МЁБИУС-БИЛИПШИЦЕВО ОДНОРОДНЫЕ ДУГИ НА ПЛОСКОСТИ

В. В. Асеев

Аннотация. Мёбиус-билипшицевым называется η -квазимёбиусово отображение с линейной функцией искажения $\eta(t)=Kt$. Показано, что если открытая жорданова дуга $\gamma\subset \overline{\mathbb{C}}$ с различными концами a,b однородна относительно семейства \mathscr{F}_K мёбиус-билипшицевых автоморфизмов сферы $\overline{\mathbb{C}}$ с заданным K, то она имеет ограниченное искривление по Рикману $RT(\gamma)$ и, следовательно, является квазиконформным образом прямолинейного отрезка. Однородность γ относительно \mathscr{F}_K означает, что для любых $x,y\in\gamma\setminus\{a,b\}$ существует $f\in\mathscr{F}_K$, у которого $f(\gamma)=\gamma$ и f(x)=y. Для получения верхней оценки рикманова искривления $RT(\gamma)$ вводится условие $BR(\delta)$ ограниченного вращения жордановой дуги γ , и тогда эта оценка выражается явно через K и δ .

 $DOI\,10.17377/smzh.2016.57.302$

Ключевые слова: билипшицева однородность, квазиконформная однородность, квазиконформное отображение, билипшицево отображение, квазимёбиусово вложение, мёбиус-билипшицево отображение, мёбиус-билипшицева однородность, ограниченное искривление.

§ 1. Введение

Описание строения топологически однородных пространств (т. е. пространств с транзитивно действующей группой гомеоморфизмов) и, в частности, однородных континуумов — одна из актуальных задач общей топологии, с которой связаны классические работы Мазуркевича, Бинга, Джонса, Хагопиана, Роджерса (см., например, библиографию в [1]). Развитие теории билипшицевых и квазиконформных отображений и смещение основной проблематики в область метрической топологии возобновило интерес к изучению метрических свойств континуумов, однородных относительно заданного класса отображений (квазиконформных, билипшицевых, квазисимметрических, квазимёбиусовых). В теории квазиконформных отображений известны результаты Геринга, Палки (1976) и Сарваса (1985) о квазиконформно однородных областях в \mathbb{R}^n , работы Эркама и Брехнера о квазиконформно однородных кривых (1977) и континуумах (1979) на плоскости, исследования МакМануса, Ньякки и Палка (1998, 1999) о плоских квазиконформно однородных компактах. Особый интерес представляет исследование билипшицево однородных жордановых кривых, выполненное в работах Майера, Гамсари, Херрона, Бишопа и Фримана в период 1995— 2012 гг.

В [2, теорема 1.1] показано, что орбита однопараметрической группы L-билипшицевых автоморфизмов евклидовой плоскости имеет слабо квазиоднородную параметризацию. В [3, теорема A] получена константа ограниченного искривления (bounded turning) для жордановой кривой $\gamma \subset \mathbb{R}^2$, однородной относительно семейства $BL_K(\mathbb{R}^2)$ всех K-билипшицевых автоморфизмов

плоскости, переводящих γ в себя. В [4, теорема 1.1] доказана ограниченность искривления жордановой кривой $\gamma \subset \mathbb{R}^2$, однородной относительно билипшицевых автоморфизмов этой кривой (но без указания константы ограниченного искривления). В [5, теорема В] показано, что в произвольном метрическом пространстве однородность жордановой кривой γ относительно билипшицевых автоморфизмов γ равносильна существованию слабо квазиоднородной параметризации этой кривой. В изучении билипшицево однородных жордановых кривых важную роль играет хордо-дуговое свойство CA^{α} (при $\alpha=1$ свойство СА известно как регулярность по Лаврентьеву). Связь между билипшицевой однородностью, хордо-дуговым свойством и регулярностью по Альфорсу жордановых кривых в \mathbb{R}^n исследована в [6]. Для более общего случая жордановых кривых $\Gamma \subset \overline{\mathbb{R}}^n$ с ограниченным искривлением в хордовой метрике в [7] установлено, что обобщенное хордо-дуговое свойство (в терминах калиброванной меры Хаусдорфа) равносильно тому, что при любом мёбиусовом преобразовании μ пространства $\overline{\mathbb{R}}^n$ кривая $\mu(\Gamma) \cap \mathbb{R}^n$ является L-билипшицево однородной в евклидовой метрике. В [8, следствие 1.3] для жордановой кривой Γ в \mathbb{R}^n показано, что ограниченность искривления в соединении с регулярностью по Альфорсу эквивалентна наличию такой точки $p \in \Gamma$, что кривая Γ и ее «образ» при инверсировании метрики относительно этой точки L-билипшицево однородны в соответствующих метриках (евклидовой и инверсированной). Кроме того, в упомянутых работах имеется богатый набор интересных примеров и контрпримеров.

