О ПЕРИОДИЧЕСКИХ ГРУППАХ, НАСЫЩЕННЫХ ПРОЕКТИВНЫМИ ЛИНЕЙНЫМИ ГРУППАМИ

А. А. Шлепкин

Аннотация. Доказано, что периодическая группа, насыщенная проективными линейными группами размерности два над конечными полями, изоморфна проективной линейной группе размерности два над подходящим локально конечным полем.

 $DOI\,10.17377/smzh.2015.56.418$

Ключевые слова: насыщенность, периодическая группа.

1. Введение

По определению группа G насыщена группами из множества групп X, если любая конечная подгруппа K из G содержится в подгруппе группы G, изоморфной некоторой группе из X [1].

Пусть группа G насыщена группами из множества групп X и K — конечная подгруппа из G. Через X(K) обозначим множество всех подгрупп из G, содержащих K и изоморфных группам из X. В частности, если 1 — единичная подгруппа G, то X(1) — множество всех подгрупп группы G, изоморфных группам из X [2].

В [3] доказано, что произвольная периодическая группа, насыщенная группами $L_2(q)$, где q не фиксируется, изоморфна $L_2(Q)$, где Q — локально конечное поле. Там же этот результат обобщен на случай, когда группа насыщена группами $SL_2(q)$. Естественно рассмотреть случай, когда периодическая группа насыщена группами из множества групп $\mathfrak{M} = \{PGL_2(q) \mid q$ — степень простого числа $\}$.

Теорема. Периодическая группа G, насыщенная группами из множества \mathfrak{M} , изоморфна $PGL_2(Q)$, где Q — подходящее локально конечное поле.

Схема доказательства использует [3].

2. Используемые факты

Предложение 1. Периодическая группа, содержащая инволюцию, централизатор которой конечен, локально конечна [4].

Предложение 2 [5, предложение 10]. Если в периодической группе G некоторая силовская 2-подгруппа конечна, то все силовские 2-подгруппы из G конечны и сопряжены.

Работа выполнена при поддержке Министерства образования и науки РФ (проект Б 112/14) и гранта Президента РФ (проект МД–3952.2015.9)

Предложение 3. Пусть I означает непустое множество индексов, K_{α} — конечное поле для любого $\alpha \in I$ и $\mathfrak{R} = \{L_2(K_{\alpha}) \mid \alpha \in I\}$. Периодическая группа G, насыщенная группами из множества \mathfrak{R} , изоморфна простой группе $L_2(P)$ над подходящим локально конечным полем P [3].

Предложение 4. Периодическая группа G, насыщенная группами из множества \mathfrak{M} , состоящего из конечных групп диэдра, имеет вид $G = A \leftthreetimes \langle t \rangle$, где A — локально циклическая группа, t — инволюция и $a^t = a^{-1}$ для любого $a \in A$ [6].

Группу из предложения 4 будем называть локально диэдральной группой.

Предложение 5 [7, лемма 5]. Пусть G — локально конечная группа, насыщенная группами из множества $\{PGL_2(p^n)|, \text{ где } p$ — простое число, n — натуральное число $\}$. Тогда $G \simeq PGL_2(P)$, где P — локально конечное поле.

Следующее предложение является частным случаем теоремы 3 из [8].

Предложение 6. Пусть каждая конечная 2-подгруппа группы *T* изоморфна подгруппе группы диэдра или подгруппе элементарной абелевой группы. Тогда выполнено одно из следующих утверждений:

- (a) T локально диэдральная группа,
- (б) Т элементарная абелева группа,
- (в) T локально циклическая группа.

Предложение 7 [9, лемма 6]. Пусть T — силовская 2-подгруппа периодической группы G, \mathfrak{M}_T — множество всех силовских 2-подгрупп группы G, сопряженных с T, \mathfrak{N}_T — непустое множество всех силовских 2-подгрупп группы G, не сопряженных с T. Тогда существуют такие $X \in \mathfrak{M}_T$ и $Y \in \mathfrak{N}_T$, что $|X \cap Y| \geq t$, где t — наперед заданное натуральное число.

