О КОНЕЧНЫХ ГРУППАХ С ЗАДАННЫМИ МАКСИМАЛЬНЫМИ ПОДГРУППАМИ

В. С. Монахов, В. Н. Тютянов

Аннотация. Доказывается, что конечная группа, в которой каждая максимальная подгруппа простая или нильпотентная, будет группой Шмидта. Группа, в которой каждая максимальная подгруппа простая или сверхразрешимая, может быть неразрешимой, и в этом случае доказывается, что ее главный ряд имеет вид $1 \subset K \subseteq G$, $K \simeq PSL_2(p)$ для подходящего простого p, $|G:K| \leq 2$.

Ключевые слова: конечная группа, нильпотентная подгруппа, сверхразрешимая подгруппа, максимальная подгруппа, простая группа.

Введение

Рассматриваются только конечные группы. Все используемые понятия и определения соответствуют [1,2].

В 1903 г. Миллер и Морено [3] изучили группы с абелевыми максимальными подгруппами. В 1924 г. О. Ю. Шмидт [4] исследовал строение групп с нильпотентными максимальными подгруппами. Позже ненильпотентные группы, у которых все максимальные подгруппы нильпотентны, назвали группами Шмидта. В 1954 г. Хупперт [5] установил разрешимость группы со сверхразрешимыми максимальными подгруппами, а Дерк [6] описал строение таких групп.

В настоящей статье исследуются группы, в которых максимальные подгруппы простые или нильпотентные (простые или сверхразрешимые). Доказывается, что группа, в которой каждая максимальная подгруппа простая или нильпотентная, разрешима, а значит, в таких группах простые максимальные подгруппы имеют простые порядки, и сама группа остается группой Шмидта. Группа, в которой каждая максимальная подгруппа простая или сверхразрешимая, может быть неразрешимой, и в этом случае доказывается, что ее главный ряд имеет вид $1 \subset K \subseteq G$, $K \simeq PSL_2(p)$ для подходящего простого p, $|G:K| \le 2$. Этот результат является частным случаем теоремы 2, в которой определен главный ряд неразрешимой группы с простыми или 2-нильпотентными максимальными подгруппами.

1. Необходимые обозначения и вспомогательные леммы

Буквами p,q,r обозначаются простые числа, а G_p — силовская p-подгруппа группы $G,\ G_{p'}$ — дополнение к силовской p-подгруппе в группе $G,\ \mathrm{T.}$ е. p'-холлова подгруппа группы G.

Группу G называют pd-группой, если порядок G делится на p; p-замкнутой, если G_p нормальна в G; p-нильпотентной, если $G_{p'}$ нормальна в G; p-разложимой, если G_p и $G_{p'}$ нормальны в G.

Далее использованы следующие обозначения: π — некоторое множество простых чисел; π' — дополнение к π в множестве всех простых чисел, в частности, $p' = \mathbb{P} \backslash \{p\}$; $\pi(n)$ — множество всех простых делителей натурального числа n; $\pi(G)$ — множество всех простых делителей порядка группы G; π -группа — группа G, для которой $\pi(G) \subseteq \pi$; S(G) — наибольшая нормальная разрешимая подгруппа группы G; O(G) — наибольшая нормальная подгруппа группы G; $M <_{\max} G = M$ является максимальной подгруппой группы G; $M <_{\max} G = M$ является максимальной подгруппой группы G; $M <_{\max} G = M$ является максимальной подгруппой группы G; $M <_{\max} G = M$ является нормальной подгруппой группы G; $M <_{\max} G = M$ является нормальной подгруппой группы G; G0 — циклическая группа порядка G1 — знакопеременная группа степени G2 — знакопеременная группа степени G3 — знакопеременная группа порядка G3 — диэдральная группа порядка G4 — знакопеременная группа порядка G5 — знакопеременная группа порядка G6 — знакопеременная группа порядка G7 — знакопеременная группа порядка G3 — знакопеременная группа порядка G3 — знакопеременная группа порядка G4 — знакопеременная группа порядка G5 — знакопеременная группа порядка G6 — знакопеременная группа порядка G7 — знакопеременная группа порядка G7 — знакопеременная группа порядка G8 — знакопеременная группа порядка G9 — знакопеременная группа по

Если A и B — подгруппы группы G, то $A \times B$ — прямое произведение подгрупп A и B; [A]B или A:B — полупрямое произведение нормальной подгруппы A и подгруппы B.