В данной статье для открытой жордановой дуги $\gamma \in \mathbb{C}$ с различными концами a,b изучается следующее свойство odnopodnocmu: существует константа K такая, что для любой пары точек $x,y \in \gamma \setminus \{a,b\}$ найдется η -квазимёбиусов автоморфизм f сферы \mathbb{C} с линейной функцией искажения $\eta(t) = Kt$ (так называемое K-мёбиус-билипшицево отображение, введенное в [9] под названием «конформно K-билипшицево отображение») такой, что $f(\gamma) = \gamma$ и f(x) = y. Мы доказываем, что такая дуга γ имеет ограниченное искривление по Рикману (т. е. является квазиконформным образом прямолинейного отрезка), и указываем верхнюю оценку рикманова искривления, зависящую лишь от K и константы δ в условии $BR(\delta)$ ограниченного вращения дуги γ .

Терминология и обозначения. Множество γ в топологическом пространстве X называется $\varkappa copdanoso\mathring{u}$ дуго \mathring{u} , если существует гомеоморфизм f отрезка [0,1] числовой прямой на γ . Точки f(0)=a, f(1)=b называют $\varkappa conu, amu$ дуги γ . При этом используются обозначения: $\gamma[a,b]-($ компактная) жорданова дуга с концами a,b и $\gamma(a,b)=\gamma[a,b]\setminus\{a,b\}-($ открытая $\varkappa copdanosa$ дуга с концами a,b). $\varkappa copdanoso\mathring{u}$ $\varkappa copdanoso\mathring{u}$ называется гомеоморфный образ окружности $\{z\in \mathbf{C}:|z|=1\}$. Множество $\gamma\subset\mathbb{R}^n$ называем $\varkappa copdanoso\mathring{u}$ $\varkappa copdanoso\mathring{u}$

$$\operatorname{diam}_{\mathscr{M}} \gamma[x, y] \le C|x - y|_{\mathscr{M}}. \tag{1.1}$$

Множество $\gamma \subset \mathscr{X}$ называется однородным относительно заданного семейства T гомеоморфизмов пространства \mathscr{X} на себя, если для любой пары точек $x,y\in \gamma$ существует такой гомеоморфизм $f\in T$, что $f(\gamma)=\gamma$ и f(x)=y.

Отображение $f: \mathcal{M} \to \mathcal{M}'$ метрических пространств называется K-липшицевым (с K>0), если $|f(x)-f(y)|_{\mathcal{M}'} \leq K|x-y|_{\mathcal{M}}$ для любых $x,y \in \mathcal{M}$. Если обратное отображение $f^{-1}: \mathcal{M}' \to \mathcal{M}$ существует и также K-липшицево, то f называется K-билипшицевым отображением. При K=1 такое отображение изометрическое.

§ 2. Билипшицево однородные некомпактные жордановы кривые

В семействе $BL(\mathbf{C};K)$ всех K-билипшицевых автоморфизмов комплексной плоскости \mathbf{C} (с евклидовой метрикой) рассмотрим подсемейство $BL^*(\gamma \subset \mathbf{C};K)$ всех тех отображений, которые сохраняют ориентацию в \mathbf{C} и переводят заданную некомпактную жорданову дугу γ в себя с сохранением направления на γ .

В [3, теорема A] установлено, что компактная жорданова кривая $\gamma \subset \mathbf{C}$, однородная относительно $BL(\mathbf{C};K)$, имеет ограниченное искривление с константой $1+2K^2$. Используя схему доказательства этой теоремы (с небольшими изменениями и уточнениями), получим такой же результат для некомпактной жордановой кривой.

Теорема 2.1. Если некомпактная жорданова кривая $\gamma \subset \mathbf{C}$ однородна относительно семейства $BL^*(\gamma \subset \mathbf{C}; K)$ с заданным $K \geq 1$, то она имеет ограниченное искривление с константой $1 + 2K^2$.

ДОКАЗАТЕЛЬСТВО. Пусть точки $a,b\in\gamma$ таковы, что прямолинейный отрезок L=L(a,b) лежит в области G — одной из компонент множества $\mathbf{C}\setminus\gamma$. Внутреннее расстояние на множестве $G\cup\gamma$ вводится формулой $\rho(x,y):=\inf_{\lambda}\mathscr{H}^1(\lambda)$, где inf берется по всем континуумам $\lambda\subset G\cup\gamma$, содержащим точки x и y, а $\mathscr{H}^1(\lambda)$ — одномерная мера Хаусдорфа множества λ . Покажем, что $M=\sup\{\rho(x,L):x\in\gamma[a,b]\}<\infty$.

