О КВАЗИПОРЯДКЕ, ИНДУЦИРОВАННОМ ВНУТРЕННИМИ ГОМОМОРФИЗМАМИ, И ОБ ОПЕРАТОРЕ АЛГЕБРАИЧЕСКОГО ЗАМЫКАНИЯ

А. Г. Пинус

Аннотация. Изучаются квазипорядки на множествах, которые индуцируются внутренними гомоморфизмами алгебр с данным базисным множеством. Эти квазипорядки играют важную роль в изучении оператора алгебраического замыкания на множествах из универсальных алгебр.

 $DOI\,10.17377/smzh.2015.56.301$

Ключевые слова: квазипорядок, алгебраическое множество, внутренний гомоморфизм.

К 75-летию моего учителя Юрия Леонидовича Ершова

Понятие алгебраического множества универсальной алгебры относится к числу основных понятий алгебраической геометрии этих алгебр, развитой в работах Б. И. Плоткина и группы В. Н. Ремесленникова (см., например, [1, 2]). Алгебраические множества суть решения систем термальных уравнений, и в связи с этим представляет интерес вопрос о строении алгебраических замыканий подмножеств декартовых степеней универсальных алгебр — наименьших алгебраических множеств, включающих в себя исходное подмножество. В настоящей работе приводится некое описание строения алгебраического замыкания на основе некоторого естественного квазипорядка на универсальных алгебрах, связанного с понятием внутреннего гомоморфизма алгебр. Существенную роль внутренние гомоморфизмы универсальных алгебр играют при работе с так называемыми позитивно условными термами (см., например, [3]). Таким образом, в работе устанавливается связь одного из основных понятий алгебраической геометрии универсальных алгебр с такими традиционными понятиями универсальной алгебры, как прямые и матричные степени алгебр, их подалгебры и гомоморфизмы одних подалгебр на другие. Отсюда, в частности, вытекает описание взаимосвязи между различными (в том числе и отличных друг от друга сигнатур) универсальными алгебрами с общим основным множеством, имеющими идентичные операторы алгебраического замыкания, что, в свою очередь, можно рассматривать в рамках естественного вопроса о различных универсальных алгебрах с общим основным множеством и идентичными теми или иными производными структурами.

Работа выполнена при финансовой поддержке Министерства образования и науки РФ по государственному заданию № 2014/138 (проект 1052).

Напомним, что для любой универсальной алгебры $\mathfrak{A} = \langle A; \sigma \rangle$ при $n \in \omega$ подмножество $B \subseteq A^n$ называется алгебраическим множеством алгебры \mathfrak{A} , если B является совокупностью решений в \mathfrak{A} некоторой системы (возможно, бесконечной) термальных уравнений, т. е. $B = \{\bar{a} \in A^n \mid \mathfrak{A} \models \mathfrak{T}(\bar{a})\}$, где $\mathfrak{T}(\bar{x}) = \{t_i^1(\bar{x}) = t_i^2(\bar{x}) \mid i \in I\}$, а $t_j^i(\bar{x})$ — некоторые термы сигнатуры σ . Подобное B будем называть n-мерным алгебраическим множеством алгебры \mathfrak{A} . Совокупность всех n-мерных алгебраических множеств алгебры \mathfrak{A} образуют полную решетку относительно теоретико-множественного включения \subseteq , обозначаемую далее через $\mathrm{Alg}_n \, \mathfrak{A}$. В [4] доказано, что для любой полной решетки L существует алгебра \mathfrak{A} такая, что $L \cong \mathrm{Alg}_1 \, \mathfrak{A}$. Вопрос абстрактного описания решеток $\mathrm{Alg}_n \, \mathfrak{A}$ (для n > 1) остается открытым.

В настоящей работе приводится некоторый подход к описанию оператора алгебраического замыкания на множествах из универсальных алгебр $\mathfrak A$ как порождению главных идеалов относительно некоторого естественного квазипорядка на некоем расширении алгебры $\mathfrak A$.

Напомним, что внутренним гомоморфизмом (изоморфизмом) универсальной алгебры $\mathfrak A$ называется любой гомоморфизм (изоморфизм) между некоторыми подалгебрами алгебры $\mathfrak A$. Совокупность всех внутренних гомоморфизмов (изоморфизмов) алгебры $\mathfrak A = \langle A; \sigma \rangle$ с добавленным при необходимости пустым отображением образует (относительно операции суперпозиции частичных отображений множества A в себя) полугруппу, обозначаемую далее через $\operatorname{Ihm} \mathfrak A$ (Iso $\mathfrak A$).