Пусть P — силовская p-подгруппа группы G. Группа G называется p-нормальной, если из условия $Z(P)^g \subseteq P, g \in G$, всегда следует, что $Z(P)^g = Z(P)$. Согласно [1, теорема IV.4.5] каждая p-нильпотентная группа p-нормальна.

Лемма 1 [7, 14.4.6]. Если группа G p-нормальна, то наибольшая факторгруппа группы G, являющаяся p-группой, изоморфна такой же фактор-группе нормализатора центра силовской p-подгруппы.

Нам понадобится один результат А. В. Романовского 1966 г., который приведем здесь с доказательством.

Лемма 2 [8, теорема 2]. Пусть G — не p-нильпотентная группа. Если группа G содержит p-разложимую максимальную подгруппу M, то в группе G нормальна либо силовская p-подгруппа из M, либо p'-холлова подгруппа из M.

ДОКАЗАТЕЛЬСТВО. Пусть $M=P\times T,\ P$ — силовская p-подгруппа, T — p'-холлова подгруппа из M. Следует считать, что подгруппа M не нормальна в G, а также $P\neq 1\neq T$, иначе лемма справедлива.

Предположим, что G не p-нормальна. Это означает, что существует элемент $g\in G$ такой, что $Z(P)^g\subseteq P$ и $Z(P)^g\neq Z(P)$. Так как $M=P\times T$, то $T\subseteq C_G(Z(P)^g)$. Из равенства $M^g=P^g\times T^g$ следует, что $T^g\subseteq C_G(Z(P)^g)$. Теперь

$$\langle T^g, T \rangle \subseteq C_G(Z(P)^g) \subseteq N_G(Z(P)^g) = M^g,$$

поэтому $T^g=T$ и $g\in N_G(T)=M.$ Но тогда $Z(P)^g=Z(P);$ противоречие. Поэтому G p-нормальна.

Согласно лемме 1 наибольшая фактор-группа группы G, которая является p-группой, изоморфна подобной фактор-группе группы $N_G(Z(P))$. Поскольку $M\subseteq N_G(Z(P))$, либо $M=N_G(Z(P))$, либо $G=N_G(Z(P))$. Если $M=N_G(Z(P))$, то $N_G(Z(P))$ p-нильпотентна, поэтому p-нильпотентна и группа G, что противоречит условию леммы. Значит, Z=Z(P) нормальна в G, в частности, $C_G(Z)$ нормальна в G. Так как $M\subseteq C_G(Z)$ и подгруппа M не нормальна в G, то $C_G(Z)=G$. Фактор-группа G/Z содержит p-разложимую максимальную подгруппу $M/Z=P/Z\times TZ/Z$. Если G/Z не p-нильпотентна,

то по индукции либо $P/Z \triangleleft G/Z$, либо $TZ/Z \triangleleft G/Z$, откуда следует, что либо $P \triangleleft G$, либо $T \triangleleft G$, и лемма справедлива.

Пусть G/Z p-нильпотентна, тогда $G_{p'}Z \triangleleft G$. Поскольку $C_G(Z) = G$, то $G_{p'}Z = G_{p'} \times Z$ и подгруппа $G_{p'} \triangleleft G$; противоречие. Лемма доказана.

Лемма 3 [1, IV.7.4]. Пусть H — максимальная подгруппа группы G. Если H нильпотентна и силовская 2-подгруппа из H метабелева, то G разрешима.

Лемма 4 [9]. Пусть G — неразрешимая группа c нильпотентной максимальной подгруппой. Тогда $O^2(G/F(G))$ есть прямое произведение простых групп c диэдральными силовскими 2-подгруппами.

Здесь $O^2(X)$ — наименьшая нормальная подгруппа группы X, факторгруппа по которой является 2-группой, а F(G) — подгруппа Фиттинга.