Допустив противное, найдем такую последовательность $x_n \in \gamma[a,b]$, что $\lim_{n \to \infty} \rho(x_n,c) = \infty$, где c = (a+b)/2. В силу компактности $\gamma[a,b]$ можно считать, что $x_n \to x_0 \in \gamma[a,b]$. Для каждого n возьмем $f_n \in BL^*(\gamma \subset \mathbf{C};K)$ такое, что $f_n(a) = x_n$. Ввиду K-билиппицевости f_n для любого R > 0 имеем включение $f_n(\overline{B}(a,R)) \subset \overline{B}(x_n,KR) \subset \overline{B}(a,KR+\operatorname{diam}\gamma[a,b])$, поэтому семейство $\{f_n\}$ равностепенно непрерывно (в силу K-билиппицевости) и равномерно ограничено на любом компакте в \mathbf{C} . Воспользовавшись теоремой Арцела — Асколи и перейдя при необходимости к подпоследовательности, можно считать, что имеется равномерная на компактах в \mathbf{C} сходимость $f_n \rightrightarrows g$, где $g \in BL^*(\gamma \subset \mathbf{C};K)$ и $g(a) = x_0$. Так как $c' := g^{-1}(c) \in G$, то $d := \rho(c,c') < +\infty$. В силу сходимости $c'_n := f_n^{-1}(c) \to g^{-1}(c) = c'$ при всех достаточно больших n выполняются неравенство $\rho(c,c'_n) \leq 2d < +\infty$ и оценка

 $\rho(x_n,c) \leq \rho(f_n(a),f_n(c_n')) \leq K\rho(a,c_n') \leq K(\rho(a,c)+\rho(c,c_n')) \leq K(|a-b|/2+2d),$ противоречащая сходимости $\rho(x_n,c) \to +\infty$ при $n \to \infty$. Следовательно, $M < +\infty$.

Для $\delta>0$ найдем $x\in\gamma[a,b]$ и $f\in BL^*(\gamma\subset {\bf C};K)$ такие, что $\rho(x,L)>M-\delta$ и f(a)=x. Тогда f(L) — открытая спрямляемая дуга с концами $x,f(b)\in\gamma$ и $f(L)\subset G.$

В случае, когда $f(L) \cap L \neq \emptyset$, имеем

$$M - \delta < \rho(x, L) \le \mathcal{H}^1(f(L)) \le K|a - b|,$$

т. е.

$$M \le K|a-b| + \delta. \tag{2.1.1}$$

Если $f(L)\cap L=\varnothing$, то $f(\gamma[a,b])\subset\gamma[a,b]$. При этом открытая дуга f(L) лежит в области Δ , ограниченной отрезком L и дугой $\gamma[a,b]$ (напомним, что f сохраняет ориентацию на плоскости и направление на γ). Так как $f(x)\in\gamma[a,b]$, то $\rho(f(x),L)\leq M$ и, следовательно, найдется спрямляемая дуга $\tau\subset G\cup\gamma$ с концами f(x) и $z\in L$, для которой $\mathscr{H}^1(\tau)< M+\delta$. Поскольку $\tau\cap f(L)\neq\varnothing$, на τ имеются поддуги $\tau_1\subset\bar\Delta$ с концами $z_0\in L$, $z_1\in f(L)$ и $\tau_2\subset f(\bar\Delta)$ с концами $f(x),z_2\in f(L)$. Из оценок $\mathscr{H}^1(\tau_2)\geq (1/K)\rho(x,L)\geq (1/K)(M-\delta)$ и $\mathscr{H}^1(\tau_1)+\mathscr{H}^1(\tau_2)\leq \mathscr{H}^1(\tau)< M+\delta$ следует, что $\mathscr{H}^1(\tau_1)\leq M+\delta-(1/K)(M-\delta)$. Используя неравенство

$$M-\delta<\rho(x,L)\leq \mathscr{H}^1(f(L)\cup\tau_1)\leq \mathscr{H}^1(f(L))+\mathscr{H}^1(\tau_1)\leq K|a-b|+\mathscr{H}^1(\tau_1),$$

получаем соотношение $M-\delta \leq K|a-b|+M+\delta-(1/K)(M-\delta),$ означающее, что

$$M \le K^2 |a - b| + (1 + 2K)\delta. \tag{2.1.2}$$

Учитывая (2.1.1), видим, что в обоих возможных случаях верна оценка (2.1.2). В силу произвольности $\delta > 0$ это означает, что $M \leq K^2 |a-b|$.