Предложение 8 [10, гл. II, § 7, 8]. Пусть $L = PGL_2(q)$. Тогда

- (1) Если q четное, то $L=L_2(q)$ и силовская 2-подгруппа из L элементарная абелева.
- (2) Если q нечетное, то $L = L_2(q) \leftthreetimes \langle v \rangle$, где v инволюция, силовская 2-подгруппа из L неабелева группа диэдра и все инволюции из $L_2(q)$ сопряжены.
 - (3) Если q нечетное и x инволюция из L, то $C_L(x)$ группа диэдра.
- (4) Если q нечетное и t,z две различные инволюции из L, то $L=\langle C_L(t),C_L(z)\rangle.$
- (5) Если q нечетное и D нециклическая подгруппа порядка 4 из L, то $C_L(D) = D$.

3. Доказательство теоремы

Если любая $K \in \mathfrak{M}(1)$ изоморфна $PGL_2(2^n)$ для некоторого натурального n, то по предложению 8(1) $PGL_2(2^n) = L_2(2^n)$ и по предложению 3 $G \simeq L_2(Q) = PGL_2(Q)$ для некоторого локально конечного поля Q характеристики 2, стало быть, заключение теоремы справедливо. Поэтому до конца доказательства считаем, что существует $K \in \mathfrak{M}(1)$, не изоморфная $PGL_2(2^n)$ ни для какого натурального n.

Пусть S — силовская 2-подгруппа группы G.

Лемма 1. S — неабелева группа, S — локально конечный диэдр, и все силовские 2-подгруппы из G сопряжены c S.

Доказательство. Так как по предложению 8(2) силовская 2-подгруппа любой группы $PGL_2(q)$, где q нечетно, является неабелевой группой диэдра,

выберем в качестве S неабелеву силовскую 2-подгруппу из G. Если S — конечная группа, то из условия насыщенности вытекает, что S — конечная группа диэдра, а так как в этом случае все силовские 2-подгруппы сопряжены (предложение 2), заключение верно.

Пусть S — бесконечная группа. По условию насыщенности и предложению 6 S — локально диэдральная группа. Предположим, что в G нашлась силовская 2-подгруппа S_1 , не сопряженная с S. По предложению 7 S_1 можно выбрать так, что порядок ее пересечения D с S больше четырех. Так как в S нет элементарных абелевых подгрупп порядка S, то D содержит циклическую подгруппу порядка S. В частности, S_1 не может быть элементарной абелевой группой. Если S_1 бесконечна, то она содержит бесконечную локально циклическую группу и, следовательно, является локально циклической группой, для которой S_1 — S_2 — S_3 в частности, S_4 — локально диэдральная группа, S_3 и S_4 — силовские 2-подгруппы в S_3 не S_4 поэтому S_3 и S_4 сопряжены в S_4 не S_4 не S_4 не порядка S_4 не одинакового порядка, что S_4 не порядка S_4 не одинакового порядка S_4 не одинакового порядка, что S_4 не порядка S_4 не одинакового порядк

Лемма 2. Пусть a — инволюция из S. Тогда $C_G(a)$ — локально диэдральная группа.

Доказательство. Если $C_G(a)$ — конечная группа, то по предложению 2 G — локально конечная группа и по предложению 5 теорема доказана. Итак, $C_G(a)$ — бесконечная группа. Пусть R — произвольная конечная подгруппа из $C_G(a)$, отличная от $\langle a \rangle$, и $D = \langle a, R \rangle$. По условию насыщенности и лемме 1 $D \subseteq M \subset G$, $M \simeq PGL_2(q)$, где q нечетное или равно 4. При этом $D \subseteq C_M(a) \subset C_G(a)$. По предложению S(1),(2) $C_M(a)$ — группа диэдра, следовательно, $C_G(a)$ насыщена группами диэдра. В силу предложения 4 имеем $C_G(a) = C \leftthreetimes \langle t \rangle$, где C — локально циклическая группа, t — инволюция и $c^t = c^{-1}$ для любого элемента $c \in C$. Лемма доказана.

Лемма 3. B G есть бесконечная локально конечная подгруппа L, изоморфная $PGL_2(P)$, где P — локально конечное поле.