Лемма 5. Пусть G — неразрешимая группа c нильпотентной максимальной подгруппой M. Если S(G)=1, то M является силовской 2-подгруппой группы G.

Доказательство. Из леммы 3 следует, что подгруппа M имеет четный порядок, т. е. $M=M_2\times M_{2'}$, где M_2 — неединичная силовская 2-подгруппа из M, а $M_{2'}-2'$ -холлова подгруппа из M. Так как S(G)=1, то M_2 не нормальна в G, поэтому M_2 силовская в G. Поскольку группа G не 2-нильпотентна, по лемме 2 подгруппа $M_{2'}$ нормальна в G и $M_{2'}=1$ ввиду того, что S(G)=1. Лемма доказана.

Лемма 6 [10]. Если максимальная подгруппа $M = P \times M_1$ неразрешимой группы G нильпотентна и силовская 2-подгруппа P из M обобщенная кватернионная или диэдральная, то G обладает нормальным рядом $G \ge G_0 > T \ge 1$, в котором $|G:G_0| \le 2$, T нильпотентна и $G_0 \simeq PSL_2(q)$, где либо $q = 2^n \pm 1$, q простое, q > 7, либо q = 9, либо q = 7 и в этом случае $|G:G_0| = 2$.

Лемма 7 [1, IV.5.4]. Если группа G не p-нильпотентна, но все ее собственные подгруппы p-нильпотентны, то G является p-замкнутой группой Шмидта.

2. Группы, у которых максимальные подгруппы нильпотентные или простые

Теорема 1. Если каждая максимальная подгруппа ненильпотентной группы G нильпотентна или проста, то G — группа Шмидта.

Доказательство. Если все максимальные подгруппы нильпотентны, то G — группа Шмидта и все доказано. Значит, в группе G имеется простая неабелева максимальная подгруппа, которую обозначим через H. Докажем, что

(1) S(G) = 1.

Предположим, что $S(G) \neq 1$. Тогда $S(G) \cap H$ нормальна в H и разрешима, поэтому $S(G) \cap H = 1$ и G = [S(G)]H. Для каждой максимальной подгруппы H_1 из H подгруппа $S(G)H_1$ максимальна в группе G, а поскольку подгруппа $S(G)H_1$ непростая, по условию она нильпотентна. Теперь нильпотентной будет подгруппа H_1 . Следовательно, H становится группой Шмидта, что противоречит простоте подгруппы H. Значит, предположение, что $S(G) \neq 1$, неверно, и S(G) = 1.

(2) Группа G простая.

Предположим, что группа G непростая, и пусть K — минимальная нормальная в G подгруппа. Из (1) следует, что K — неразрешимая подгруппа.

Пусть X — максимальная в G подгруппа, содержащая подгруппу K. Если $K \neq X$, то подгруппа X не может быть простой, поэтому подгруппа X должна быть нильпотентной, а значит, K нильпотентна; противоречие. Поэтому K=X — максимальная в G подгруппа. Так как $K\cap H$ нормальна в H и Hпростая, либо $K \cap H = 1$, либо $K \cap H = H$. Если $K \cap H = 1$, то |H| = |G:K| простое число; противоречие с выбором подгруппы H. Поэтому $K \cap H = H$ и K=H. Подгруппу H можно считать произвольной простой неабелевой максимальной подгруппой группы G, следовательно, любая максимальная в G подгруппа, отличная от K, нильпотентна. Согласно лемме 3 в группе G нет нильпотентных максимальных подгрупп нечетного порядка, а с учетом леммы 2 каждая максимальная подгруппа, отличная от K, будет силовской 2-подгруппой группы G и |G:K|=2. Пусть $p\in\pi(K)\setminus\{2\}$ и P — силовская p-подгруппа из K. По лемме Фраттини $G=KN_G(P)=KU,$ где U- максимальная в G подгруппа, содержащая $N_G(P)$. Так как U отлична от K, по доказанному подгруппа U должна быть силовской 2-подгруппой группы G, что невозможно; противоречие. Поэтому предположение неверно и группа G простая.

(3) Окончание доказательства.