Таким образом, если дуга $\gamma(a,b)$ не пересекается со своей хордой L[a,b], то для любой точки $x\in\gamma[a,b]$ верна оценка

$$dist(x, L[a, b]) \le \rho(x, L[a, b]) \le M \le K^2 |a - b|.$$
 (2.1.3)

В общем случае для произвольно заданной пары точек $p,q\in\gamma$ рассмотрим поддугу $\gamma[p,q]\subset\gamma$ с концами в точках p,q и прямолинейный отрезок L[p,q] с концами в тех же точках. Если $x\in M:=\gamma[p,q]\cap L[p,q],$ то $\mathrm{dist}(x,L[p,q])=0.$ Если $x\in\gamma[p,q]\setminus M,$ то содержащая точку x компонента множества $\gamma[p,q]\setminus M$ является открытой поддугой $\gamma(a,b)\subset\gamma[p,q]$ с концами $a,b\in M,$ которая не пересекается с M, а следовательно, и с прямолинейным отрезком L[a,b], соединяющим ее концы. Тогда, используя оценку (2.1.3) для дуги $\gamma(a,b)$ и ее хорды $L[a,b]\subset L[p,q],$ получаем оценку

$$\operatorname{dist}(x, L[p, q]) \le \operatorname{dist}(x, L[a, b]) \le K^2 |a - b| \le K^2 |p - q|.$$

Таким образом, ${\rm dist}(x,L[p,q])\leq K^2|p-q|$ для всех точек $x\in\gamma[p,q].$ Значит, для любой пары точек $x,y\in\gamma[p,q]$ имеем оценку

$$|x-y| \le \operatorname{dist}(x, L[p,q]) + |p-q| + \operatorname{dist}(y, L[p,q]) \le (1+2K^2)|p-q|,$$

т. е. diam $\gamma[p,q] \leq (1+2K^2)|p-q|$.

Теорема доказана.

Замечание. Любое отображение из $BL(\mathbf{C};K)$ K^2 -квазиконформно. Поэтому, как отмечено в [3], ограниченность искривления K-билипшицево однородной компактной жордановой кривой $\gamma \subset \mathbf{C}$ непосредственно вытекает из основной теоремы в [10], хотя и без конкретной оценки для константы C. В случае некомпактной жордановой кривой $\gamma \subset \mathbf{C}$ ее квазиконформная однородность в \mathbf{C} не дает квазиконформной однородности жордановой кривой $\gamma \cup \{\infty\}$, так как все отображения из $BL(\mathbf{C};K)$, продолженные на $\overline{\mathbb{C}}$, имеют неподвижную точку ∞ . Поэтому ограниченность искривления некомпактной жордановой кривой в условиях теоремы 2.1 не выводится непосредственно из теоремы 3ркама [10].

§ 3. Условие ограниченного вращения

По общему определению гиперболической метрики в $\overline{\mathbb{R}}^n \setminus \overline{\mathbb{R}}^k$ $(0 \le k < n)$ (см. [11, 2.4]) в случае $n=2, \ k=0$ для $\mathit{гиперболического}$ расстояния H(a,b) между точками a,b в проколотой плоскости $\mathbf{C} \setminus \{0\}$ имеем формулу

$$H(a,b) = \inf_{\lambda} \int_{w \in \lambda} \frac{|dz|}{|z|}, \tag{3.0}$$

где инфимум берется по всем спрямляемым дугам $\lambda \subset \mathbb{C} \setminus \{0\}$ с концами a и b. В дальнейшем \mathscr{C} обозначает проколотую плоскость $\mathbb{C} \setminus \{0\}$ с метрикой $(3.0), B_H(a,r)$ — открытый круг в \mathscr{C} с центром a и гиперболическим радиусом r, $\operatorname{diam}_H(A)$ — гиперболический диаметр множества $A \subset \mathscr{C}$. Для жордановой дуги $\gamma[a,b] \subset \mathscr{C}$ через $\Delta \operatorname{Arg} \gamma[a,b]$ обозначаем приращение аргумента точки z, пробегающей эту дугу от a до b.