На основном множестве A универсальной алгебры $\mathfrak{A} = \langle A; \sigma \rangle$ введем отношение $\leq_{\text{Ihm }\mathfrak{A}} (\sim_{\text{Iso }\mathfrak{A}})$ следующим образом: $a \leq_{\text{Ihm }\mathfrak{A}} b$ ($a \sim_{\text{Iso }\mathfrak{A}} b$) для $a, b \in A$ тогда и только тогда, когда существует $\varphi \in \text{Ihm }\mathfrak{A}$ ($\varphi \in \text{Iso }\mathfrak{A}$) такой, что $\varphi(b) = a$, или, иначе, когда существует внутренний гомоморфизм (изоморфизм) φ алгебры \mathfrak{A} , отображающий $\langle b \rangle_{\mathfrak{A}}$ на $\langle a \rangle_{\mathfrak{A}}$ и такой, что $\varphi(b) = a$. Здесь и далее $\langle C \rangle_{\mathfrak{A}}$ для любого $C \subseteq A$ — подалгебра алгебры \mathfrak{A} , порожденная множеством C, а $\langle \{a\} \rangle_{\mathfrak{A}}$ обозначаем далее через $\langle a \rangle_{\mathfrak{A}}$ для $a \in A$. Очевидно, что $\leq_{\text{Ihm }\mathfrak{A}}$ является отношением квазипорядка на множестве A, а роль отношения эквивалентности, порожденной этим квазипорядком, играет отношение $\sim_{\text{Iso }\mathfrak{A}}$. Покажем, что этот квазипорядок, рассмотренный на некотором расширении алгебры \mathfrak{A} , позволяет в его терминах описать совокупность алгебраических множеств алгебры \mathfrak{A} .

Для любого $B \subseteq A^n$ через $\overline{B}_{\mathfrak{A}}$ будем обозначать алгебраическое замыкание множества B в алгебре \mathfrak{A} — наименьшее n-мерное алгебраическое множество алгебры \mathfrak{A} , включающее в себя B. Таким образом, $\bar{c} \in \overline{B}_{\mathfrak{A}}$ для $\bar{c} \in A^n$ тогда и только тогда, когда для любого термального уравнения $t^1(\bar{x}) = t^2(\bar{x})$, для которого любое $\bar{b} \in B$ является корнем, имеет место $\mathfrak{A} \models t^1(\bar{c}) = t^2(\bar{c})$.

Очевидным образом операция $B \to \overline{B}_{\mathfrak{A}}$ на подмножествах множества A^n обладает основными свойствами операции замыкания:

$$(1) \ B \subseteq \overline{B}_{\mathfrak{A}}, \quad (2) \ \overline{(\overline{B}_{\mathfrak{A}})_{\mathfrak{A}}} = \overline{B}_{\mathfrak{A}}, \quad (3) \ B_1 \subseteq B_2 \Rightarrow \overline{B}_{1\mathfrak{A}} \subseteq \overline{B}_{2\mathfrak{A}}.$$

В силу свойства (3) для любых $B_1, B_2 \subseteq A^n$ имеют место включения $\overline{B}_{1\mathfrak{A}} \cup \overline{B}_{2\mathfrak{A}} \subseteq \overline{(B_1 \cup B_2)_{\mathfrak{A}}}$ и $\overline{(B_1 \cap B_2)_{\mathfrak{A}}} \subseteq \overline{B}_{1\mathfrak{A}} \cap \overline{B}_{2\mathfrak{A}}$. Заметим, что эти включения могут быть и собственными. Действительно, пусть сигнатура σ состоит из одной единственной одноместной функции f(x). Для любого натурального n через \mathfrak{L}_n обозначим f-цикл длинны n, а через \mathfrak{L}_{∞} — алгебру $\langle Z; x+1 \rangle$, где Z — совокупность всех целых чисел.

Пусть $\mathfrak A$ является дизъюнктным объединением алгебр $\mathfrak L_3$, $\mathfrak L_5$ и $\mathfrak L_{15}$. В случае, когда $B_1=\mathfrak L_3$, $B_2=\mathfrak L_5$, очевидным образом имеем равенства $\overline B_{1\mathfrak A}=B_1$,

 $\overline{B}_{2\mathfrak{A}}=B_2, \ \overline{(B_1\cup B_2)}_{\mathfrak{A}}=\mathfrak{A}, \ \mathrm{T.\ e.}\ \ \overline{B}_{1\mathfrak{A}}\cup \overline{B}_{2\mathfrak{A}}
eq \overline{(B_1\cup B_2)}_{\mathfrak{A}}.$ Выбирая \mathfrak{A} равным дизъюнктному объединению $\mathfrak{L}_{30}, \ \mathfrak{L}_{291}$ и $\mathfrak{L}_{385}, \ \mathrm{a}\ B_1=\mathfrak{L}_{30}\cup \mathfrak{L}_{291}, \ B_2=\mathfrak{L}_{30}\cup \mathfrak{L}_{385}$ в силу числовых равенств $30=2\cdot 3\cdot 5, \ 291=3\cdot 7\cdot 11, \ 385=5\cdot 7\cdot 11$ получаем равенства $\overline{B}_{1\mathfrak{A}}\cap \overline{B}_{2\mathfrak{A}}=\mathfrak{A}$ и $\overline{(B_1\cap B_2)}_{\mathfrak{A}}=\mathfrak{L}_{30}, \ \mathrm{T.\ e.\ } \overline{(B_1\cap B_2)}_{\mathfrak{A}}
eq \overline{B}_{1\mathfrak{A}}\cap \overline{B}_{2\mathfrak{A}}.$ Отметим также, что операция алгебраического замыкания не локальна,