Согласно (2) G — простая неабелева группа. Предположим, что все максимальные подгруппы группы G простые. По классификационной теореме группа G является группой одного из следующих типов: знакопеременная группа степени $n \geq 5$, группа типа Ли, одна из 26 спорадических групп.

В знакопеременной группе A_n имеется подгруппа H, являющаяся двухточечным стабилизатором. Эта подгруппа максимальна и изоморфна S_{n-2} , а потому непростая и ненильпотентная. Следовательно, G не может быть знакопеременной группой.

В простых группах лиевского типа над полем характеристики p любая максимальная параболическая подгруппа содержит нетривиальную собственную нормальную p-подгруппу.

Любая спорадическая группа содержит непростую максимальную подгруппу [2]; противоречие.

Следовательно, допущение неверно, и среди максимальных подгрупп есть нильпотентные. Пусть A — нильпотентная максимальная подгруппа. Из леммы 2 следует, что A является силовской 2-подгруппой группы G. Из леммы 4 вытекает, что A является диэдральной группой. Простая группа с диэдральной силовской 2-подгруппой по лемме 6 изоморфна $PSL_2(q)$, где либо $q=2^n\pm 1$, q простое, q>7, либо q=9. Для простого q в группе $PSL_2(q)$ нормализатор силовской q-подгруппы является ненильпотентной непростой максимальной подгруппой. В группе $PSL_2(9)$ нормализатор силовской 3-подгруппы является ненильпотентной непростой максимальной подгруппой; противоречие. Теорема доказана.

3. Группы, в которых максимальные подгруппы простые или сверхразрешимые

Известно, что сверхразрешимые группы p-нильпотентны для наименьшего p, делящего порядок группы. В частности, каждая сверхразрешимая группа 2-нильпотентна.

ПРИМЕР 1. Если максимальные подгруппы сверхразрешимые или простые, то группа может быть неразрешимой. Примером служит группа $PGL_2(7)$, в

которой все максимальные подгруппы, за исключением $PSL_2(7)$, сверхразрешимы.

ПРИМЕР 2. В группе $PSL_2(11)$ максимальные подгруппы либо 2-нильпотентные, либо простые.

ПРИМЕР 3. Существует группа, являющаяся расширением группы $PSL_2(25)$ с помощью автоморфизма порядка 2, в которой все максимальные подгруппы либо 2-нильпотентые, либо простые [2].

Теорема 2. Если каждая максимальная подгруппа неразрешимой группы G 2-нильпотентна или проста, то главный ряд группы G имеет вид $1 \subseteq K \subseteq G$, где $K \simeq PSL_2(p^n)$, |G:K| = 1 или |G:K| = r — простое число.

Доказательство. Если все максимальные подгруппы 2-нильпотентны, то по [1, IV.5.4] группа G либо 2-нильпотентна, либо 2-замкнутая группа Шмидта, поэтому G разрешима; противоречие. Значит, в группе G имеется простая неабелева максимальная подгруппа, которую обозначим через R. Докажем, что S(G)=1. Предположим, что $S(G)\neq 1$. Тогда $S(G)\cap R$ нормальна в R, поэтому $S(G)\cap R=1$ и G=[S(G)]R. Для каждой максимальной подгруппы R_1 из R подгруппа $S(G)R_1$ будет максимальной в группе G, а поскольку подгруппа $S(G)R_1$ непростая, по условию она 2-нильпотентна. Теперь 2-нильпотентной будет подгруппа R_1 . Применяя [1, IV.5.4] к подгруппа R_1 , получаем, что либо R 2-нильпотентна, либо 2-замкнутая группа Шмидта; противоречие. Значит, предположение, что $S(G)\neq 1$, неверно, и S(G)=1.

Предположим, что группа G непростая, и пусть K — минимальная нормальная в G подгруппа. Так как S(G)=1, то K — неразрешимая подгруппа. Пусть X — максимальная в G подгруппа, содержащая подгруппу K. Если $K \neq X$, то подгруппа X не может быть простой, поэтому подгруппа X должна быть 2-нильпотентной, а значит, K разрешима; противоречие. Следовательно, K=X и K — максимальная в G подгруппа. Так как $K\cap R$ нормальна в R и R простая, либо $K\cap R=1$, либо $K\cap R=R$. Если $K\cap R=1$, то |R|=|G:K| — простое число; противоречие. Поэтому $K\cap R=R$ и K=R. Из выбора подгруппы R следует, что любая максимальная в G подгруппа, отличная от K, 2-нильпотентна. Главный ряд группы G имеет вид $1\subseteq K\subseteq G$, |G:K|=r — простое число и K является единственным неабелевым главным фактором группы G.

