СВОЙСТВА ФУНКЦИОНАЛА ОТ ТРАЕКТОРИЙ, ВОЗНИКАЮЩЕГО ПРИ АНАЛИЗЕ ВЕРОЯТНОСТЕЙ БОЛЬШИХ УКЛОНЕНИЙ СЛУЧАЙНЫХ БЛУЖДАНИЙ

А. А. Боровков, А. А. Могульский

Аннотация. Так называемый функционал (интеграл) уклонений описывает логарифмическую асимптотику вероятностей больших уклонений траекторий случайных блужданий, порожденных суммами случайных величин (векторов) (см., например, [1,2]). В настоящей работе он определен на более широком, чем ранее, пространстве функций и при более слабых условиях на распределения скачков случайного блуждания. Интеграл уклонений оказывается интегралом Дарбу $\int F(t,u)$ от полуаддитивной функции интервала F(t,u) специального вида. Изучены свойства интеграла уклонений. Результаты используются в [3] для доказательства обобщений известного принципа больших уклонений, установленного ранее при весьма ограничительных условиях.

Ключевые слова: условие Крамера, функция уклонений, случайное блуждание, функционал уклонений, интеграл уклонений, вариация функции, полуаддитивная функция, интеграл Дарбу.

§1. Введение

Пусть ξ_1,ξ_2,\ldots — независимые копии случайного вектора ξ из $\mathbb{R}^d,\ S_0=0,$ $S_n:=\sum\limits_{k=1}^n\xi_k$ при $n\geq 1,$

$$\varphi(\lambda) := \mathbf{E}e^{\langle \lambda, \xi \rangle}, \quad \Lambda(\alpha) := \sup_{\lambda} \{\langle \lambda, \alpha \rangle - \ln \varphi(\lambda)\}, \ \alpha \in \mathbb{R}^d,$$
(1.1)

где $\langle \lambda, \alpha \rangle = \sum\limits_{j=1}^d \lambda_{(j)} \alpha_{(j)}; \, \lambda_{(j)}, \, \alpha_{(j)}$ — координаты соответственно векторов λ и α .

Локальный принцип больших уклонений (л.п.б.у.) применительно к последовательности S_n утверждает, что

$$\lim_{\varepsilon \to 0} \lim_{n \to \infty} \frac{1}{n} \ln \mathbf{P} \left(\frac{S_n}{n} \in (\alpha)_{\varepsilon} \right) = -\Lambda(\alpha), \tag{1.2}$$

где $(\alpha)_{\varepsilon}$ — ε -окрестность точки α . Утверждение (1.2) поясняет вероятностный смысл функции $\Lambda(\alpha)$, которую мы называем ϕ ункцией уклонений. Оно наиболее содержательно, если выполнено условие Крамера

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (коды проектов 05–01–00810, 07–01–00595, 08–01–00962) и Совета по грантам президента РФ и государственной поддержке ведущих научных школ (коды проектов НШ–8980.2006.1, РНШ.2.1.1.1379).

 $[\mathbf{C}]\ \varphi(\lambda) < \infty$ в окрестности некоторой точки $\mu \in \mathbb{R}^d$.

Если выполнено условие [C], то функция $\Lambda(\alpha)$ конечна, неотрицательна и аналитична в открытой части (\mathscr{A}') телесной в \mathbb{R}^d области

$$\mathscr{A}' := \{A'(\lambda) : \lambda \in \mathscr{A}\}, \quad \text{где } A(\lambda) := \ln \varphi(\lambda), \ \mathscr{A} := \{\lambda : A(\lambda) < \infty\}.$$

Нам понадобятся также более сильные условия на распределение ξ :

[**C**₀] выполнено условие [**C**] при $\mu = 0$;

 $[\mathbf{C}_{\infty}]$ выполнено условие $[\mathbf{C}]$ при всех $\mu \in \mathbb{R}^d$.

Таким образом, верны соотношения $[\mathbf{C}_{\infty}] \subset [\mathbf{C}_0] \subset [\mathbf{C}]$.

Рассмотрим в пространстве $\mathbb{C}=\mathbb{C}^d[0,1]$ случайную непрерывную ломаную $s_n=s_n(t)$, построенную по «узловым» точкам $\left(\frac{k}{n},\frac{S_k}{n}\right),\,k=0,1,\ldots,n,$ и обозначим через I(f) интеграл Лебега

$$I(f) := \int\limits_0^1 \Lambda(f'(t)) \, dt, \quad \text{где } f'(t) = (f'_{(1)}(t), \dots, f'_{(d)}(t)), \qquad (1.3)$$

определенный на функциях f из пространства $\mathbb{C}_a \subset \mathbb{C}$ абсолютно непрерывных функций на отрезке [0,1]. Тогда при выполнении условия $[\mathbf{C}_{\infty}]$ аналогично (1.2) справедлив л.п.б.у. для траекторий случайного блуждания $s_n = s_n(\cdot)$:

$$\lim_{\varepsilon \to 0} \lim_{n \to \infty} \frac{1}{n} \ln \mathbf{P}(s_n \in (f)_{\varepsilon}) = - \begin{cases} I(f), & \text{если} f \in \mathbb{C}_a, f(0) = 0, \\ \infty & \text{в остальных случаях,} \end{cases}$$
(1.4)

где $(f)_{\varepsilon}$ есть ε -окрестность точки f в равномерной метрике.

Если условие $[\mathbf{C}_{\infty}]$ не выполнено, то соотношение (1.4), вообще говоря, перестает быть верным (подробнее об этом см. [3]). Возникает естественный вопрос: можно ли расширить пространство \mathbb{C}_a и определить на этом расширении функционал J(f) (совпадающий с I(f) при выполнении условия $[\mathbf{C}_{\infty}]$ и $f \in \mathbb{C}_a$) таким образом, чтобы левая часть (1.4) для f из расширенного пространства (при f(0)=0) совпадала с J(f) при выполнении лишь условия $[\mathbf{C}_0]$ или $[\mathbf{C}]$? Настоящая работа и работа [3] посвящены этим вопросам.

В § 2 расширение пространства \mathbb{C}_a и построение на этом расширенном пространстве интеграла уклонений J(f) осуществлены в одномерном случае d=1; описаны основные свойства функционала J(f). В § 3 содержатся доказательства основных утверждений § 2, § 4 посвящен многомерному случаю $d \geq 2$. Результаты работы используются в [3] для доказательства локального и так называемого «расширенного» принципов больших уклонений.

$\S \, \mathbf{2}.$ Интеграл уклонений в одномерном случае d=1

2.1. Пространство $\mathbb D$ функций без разрывов второго рода и метрика ρ . В качестве пространства траекторий для случайных блужданий будем рассматривать расширение $\mathbb D$ известного пространства $\mathbb D[0,1]$ функций без разрывов второго рода, состоящее из функций $f=f(t)\colon [0,1]\to \mathbb R$, имеющих в каждой точке $t\in (0,1)$ пределы слева и справа и таких, что в точках разрыва $t\in (0,1)$ значение f(t) лежит в отрезке [f(t-0),f(t+0)], а значения f(0) и f(1) не обязательно совпадают со значениями f(+0) и f(1-0) соответственно. Отметим, что функции f из расширенного пространства $\mathbb D$ сохраняют свойство сепарабельности: для любого счетного всюду плотного на [0,1] множества U, содержащего точки 0 и 1, выполняется

$$\sup_{(a,b)} f(t) = \sup_{(a,b)\cap U} f(t).$$

В качестве метрики возьмем метрику $\rho = \rho_{\mathbb{F}}$, введенную в [4] для пространства \mathbb{F} , более широкого, чем \mathbb{D} . Топология, порожденная метрикой ρ , совпадает с топологией M_2 Скорохода, описанной в [5]. Метрику ρ можно рассматривать и как распространение метрики Леви в пространстве неубывающих функций (см., например, [6]) на более широкое пространство \mathbb{D} .

Метрика ρ определяется следующим образом. Для любой функции $f \in \mathbb{D}$ определим график этой функции как односвязное множество Γf в $[0,1] \times \mathbb{R}$ такое, что его сечение в точке t совпадает с отрезком [f(t-0),f(t+0)]. Это множество совпадает с кривой (t,f(t)) везде, за исключением точек разрыва функции f. Точки (t,f(t-0)),(t,f(t+0)) в точках разрыва t соединяются отрезком прямой. В каждой точке множества Γf построим открытый шар (в евклидовой метрике) радиуса ε в 2-мерном пространстве $[0,1] \times \mathbb{R}$. Область, полученную пересечением полосы $0 \le t \le 1$ с объединением этих шаров, обозначим через $(\Gamma f)_{\varepsilon}$ и назовем ε -окрестностью графика Γf функции f.