Отметим также, что операция алгебраического замыкания не локальна, т. е. включение $\overline{B}_{\mathfrak{A}}\supseteq\bigcup_{D\in P_{\omega}(B)}\overline{D}_{\mathfrak{A}}$ может быть собственным. Здесь $P_{\omega}(B)$ — совокупность всех конечных подмножеств множества B. Пусть p — некоторое натуральное простое число и алгебра \mathfrak{A} является дизъюнктным объединением алгебр \mathfrak{L}_{p^k} ($k\in\omega$) и \mathfrak{L}_{∞} . Пусть $B=\bigcup_{k\in\omega}\mathfrak{L}_{p^k}$, тогда $\overline{B}_{\mathfrak{A}}=\mathfrak{A}$, но $\overline{D}\subseteq\bigcup_{k\leq m}\mathfrak{L}_{p^k}$ для любого $D\in P_{\omega}(B)$, где $m=\max\{e\in\omega\mid D\cap\mathfrak{L}_{p^e}\neq\varnothing\}$, тем самым $\overline{B}_{\mathfrak{A}}\neq\bigcup_{D\in P_{\omega}(B)}\overline{D}_{\mathfrak{A}}$ в этом случае.

В [5] отмечена связь совокупностей алгебраических множеств алгебры $\mathfrak A$ с полугруппой $\operatorname{End}\mathfrak A$ ее эндоморфизмов. В частности, доказано, что для любых универсальных алгебр $\mathfrak A_1 = \langle A; \sigma_1 \rangle$ и $\mathfrak A_2 = \langle A; \sigma_2 \rangle$ с одним и тем же основным множеством A, но, возможно, разных сигнатур из совпадения совокупностей алгебраических множеств этих алгебр $\operatorname{Alg}_n\mathfrak A_1 = \operatorname{Alg}_n\mathfrak A_2$ (для любого $n \in \omega$) вытекает равенство $\operatorname{End}\mathfrak A_1 = \operatorname{End}\mathfrak A_2$, т. е. совпадение полугрупп эндоморфизмов алгебр $\mathfrak A_1$ и $\mathfrak A_2$ является необходимым условием совпадения их алгебраических множеств. Там же показано, что это условие не является достаточным условием.

Далее, тем не менее будет в терминах преобразований алгебр (внутренних гомоморфизмов некоторых их расширений) указано необходимое и достаточное условие совпадения их алгебраических множеств.

Прежде всего для любой алгебры $\mathfrak{A} = \langle A; \sigma \rangle$ переформулируем описание отношения $\leq_{\text{Ihm }\mathfrak{A}}$ в терминах термальных уравнений: очевидным образом для $a,b \in A$ отношение $a \leq_{\text{Ihm }\mathfrak{A}} b$ имеет место тогда и только тогда, когда любое термальное уравнение $t^1(x) = t^2(x)$ сигнатуры σ , решением которого является элемент b, имеет в качестве решения элемент a, т. е. когда $a \in \overline{\{b\}}_{\mathfrak{A}}$.

Для любой универсальной алгебры $\mathfrak{A} = \langle A; \sigma \rangle$ на A зафиксируем некоторое отношение < вполне упорядочения этого множества. Традиционно через P(A)будем обозначать совокупность всех подмножеств множества А. Для любого непустого $B \in P(A)$ пусть 0_B — наименьший относительно вполне упорядочения \leq элемент из B. Рассмотрим прямую степень $\mathfrak{A}^A = \langle A^A; \sigma \rangle$ алгебры $\mathfrak A$. Традиционным образом отождествим элементы a из A с константными элементами a^A из A^A , где $\pi_b(a^A)=a$ для любого $b\in A$, а π_b — проектирование множества A^A на A по координате b. Подалгебру константных элементов $\{a^A \mid a \in A\}$ алгебры \mathfrak{A}^A будем обозначать через $\overline{\mathfrak{A}}$ и называть константной подалгеброй алгебры \mathfrak{A}^A . Рассмотрим также следующее вложение φ непустых множеств из P(A) в множество A^A : для $\emptyset \neq B \subseteq A$ при любом $b \in B$ пусть $\pi_b(\varphi(B)) = b,$ если $b \in B,$ и $\pi_b(\varphi(B)) = 0_B,$ если $b \notin B.$ Обозначим далее $\varphi(B)$ через d_B . В случае, когда $\varnothing\in\mathrm{Alg}_1\,\mathfrak{A}$, добавим к квазиупорядоченному множеству $\langle A^A; \leq_{\text{Ihm }\mathfrak{A}^A} \rangle$ внешний нуль 0^A , считая его равным $\varphi(\varnothing)$ и обозначая через d_\varnothing . Соответствующее расширение множества $\langle A^A; \leq_{\text{Ihm }\mathfrak{A}^A} \rangle$ будем обозначать через $\langle A_0^A; \leq_{\operatorname{Ihm}\mathfrak{A}_0^A} \rangle$. Под квазиупорядоченной оболочкой $\langle 0b\mathfrak{A}; \leq_{0b} \rangle$ алгебры $\mathfrak A$ будем далее понимать множество $\langle A^A;\leq_{\mathrm{Ihm}\,\mathfrak A^A}\rangle,$ если $\varnothing\notin\mathrm{Alg}_1\,\mathfrak A,$ и соответственно множество $\langle A_0^A; \leq_{\text{Ihm }\mathfrak{A}_0^A} \rangle$, если $\varnothing \in \text{Alg}_1\mathfrak{A}$. Заметим, что ограничение квазипорядка \leq_{0b} до подмножества $\overline{\mathfrak{A}}$ совпадает с отношением $\leq_{\operatorname{Ihm}\overline{\mathfrak{A}}}$

(с отношением $\leq_{\operatorname{Ihm} \mathfrak{A}}$ при отождествлении $\overline{\mathfrak{A}}$ с \mathfrak{A}).