Пусть сначала G — простая неабелева группа. Последовательно рассмотрим следующие три возможные случая.

- (1) $G\simeq A_n,\ n\geq 5$. Пусть T двухточечный стабилизатор в A_n . Тогда подгруппа T максимальна в A_n и $T\simeq S_{n-2}$. Если n=5, то $T\simeq S_3-2$ нильпотентная группа. Однако группа A_5 содержит максимальную подгруппу A_4 , которая не 2-нильпотентна и не проста. Поэтому $n\geq 6$. В этом случае T не 2-нильпотентна и проста. Следовательно, G не может быть знакопеременной группой.
- (2) G простая спорадическая группа. Из [2] следует, что в любой спорадической группе имеется максимальная неразрешимая подгруппа, которая не является простой неабелевой группой. Последнее невозможно по условию теоремы.
- (3) G простая группа лиевского типа, определенная над полем GF(q), $q=p^n$. Пусть p=2. Так как любая максимальная параболическая подгруппа

группы G непростая, она 2-нильпотентна. По лемме 2 максимальные параболические подгруппы группы G — это в точности унипотентные подгруппы. Лиевский ранг группы G равен 1, и подгруппа Картана H равна 1. По [11, табл. 3] группа G может быть одной из следующих: $PSL_2(2^n)$, $n \geq 2$; $Sz(2^n)$, $n \geq 3$; $PSU_3(2^n)$, $n \geq 2$. У всех групп приведенного списка подгруппа Картана H отлична от 1. Следовательно, p > 2.

Пусть сначала группа G имеет лиевский ранг $l \geq 2$. В группе G всякая максимальная параболическая подгруппа 2-нильпотентна и, в частности, разрешима. Разрешимыми группами лиевского типа являются группы $PSL_2(2)$, $PSL_2(3)$, $PSU_3(2)$, $^2B_2(2)$, которые имеют лиевский ранг 1. Описание строения параболических подгрупп получено Титсом. Из данного описания [11, (2.1)] следует, что при $l \geq 3$ найдется максимальная параболическая подгруппа с неразрешимым дополнением Леви. Следовательно, l = 2, q = 3 и G может являться одной из следующих групп: $PSL_3(3)$, $PSp_4(3)$, $G_2(3)$, $PSU_4(3)$, $PSU_5(3)$, $^3D_4(3)$. Из [2] вытекает, что группы $PSL_3(3)$, $PSp_4(3)$, $G_2(3)$ содержат максимальные подгруппы S_4 , S_6 , $PSL_3(3)$: 2 соответственно. Получили противоречие с условием теоремы. В группах $PSU_4(3)$, $PSU_5(3)$, $^3D_4(3)$ имеется максимальная неразрешимая параболическая подгруппа, что невозможно по условию теоремы.

Таким образом, группа G имеет лиевский ранг l=1 и может являться одной из следующих групп: $PSU_3(q)$, ${}^2\!G_2(q)$, $PSL_2(q)$. Пусть $G\simeq PSU_3(q)$. Описание подгрупп в группах $PSU_3(q)$ при нечетном q получено в [12]. Группа $PSU_3(q)$ содержит не простую максимальную подгруппу X с секцией, изоморфной $PSL_2(q)$. При $q\neq 3$ группа $PSL_2(q)$ является простой неабелевой группой, поэтому подгруппа X не нильпотентна и не простая; противоречие с условием теоремы. Следовательно, $G\simeq PSU_3(3)$. Из [2] получаем, что группа $PSU_3(3)$ имеет максимальную подгруппу 4^*S_4 , что невозможно по условию теоремы. Пусть $G\simeq^2 G_2(q)$. Так как G — простая неабелева группа, $q\geq 27$. Из [13] следует, что централизатор инволюции в ${}^2\!G_2(q)$ является максимальной подгруппой и изоморфен $2\times PSL_2(q)$. Поскольку $q\geq 27$, централизатор инволюции неразрешим. Противоречие с условием теоремы. Значит, $G\simeq PSL_2(q)$ входит в список групп из заключения теоремы.