Будем писать $\rho(f,g)<\varepsilon$, если одновременно $\Gamma f\in (\Gamma g)_{\varepsilon}$ и $\Gamma g\in (\Gamma f)_{\varepsilon}$. Другими словами,

$$\rho(f,g) := \max\{r(f,g), r(g,f)\}, \quad r(f,g) := \max_{v \in \Gamma f} \min_{u \in \Gamma g} |u - v|,$$

 $u=(u_1,u_2),\,v=(v_1,v_2),\,u_1,v_1\in[0,1],\,u_2,v_2\in\mathbb{R},$ и $|\cdot|$ означает евклидову норму в $\mathbb{R}^2.$

Легко видеть, что из $\Gamma f \in (\Gamma g)_{\varepsilon_1}$ и $\Gamma g \in (\Gamma h)_{\varepsilon_2}$ следует $\Gamma f \in (\Gamma h)_{\varepsilon_1+\varepsilon_2}$, а из $\Gamma h \in (\Gamma g)_{\varepsilon_2}$ и $\Gamma g \in (\Gamma f)_{\varepsilon_1}$ вытекает $\Gamma h \in (\Gamma f)_{\varepsilon_1+\varepsilon_2}$. Поэтому ρ удовлетворяет неравенству треугольника: $\rho(f,h) \leq \rho(f,g) + \rho(g,h)$. Очевидно, что

$$\rho(f,g) \le \rho_{\mathbb{C}}(f,g), \quad \text{где } \rho_{\mathbb{C}}(f,g) := \sup_{0 \le t \le 1} |f(t) - g(t)|.$$
(2.1)

Отметим, что правильнее было бы называть ρ nceedomempukoŭ, поскольку из равенства $\rho(f,g)=0$ не следует, вообще говоря, равенство f=g (если функции $f,g\in\mathbb{D}$ различаются только в точках разрывов, то графики этих функций совпадают и $\rho(f,g)=0$).

В дальнейшем функционал ρ будем называть метрикой; это нигде не приведет к недоразумениям.

Как мы увидим ниже (см. п. (iii) теоремы 2.2), основной интерес для нас будут представлять функции из пространства $\mathbb V$ ограниченной вариации. В этом случае всегда существует непрерывная параметризация кривой Γf в $\mathbb R^2$. В качестве параметра можно взять, например, длину кривой или непрерывное монотонное преобразование от нее. Параметризацию нетрудно осуществить и в том случае, когда лишь разрывная компонента функции f имеет ограниченную вариацию. В этих случаях наряду с ρ можно использовать также метрику ρ^* (в известном смысле более адекватную рассматриваемым задачам), которая определяется следующим образом.

Пусть $\mathbf{f}(s) \in \mathbb{R}^2$, $s \in [0,1]$ — непрерывное параметрическое задание кривой Γf в \mathbb{R}^2 . Будем считать, что $\rho^*(f,g) < \varepsilon$, если существует монотонное непрерывное отображение $r(s): [0,1] \to [0,1]$ такое, что

$$\sup_{s \in [0,1]} |\mathbf{f}(s) - \mathbf{g}(r(s))| < \varepsilon.$$

Нетрудно видеть, что метрика ρ^* «слабее» равномерной метрики и метрики Скорохода, но «сильнее» метрики ρ .

2.2. Интеграл уклонений. Рассмотрим разбиения

$$\mathbf{t}_K = \{t_0, t_1, \dots, t_K\}, \quad t_0 = 0 < t_1 < \dots < t_{K-1} < t_K = 1,$$

отрезка [0,1] на непересекающиеся полуинтервалы $\Delta_k[t_k):=[t_k,t_k+\Delta_k),\ k=0,\ldots,K-2,$ и отрезок $\Delta_{K-1}[t_{K-1}]:=[t_{K-1},t_K],$ где $\Delta_k:=t_{k+1}-t_k,\ k=0,\ldots,K-1.$ Последовательность $\{\mathbf{t}_K\}$ таких разбиений при $K\to\infty$ будем называть nлотной, если

$$\max_{0 \le k \le K-1} \Delta_k \to 0$$
 при $K \to \infty$.

Определение 2.1. Будем говорить, что существует интеграл уклонений J(f) от функции $f \in \mathbb{D}$, если для любой плотной последовательности разбиений \mathbf{t}_K существует

$$\lim_{K \to \infty} \sum_{k=0}^{K-1} \Delta_k \Lambda\left(\frac{f(t_{k+1}) - f(t_k)}{\Delta_k}\right) =: J(f)$$
(2.2)

и этот предел не зависит от выбора плотной последовательности.

Если f абсолютно непрерывна, то J(f) естественно записать в виде

$$J(f) = \int\limits_0^1 \Lambda(g(t))\,dt, \quad g(t) = f'(t).$$

По определению J(f) является пределом специальных «римановых» интегральных сумм, построенных по $cpe\partial num$ значениям функции g на интервалах $\Delta_k[t_k)$:

$$rac{1}{\Delta_k}\int\limits_{t_k}^{t_k+\Delta_k} g(u)\,du = rac{f(t_{k+1})-f(t_k)}{\Delta_k}.$$

Так как f'(t) для абсолютно непрерывной функции f(t) есть измеримая функция, для которой

$$f(t) - f(t_0) = \int_{t_0}^t f'(u) du, \quad t \ge t_0,$$

то функция $\Lambda(f'(t))$ также измерима и для нее всегда существует интеграл Лебега (1.3).

Конструкция интеграла уклонений продиктована природой изучаемых явлений (см. [3]), а сам интеграл J(f) есть интеграл Дарбу

$$\int F(t,u) := \lim_{K \to \infty} \sum_{k < K} F(t_k, t_{k+1})$$
(2.3)

от функции интервала

$$F(t,u) = (u-t)\Lambda\left(\frac{f(u)-f(t)}{u-t}\right). \tag{2.4}$$

Интеграл (2.3) изучался в работах Римана и Дарбу (см., например, [7, с. 27–36]). В ряде случаев существование интеграла J(f) будет следовать из теоремы Дарбу (см. [7, с. 33] и замечание после теоремы 2.1).

Определение 2.1 сохраняет свою силу, если функцию уклонений $\Lambda(\alpha)$ заменить произвольной выпуклой полунепрерывной снизу функцией $M=M(\alpha)$, отображающей $\mathbb R$ в расширенную полупрямую $[0,\infty]$. В этом случае соответствующий функционал будем обозначать через J^M . В частности, при $M(\alpha)=|\alpha|$ получаем в качестве $J^M(f)$ полную вариацию функции $f\in\mathbb D$:

$$J^M(f) = \operatorname{Var} f.$$

2.3. Теорема существования интеграла уклонений и его основные свойства. Для разбиения \mathbf{t}_K отрезка [0,1] и функции f=f(t) через $f^{\mathbf{t}_K} \in \mathbb{C}_a$ обозначим непрерывную ломаную, построенную по узловым точкам

$$(0, f(0)), \ldots, ((t_k, f(t_k)), \ldots, (1, f(1)))$$

Тогда сумму в левой части (2.2) можно записать в виде $I(f^{\mathbf{t}_K})$. Одно из основных утверждений настоящей работы состоит в следующем.

Теорема 2.1. Если $f \in \mathbb{D}$, то интеграл уклонений J(f) (конечный или бесконечный) всегда существует, при этом

$$J(f) = \sup I(f^{\mathbf{t}_K}),\tag{2.5}$$

где верхняя грань берется по всем разбиениям \mathbf{t}_K отрезка [0,1].

Eсли $\rho(f,g)=0$, то

$$J(f) = J(g). (2.6)$$

Отметим, что в силу выпуклости функции Λ (см. [2] и п. 3.1) функция интервала F(t,u), определенная в (2.4), полуаддитивна, т. е. при t < u < v удовлетворяет неравенству

$$F(t, v) < F(t, u) + F(u, v)$$
.

Для таких функций интегральные суммы в (2.3) при измельчении разбиений \mathbf{t}_K (т. е. при добавлении новых точек деления) не убывают. Пусть далее функция F(t,u) непрерывна в каждой точке v в следующем смысле: $F(v-\varepsilon_1,v+\varepsilon_2)\to 0$ при $\varepsilon_1+\varepsilon_2\to 0,\ \varepsilon_1>0,\ \varepsilon_2>0$ и, кроме того, значение $\mathbf{S}(F)$ верхней грани интегральных сумм в (2.3) по всем разбиениям \mathbf{t}_K конечно. При этих предположениях теорема Дарбу устанавливает существование интеграла $\int F(t,u)$, к тому же $\int F(t,u) = \mathbf{S}(F)$ (ср. со свойством (2.5) в теореме (2.5)). Теорема (2.5)0 в теорему Дарбу для функций (2.5)1 в теореме (2.5)2 в теореме (2.5)3. Которые, вообще говоря, не являются непрерывными, а значение (2.5)3 не обязательно конечно.

Назовем теперь основные свойства функционала J(f).

Теорема 2.2. (i) Функционал J(f) является выпуклым:

$$J(pf_1 + (1-p)f_2) \le pJ(f_1) + (1-p)J(f_2), \quad p \in [0,1], \ f_i \in \mathbb{D}, \ i = 1, 2.$$

(ii) Функционал J(f) полунепрерывен снизу относительно метрики ρ :

$$\lim_{\rho(f_n, f) \to 0} J(f_n) \ge J(f).$$
(2.7)

(ііі) Если выполнено условие [C] и Var $f=\infty$, то $J(f)=\infty$. Если выполнено условие [C₀], то существуют постоянные $c_1>0,\,c_2>0$ такие, что

$$J(f) \geq c_1 \operatorname{Var} f - c_2$$
.