Квазиупорядоченное множество $\langle C; \leq \rangle$ назовем *квазирешеткой*, если решеточно упорядочен фактор $\langle C/\sim; \leq \rangle$ этого множества по отношению эквивалентности \sim , индуцированному на C квазипорядком \leq .

Подмножество D квазиупорядоченного множества $\langle C; \leq \rangle$ назовем n-лотным e нем cнизу, если для любого $c \in C$ существует $d \in D$ такое, что $d \leq c$ и для любых $c_1, c_2 \in C$ таких, что $c_1 \not\sim c_2$ (здесь \sim — эквивалентность на C, порожденная квазипорядком \leq), существует $d \in D$ такое, что либо $d \leq c_1$ и $d \nleq c_2$, либо $d \leq c_2$ и $d \nleq c_1$, т. е. идеалы множества $\langle C; \leq \rangle$, порожденные не \sim -эквивалентными элементами из C в пересечении с D, отличаются друг от друга.

Лемма 1. Для любой алгебры $\mathfrak{A} = \langle A; \sigma \rangle$ ее квазиупорядоченная оболочка $\langle 0b\mathfrak{A}; \leq_{0b} \rangle$ является полной квазирешеткой, в которой константная подалгебра плотная снизу.

Доказательство. Для доказательства первого утверждения достаточно показать, что для любого $C\subseteq 0b\mathfrak{A}$ в $\langle 0b\mathfrak{A}; \leq_{0b} \rangle$ существует $\operatorname{Sup} C$. Прежде всего отметим, что для любых термов $t_1(x)$ и $t_2(x)$ сигнатуры σ и любого $e\in A^A$ истинность равенства $t_1(e)=t_2(e)$ на \mathfrak{A}^A равносильна истинности равенств $t_1(\pi_b(e))=t_2(\pi_b(e))$ на алгебре \mathfrak{A} для любого $b\in A$. Выберем элемент $d_C\in A^A$ таким, что

$$\{\pi_b(d_C) \mid b \in A\} = \bigcup_{a \in C} \{\pi_b(a) \mid b \in A\}.$$

В силу отмеченного выше если $\mathfrak{A} \models t_1(d_C) = t_2(d_C)$, то $\mathfrak{A} \models t_1(\pi_b(d_C)) = t_2(\pi_b(d_C))$ для любого $b \in A$ и, значит, $\mathfrak{A} \models t_1(\pi_b(a)) = t_2(\pi_b(a))$ для любых a из C и b из A, т. е. $\mathfrak{A}^A \models t_1(a) = t_2(a)$ и $a \leq_{0b} d_C$. Заметим, что если $a \leq_{0b} e$ для некоторого $e \in A^A$ и любого $a \in C$, то и $d_C \leq_{0b} e$, т. е. $d_C = \operatorname{Sup} C$ в квазиупорядоченном множестве $\langle 0b\mathfrak{A}; \leq_{0b} \rangle$. Как известно, если существуют супремумы любых подмножеств упорядоченного множества, то оно является полной решеткой. Таким образом, $\langle 0b\mathfrak{A}; \leq_{0b} \rangle$ является полной квазирешеткой, и первое утверждение леммы доказано.

Покажем, что $\overline{\mathfrak{A}}$ плотно снизу в $\langle 0b\mathfrak{A}; \leq_{0b} \rangle$. Пусть $c_1, c_2 \in 0b\mathfrak{A}$ и $c_1 \not\sim c_2$ (здесь \sim — эквивалентность на $0b\mathfrak{A}$, порожденная квазипорядком \leq_{0b}). Будем считать, что $c_1, c_2 \in A^A$ (случай, когда $c_1 = d_{\varnothing}$ либо $c_2 = d_{\varnothing}$, рассматривается аналогично), отношение $c_1 \not\sim c_2$ влечет то, что либо $c_1 \not\leq_{0b} c_2$, либо $c_2 \not\leq_{0b} c_1$. Допустим первое (вторая ситуация рассматривается аналогично). Тогда для некоторых термов $t_1(x), t_2(x)$ сигнатуры σ имеем $\mathfrak{A}^A \models t_1(c_2) = t_2(c_2)$, но $\mathfrak{A}^A \models t_1(c_1) \neq t_2(c_1)$. Таким образом, найдется $b_0 \in A$ такой, что $\mathfrak{A} \models t_1(\pi_{b_0}(c_1)) \neq t_2(\pi_{b_0}(c_1))$, в то время как $\mathfrak{A} \models t_1(\pi_b(c_2)) = t_2(\pi_b(c_2))$ для любого $b \in A$. Тем самым $\pi_{b_0}(c_1)^A \leq c_1$, но $\pi_{b_0}(c_1)^A \not\leq c_2$, т. е. действительно $\overline{\mathfrak{A}}$ плотно снизу в $\langle 0b\mathfrak{A}; \leq_{0b} \rangle$.