Доказательство. Пусть z — инволюция из центра S (лемма 1). Как следует из леммы 2, $C_G(z)=C \leftthreetimes \langle t \rangle = \bigcup_{i=1}^\infty D_i,$ где

$$D_1 \subset \cdots \subset D_i \ldots,$$
 (1)

 $D_i=C_i \leftthreetimes \langle t
angle,\, C_i=\langle c_i
angle,$ для любого $c\in C_i$ справедливо $c^t=c^{-1}$ и $C=igcup_{i=1}^\infty C_i.$

В силу условия насыщенности $D_1\subset L_1\simeq PGL_2(p_1^{m_1})$. Ясно, что $D_1\subseteq C_{L_1}(z)$. Положим $D_1^1=C_{L_1}(z)$. Предположим, что для $i\geq 1$ определили группы D_i^1 и L_i такие, что $D_i^1=C_{L_i}(z)$. Определим группу D_{i+1}^1 следующим образом: выберем в цепочке (1) элемент D_j с минимально возможным значением индекса j таким, что D_i^1 — собственная подгруппа группы D_j . В силу условия насыщенности $D_j\subset L_{i+1}\simeq PGL_2(p_{i+1}^{m_{(i+1)}})$. Ясно, что $D_j\subseteq C_{L_{(i+1)}}(z)\subset D_j$. Положим $D_{i+1}^1=C_{L_{i+1}}(z)$. Таким образом, имеем бесконечную цепочку групп

$$D_1^1 \subset \dots \subset D_i^1 \dots, \tag{2}$$

 $D_i^1=C_i^1 \leftthreetimes \langle t
angle, \, C_i^1=\left\langle c_i^1
ight
angle,$ для любого $c \in C_i^1$ справедливо $c^t=c^{-1}$ и $C=igcup_{i=1}^\infty C_i^1.$

Кроме того, построена последовательность

$$L_1, \ldots, L_i, \ldots$$
 (3)

подгрупп из G таких, что $L_{i+1} \simeq PGL_2ig(p_i^{m_i}ig)$ и $D_i^1 = C_{L_i}(z)$. В силу того, что порядки групп L_i неограниченно возрастают, можно считать (лемма 1), что все $p_i \neq 2$. Так как по предложению 8(2) $L_i = R_i \leftthreetimes \langle a \rangle$, где $R_i \simeq L_2(p_i^{m_i})$ и |a| = 2, инволюция z лежит в подгруппе R_i начиная с некоторого значения индекса i(как только элементы порядка 4 начнут попадать в L_i). Следовательно, число значений индекса i, для которых инволюция z не лежит в R_i , конечно. Выбросив из последовательности (3) все L_i с данными значениями индекса i и заново ее перенумеровав, получим, что $z \in R_i$ для любого i.

Так как число классов сопряженных инволюций в $C_G(z)$ не больше трех, а число инволюций в $\bigcup_{i=1}^{\infty} C_{R_i}(z)$ бесконечно, пусть T — бесконечное подмножество

инволюций из $\bigcup_{i=1}^{\infty} C_{R_i}(z)$, лежащих в одном классе сопряженных инволюций из $C_G(z)$. Выбросив из последовательности (3) те L_i , для которых $R_i \cap T = \varnothing$, и заново перенумеровав оставшееся бесконечное множество элементов последовательности (3), получим бесконечную последовательность подгрупп группы G:

$$M_1, \ldots, M_i, \ldots,$$
 (4)

со следующими свойствам, вытекающими из определения элементов последовательности (4):

- 1) $M_i \simeq PGL_2(p_i^{m_i})$ и $p_i \neq 2$;
- (2) $M_i=N_i \leftthreetimes \langle a_i
 angle$, где $N_i \simeq L_2ig(p_i^{m_i}ig)$ и $|a_i|=2;$
- $(3) \ z \in N_i, \ C_{M_i}(z) \subset C_{M_{i+1}}(z)$ и $C_G(z) = \bigcup_{i=1}^{\infty} C_{M_i}(z)$;
- 4) $N_i \cap T \neq \emptyset$ для любого значения индекса i.