- (iv) Если $f \in \mathbb{D} \setminus \mathbb{C}_a$ и выполнено условие $[\mathbf{C}_{\infty}]$, то $J(f) = \infty$.
- (v) Для любой функции $f \in \mathbb{C}_a$ выполняется J(f) = I(f).
- (vi) Для любого B

$$J(B) \le I_a(B),\tag{2.8}$$

где $J(B):=\inf_{f\in B}J(f),\ I_a(B):=\inf_{f\in B\cap\mathbb{C}_a}I(f).$ Для любого открытого в (\mathbb{D},ρ) множества B выполняется

$$J(B) = I_a(B). (2.9)$$

Утверждение (2.9) сохраняется для любого открытого относительно метрики $\rho_{\mathbb{C}}$ множества $B \subset \mathbb{C}$.

(vii) Если выполнено условие $[\mathbf{C}_{\infty}]$, то для любого $v \geq 0$ множество $J_v := \{f \in \mathbb{C} : f(0) = 0, J(f) \leq v\}$ компактно в $(\mathbb{C}, \rho_{\mathbb{C}})$.

Обозначим через $(f)_{\mathbb{C},\varepsilon}$ и $(f)_{\varepsilon}$ ε -окрестности точки f в равномерной метрике $\rho_{\mathbb{C}}$ и метрике ρ соответственно.

Следствие 2.1. Имеют место соотношения

$$J(f) = \lim_{\varepsilon \to 0} I_a((f)_{\mathbb{C},\varepsilon})$$
 для $f \in \mathbb{C}; \quad J(f) = \lim_{\varepsilon \to 0} I_a((f)_{\varepsilon})$ для $f \in \mathbb{D}.$ (2.10)

ДОКАЗАТЕЛЬСТВО. (а) Докажем второе равенство в (2.10). Так как в силу утверждения (vi) теоремы 2.2 выполняется $J((f)_{\varepsilon})=I_a((f)_{\varepsilon})$, достаточно доказать, что

$$J(f) = \lim_{\varepsilon \to 0} J((f)_{\varepsilon})$$
 для $f \in \mathbb{D}.$ (2.11)

Поскольку $J(f) \geq J((f)_{\varepsilon})$, то

$$\overline{\lim}_{\varepsilon \to 0} J((f)_{\varepsilon}) \le J(f). \tag{2.12}$$

С другой стороны, для произвольных $\delta > 0$, $N < \infty$ и любого k найдется функция $f_k \in (f)_{1/k}$ такая, что $J((f)_{1/k}) \ge \min\{J(f_k) - \delta, N\}$ (число N вводится на случай $J(f) = \infty$). В силу утверждения (ii) теоремы 2.2

$$\underline{\lim_{k\to\infty}} J(f_k) \ge J(f),$$

поэтому

$$\varliminf_{\varepsilon \to 0} J((f)_\varepsilon) = \varliminf_{k \to \infty} J((f)_{1/k}) \ge \min\{J(f) - \delta, N\}.$$

Так как δ и N произвольны, отсюда получаем неравенство

$$\underline{\lim_{\varepsilon \to 0}} J((f)_{\varepsilon}) \ge J(f),$$

которое вместе с (2.12) доказывает (2.11).

(b) Докажем первое равенство в (2.10). Так как $(f)_{\mathbb{C},\varepsilon} \subset (f)_{\varepsilon}$, имеем

$$I_a((f)_{\varepsilon}) \leq I_a((f)_{\mathbb{C},\varepsilon}).$$

Поэтому в силу утверждения (vi) теоремы 2.2 выполняется $J((f)_{\varepsilon}) = I_a((f)_{\varepsilon}) \le I_a((f)_{\mathbb{C},\varepsilon})$ и, следовательно, ввиду уже доказанного второго равенства в (2.10)

$$J(f) = \lim_{\varepsilon \to 0} I_a((f)_{\varepsilon}) \le \overline{\lim_{\varepsilon \to 0}} I_a((f)_{\mathbb{C},\varepsilon}). \tag{2.13}$$

С другой стороны, для $\varepsilon > 0$, $f \in \mathbb{C}$ и фиксированной плотной последовательности разбиений \mathbf{t}_K найдется достаточно большое K такое, что $f^{\mathbf{t}_K} \in (f)_{\mathbb{C},\varepsilon}$.

Поэтому $I_a((f)_{\mathbb{C},\varepsilon}) \leq I(f^{\mathbf{t}_K})$ и в силу утверждения (2.5) теоремы 2.1 при любом $\varepsilon > 0$

$$J(f) = \sup I(f^{\mathbf{t}_K}) \ge I_a((f)_{\mathbb{C},\varepsilon}).$$

Это неравенство вместе с (2.13) доказывает первое неравенство в (2.10). Следствие 2.1 доказано.

Отметим, что равенства (2.10), (2.5) могут играть роль определения интеграла уклонений в пространствах ($\mathbb{C}, \rho_{\mathbb{C}}$) и (\mathbb{D}, ρ) соответственно (ср. с определением $I^{\lim}(f)$ в [8]).

Обозначим

$$\lambda_{+} := \sup\{\lambda : \varphi(\lambda) < \infty\} \ge 0, \quad \lambda_{-} := \inf\{\lambda : \varphi(\lambda) < \infty\} \le 0.$$

Если выполнено условие $[\mathbf{C}_+] := \{\lambda_+ > 0\} \subset [\mathbf{C}]$, то существуют конечные постоянные $c_1 > 0, \, c_2 > 0$ такие, что

$$\Lambda(\alpha) \ge c_1 \alpha - c_2$$
 при $\alpha \ge 0$. (2.14)

Это вытекает из выпуклости $\Lambda(\alpha)$ и того, что $\Lambda(\alpha) \to \infty$ при $\alpha \to \infty$ в случае $\lambda_+ > 0$. Аналогичное соотношение справедливо при выполнении условия $[\mathbf{C}_-] := \{\lambda_- < 0\} \subset [\mathbf{C}]$.

Утверждение (iii) теоремы 2.2 показывает, что при изучении функционала J основной интерес представляют функции $f \in \mathbb{D}$ из пространства \mathbb{V} функций ограниченной вариации. Напомним, что по теореме Лебега каждая функция f ограниченной вариации допускает единственное разложение в виде

$$f = f_a + f_s + f_{\partial}, \quad f_a(0) = f(0), \quad f_s(0) = f_{\partial}(0) = 0,$$
 (2.15)

где f_a, f_s, f_{∂} — абсолютно непрерывная, сингулярная (непрерывная) и дискретная компоненты соответственно.

Для функции $f \in \mathbb{V}$ справедливо единственное представление

$$f(t) = f_{+}(t) - f_{-}(t), \ t \in [0,1], \quad f(0) = f_{+}(0), \quad f_{-}(0) = 0,$$

в виде разности двух неубывающих функций f_{\pm} такое, что $\operatorname{Var} f = \operatorname{Var} f_{+} + \operatorname{Var} f_{-}$. Обозначим $\operatorname{Var}^{\pm} f := \operatorname{Var} f_{\pm} = f_{\pm}(1) - f_{\pm}(0)$.

Теорема 2.3. Для любой функции $f = f_a + f_s + f_\partial \in \mathbb{V}$ справедливо представление

$$J(f) = I(f_a) + \lambda_+ \operatorname{Var}^+(f_s + f_{\partial}) - \lambda_- \operatorname{Var}^-(f_s + f_{\partial}). \tag{2.16}$$

Так как согласно (2.16)

$$J(f_{\partial}) = \Lambda(0) + \lambda_{+} \operatorname{Var}^{+} f_{\partial} - \lambda_{-} \operatorname{Var}^{-} f_{\partial}$$

и такое же представление имеет место для компоненты f_s , то в случае $\Lambda(0)=0$ (это всегда так, если $\mathbf{E}\xi=0$) интеграл J(f) (не являясь линейным функционалом от f) оказывается аддитивным относительно разложения (2.15):

$$J(f) = J(f_a) + J(f_s) + J(f_{\partial}).$$

Отметим также, что в важном частном случае $f_s \equiv 0$ справедливо представление

$$J(f) = I(f_a) + \lambda_+ \sum_{k} f_{\partial,k+} - \lambda_- \sum_{k} f_{\partial,k-},$$
 (2.17)

где $f_{\partial,k+}$ $(f_{\partial,k-}), k=1,2,\ldots,$ — занумерованные положительные (отрицательные) скачки функции f_{∂} .

Из приведенных утверждений видно, что значение J(f) не зависит от расположения скачков функции f и от расположения множеств, на которых сосредоточено изменение компонент $f_{s\pm}$. Кроме того, J(f) является неубывающей линейной функцией переменных $\operatorname{Var} f_{\partial\pm}$, $\operatorname{Var} f_{s\pm}$.