Заметим также, что $e \sim_{\operatorname{Iso} \mathfrak{A}^A} d_E$ для любого $e \in A^A$, где $E = \{\pi_b(e) \mid b \in A\}$.

Лемма 2. Для любого $B \subseteq A$ имеет место равенство

$$\{a^A \mid a \in \overline{B}_{\mathfrak{A}}\} = \{a^A \mid a^A \leq_{0b} d_B\}.$$

Утверждение леммы непосредственно следует из определения множества $\overline{B}_{\mathfrak{A}},$ элементов a^A,d_B и отношения $\leq_{0b}.$

Из утверждения леммы 2 и замечания перед ней вытекает

Теорема 1. Пересечения главных идеалов квазиупорядоченного множества $\langle 0b\mathfrak{A}; \leq_{0b} \rangle$ с множеством $\overline{\mathfrak{A}}$ совпадает с совокупностью одномерных алгебраических множеств алгебры \mathfrak{A} .

Для перехода к произвольным n-мерным алгебраическим множествам алгебры $\mathfrak A$ понадобится понятие mampuчной cmenehu $\mathfrak A^{[n]}$ aлгебры $\mathfrak A$ $(n\in\omega)$. Напомним, что основным множеством ее служит множество A^n , а ее сигнатура $\sigma^{[n]}$ состоит из любых k-местных символов m_t , где t — любая последовательность $\langle t_1(\bar x),\dots,t_n(\bar x)\rangle$ kn-местных термов сигнатуры алгебры $\mathfrak A$, при этом $m_t(\bar a_1,\dots,\bar a_k)=\langle t_1(\bar a),\dots,t_n(\bar a)\rangle$ для любого $\bar a\in A^{kn}$ (при отождествлении A^{kn} с $(A^n)^k$, считая $\bar a=\langle \bar a_1,\dots,\bar a_k\rangle$, где $\bar a_i\in A^n$). Через $\mathfrak A^{[n]*}$ обозначим обеднение алгебры $\mathfrak A^{[n]}$ до части $\sigma^{[n]*}$ сигнатуры $\sigma^{[n]}$, состоящей из всех унарных символов последней. Тем самым для любых последовательностей $t^1=\langle t_1^1(\bar x),\dots,t_n^1(\bar x)\rangle$, $t^2=\langle t_1^2(\bar x),\dots,t_n^2(\bar x)\rangle$ n-местных термов сигнатуры алгебры $\mathfrak A$ и любого $\bar a\in A^n$

$$\mathfrak{A}^{[n]*} \vDash m_{t^1}(\bar{a}) = m_{t^2}(\bar{a}) \Leftrightarrow \underset{i=1}{\overset{n}{\underset{i=1}{\longleftarrow}}} \mathfrak{A} \vDash t^1_i(\bar{a}) = t^2_i(\bar{a}).$$

В силу этого для любых $B\subseteq A^n$ и $\bar{c}\in A^n$ включение $\bar{c}\in \overline{B}_{\mathfrak{A}}$ равносильно включению $\bar{c}\in \overline{B}_{\mathfrak{A}^{[n]*}}$, т. е., в частности, имеет место

Лемма 3. Для любой алгебры $\mathfrak A$ и любого $n\in\omega$ имеет место равенство $\mathrm{Alg}_n\,\mathfrak A=\mathrm{Alg}_1\,\mathfrak A^{[n]*}.$

Из леммы 3 и теоремы 1 вытекает

Теорема 2. Пересечение главных идеалов квазиупорядоченного множества $\langle 0b\mathfrak{A}; \leq_{0b} \rangle$ с множеством $\overline{\mathfrak{A}^{[n]*}}$ совпадает с совокупностью n-мерных алгебраических множеств алгебры \mathfrak{A} .

Таким образом, оператор алгебраического замыкания $B \to \overline{B}_{\mathfrak{A}}$ (для $B \subseteq A^n$) состоит в цепочке переходов $B \to d_B \in (\mathfrak{A}^{[n]*})^{A^n}, \ d_B \to \{\bar{a} \in A \mid \bar{a}^{A^n} \in (A^n)^{A^n}, \bar{a}^{A^n} \leq_{\mathrm{Ihm}(\mathfrak{A}^{[n]*})^{A^n}} d_B\}.$

Значительную роль в алгебраической геометрии универсальных алгебр играет понятие $n\ddot{e}meposocmu$ ux по уравнениям: алгебра $\mathfrak A$ называется $n\ddot{e}meposocu$ по уравнениям, если любая система ее термальных уравнений равносильна на $\mathfrak A$ некоторой конечной своей подсистеме.

В терминах квазипорядков $\langle \mathfrak{A}^{[n]*}; \leq_{\text{Ihm }\mathfrak{A}^{[n]*}} \rangle$ (для $n \in \omega$) можно сформулировать достаточные условия нётеровости по уравнениям алгебры \mathfrak{A} . Напомним, что квазипорядок $\langle C; \leq \rangle$ называется *вполне квазиупорядоченным*, если в нем не существует ни бесконечных строго убывающих последовательностей, ни бесконечного числа попарно не сравнимых элементов.