Пусть $G = K\langle x \rangle$, |G:K| = r — простое число.

Лемма А. Пусть $1 \neq T < K$ и $\Omega = \{T^k \mid k \in K\}$. Если $\Omega^g = \Omega$ для всех $g \in G$, то T является 2-нильпотентной группой.

ДОКАЗАТЕЛЬСТВО. Пусть $g \in G$. Тогда $T^g \in \Omega$ и $T^g = T^k$ для некоторого $k \in K$. Отсюда $T^{gk^{-1}} = T$ и $gk^{-1} \in N_G(T)$ или $g \in KN_G(T)$. Так как g произвольный элемент группы G, то $G = KN_G(T)$. Пусть $N_G(T) \subseteq M <_{\max} G$, тогда G = KM, $K \cap M$ нормальна в M и $|M: K \cap M| = r$. Поэтому M не является простой неабелевой группой. Следовательно, M = 2-нильпотентная группа. Так как $T \subseteq M$, группа T 2-нильпотентна.

Лемма В. Если K — группа Ли характеристики 2, то ее подгруппа Картана тривиальна.

Доказательство. Если подгруппа Картана не тривиальна, то подгруппа Бореля в K не 2-нильпотентна. Последнее невозможно по лемме A.

Рассмотрим следующие случаи.

1. K — простая спорадическая группа.

Из [2] следует, что в G имеется максимальная неразрешимая подгруппа, которая не является простой неабелевой группой. Противоречие с условием теоремы.

2. $K \simeq A_n, n \geq 5$.

При n=5,6 подгруппа K изоморфна соответственно $PSL_2(5),\ PSL_2(9).$ Поэтому будем считать, что $n\geq 7$ и $G\simeq S_n$. Группа G содержит максимальную подгруппу $T\simeq S_{n-1},$ являющуюся стабилизатором точки. Противоречие с условием теоремы.

3. K — простая группа лиевского типа, определенная над полем GF(q), $q=p^n$.

Если K группа Ли нормального типа и ее группа автоморфизмов графа тривиальна, то классы сопряженных параболических подгрупп в K инвариантны относительно $\langle x \rangle$. При этом $K \in \{B_l(q), l > 2; C_l(q), l > 2; D_l(q), l > 4; E_7(q); E_8(q)\}$. Все группы данного списка, за исключением $D_l(q), l > 4$, имеют тривиальную группу автоморфизмов графа, и их параболическая подгруппа P_1 неразрешима. Противоречие с леммой А. Пусть $K \simeq D_l(q), l > 4$. Тогда ее параболическая подгруппа P_1 неразрешима и имеет дополнение Леви $D_{l-1}(q)H$, где H — подгруппа Картана. Очевидно, что любая другая максимальная параболическая подгруппа обладает дополнением Леви, не изоморфным $D_{l-1}(q)H$, а следовательно, не изоморфна P_1 . Поэтому класс сопряженных в K с P_1 подгрупп инвариантен относительно $\langle x \rangle$; противоречие с леммой А.

Рассмотрим оставшиеся случаи.