§ 3. Доказательства

- **3.1.** Доказательство теоремы **2.1.** Нам понадобятся следующие свойства функции уклонений (здесь мы вернемся к общему случаю $d \ge 1$), которые можно найти, например, в [9].
 - 1. Функция $\Lambda(\alpha)$ выпукла вниз: для $\alpha, \beta \in \mathbb{R}^d, \, p \in [0,1]$

$$\Lambda(p\alpha + (1-p)\beta) \le p\Lambda(\alpha) + (1-p)\Lambda(\beta).$$

2. Функция $\Lambda(\alpha)$ полунепрерывна снизу:

$$\underline{\lim}_{\alpha_n \to \alpha} \Lambda(\alpha_n) \ge \Lambda(\alpha), \quad \alpha \in \mathbb{R}^d.$$

В дальнейшем существенную роль будет играть поведение функций $A(\lambda)$ и $\Lambda(\alpha)$ на бесконечности. Если выполнено условие $[\mathbf{C}_0]$, то, как уже отмечалось в (2.14), существуют конечные постоянные $c_1>0$, $c_2>0$ такие, что

$$\Lambda(\alpha) \ge c_1 |\alpha| - c_2$$
 при $\alpha \in \mathbb{R}^d$. (3.1)

Если же выполнено условие $[\mathbf{C}_{\infty}]$, то $\Lambda(\alpha)$ стремится к бесконечности быстрее любой линейной функции: для некоторого $c \geq 0$ и некоторой непрерывной неограниченно возрастающей при $t \to \infty$ функции u(t) выполняется

$$\Lambda(\alpha) > u(|\alpha|)|\alpha| - c$$
 при $\alpha \in \mathbb{R}^d$ (3.2)

(см., например, [9]).

Вернемся к доказательству теоремы. Надо доказать, что для каждой плотной последовательности разбиений \mathbf{t}_K существует общий предел $\lim_{K\to\infty} I(f^{\mathbf{t}_K})$. Будем говорить, что разбиение \mathbf{u}_L включено в разбиение \mathbf{t}_K , и будем писать $\mathbf{u}_L\subset\mathbf{t}_K$, если $K\geq L$ и множество $\{u_0,\ldots,u_L\}$ — часть множества $\{t_0,\ldots,t_K\}$. В силу выпуклости функции уклонений $\Lambda(\alpha)$ имеем

$$I(f^{\mathbf{u}_L}) \le I(f^{\mathbf{t}_K}), \quad \text{если } \mathbf{u}_L \subset \mathbf{t}_K.$$
 (3.3)

Далее, для фиксированного разбиения $\mathbf{t}_K=(t_0,\ldots,t_K)$ рассмотрим последовательность разбиений $\mathbf{t}_K^{(n)}=\left(t_0^{(n)},\ldots,t_K^{(n)}\right)$, «сходящуюся» при $n\to\infty$ к \mathbf{t}_K , т. е. такую, что

$$\lim_{n\to\infty} \max_{1\leq k\leq K-1} \left|t_k - t_k^{(n)}\right| = 0.$$

В силу полунепрерывности снизу функции уклонений $\Lambda(\alpha)$

$$\lim_{n \to \infty} I(f^{\mathbf{t}_K^{(n)}}) \ge I(f^{\mathbf{t}_K}).$$
(3.4)

Рассмотрим две плотные последовательности разбиений $\mathbf{u}_{L_n}^{(n)}$, $\mathbf{v}_{M_n}^{(n)}$ ($L_n, M_n \to \infty$ при $n \to \infty$). Фиксируем разбиение $\mathbf{u}_{L_{n_0}}^{(n_0)}$ и для него (удаляя из разбиения $\mathbf{v}_{M_n}^{(n)}$ «лишние» элементы) строим последовательность разбиений $\mathbf{w}_{L_{n_0}}^{(n)}$, удовлетворяющую двум соотношениям: (a) $\mathbf{w}_{L_{n_0}}^{(n)} \subset \mathbf{v}_{M_n}^{(n)}$ при всех достаточно больших n; (b) $\lim_{n \to \infty} \max_{1 \le k \le L_{n_0} - 1} \left| w_k^{(n)} - u_k^{(n_0)} \right| = 0$. В силу (3.3), (3.4) и соотношений (a), (b) имеем

$$\underline{\lim_{n\to\infty}} I(f^{\mathbf{v}_{K_n}^{(n)}}) \geq \underline{\lim_{n\to\infty}} I(f^{\mathbf{w}_{Ln_0}^{(n)}}) \geq I(f^{\mathbf{u}_{Ln_0}^{(n_0)}}).$$

Поскольку в правой части последнего неравенства находится произвольное разбиение из последовательности $\mathbf{u}_{L_n}^{(n)}$, неравенство сохранится, если эту правую часть заменить верхним пределом $\varlimsup_{n\to\infty} I(f^{\mathbf{u}_{L_n}^{(n)}})$. Поэтому

$$\underline{\lim_{n \to \infty}} I(f^{\mathbf{v}_{M_n}^{(n)}}) \ge \overline{\lim_{n \to \infty}} I(f^{\mathbf{u}_{L_n}^{(n)}}). \tag{3.5}$$

Аналогично получаем

$$\underline{\lim_{n \to \infty}} I(f^{\mathbf{u}_{L_n}^{(n)}}) \ge \overline{\lim_{n \to \infty}} I(f^{\mathbf{v}_{M_n}^{(n)}}). \tag{3.6}$$

Неравенства (3.5), (3.6) доказывают первое утверждение теоремы 2.1.

Второе утверждение является очевидным следствием первого: если $\{\mathbf{t}_K\}$ — плотная последовательность разбиений, для которой $I(f^{\mathbf{t}_K}) \to \sup I(f^{\mathbf{t}_K})$ при $K \to \infty$, то

$$J(f) = \lim_{K \to \infty} I(f^{\mathbf{t}_K}) = \sup I(f^{\mathbf{t}_K}).$$

Докажем, наконец, (2.6). Если $\rho(f,g)=0$, то f(t)=g(t) всюду, кроме, быть может, точек разрыва. Так как $J(f^{\mathbf{t}_K})=J(g^{\mathbf{t}_K})$ для разбиений \mathbf{t}_K , не содержащих точек разрыва функции f, из первого утверждения теоремы вытекает J(f)=J(g). Теорема доказана.

- **3.2.** Доказательство теоремы **2.2.** (i) Поскольку функция уклонений $\Lambda(\alpha)$ выпукла, функционал I(f) на классе абсолютно непрерывных функций также выпуклый. В силу теоремы 2.1 это свойство сохранится и для функционала J(f) в пространстве \mathbb{D} .
- (ii) Полунепрерывность J(f) снизу вытекает из следующих четырех замечаний.
 - (1) Для любых $\varepsilon > 0$ и $N < \infty$ найдется разбиение \mathbf{t}_K такое, что

$$J(f^{\mathbf{t}_K}) \ge \min\{J(f) - \varepsilon, N\} \tag{3.7}$$

(число N введено на случай $J(f) = \infty$).

(2) Если $\rho(f,g)=0$ и $f_n\to f$, то J(f)=J(g) и $f_n\to g$. Поэтому, не ограничивая общности, можно считать, что функция f во всех внутренних точках разрыва непрерывна слева (или справа). Так как $\rho(f_n,f)\to 0$, найдется набор точек $\mathbf{t}_{K,n}=\left\{t_k^{(n)}\right\}_{k=0}^K$ такой, что

$$\lim_{n \to \infty} \max_{k \le K} \left\{ \left| t_k^{(n)} - t_k \right| + \left| f_n \left(t_k^{(n)} \right) - f(t_k) \right| \right\} = 0. \tag{3.8}$$

(3) Построим ломаную $f_n^{\mathbf{t}_{K,n}}$ по набору точек $(t_k^{(n)}, f_n(t_k^{(n)})), 0 \le k \le K$. Для нее в силу полунепрерывности функции $\Lambda(\alpha)$ снизу имеем

$$\underline{\lim}_{n \to \infty} I(f_n^{\mathbf{t}_{K,n}}) = \underline{\lim}_{n \to \infty} \sum_{k < K} (t_{k+1}^{(n)} - t_k^{(n)}) \Lambda\left(\frac{f_n(t_{k+1}^{(n)}) - f_n(t_k^{(n)})}{t_{k+1}^{(n)} - t_k^{(n)}}\right) \\
\geq \sum_{k < K} (t_{k+1} - t_k) \Lambda\left(\frac{f(t_{k+1}) - f(t_k)}{t_{k+1} - t_k}\right) = J(f^{\mathbf{t}_K}). \quad (3.9)$$

(4) Заметим, наконец, что

$$J(f_n) \ge I(f_n^{\mathbf{t}_{K,n}}). \tag{3.10}$$

Соединяя (3.7), (3.9), (3.10), получаем

$$\underline{\lim_{n \to \infty}} J(f_n) \ge J(f^{\mathbf{t}_K}) \ge \min\{J(f) - \varepsilon, N\}.$$

Так как $\varepsilon>0$ и $N<\infty$ произвольны, неравенство (2.7) доказано.