Отметим, что если $\langle \mathfrak{A}^{[n]*}; \leq_{\text{Ihm }\mathfrak{A}^{[n]*}} \rangle$ — вполне квазиупорядоченные множества, то алгебра \mathfrak{A} нётерова по уравнениям. Действительно, предположив противное, рассмотрим бесконечную строго убывающую относительно теоретикомножественного включения последовательность алгебраических множеств алгебры \mathfrak{A} (для некоторого $n \in \omega$):

$$A^n \supset B_1 \supset B_2 \supset \cdots \supset B_m \supset B_{m+1} \supset \cdots$$

Пусть $\bar{b}_m \in B_m \setminus B_{m+1}$, тогда для любых $k, m \in \omega$ если k < m, то $\bar{b}_k \nleq_{\mathrm{Ihm} \, \mathfrak{A}^{[n]*}} \bar{b}_m$. По теореме Рамсея найдется бесконечное $\mathscr{S} \subseteq \omega$ такое, что для любых k < n из \mathscr{S} либо \bar{b}_k и \bar{b}_n несравнимы в $\langle \mathfrak{A}^{[n]*}; \leq_{\mathrm{Ihm} \, \mathfrak{A}^{[n]*}} \rangle$, либо \bar{b}_n строго меньше \bar{b}_k ; противоречие с тем, что $\langle \mathfrak{A}^{[n]*}; \leq_{\mathrm{Ihm} \, \mathfrak{A}^{[n]*}} \rangle$ — вполне квазиупорядоченное множество.

Заметим, что обратное неверно, т. е. алгебра $\mathfrak A$ может быть нётеровой по уравнениям, хотя, к примеру, $\langle \mathfrak A; \leq_{\operatorname{Ihm} \mathfrak A} \rangle$ включает бесконечные совокупности несравнимых элементов. Пусть, к примеру, сигнатура σ состоит из одной одноместной функции f(x). Пусть P — совокупность всех простых натуральных чисел, а $\mathfrak A = \langle A; \sigma \rangle$ — дизъюнктное объединение (для $p \in P$) f-циклов длины p. Тогда очевидно, что если $a_p \in A_p$, то $\{a_p \mid p \in P\}$ — совокупность несравнимых в $\mathfrak A; \leq_{\operatorname{Ihm} \mathfrak A}$ элементов. В то же время без труда замечается, что $\operatorname{Alg}_1 \mathfrak A = \{\varnothing, \bigcup_{p \in D} A_p, A \mid D \in P_\omega(P)\}$ (здесь $P_\omega(P)$ — совокупность всех конечных подмножеств множества P), т. е. любая совокупность термальных уравнений

подмножеств множества P), т. е. люоая совокупность термальных уравнении от одной переменной равносильна на $\mathfrak A$ некоторой своей конечной подсовокупности. То же самое нетрудно заметить и для $\mathrm{Alg}_n\,\mathfrak A$ при любом $n\in\omega$, т. е. $\mathfrak A$ нётерова по уравнениям.

Из теоремы 2 вытекает следующее достаточное условие на алгебры $\mathfrak{A}_1 = \langle A; \sigma_1 \rangle$ и $\mathfrak{A}_2 = \langle A; \sigma_2 \rangle$ с общим основным множеством для совпадения их алгебраических множеств.

Следствие 1. Для любых универсальных алгебр $\mathfrak{A}_1 = \langle A; \sigma_1 \rangle$, $\mathfrak{A}_2 = \langle A; \sigma_2 \rangle$ при любом натуральном n совпадение полугрупп $\operatorname{Ihm}(\mathfrak{A}_1^{[n]*})^{A^n}$ и $\operatorname{Ihm}(\mathfrak{A}_2^{[n]*})^{A^n}$ влечет совпадение совокупностей n-мерных алгебраических множеств этих алгебр, π . е. равенство $\operatorname{Alg}_n \mathfrak{A}_1 = \operatorname{Alg}_n \mathfrak{A}_2$.

В силу того, что одноместные термальные функции алгебр $\mathfrak A$ и $\mathfrak A^{[n]*}$ одни и те же, для n=1 утверждение следствия 1 может быть сформулировано в виде следующего утверждения.

Следствие 2. Для любых универсальных алгебр $\mathfrak{A}_1 = \langle A; \sigma_1 \rangle$, $\mathfrak{A}_2 = \langle A; \sigma_2 \rangle$ с общим основным множеством совпадение совокупностей внутренних гомоморфизмов однопорожденных подалгебр алгебр \mathfrak{A}_1^A и \mathfrak{A}_2^A в подалгебры их константных элементов влечет совпадение одномерных алгебраических множеств этих алгебр, т. е. равенство $\mathrm{Alg}_1 \, \mathfrak{A}_1 = \mathrm{Alg}_1 \, \mathfrak{A}_2$.

