

для всех $m \geqslant k$ и, следовательно,

$$\inf_{n \geqslant k} |s(n) - x| = \sup_{m \geqslant k} \pi_m (\inf_{n \geqslant k} |s(n) - x|) \leqslant |\varkappa - x|.$$

 (\Leftarrow) Пусть теперь K — mix-компактное подмножество X, и пусть $s: \mathbb{N} \to K$. Благодаря 1.5 (2) можно считать, что $X \subset_{\mathbb{E}} \mathscr{X} \downarrow$, где $\mathbb{V}^{(B)} \vDash [\mathscr{X}$ — нормированное пространство над \mathbb{R}^{\wedge}]. Положим $\sigma := s \uparrow$. Тогда $\mathbb{V}^{(B)} \vDash [\sigma: \mathbb{N}^{\wedge} \to K \uparrow]$. Кроме того, из 3.1 и 3.2 (1) следует, что $\mathbb{V}^{(B)} \vDash [K \uparrow -$ компактное подмножество \mathscr{X}]. Применив внутри $\mathbb{V}^{(B)}$ классический критерий компактности, рассмотрим такие элементы $x \in K$ и $\mathscr{N} \in \mathbb{V}^{(B)}$, что

$$\mathbb{V}^{(\!B\!)} \vDash \big[\mathscr{N}: \mathbb{N}^\wedge \to \mathbb{N}^\wedge, \ \mathscr{N}(k) < \mathscr{N}(k+1), \ \|\sigma(\mathscr{N}(k)) - x)\| \leqslant \tfrac{1}{k} \ \text{для всех } k \in \mathbb{N}^\wedge \big].$$

Положим $\nu_k(n) := \llbracket \mathcal{N}(k^{\wedge}) = n^{\wedge} \rrbracket$ для всех $k, n \in \mathbb{N}$. Элементарная проверка показывает, что $\nu_k \in \operatorname{Prt}_{\mathbb{N}}(B)$ и ($\forall k \in \mathbb{N}$) $\nu_k \ll \nu_{k+1}$. Кроме того, для всех $k \in \mathbb{N}$ имеем $\mathbb{V}^{(B)} \models [s_{\nu_k} = \sigma(\mathcal{N}(k^{\wedge}))]$ и, следовательно, $\|s_{\nu_k} - x\| \leqslant \frac{1}{k}$. \triangleright

ЛИТЕРАТУРА

- 1. Кусраев А. Г. Мажорируемые операторы. М.: Наука, 2003.
- 2. Кусраев А. Г., Кутателадзе С. С. Введение в булевозначный анализ. М.: Наука, 2005.
- 3. Ганиев И. Г., Кудайбергенов К. К. Принцип равномерной ограниченности Банаха Штейнгауза для операторов в пространствах Банаха Канторовича над L^0 // Мат. тр. 2006. Т. 9, № 1. С. 21–33.
- Гутман А. Е. Банаховы расслоения в теории решеточно нормированных пространств // Линейные операторы, согласованные с порядком. Новосибирск: Изд-во Ин-та математики, 1995. С. 63–211.
- **5.** *Кутателадзе С. С.* Основы функционального анализа. Новосибирск: Изд-во Ин-та математики, 2006.
- 6. Рудин У. Функциональный анализ. М.: Мир, 1977.

Статья поступила 2 июня 2009 г.

Гутман Александр Ефимович Институт математики им. С. Л. Соболева СО РАН, пр. Академика Коптюга, 4, Новосибирск 630090 gutman@math.nsc.ru

Лисовская Светлана Алексеевна Новосибирский гос. университет, механико-математический факультет, ул. Пирогова, 2, Новосибирск 630090 lisovskaya_sveta@ngs.ru