(ііі) Пусть Var $f=\infty$. Это означает, что для любой плотной последовательности разбиений \mathbf{t}_K выполняется

$$\lim_{K \to \infty} \sum_{k=0}^{K-1} |f(t_{k+1}) - f(t_k)| = \infty.$$

Поскольку при этом

$$\left| \sum_{k=0}^{K-1} (f(t_{k+1}) - f(t_k)) \right| = |f(1) - f(0)| < \infty,$$

одновременно

$$\lim_{K \to \infty} \sum_{k \in \mathcal{K}_{+}} (f(t_{k+1}) - f(t_{k})) = \infty, \quad \lim_{K \to \infty} \sum_{k \in \mathcal{K}_{-}} |f(t_{k+1}) - f(t_{k})| = \infty, \quad (3.11)$$

где $\mathscr{K}_+ := \{k \leq K - 1 : f(t_{k+1}) - f(t_k) > 0\}, \ \mathscr{K}_- := \{k \leq K - 1 : f(t_{k+1}) - f(t_k) < 0\}.$ Поскольку выполнено условие [C], то либо $\lambda_+ > 0$, либо $\lambda_- < 0$. Пусть для определенности $\lambda_+ > 0$. Тогда в силу неравенства (2.14)

$$I(f^{\mathbf{t}_K}) \ge \sum_{k \in \mathscr{K}_+} \Delta_k \Lambda\left(\frac{f(t_{k+1}) - f(t_k)}{\Delta_k}\right) \ge c_1 \sum_{k \in \mathscr{K}_+} (f(t_{k+1}) - f(t_k)) - c_2.$$

Ввиду первого неравенства в (3.11) получаем

$$J(f) = \lim_{K \to \infty} I(f^{\mathbf{t}_K}) = \infty.$$

Второе утверждение п. (ііі) вытекает из (3.1) и неравенства

$$I(f^{\mathbf{t}_K}) \ge c_1 \sum_{k=0}^{K-1} \Delta_k \left| \frac{f(t_{k+1}) - f(t_k)}{\Delta_k} \right| - c_2.$$

Утверждение п. (iii) доказано.

(iv) Пусть выполнено условие $[\mathbf{C}_{\infty}]$ и $f \in \mathbb{D}$ не абсолютно непрерывна. Тогда (см., например, [7, с. 58]) при некотором m>0 и любом $\delta>0$ найдется набор (зависящий от δ) непересекающихся интервалов $(r_i,s_i),\,i=1,\ldots,N,$ для которых

$$\left| \sum_{i \le N} (s_i - r_i) < \delta, \left| \sum_{i \le N} (f(s_i) - f(r_i)) \right| \ge m.$$

Так как по теореме 2.1

$$J(f) \ge \delta \sum_{i \le N} \frac{(s_i - r_i)}{\delta} \Lambda \left(\frac{f(s_i) - f(r_i)}{s_i - r_i} \right),$$

в силу выпуклости Λ

$$J(f) \ge \delta \Lambda \left(\frac{\sum\limits_{i \le N} (f(s_i) - f(r_i))}{\delta} \right).$$

Используя (3.2), получаем

$$J(f) \geq \delta \left(u \left(\frac{m}{\delta} \right) \frac{m}{\delta} - c \right) = m u \left(\frac{m}{\delta} \right) - \delta c.$$

Так как $u(t) \to \infty$ при $t \to \infty$, правая часть этого неравенства выбором δ может быть сделана сколь угодно большой. Это означает, что $J(f) = \infty$.

(v) Поскольку ломаная $f^{\mathbf{t}_K}$ «спрямляет» функцию $f\in\mathbb{C}_a$, в силу выпуклости Λ

$$I(f^{\mathbf{t}_K}) = \int\limits_0^1 \Lambda(f'_{\mathbf{t}_K}(t)) \, dt \leq \int\limits_0^1 \Lambda(f'(t)) \, dt = I(f).$$

Следовательно,

$$J(f) := \lim_{K \to \infty} I(f^{\mathbf{t}_K}) \le I(f). \tag{3.12}$$

Докажем теперь обратное неравенство

$$J(f) \ge I(f). \tag{3.13}$$

Обозначим через $g^{(K)}=g^{(K)}(t)$ производную ломаной $f^{\mathbf{t}_K}$. Функция $g^{(K)}(t)$ является ступенчатой функцией, которая постоянна на каждом интервале, определяемом разбиением \mathbf{t}_K . При этом на каждом интервале постоянства (u,v) производная равна $\frac{f^{\mathbf{t}_K}(v)-f^{\mathbf{t}_K}(u)}{v-u}=\frac{f(v)-f(u)}{v-u}$. Известно (см., например, [7, с. 86]), что для плотной последовательности разбиений и для абсолютно непрерывной функции f(t) для почти всех (относительно меры Лебега) точек $t\in[0,1]$ производная f'(t) является пределом последовательности ступенчатых функций $g^{(K)}$:

$$f'(t) = \lim_{K \to \infty} g^{(K)}(t).$$

Это означает, в силу полунепрерывности снизу функции $\Lambda(\alpha)$, что для почти всех t из отрезка [0,1]

$$\lim_{K \to \infty} \Lambda(g^{(K)}(t)) \ge \Lambda(f'(t)).$$

По лемме Фату

$$\begin{split} J(f) &= \lim_{K \to \infty} I(f^{\mathbf{t}_K}) = \varliminf_{K \to \infty} I(f^{\mathbf{t}_K}) = \varliminf_{K \to \infty} \int_0^1 \Lambda(g^{(K)}(t)) \, dt \\ &\geq \int_0^1 \varliminf_{K \to \infty} \Lambda(g^{(K)}(t)) \, dt \geq \int_0^1 \Lambda(f'(t)) \, dt = I(f). \end{split}$$

Неравенство (3.13) доказано. Вместе с неравенством (3.12) оно доказывает утверждение (v).

(vi) Нам понадобится

Лемма 3.1. Для любой функции $f \in \mathbb{D}$ и любой плотной последовательности \mathbf{t}_K разбиений отрезка [0,1] выполняется

$$\lim_{K \to \infty} \rho(f, f^{\mathbf{t}_K}) = 0. \tag{3.14}$$

Доказательство. Фиксируем $f \in \mathbb{D}$ и плотную последовательность $\mathbf{t}_K = \{t_0, \dots, t_K\}$ разбиений отрезка [0,1].

Очевидно, что для любого $\varepsilon>0$ число точек разрыва функции f, по норме превосходящих ε , конечно (в противном случае счетное множество таких точек имело бы предельную точку t_0 на отрезке [0,1] и в этой точке функция f имела бы разрыв второго рода). Обозначим через f_{∂} ступенчатую функцию, образованную скачками функции f, по норме превосходящими ε . Положим $f_1=f-f_{\partial}$. Тогда найдется $\Delta>0$ такое, что

$$\sup_{0 \le u \le v \le 1, v - u \le \Delta} |f_1(v) - f_1(u)| \le 2\varepsilon$$

(в противном случае отыскалась бы точка $t_0 \in [0,1]$, в которой функция f имела бы разрыв второго рода). Поэтому при $t_j - t_{j-1} \le \Delta$

$$\sup_{t_{j-1} \leq t \leq t_j} \left| f_1(t) - f_1^{\mathbf{t}_K}(t) \right| \leq \sup_{t_{j-1} \leq t \leq t_j} \left| f_1(t) - f_1(t_j) \right| + \left| f_1(t_{j-1}) - f_1(t_j) \right| \leq 4\varepsilon.$$

Следовательно, для всех достаточно больших K таких, что

$$\max_{j \le K} (t_j - t_{j-1}) \le \Delta,$$

имеем

$$\rho_{\mathbb{C}}(f_1, f_1^{\mathbf{t}_K}) \le 4\varepsilon. \tag{3.15}$$

Нетрудно видеть, что

$$\overline{\lim}_{K \to \infty} \rho \left(f_1 + f_{\partial}, f_1 + f_{\partial}^{\mathbf{t}_K} \right) = 0. \tag{3.16}$$

Из неравенства треугольника и (2.1) вытекает, что

$$\rho(f_1 + f_{\partial}, f_1^{\mathbf{t}_K} + f_{\partial}^{\mathbf{t}_K}) \leq \rho(f_1 + f_{\partial}, f_1 + f_{\partial}^{\mathbf{t}_K}) + \rho(f_1 + f_{\partial}^{\mathbf{t}_K}, f_1^{\mathbf{t}_K} + f_{\partial}^{\mathbf{t}_K})
\leq \rho(f_1 + f_{\partial}, f_1 + f_{\partial}^{\mathbf{t}_K}) + \rho_{\mathbb{C}}(f_1, f_1^{\mathbf{t}_K}).$$

Поэтому в силу (3.15), (3.16) получаем $\varlimsup_{K\to\infty} \rho(f,f^{\mathbf{t}_K}) \le 4\varepsilon$. Поскольку $\varepsilon>0$ произвольно, это доказывает (3.14). Лемма доказана.

Вернемся к доказательству п. (vi). Очевидно, что

$$J(B) = \inf_{g \in B} J(g) \le \inf_{g \in B \cap \mathbb{C}_a} J(g) = \inf_{g \in B \cap \mathbb{C}_a} I(g) = I_a(B). \tag{3.17}$$

Поэтому неравенство (2.8) имеет место. Если $J(B) = \infty$, то

$$J(B) \ge I_a(B). \tag{3.18}$$

Если $J(B) < \infty$, то для любого ε существует функция $f \in B \subset \mathbb{D}$ такая, что $J(B) + \varepsilon \geq J(f)$. В силу леммы 3.1 для этой функции и плотной последовательности разбиений \mathbf{t}_K выполняется $\rho(f^{\mathbf{t}_K}, f) \to 0$ при $K \to \infty$. Поэтому для всех достаточно больших K ломаная $f^{\mathbf{t}_K}$ лежит в открытом множестве B вместе с f, при этом $J(B) + \varepsilon \geq J(f) \geq I(f^{\mathbf{t}_K}) \geq I_a(B)$. Следовательно, (3.18) тоже имеет место. Из (3.18) и (3.17) вытекает второе утверждение п. (vi).