Отметим, наконец, открытый вопрос как абстрактного, так и конкретного описаний квазиупорядоченных множеств вида $\langle A; \leq_{\text{Ihm }\mathfrak{A}} \rangle$ для универсальных алгебр $\mathfrak{A} = \langle A; \sigma \rangle$. Здесь приведем лишь частичное решение этого вопроса в случае, когда $\langle A; \leq \rangle$ является нижней полурешеткой. Соответствующую операцию на A обозначим через \wedge . На множестве A определим операции сигнатуры $\sigma = \langle f_d^1 \mid d \in A \rangle$ следующим образом: $f_d(c) = d \wedge c$ для $c \in A$ и любого $d \in A$. Пусть $\mathfrak{A} = \langle A; \sigma \rangle$. Для любого $a \in A$ имеем $\langle a \rangle_{\mathfrak{A}} = \{b \in A \mid b \leq a\}$, при этом a — единственный элемент подалгебры $\langle a \rangle_{\mathfrak{A}}$, ее порождающий. Для $a \leq b$ из A отображение $\varphi_{ab}\langle b \rangle_{\mathfrak{A}}$ на $\langle a \rangle_{\mathfrak{A}}$ определим следующим образом: $\varphi_{ab}(c) = c \wedge a$ для $c \in \langle b \rangle_{\mathfrak{A}}$. Заметим, что $\varphi_{ab} \in \text{Ihm }\mathfrak{A}$. Действительно, для $c \in \langle b \rangle_{\mathfrak{A}}$ при любом $d \in A$

$$\varphi_{ab}(f_d(c)) = \varphi_{ab}(d \wedge c) = a \wedge d \wedge c = f_d(c \wedge a) = f_d(\varphi_{ab}(c)).$$

Пусть $\psi \in \text{Ihm }\mathfrak{A}$ и ψ отображает $\langle b \rangle_{\mathfrak{A}}$ на $\langle a \rangle_{\mathfrak{A}}$. Покажем, что в этом случае $a \leq b$. В самом деле, в силу замеченного выше о порождающих подалгебр вида $\langle a \rangle_{\mathfrak{A}}$ имеем равенство $\psi(b) = a$. Тогда $f_b(\psi(b)) = f_b(a) = b \wedge a$, $\psi(f_b(b)) = \psi(b) = a$ и, значит, $a = a \wedge b$, т. е. $a \leq b$.

Тем самым $\langle A; \leq \rangle = \langle A; \leq_{\operatorname{Ihm} \mathfrak{A}} \rangle$ и имеет место

Утверждение 1. Для любой нижней полурешетки $\langle A; \leq \rangle$ на множестве A можно определить алгебру $\mathfrak{A} = \langle A; \sigma \rangle$ таким образом, что $\langle A; \leq \rangle = \langle A; \leq_{\mathrm{Ihm \, \mathfrak{A}}} \rangle$.

В то же время далеко не каждое квазиупорядоченное множество $\langle A; \leq \rangle$ реализуемо в виде $\langle A; \leq_{\mathrm{Ihm}\,\mathfrak{A}} \rangle$ для некоторой универсальной алгебры $\mathfrak{A} = \langle A; \sigma \rangle$.

Рассмотрим четырехэлементное квазиупорядоченное множество $\langle A; \leq \rangle$ такое, что $A = \{a,b,c,d\}$ и квазипорядок \leq определен неравенствами $a \leq d, b \leq d$ $c \leq d$ $a \leq b$ и $b \leq a$. Покажем, что не существует алгебры $\mathfrak{A} = \langle A; \sigma \rangle$ такой, что $\langle A; \leq \rangle = \langle A; \leq_{\text{Ihm }\mathfrak{A}} \rangle$. Предположим противное: пусть $\mathfrak{A} = \langle A; \sigma \rangle$ такова, что $\langle A; \leq \rangle = \langle A; \leq_{\text{Ihm }\mathfrak{A}} \rangle$. Прежде всего заметим, что так как в $\langle A; \leq \rangle$ нет наименьшего элемента, у \mathfrak{A} нет одноэлементных подалгебр. В связи с этим рассмотрим все возможные случаи, связанные с мощностями однопорожденных подалгебр алгебры \mathfrak{A} .