- (1) $K\simeq PSp_4(q)$. Пусть $q=2^n>2$. Подгруппа Картана H в K имеет порядок $(q-1)^2$. Так как $q\neq 2$, то $H\neq 1$; противоречие с леммой В. Поэтому $q=p^n$ и $p\geq 3$. Поскольку p нечетное число, группа автоморфизмов графа группы K тривиальна. Параболическая подгруппа P_1 при $p\neq 3$ неразрешима, при p=3 изоморфна $3^{1+2}_+:A_4$ и не является 2-нильпотентной; противоречие с леммой A.
- (2) $K \simeq^2 B_2(q), \ q=2^{2m+1}>2.$ Подгруппа Картана H в K имеет порядок q-1, а значит, $H\neq 1$; противоречие с леммой B.
 - (3) $K \simeq C_2(q)$. Данный случай рассматривается так же, как (1).
- (4) $K\simeq G_2(q)$. При (q,3)=1; q=3 и n=2m; q=3 и n=2m+1 группа K содержит соответственно подгруппы $T\simeq SL_3(q).2,$ $T\simeq G_2(3^m),$ $T\simeq^2G_2(q)$ [14], для которых $\Omega^g=\Omega,$ где $\Omega=\{T^k\mid k\in K\}$. Данные подгруппы не 2-нильпотентны; противоречие с леммой A.
- (5) $K \simeq^2 G_2(q), \ q=3^{2m+1}.$ Пусть S силовская 2-подгруппа в K. Так как $N_K(S)$ не является 2-нильпотентной группой [13], получим противоречие с леммой A.
- (6) $K\simeq F_4(q)$. Пусть $q=2^n$. Подгруппа Картана H в K имеет порядок $(q-1)^4$. Если q>2, то $H\neq 1$; противоречие с леммой В. При q=2 K содержит подгруппу $T\simeq^2F_4(2)$ [2], для которой $\Omega^g=\Omega$, где $\Omega=\{T^k\mid k\in K\}$; противоречие с леммой А. Если q нечетно, то K содержит подгруппу $B_4(q)$, удовлетворяющую условиям леммы А [14]; противоречие с тем, что группа $B_4(q)$ не 2-нильпотентна.
- (7) $K \simeq^2 F_4(q)$, $q=2^{2m+1}>2$ или $K \simeq {}^2F_4(2)'$. Из [14] и [2] следует, что K содержит подгруппу $T \simeq PSL_2(25)$, для которой $\Omega^g=\Omega$, где $\Omega=\{T^k\mid k\in K\}$; противоречие с леммой A.
- (8) $K \simeq E_6(q)$. Как в случае $K \simeq D_l(q), l > 4$, показывается, что параболическая подгруппа P_3 удовлетворяет условиям леммы A, но P_3 неразрешима;

противоречие.

- (9) $K \simeq^2 E_6(q)$. Пусть $q=2^n$. Так как подгруппа Картана в K отлична от 1, приходим к противоречию с леммой В. Если q нечетно, то параболическая подгруппа P_4 удовлетворяет условиям леммы A, а значит, 2-нильпотентна; противоречие с тем, что P_4 неразрешима.
- (10) $K \simeq D_4(q)$. Как в случае $K \simeq D_l(q), l > 4$, показывается, что параболическая подгруппа P_2 удовлетворяет условиям леммы A; противоречие с тем, что P_2 не является 2-нильпотентной.
- (11) $K \simeq^3 D_4(q)$. Группа K содержит подгруппу $G_2(q)$, удовлетворяющую условиям леммы A. Так как $G_2(q)$ неразрешима, приходим к противоречию.
- (12) $K \simeq PSL_t(q), \ t \geq 3$. Группа G содержит подгруппу T типа $GL_1(q) \times GL_{t-1}(q)$ [15, табл. 4.1A]. По [16, 13.2] $G = KN_G(T)$. Очевидно, что $N_G(T)$ является 2-нильпотентной группой, поэтому T также 2-нильпотентна. Подгруппа T содержит секцию $PSL_{t-1}(q)$, тем самым $PSL_{t-1}(q)$ 2-нильпотентна. Это возможно только для пары (t,q)=(3,2). В этом случае $K \simeq PSL_3(2) \simeq PSL_2(7)$ и K принадлежит списку групп из заключения теоремы.
- $(13)\ K\simeq PSU_t(q),\ t\geq 3.\$ Данный случай рассматривается так же, как (12). При этом T имеет тип $GU_1(q)\times GU_{t-1}(q)$ [15, табл. 4.1A]. Отсюда следует, что (t,q)=(4,2) и $K\simeq PSU_4(2)\simeq PSp_4(3).$ Этот случай был рассмотрен в (1).
- (14) $K \simeq^2 D_t(q), t \ge 4$. Параболическая подгруппа P_1 удовлетворяет условиям леммы А. Так как P_1 неразрешима, приходим к противоречию.