Третье утверждение п. (vi) доказывается совершенно аналогично.

(vii) Установим компактность множества J_v при выполнении условия $[\mathbf{C}_{\infty}]$. Для функции f из множества J_v и функции u(t) из (3.2) имеем

$$|f(t) - f(t + \Delta)| \leq \int_{t}^{t+\Delta} |f'(s)| ds$$

$$\leq \int_{t}^{t+\Delta} |f'(s)| \mathbf{1}_{\{|f'(s)| \leq 1/\sqrt{\Delta}\}} ds + \int_{t}^{t+\Delta} |f'(s)| \mathbf{1}_{\{|f'(s)| \geq 1/\sqrt{\Delta}\}} ds$$

$$\leq \sqrt{\Delta} + \frac{1}{u(1/\sqrt{\Delta})} \int_{t}^{t+\Delta} u(|f'(s)|) |f'(s)| ds$$

$$\leq \sqrt{\Delta} + \frac{1}{u(1/\sqrt{\Delta})} \int_{t}^{t+\Delta} \Lambda(f'(u)) du \leq \sqrt{\Delta} + \frac{v}{u(1/\sqrt{\Delta})}.$$

Таким образом, для функции $f \in J_v$ ее модуль непрерывности $\omega_f(\Delta)$ допускает равномерную по J_v оценку

$$\omega_f(\Delta) \leq \sqrt{\Delta} + rac{v}{u(1/\sqrt{\Delta})} o 0$$
 при $\Delta o 0$.

По критерию Арцела это означает, что множество J_v вполне ограничено в пространстве ($\mathbb{C}, \rho_{\mathbb{C}}$). В силу полунепрерывности снизу функционала J(f) (см. утверждение (ii) теоремы 2.2) вполне ограниченное множество J_v замкнуто и, стало быть, компактно. Утверждение (vii) доказано.

Теорема 2.2 доказана.

3.3. Доказательство теоремы **2.3.** Заметим предварительно, что всегда существует

$$\lim_{t\to\infty}\frac{1}{t}\Lambda(\alpha t)=\Lambda_\infty(\alpha):=\left\{\begin{array}{ll}\lambda_+\alpha,&\text{если }\alpha>0,\\ -\lambda_-\alpha,&\text{если }\alpha<0.\end{array}\right. \eqno(3.19)$$

Это соотношение вытекает из представления

$$\Lambda(lpha) = \Lambda(0) + \int\limits_0^lpha \lambda(t)\,dt, \quad \lambda(t) := \Lambda'(t),$$

и свойства $\lim_{t \to \pm \infty} \lambda(t) = \lambda_{\pm}$ (см., например, [2]).

Докажем сначала утверждение теоремы 2.3 в случае $f_s \equiv 0$.

Лемма 3.2. Если $f_s \equiv 0$, то

$$J(f)=I(f_a)+\sum_{k=1}^{\infty}\Lambda_{\infty}(f_{\partial,k})$$
 $=I(f_a)+\lambda_+\sum_{h=1}^{\infty}f_{\partial,k+}-\lambda_-\sum_{h=1}^{\infty}f_{\partial,k-}=I(f_a)+\lambda_+\operatorname{Var}^+f_{\partial}-\lambda_-\operatorname{Var}^-f_{\partial}, \quad (3.20)$ где $f_{\partial,k\pm}$ определены в (2.17).

Доказательство. Пусть сначала для простоты f имеет конечное число скачков N. Рассмотрим плотную последовательность разбиений \mathbf{t}_K при $K=K_N$ настолько больших, что каждый интервал разбиения содержит не

более одного скачка. Допредельный интеграл уклонений $I(f^{\mathbf{t}_K})$ разобьем на две части: $I(f^{\mathbf{t}_K}) = I_1(f^{\mathbf{t}_K}) + I_2(f^{\mathbf{t}_K})$, где в I_1 входят слагаемые суммы в (2.2) по интервалам Δ_k , не содержащим скачки, а в I_2 — по интервалам, содержащим скачки. Суммарная длина L_K интервалов в I_2 сходится к нулю при $K \to \infty$. Поэтому ясно, что

$$I_1(f^{\mathbf{t}_K}) \to I(f_a)$$
 при $K \to \infty$. (3.21)

Если интервал $\Delta_{j,K} = (t_{j,K}^-, t_{j,K}^+)$ разбиения \mathbf{t}_K содержит скачок с номером j (величины $f_{\partial,j}$), то

$$|\Delta_{j,K}|:=t_{j,K}^+-t_{j,K}^- o 0,\quad fig(t_{j,K}^+ig)-fig(t_{j,K}^-ig) o f_{\partial,j}\quad$$
при $K o\infty.$

Поэтому в силу (3.19)

$$|\Delta_{j,K}| \Lambda \bigg(\frac{f \big(t_{j,K}^+ \big) - f \big(t_{j,K}^- \big)}{|\Delta_{j,K}|} \bigg) \to \Lambda_{\infty}(f_{\partial,j}), \ I_2(f^{\mathbf{t}_K}) \to \sum_{j=1}^N \Lambda_{\infty}(f_{\partial,j}) \ \text{при } K \to \infty.$$

Это (вместе с (3.21)) доказывает (3.20) при $N < \infty$.

Если число скачков бесконечно, то упорядочим их по убыванию абсолютной величины и обозначим через f_N функцию f, у которой удалены все скачки с номерами, большими чем N. Тогда

$$\operatorname{Var}(f-f_N) \to 0, \quad \rho_{\mathbb{C}}(f,f_N) \to 0, \quad \rho(f,f_N) \to 0 \quad \text{при } N \to \infty.$$

Поэтому в силу полунепрерывности J(f) снизу имеем

$$\lim_{N \to \infty} J(f_N) \ge J(f).$$
(3.22)

Далее, представим допредельный интеграл $I(f^{\mathbf{t}_K})$ в виде суммы:

$$I(f^{\mathbf{t}_K}) = I_1(f^{\mathbf{t}_K}) + I_2(f^{\mathbf{t}_K}),$$

где в I_1 входят слагаемые суммы в (2.3) по интервалам Δ_k , не содержащим скачки функции f_N , а в I_2 — по интервалам, содержащим скачки этой функции. В силу уже доказанного

$$\lim_{K \to \infty} I_2(f^{\mathbf{t}_K}) = \sum_{k=1}^N \Lambda_{\infty}(f_{\partial,k}). \tag{3.23}$$

Обозначим через $g_K(t)$ производную ломаной $f^{\mathbf{t}_K}(t)$ по t. Тогда

$$I_1(f^{\mathbf{t}_K}) = \int\limits_0^1 \Lambda(g_K(t)) \mathbf{I}_{t
ot\in U_K} \, dt,$$

где U_K — объединение конечного числа интервалов из разбиения \mathbf{t}_K , содержащих точки скачков функции f_N .

Очевидно, что

$$\lim_{K o\infty}\mathbf{I}_{t\not\in U_K}=1$$
 для всех $t,$ кроме конечного числа точек.

Известно (см., например, [7]), что для плотной последовательности разбиений \mathbf{t}_K имеет место сходимость $g_K(t) \to f_a'(t)$ при $K \to \infty$ для почти всех по мере Лебега $t \in [0,1]$. В силу полунепрерывности снизу функции уклонений $\Lambda(\alpha)$

$$\varliminf_{K o \infty} \Lambda(g_K(t)) \mathbf{I}_{t \not\in U_K} \geq \Lambda(f_a'(t))$$
 для почти всех $t \in [0,1].$

Поэтому по лемме Фату

$$\underbrace{\lim_{K \to \infty} I_1(f^{\mathbf{t}_K})}_{K \to \infty} = \underbrace{\lim_{K \to \infty} \int_0^1 \Lambda(g_K(t)) \mathbf{I}_{t \notin U_K} dt}_{0}$$

$$\ge \int_0^1 \underbrace{\lim_{K \to \infty} \Lambda(g_K(t)) \mathbf{I}_{t \notin U_K} dt}_{0}$$

$$\ge \int_0^1 \Lambda(f_a'(t)) dt = I(f_a).$$

Стало быть, в силу (3.23)

$$J(f) = \lim_{K o \infty} I(f^{\mathbf{t}_K}) \geq I(f_a) + \sum_{k=1}^N \Lambda_\infty(f_{\partial,k}) = J(f_N).$$

Отсюда и из (3.22) получаем $J(f) = \lim_{N \to \infty} J(f_N)$. Лемма 3.2 доказана.