- 1. $|\langle a \rangle_{\mathfrak{A}}| = |\langle b \rangle_{\mathfrak{A}}| = |\langle c \rangle_{\mathfrak{A}}| = 2$. Тогда в силу того, что $\langle a \rangle_{\mathfrak{A}} \cap \langle b \rangle_{\mathfrak{A}}$, $\langle a \rangle_{\mathfrak{A}} \cap \langle c \rangle_{\mathfrak{A}}$, $\langle b \rangle_{\mathfrak{A}} \cap \langle c \rangle_{\mathfrak{A}}$ неодноэлементны, и ввиду изоморфности подалгебр $\langle a \rangle_{\mathfrak{A}}$ и $\langle b \rangle_{\mathfrak{A}}$ и неизоморфности подалгебр $\langle a \rangle_{\mathfrak{A}}$ и $\langle c \rangle_{\mathfrak{A}}$ единственным возможным вариантом для этих подалгебр является следующий: $\langle a \rangle_{\mathfrak{A}} = \langle b \rangle_{\mathfrak{A}} = \{a,b\}$ и $\langle c \rangle_{\mathfrak{A}} = \{c,d\}$. Но последнее противоречит строгому неравенству a < d, т. е. этот вариант невозможен.
- $2. \ |\langle a \rangle_{\mathfrak{A}}| = |\langle b \rangle_{\mathfrak{A}}| = 3, \ |\langle c \rangle_{\mathfrak{A}}| = 2.$ Но тогда опять же в силу отсутствия у \mathfrak{A} одноэлементных подалгебр и того, что с учетом строгого неравенства a < d подалгебра $\langle d \rangle_{\mathfrak{A}}$ обязана быть четырехэлементной, $d \notin \langle a \rangle_{\mathfrak{A}}, \ d \notin \langle b \rangle_{\mathfrak{A}}$ и тем самым $\langle a \rangle_{\mathfrak{A}} = \langle b \rangle_{\mathfrak{A}} = \{a,b,c\}$. Так как $|\langle c \rangle_{\mathfrak{A}} \cap \langle a \rangle_{\mathfrak{A}}|, \ |\langle c \rangle_{\mathfrak{A}} \cap \langle b \rangle_{\mathfrak{A}}| \neq 1$, этот случай невозможен.
- 3. Рассмотрим вариант $|\langle a \rangle_{\mathfrak{A}}| = |\langle b \rangle_{\mathfrak{A}}| = 2$ и $|\langle c \rangle_{\mathfrak{A}}| = 3$. Тогда $\langle a \rangle_{\mathfrak{A}} = \langle b \rangle_{\mathfrak{A}} = \{a,b\},\ \langle c \rangle_{\mathfrak{A}} = \{a,b,c\}$ и $\langle d \rangle_{\mathfrak{A}} = \{a,b,c,d\}$. Пусть φ гомоморфизм \mathfrak{A} на $\langle a \rangle_{\mathfrak{A}}$, соответствующий неравенству a < d. Тогда $\varphi \upharpoonright \langle c \rangle_{\mathfrak{A}}$ будет гомоморфизмом $\langle c \rangle_{\mathfrak{A}}$ на $\langle a \rangle_{\mathfrak{A}}$ с несравнимостью c и a в $\langle A; \leq \rangle$, т. е. невозможен и этот вариант.
- 4. Остался последний вариант $|\langle a \rangle_{\mathfrak{A}}| = |\langle b \rangle_{\mathfrak{A}}| = |\langle c \rangle_{\mathfrak{A}}| = 3$, т. е. $\langle a \rangle_{\mathfrak{A}} = \langle b \rangle_{\mathfrak{A}} = \langle c \rangle_{\mathfrak{A}} = \{a,b,c\}$, и если φ изоморфизм $\langle a \rangle_{\mathfrak{A}}$ на $\langle b \rangle_{\mathfrak{A}}$ то, так как $\langle a \rangle_{\mathfrak{A}} \not\cong \langle c \rangle_{\mathfrak{A}}$, $\varphi(a) = b$ и $\varphi(b) = a$ и тогда c неподвижная точка для φ , т. е. $\langle c \rangle_{\mathfrak{A}} = \{c\}$, что опять же противоречит предположению.

Полученное противоречие влечет следующее

Утверждение 2. Существует четырехэлементное квазиупорядоченное множество $\langle A; \leq \rangle$ такое, что $\langle A; \leq \rangle \neq \langle A; \leq_{\mathrm{Ihm}\,\mathfrak{A}} \rangle$ для любой универсальной алгебры $\mathfrak{A} = \langle A; \sigma \rangle$.

Или иначе

Утверждение 3. Не существует универсальной алгебры $\mathfrak{A} = \langle \{a,b,c,d\}; \sigma \rangle$ такой, что Alg₁ $\mathfrak{A} = \{\{a,b,c,d\},\{c\},\varnothing\},$ т. е. такой, что

- (1) для любого термального уравнения $t_1(x) = t_2(x)$ сигнатуры σ с корнем d все остальные элементы a,b,c являются также корнями;
 - (2) а и b являются корнями одних и тех же термальных уравнений;
- (3) существует термальное уравнение c корнем c, для которого a не является корнем;
- (4) существует термальное уравнение c корнем a, для которого c не является корнем.

Непосредственно замечается, что для любого не более чем трехэлементного квазиупорядоченного множества $\langle A; \leq \rangle$ существует универсальная алгебра $\mathfrak{A} = \langle A; \sigma \rangle$ такая, что $\langle A; \leq \rangle = \langle A; \leq_{\text{Ihm }\mathfrak{A}} \rangle$.

ЛИТЕРАТУРА

- 1. Плоткин Б. И. Некоторые понятия алгебраической геометрии в универсальной алгебре // Алгебра и анализ. 1997. Т. 9, $\mathbb N$ 4. С. 224–248.
- 2. Даниярова Э. Ю., Мясников А. Г., Ремесленников В. Н. Алгебраическая геометрия над алгебраическими системами. IV. Эквациональные области и ко-области // Алгебра и логика. 2010. Т. 49, № 6. С. 715–756.
- **3.** Пинус А. Г. О геометрически близких алгебрах // Алгебра и теория моделей. Новосибирск: Изд-во НГТУ, 2009. Т. 7. С. 85–95.
- 4. Пинус А. Г. О решетках алгебраических подмножеств универсальных алгебр // Алгебра и теория моделей. 2011. Т. 8. С. 60–66.
- 5. Пинус А. Г. Об универсальных алгебрах с идентичными производными объектами (конгруэнциями, алгебраическими множествами) // Сиб. электрон. мат. изв. 2014. Т. 11. С. 752-758.
- Пинус А. Г. Условные термы и их применение в алгебре и теории вычислимости. Новосибирск: Изд-во НГТУ, 2002.

Cтатья поступила 15 июля 2014 г.

Пинус Александр Георгиевич Новосибирский гос. технический университет, пр. К. Маркса, 20, Новосибирск 630092 algebra@nstu.ru