Следствие. Если каждая максимальная подгруппа неразрешимой группы G сверхразрешима или проста, то главный ряд группы G имеет вид $1 \subseteq K \subseteq G$, где $|G:K| \le 2$, $K \simeq PSL_2(p)$ для подходящего значения параметра p.

Доказательство. Из теоремы 2 следует, что группа G обладает главным рядом $1\subseteq K\subseteq G$, где $K\simeq PSL_2(p^n),\ |G:K|=1$ или |G:K|=r — простое число. Если n>1, то K содержит максимальную 2-нильпотентную подгруппу Бореля, которая не сверхразрешима. Отсюда легко заключить, что n=1. Так как $\operatorname{Aut}(PSL_2(p))\simeq PGL_2(p),$ то $|G:K|\leq 2.$

В связи с теоремой 2 волне естественно возникает следующий вопрос: каковы неабелевы главные факторы конечной неразрешимой группы, у которой всякая максимальная подгруппа простая или p-нильпотентная (p-разложимая) для некоторого фиксированного $p \in \pi(G)$?

Авторы благодарны рецензенту за полезные замечания.

ЛИТЕРАТУРА

- 1. Huppert B. Endliche Gruppen. I. Berlin; Heidelberg; New York: Springer-Verl., 1967.
- Conway J. H., Curtis R. T., Norton S. P., Parker R. A., Wilson R. A. Atlas of finite groups. London: Clarendon, 1985.
- Miller G., Moreno H. Nonabelian groups in which every subgroups is abelian // Trans. Amer. Math. Soc. 1903. N 4. P. 398–404.
- Шмидт О. Ю. Группы, все подгруппы которых специальные // Мат. сб. 1924. Т. 31. С. 366–372
- Huppert B. Normalteiler und maximale Untergruppen endlicher Gruppen // Math. Z. 1954.
 Bd 60, Heft 4. S. 409–434.
- Doerk K. Minimal nicht überauflösbare, endliche Gruppen // Math. Z. 1966. Bd 91. S. 198– 205.
- **7.** *Холл М.* Теория групп. М.: Изд-во иностр. лит., 1962.
- Романовский А. В. Группы с холловыми нормальными делителями // Конечные группы. Минск: Наука и техника, 1966. С. 98–115.

- 9. Baumann B. Endliche nichtauflösbare Gruppen mit einer nilpotenten maximal Untergruppen // J. Algebra. 1976. V. 38. P. 119–135.
- 10. Thompson J. A special class of non-solvable groups // Math. Z. 1960. Bd 72. S. 458–462.
- 11. Кондратьев А. С. Подгруппы конечных групп Шевалле // Успехи мат. наук. 1986. Т. 41, № 1. С. 57–96.
- 12. Mitchell H. H. Determination of the ordinary and modular ternary linear groups // Trans. Amer. Math. Soc. 1911. V. 12. P. 207–242.
- 13. Kleidman P. The maximal subgroups of the Chevalley groups $G_2(q)$ with q odd, the Ree groups ${}^2G_2(q)$, and their automorphism groups // J. Algebra. 1988. V. 117. P. 30–71.
- 14. Liebeck M., Saxl J. On the orders of maximal subgroups of the finite exceptional groups of Lie type // Proc. London Math. Soc. 1987. V. 55, N 3. P. 299–330.
- 15. Kleidman P., Liebeck M. The subgroup structure of the finite classical groups. Cambridge: Cambridge Univ. Press, 1990.
- 16. Aschbacher M. On the maximal subgroups of the finite classical groups // Invent. Math. 1984. V. 76. P. 469–514.

Статья поступила 18 февраля 2013 г.

Монахов Виктор Степанович Гомельский гос. университет им. Ф. Скорины, ул. Советская, 104, Гомель 246050, Беларусь Victor.Monakhov@gmail.com
Тютянов Валентин Николаевич

Тютянов Валентин Николаевич Международный университет «МИТСО», Гомельский филиал, пр. Октября, 46-А, Гомель 246012, Беларусь tyutyanov@front.ru