Вернемся к доказательству теоремы 2.3. Пусть $f_s = f_s^+ - f_s^-$, где f_s^\pm — неубывающие функции такие, что $\operatorname{Var} f_s = \operatorname{Var} f_s^+ + \operatorname{Var} f_s^-$. Проведем доказательство при упрощающем предположении¹⁾, что при достаточно малом $\delta > 0$ существует совокупность непересекающихся интервалов Δ_i^\pm , $i=1,2,\ldots$, суммарной длины δ такая, что множества нулевой меры, на которых сосредоточено изменение f_s^\pm , можно погрузить в объединение $\int \Delta_i^\pm$ этих интервалов. Например, для кривой Кантора это предположение выполнено. При этом можно считать, не ограничивая общности, что интервалы Δ_i^\pm не содержат точек разрыва функции f (если, например, интервал Δ_i содержит точку разрыва, то его всегда можно заменить суммой двух интервалов, полученной из Δ_i делением на две части с помощью точки разрыва).

Пусть сначала для простоты $f_s=f_s^+$. Тогда функцию f_s можно приблизить (в равномерной метрике) с помощью последовательности скачкообразных (дискретных) неубывающих функций $g_{(\delta)}$, имеющих скачки, скажем, в середине интервалов $\Delta_i=\Delta_i^+=(t_i^-,t_i^+)$, равные приращениям функции f_s на этих интервалах. Так как $\operatorname{Var} g_{(\delta)}=\operatorname{Var} f_s$, в силу леммы 3.2

$$J(f_a + f_{\partial} + g_{(\delta)}) = I(f_a) + \lambda_+ \operatorname{Var}^+(f_{\partial} + g_{(\delta)}) - \lambda_- \operatorname{Var}^- f_{\partial}.$$

Но $\rho(f_s,g_{(\delta)})\to 0,\ \rho(f,f_a+f_\partial+g_{(\delta)})\to 0$ при $\delta\to 0.$ Поэтому в силу полунепрерывности J снизу

$$\varliminf_{\overline{\delta} \to 0} J(f_a + f_\partial + g_{(\delta)}) = I(f_a) + \lambda_+ \operatorname{Var}^+(f_\partial + f_s) - \lambda_- \operatorname{Var}^- f_\partial \ge J(f).$$

Получим оценку снизу для J(f). Построим абсолютно непрерывную функцию \hat{f} следующим образом. Она совпадает с f_a+f_s везде, кроме интервалов Δ_i , на которых функция f_a+f_s заменена линейной функцией, имеющей на Δ_i то же изменение, что и f_a+f_s . Функция $\hat{f}+f_\partial$ есть спрямление функции f, и в силу выпуклости Λ

$$J(\hat{f} + f_{\partial}) \le J(f). \tag{3.24}$$

Но $J(\hat{f} + f_{\partial}) = I(\hat{f}) + \lambda_{+} \operatorname{Var}^{+} f_{\partial} - \lambda_{-} \operatorname{Var}^{-} f_{\partial}$. Обозначим через $|\Delta_{i}|$ длину интервала Δ_{i} . Тогда при любом фиксированном N

$$J(\hat{f}) = I_1 + I_2 + I_3,$$

 $^{^{1)}}$ Доказательство теоремы 2.3 в общем случае оказывается более громоздким. Его можно найти в [10].

где

$$\begin{split} I_1 := & \int\limits_{A_{\delta}} \Lambda(f_a'(t)) \, dt, \quad A_{\delta} := [0,1] \setminus \bigcup_i \Delta_i; \\ I_2 := & \sum\limits_i |\Delta_i| \Lambda(R_i) \mathbf{I}_{R_i \le N}, \quad R_i := \frac{\hat{f}(t_i^+) - \hat{f}(t_i^-)}{|\Delta_i|}; \\ I_3 := & \sum\limits_i |\Delta_i| \Lambda(R_i) \mathbf{I}_{R_i > N}. \end{split}$$

Так как $\sum_i |\Delta_i| = \delta o 0$, то $I_1 o I(f_a)$ при $\delta o 0$.

Если $\stackrel{i}{\lambda_+}<\infty$, то $\Lambda(\alpha)\leq c<\infty$ при $\alpha\in[0,N],\ I_2\leq c\sum\limits_i|\Delta_i|=c\delta\to 0$ при $\delta\to\infty.$

Поскольку
$$\Lambda(\alpha) = \alpha \lambda_+ (1 + \theta(\alpha)), |\theta(\alpha)| \le \theta_N \to 0$$
 при $\alpha > N, N \to \infty$, то
$$I_3 = \lambda_+ \sum_i \left(\hat{f}\left(t_i^+\right) - \hat{f}\left(t_i^-\right) \right) (1 + \theta_{i,N}), \quad |\theta_{i,N}| \le \theta_N. \tag{3.25}$$

Если $\sum_i |\Delta_i| = \delta \to 0$, то сумма в правой части последнего соотношения сходится к $\lambda_+ \, {\rm Var} \, f_s + O(\theta_N)$. Так как сумма $I_2 + I_3$ от N не зависит, сумма в (3.25) при $N \to \infty$ сходится к $\lambda_+ \, {\rm Var} \, f_s$. Таким образом, в силу (3.24)

$$\begin{split} J(f) & \geq \varliminf_{\overline{\delta} \to 0} J(\hat{f} + f_{\partial}) = \varliminf_{\overline{\delta} \to 0} J(\hat{f}) + \lambda_{+} \operatorname{Var}^{+} f_{\partial} - \lambda_{-} \operatorname{Var}^{-} f_{\partial} \\ & = I(f_{a}) + \lambda_{+} \operatorname{Var}^{+} (f_{\partial} + f_{s}) - \lambda_{-} \operatorname{Var}^{-} f_{\partial}. \end{split}$$

Вместе с (3.24) это доказывает (2.16).

Если $\lambda_+=\infty$, то нетрудно видеть, что $I_3\to\infty$ при $\delta\to 0,\ f_s\not\equiv 0$ и, стало быть, $J(f)=\infty.$

Аналогичным образом рассматриваются случаи $f_s = -f_s^-, f_s = f_s^+ - f_s^-.$ Теорема 2.3 доказана.

$\S 4$. Интеграл уклонений в случае $d \geq 1$

Для двух точек $\alpha, \beta \in \mathbb{R}^d$ при d>1 определим отрезок $[\alpha, \beta] \subset \mathbb{R}^d$ как отрезок прямой, соединяющий эти точки. Определение пространства \mathbb{D} функций $f=f(t):[0,1]\to\mathbb{R}^d$ без разрывов второго рода в общем случае $d\geq 1$ повторяет определение в случае d=1, если считать, что для любого $t\in (0,1)$ значение f(t) лежит на отрезке [f(t-0),f(t+0)]. Значения f(0),f(1) могут не совпадать (как и при d=1) со значениями f(+0),f(1-0) соответственно. Отметим, что каждая координата $f_{(i)}=f_{(i)}(t)$ функции $f=(f_{(1)},\ldots,f_{(d)})\in \mathbb{D}$ принадлежит соответствующему «одномерному» пространству \mathbb{D} (при d=1). Поэтому функции f из пространства \mathbb{D} в общем случае $d\geq 1$ сохраняют свойство сепарабельности: для любого счетного всюду плотного на [0,1] множества U, содержащего точки 0 и 1, выполняется

$$\sup_{(a,b)} f(t) := (\sup_{(a,b)} f_{(1)}(t), \dots, \sup_{(a,b) \cap U} f_{(d)}(t))
= (\sup_{(a,b) \cap U} f_{(1)}(t), \dots, \sup_{(a,b) \cap U} f_{(d)}(t)) =: \sup_{(a,b) \cap U} f(t).$$

 $^{^{2)}}$ Обратное, вообще говоря, неверно: функция $f=(f_{(1)},\ldots,f_{(d)})$, координаты которой лежат в $\mathbb D$ (при d=1), может не лежать в $\mathbb D$ в силу того, что значение f(t) в точке разрыва может оказаться вне отрезка [f(t-0),f(t+0)].

Определение метрики ρ в общем случае $d \geq 1$ полностью повторяет это определение в случае d=1. Лемма 2.1 в случае $d\geq 1$ полностью сохраняется.

Определение 2.1 интеграла уклонений J(f) для функции $f \in \mathbb{D}$ в случае $d \geq 1$ также полностью сохраняется при очевидной замене скалярных разностей $f(t_{k+1}) - f(t_k)$ векторными.

Как и прежде, в том случае, когда вместо функции уклонений $\Lambda(\alpha)$ в определении 2.1 используется произвольная выпуклая полунепрерывная снизу функция $M=M(\alpha)$, отображающая \mathbb{R}^d в $[0,\infty]$, соответствующий интеграл будем обозначать через $J^M=J^M(f)$.

Вариацией функции $f \in \mathbb{D}$ в случае $d \geq 1$ будем называть функционал $\operatorname{Var} f := J^M(f)$, где $M = M(\alpha) := |\alpha|, \ \alpha \in \mathbb{R}^d$. В силу теоремы 4.1 (см. ниже) вариация $\operatorname{Var} f$ любой функции $f \in \mathbb{D}$ (конечная или бесконечная), всегда определена. При этом в силу того, что для вектора $\alpha = (\alpha_{(1)}, \dots, \alpha_{(d)})$ справедливо

$$\frac{1}{\sqrt{d}} \sum_{i=1}^{d} |a_{(i)}| \le |\alpha| \le \sum_{i=1}^{d} |a_{(i)}|,$$

для $f=(f_{(1)},\ldots,f_{(d)})\in\mathbb{D}$ имеем

$$\frac{1}{\sqrt{d}} \sum_{i=1}^{d} \operatorname{Var} f_{(i)} \le \operatorname{Var} f \le \sum_{i=1}^{d} \operatorname{Var} f_{(i)}. \tag{4.1}$$

Теорема 4.1. Если $f \in \mathbb{D}$, то интеграл уклонений J(f) (конечный или бесконечный) всегда существует, при этом

$$J(f) = \sup I(f^{\mathbf{t}_K}),$$

где верхняя грань берется по всем разбиениям \mathbf{t}_K отрезка [0,1].