Пусть t — инволюция из $N_1 \cap T$. Выберем в $C_G(z)$ бесконечную последовательность элементов

$$b_1, \ldots, b_i, \ldots$$
 (5)

 $b_1,\dots,b_i,\dots \eqno(5)$ такую, что $t\in N_i^{b_i}$ (свойство 4). Положив $W_i=M_i^{b_i}$, получим бесконечную последовательность подгрупп

$$W_1, \dots, W_i, \dots$$
 (6)

группы G со следующими свойствами для любого значения индекса i:

- 5) $W_i \simeq PGL_2(p_i^{m_i})$ и $p_i \neq 2;$ 6) $W_i = N_i^{b_i} \leftthreetimes \langle a_i^{b_i} \rangle$, где $N_i \simeq L_2(p_i^{m_i})$ и $\left| a_i^{b_i} \right| = 2;$ 7) инволюции z и t лежат в $N_i^{b_i}$ и сопряжены в $N_i^{b_i};$

8)
$$C_{W_i}(z) \subset C_{W_{i+1}}(z)$$
 и $C_G(z) = \bigcup_{i=1}^{\infty} C_{W_i}(z);$
9) $C_{W_i}(t) \subset C_{W_{i+1}}(t)$ и $C_G(t) = \bigcup_{i=1}^{\infty} C_{W_i}(t).$

9)
$$C_{W_i}(t) \subset C_{W_{i+1}}(t)$$
 и $C_G(t) = \bigcup_{i=1}^{\infty} C_{W_i}(t)$

Свойства 5, 6 очевидны. Первое утверждение свойства 7 следует из определения групп W_i , а второе — из предложения 8(2). Докажем свойство 8. Так как $C_{W_i}(z)=\langle d_i
angle \leftthreetimes \langle t
angle$ и $C_{W_{i+1}}(z)=\langle d_{i+1}
angle \leftthreetimes \langle t
angle$, из равенств $C_{W_i}(z)=C_{(M_i)^{b_i}}(z^{b_i})=\langle d_i
angle$ $(C_{M_i}(z))^{b_i}$ и $C_{W_{i+1}}(z)=C_{(M_{i+1})^{b_{i+1}}}(z^{b_{i+1}})=(C_{M_{i+1}}(z))^{b_{i+1}}$ получаем (используя свойство 3), что $|\langle d_i \rangle|$ делит $|\langle d_{i+1} \rangle|$. Поскольку циклические подгруппы из $C_G(z)$, имеющие одинаковый порядок (больше двух), совпадают (лемма 2), то $\langle d_i \rangle \subset \langle d_{i+1} \rangle$, значит, $C_{W_i}(z) \subset C_{W_{i+1}}(z)$, и свойство 8 доказано.

Докажем свойство 9. Так как $C_{W_i}(t) = \langle h_i \rangle \leftthreetimes \langle z \rangle$ и $C_{W_{i+1}}(t) = \langle h_{i+1} \rangle \leftthreetimes \langle z \rangle$, из изоморфизмов (второе утверждение свойства 7) $C_{W_i}(t) \simeq C_{W_i}(z)$ и $C_{W_{i+1}}(t) \simeq C_{W_{i+1}}(z)$ получаем (используя свойство 3), что $|\langle h_i \rangle|$ делит $|\langle h_{i+1} \rangle|$. Поскольку циклические подгруппы из $C_G(t)$, имеющие одинаковый порядок (больше двух), совпадают, то $\langle h_i \rangle \subset \langle h_{i+1} \rangle$, значит, $C_{W_i}(t) \subset C_{W_{i+1}}(t)$, и свойство 9 доказано.

По предложению 8(4) $W_i = \langle C_{W_i}(z), C_{W_i}(t) \rangle$. Но тогда из свойств 8, 9 вытекает, что последовательность (6) образует цепочку

$$W_1 \subset \cdots \subset W_i \subset \cdots$$

Очевидно, что $L=\bigcup\limits_{i=1}^{\infty}W_i$ — локально конечная группа. Пусть K — произвольная конечная подгруппа из L. Так как $K\subseteq W_i$ для некоторого i и $W_i\simeq PGL_2(p_i^{m_i})$, по предложению 5 $L\simeq PGL_2(P)$, где P — локально конечное поле. Лемма доказана.

Лемма 4. Пусть L — группа из формулировки леммы 3. Тогда G = L.

Доказательство. Предположим обратное. Пусть z из леммы 3. Возьмем инволюцию $v \in G \setminus L$. По условию насыщенности $\langle v, z \rangle \subset M \simeq PGL_2(p^n)$, где либо p нечетно, либо p = n = 2.

Если p нечетно, то M содержит элемент порядка 4. В этом случае $M=R \leftthreetimes \langle a \rangle$, где $R \simeq L_2(p^n)$, а a — инволюция (предложение 8(2)). Так как z перестановочна с некоторой, отличной от себя, инволюцией t из R, то $t \in C_G(z) \subset L$. Поскольку t и z сопряжены (лемма 1), $C_G(t) \subset L$. Отсюда и из предложения 8(2),(4) вытекает включение $R \subset L$. Так как $v \in C_M(x)$ для некоторой инволюции $x \in R$, а $C_M(x) \subset C_G(x) \subset L$, то $v \in L$; противоречие с выбором v.

Если p=n=2, то $M\simeq L_2(4)$. Пусть S_M — силовская 2-подгруппа из M, содержащая z. Ясно, что $M\subset L$. Пусть b — элемент порядка 3 из $N_M(S_M)$, а d — элемент порядка 3 из $N_L(S_M)$. По предложению 8(5) $S_M \leftthreetimes \langle b \rangle = S_M \leftthreetimes \langle d \rangle$. Следовательно, $S_M \leftthreetimes \langle b \rangle \subset L$. Пусть w,l — инволюции из M,L соответственно, инвертирующие элемент b. По условию насыщенности конечная группа $\langle b, w, l \rangle$ содержится в M_1 , где $M_1 \simeq PGL_2(p^n)$ и p нечетное. Но такая ситуация рассматривалась выше, и было показано, что она невозможна.

Итак, $G \setminus L$ не содержит инволюций, что влечет равенство G = L. Лемма 4 и теорема доказаны.

ЛИТЕРАТУРА

- 1. Шлепкин А. К. Сопряженно бипримитивно конечные группы, содержащие конечные неразрешимые подгруппы // Сб. тез. 3-й междунар. конф. по алгебре. Красноярск, 1993. С. 363.
- Кузнецов А. А., Филиппов К. А. Группы, насыщенные заданным множеством групп // Сиб. электрон. мат. изв. 2011. № 8. С. 230–246.
- 3. Рубашкин А. Г., Филиппов К. А. О периодических группах, насыщенных группами $L_2(p^n)$ // Сиб. мат. журн. 2005. Т. 46, № 6. С. 1388–1392.
- 4. Шунков В. П. О периодических группах с почти регулярной инволюцией // Алгебра и Логика. 1972. Т. 11, № 4. С. 470–494.
- Лыткина Д. В., Тухватулина Л. Р., Филиппов К. А. О периодических группах, насыщенных конечным множеством конечных простых групп // Сиб. мат. журн. 2008. Т. 499, № 2. С. 166–175.
- Amberg B., Kazarin L. S. On periodic groups saturated by dihedral subgroups // Ischita group theory 2010. Singapore: World Sci., 2010. P. 11–19.

- 7. Шлепкин А. А. О группах, насыщенных $GL_2(p^n)$ // Вестн. СибГАУ. 2013. № 1. С. 100–108.
- 8. Лыткина Д. В. Периодические группы, насыщенные прямыми произведениями конечных простых групп. II // Сиб. мат. журн. 2011. Т. 52, № 5. С. 1096–1112.
- 9. Лыткина Д. В. Периодические группы, насыщенные прямыми произведениями конечных простых групп // Сиб. мат. журн. 2011. Т. 52, № 2. С. 340–348.
- 10. Huppert B. Endliche gruppen. I. Berlin; Heidelberg; New York: Springer-Verl., 1979.

Cтатья поступила 10 ноября 2014 г.

Шлепкин Алексей Анатольевич Сибирский федеральный университет, пр. Свободный, 79, Красноярск 660041 shlyopkin@mail.ru