Замечание 4.1. Замечание 2.1 в случае $d \geq 1$ полностью сохраняется. Доказательство при этом остается без изменения.

Теорема 4.2. Утверждения пп. (i)–(vii) теоремы 2.2 в случае $d \ge 1$ полностью сохраняются.

Доказательства теорем 4.1, 4.2 повторяют доказательства теорем 2.1 и 2.2 в случае d=1, за исключением доказательства утверждения (iii) теоремы 2.2.

Доказательство утверждения (iii) теоремы 4.1. Заметим предварительно, что в силу леммы 2.1 в [8] для любого $\lambda \in \mathbb{R}^d$, $\lambda \neq 0$, будет

$$\Lambda^{(\langle \lambda, \xi \rangle)}(t) = \inf_{\alpha: \langle \lambda, \alpha \rangle = t} \Lambda(\alpha), \quad t \in \mathbb{R},$$

где $\Lambda^{(\zeta)}$ означает функцию уклонений случайной величины ζ . Поэтому при любых $\lambda, \alpha \in \mathbb{R}^d$ выполняется $\Lambda^{(\langle \lambda, \xi \rangle)}(\langle \lambda, \alpha \rangle) \leq \Lambda(\alpha)$ и для любой функции $f \in \mathbb{D}$ —

$$J^{\Lambda^{(\langle \lambda, \xi \rangle)}}(\langle \lambda, f \rangle) \le J(f). \tag{4.2}$$

Пусть Var $f=\infty$. В силу условия [C], которому удовлетворяет случайный вектор ξ , функция $\varphi(\lambda)=\mathbf{E}e^{\langle\lambda,\xi\rangle}$ конечна в окрестности $(\mu)_{\varepsilon}$ точки μ при некоторых $\mu\in\mathbb{R}^d$ и $\varepsilon>0$. Используя неравенства (4.1), можно показать, что найдется ненулевой вектор $\lambda=\lambda_f\in(\mu)_{\varepsilon}$ такой, что Var $\langle\lambda,f\rangle=\infty$. Поскольку для случайной величины $\langle\lambda,\xi\rangle$ выполнено условие [C], по утверждению (iii) теоремы 2.2 выполнено $J^{\Lambda^{(\langle\lambda,\xi\rangle)}}(\langle\lambda,f\rangle)=\infty$. Отсюда в силу (4.2) получаем $J(f)=\infty$. Утверждение (iii) теоремы 4.2 доказано.

Следствие 4.1. Утверждения следствия 2.1 в случае $d \ge 1$ полностью сохраняют свою силу.

ДОКАЗАТЕЛЬСТВО СЛЕДСТВИЯ 4.1 повторяет доказательство следствия 2.1.

Обратимся теперь к теореме о разложении интеграла уклонений в случае $d \geq 1$. В силу п. (iii) теоремы 4.2 основной интерес представляют функции f из класса $\mathbb V$ функций ограниченной вариации. Из неравенств (4.1) видно, что если функция $f = (f_{(1)}, \ldots, f_{(d)}) \in \mathbb D$ имеет ограниченную вариацию, то и каждая координата $f_{(i)}$ тоже имеет ограниченную вариацию, и в силу представления (2.15)

$$f_{(i)} = f_{(i)a} + f_{(i)s} + f_{(i)\partial}.$$

Поэтому для любого $f \in \mathbb{V}$ имеет место аналог представления (2.15):

$$f = f_a + f_s + f_{\partial}, f_a(0) = f(0), \quad f_s(0) = f_{\partial}(0) = 0,$$
 (4.3)

где $f_a:=(f_{(1)a},\ldots,f_{(d)a}),\ f_s:=(f_{(1)s},\ldots,f_{(d)s}),\ f_\partial:=(f_{(1)\partial},\ldots,f_{(d)\partial})$ — абсолютно непрерывная, сингулярная (непрерывная) и дискретная компоненты соответственно.

Наряду с функцией уклонений $\Lambda(\alpha)$ определим функцию

$$\Lambda_{\infty}(lpha) := \sup_{\lambda \in \mathscr{A}} \langle \lambda, lpha
angle, \ \ lpha \in \mathbb{R}^d, \ \ \mathscr{A} := \{\lambda : arphi(\lambda) < \infty\},$$

где, как и прежде, $\varphi(\lambda) = \mathbf{E}e^{\langle \lambda, \xi \rangle}$ есть преобразование Лапласа над распределением случайного вектора ξ . Функция $\Lambda_{\infty}(\alpha)$ выпукла, полунепрерывна снизу и линейна вдоль любого луча $L_{\mathrm{e}} := \{\alpha = t \mathrm{e} : t \geq 0\}$, $\mathrm{e} \in \mathbb{R}^d$, $|\mathrm{e}| = 1$ (см., например, [9]). Эти свойства Λ_{∞} позволяют для любой функции $f \in \mathbb{D}$ наряду с «основным» интегралом уклонений $J(f) = J^{\Lambda}(f)$ определить интеграл $J^{\Lambda_{\infty}}(f)$.

Следующее утверждение обобщает теорему 2.3 на случай d > 1.

Теорема 4.3. Для любой функции $f=f_a+f_s+f_{\partial}\in\mathbb{V}$ справедливо представление

$$J(f) = I(f_a) + J^{\Lambda_{\infty}}(f_s) + J^{\Lambda_{\infty}}(f_{\partial}). \tag{4.4}$$

Так как согласно (4.4) $J(f_{\partial}) = \Lambda(0) + J^{\Lambda_{\infty}}(f_{\partial})$ и такое же представление имеет место для компоненты f_s , в случае $\Lambda(0) = 0$ (это всегда так, если $\mathbf{E}\xi = 0$) интеграл J(f) (не являясь линейным функционалом от f) оказывается аддитивным относительно разложения (4.3):

$$J(f) = J(f_a) + J(f_s) + J(f_{\partial}).$$

Отметим также, что в важном частном случае $f_s \equiv 0$ справедливо представление

$$J(f) = I(f_a) + \sum_{k=1}^{\infty} \Lambda_{\infty}(f_{\partial,k}), \tag{4.5}$$

где $f_{\partial,k},\,k=1,2,\ldots,$ — занумерованные величины скачков функции $f_{\partial}.$

Доказательство теоремы 4.2 в случае $f_s\equiv 0$ (т. е. соотношение (4.5)) повторяет доказательство леммы 3.2. Надо лишь заметить, что

$$\lim_{t o\infty}rac{\Lambda(lpha t)}{t}=\Lambda_\infty(lpha)$$
 для $lpha\in\mathbb{R}^d,\; |lpha|
eq 0.$

Доказательство теоремы 4.2 в случае $f_s \not\equiv 0$ при тех же упрощающих предположениях, что сформулированы при доказательстве теоремы 2.3, совершенно аналогично доказательству теоремы 2.3. В общем случае доказательство теоремы 4.3 можно найти в [10].

ЛИТЕРАТУРА

- 1. Боровков А. А. Граничные задачи для случайных блужданий и большие уклонения в функциональных пространствах // Теория вероятностей и ее применения. 1967. Т. 12, № 4. С. 635–654.
- **2.** Боровков А. А. Теория вероятностей. М.: Эдиториал УРСС, 2009.
- **3.** Боровков А. А., Могульский А. А. Принципы больших уклонений для траекторий случайных блужданий. I, II // Теория вероятностей и ее применения. (В печати).
- Боровков А. А. Сходимость распределений функционалов от случайных процессов // Успехи мат. наук. 1972. Т. 27, № 1. С. 3–41.
- 5. Скороход А. В. Предельные теоремы для случайных процессов // Теория вероятностей и ее применения. 1956. Т. 1, № 3. С. 289–319.
- 6. Гнеденко Б. В., Колмогоров А. Н. Предельные распределения для сумм независимых случайных величин. М.: Гостехиздат, 1949.
- 7. Рисс Φ ., Секефальви-Надь Б. Лекции по функциональному анализу. М.: Изд-во иностр. лит., 1957.
- 8. Боровков А. А., Могульский А. А. Экспоненциальные неравенства чебышевского типа для сумм случайных векторов и для траекторий случайных блужданий // Теория вероятностей и ее применения. 2011. Т. 56, № 1. С. 1–27.
- 9. Рокафеллар Р. Выпуклый анализ. М.: Мир, 1967.
- **10.** *Могульский А. А.* Теорема разложения для интеграла уклонений // Сиб. электрон. мат. изв. (В печати).

Cтатья поступила 23 марта 2011 г.

Боровков Александр Алексеевич, Могульский Анатолий Альфредович Институт математики им. С. Л. Соболева СО РАН, пр. Академика Коптюга, 4, Новосибирск 630090 borovkov@math.nsc.ru, mogul@math.nsc.ru