Определение 3.1. Открытая жорданова дуга $\gamma = \gamma(0, \infty) \subset \mathbf{C}$ с концами $0, \infty$ удовлетворяет условию $BR(\delta)$ (ограниченного вращения) с константой $\delta \in (0, 1/2)$, если для любых точек $a, b \in \gamma$ с гиперболическим расстоянием $H(a, b) \leq \delta$ поддуга $\gamma[a, b] \subset \gamma$ гомотопна в $\mathscr C$ кратчайшей гиперболической геодезической $\lambda[a, b]$ с концами a и b, что эквивалентно равенству

$$\Delta \operatorname{Arg} \gamma[a, b] = \Delta \operatorname{Arg} \lambda[a, b]. \tag{3.1.1}$$

(О гомотопности кривых на плоскости см., например, [12, гл. 2, § 4.16].)

Утверждение 3.2. Пусть жорданова дуга $\gamma = \gamma(0, \infty)$ с концами $0, \infty$ удовлетворяет условию $BR(\delta)$ с константой $\delta \in (0, 1/2]$. Тогда для любой ее поддуги $\gamma[a, b] \subset \gamma$ с концами a, b и кратчайшей гиперболической геодезической $\lambda[a, b]$ с теми же концами a, b

$$\Delta \operatorname{Arg} \gamma[a, b] = \Delta \operatorname{Arg} \lambda[a, b] + 2\pi k \tag{3.2.1}$$

c целым k таким, что $|k| \leq H(a,b)/\delta$.

Доказательство. Так как равенство (3.2.1) с некоторым целым k выполняется в любом случае, доказательство сводится к получению верхней оценки для |k|. Упорядочим точки дуги $\lambda[a,b]$ направлением от a к b и положим $T=\lambda[a,b]\cap\gamma[a,b]$.

Если $H(a,b) \leq \delta$, то по условию $BR(\delta)$ в равенстве (3.2.1) k=0. Пусть $H(a,b) > \delta$. Построим точку $c \in T \cap \overline{B}_H(a,\delta)$, наиболее удаленную от a (возможно, что c=a), и точку $a_1 \in T \setminus B(a,\delta)$, ближайшую к a (возможно, что $a_1=b$). Так как $\Delta \operatorname{Arg} \gamma[a,c] = \Delta \operatorname{Arg} \lambda[a,c]$ (в силу $BR(\delta)$), имеем

$$\Delta \operatorname{Arg} \gamma[a, a_1] = \Delta \operatorname{Arg} \lambda[a, c] + \Delta \operatorname{Arg} \gamma[c, a_1]. \tag{3.2.2}$$

Если $c=a_1$, то $\Delta \operatorname{Arg} \gamma[c,a_1]=0=\Delta \operatorname{Arg} \lambda[c,a_1]$. Если $c\neq a_1$, то $\gamma[a,b]$ не пересекается с $\lambda(c,a_1)$ и жорданова кривая $\gamma[c,a_1]\cup \lambda(c,a_1)$ служит границей односвязной области. Поэтому

$$\Delta \operatorname{Arg} \gamma[c, a_1] = \Delta \operatorname{Arg} \lambda[c, a_1] + 2\pi q_1$$

с целым $q_1 \in \{-1,0,+1\}$ и (3.2.2) дает равенство

$$\Delta\operatorname{Arg}\gamma[a,a_1]=\Delta\operatorname{Arg}\lambda[a,a_1]+2\pi q_1.$$

Положим $a=a_0$. Если $H(a_1,b)<\delta$, то построение закончим. В противном случае, применив то же рассуждение к дуге $\gamma[a_1,b]$, построим точку $a_2\in T$, для которой $a_0< a_1< a_2,\ H(a_1,a_2)\geq \delta$ и

$$\Delta \operatorname{Arg} \gamma[a_1, a_2] = \Delta \operatorname{Arg} \lambda[a_1, a_2] + 2\pi q_2$$

с целым $q_2 \in \{-1, 0, +1\}.$

Продолжая этот процесс, получим в итоге конечную последовательность точек $a_0 < a_1 < \dots < a_m \le b$ из множества T, для которых $H(a_m,b) < \delta$ и $\Delta \operatorname{Arg} \gamma[a_{j-1},a_j] = \Delta \operatorname{Arg} \lambda[a_{j-1},a_j] + 2\pi q_j$ с целыми $q_j \in \{-1,0,+1\}$ при всех $j=1,\dots,m$. Тогда

$$egin{aligned} \Delta \operatorname{Arg} \gamma[a,b] &= \sum_{j=1}^m \Delta \operatorname{Arg} \gamma[a_{j-1},a_j] + \Delta \operatorname{Arg} \gamma[a_m,b] \ &= \sum_{j=1}^m \Delta \operatorname{Arg} \lambda[a_{j-1},a_j] + \Delta \operatorname{Arg} \lambda[a_m,b] + 2\pi \sum_{j=1}^m q_j = \Delta \operatorname{Arg} \lambda[a,b] + 2\pi k, \end{aligned}$$

где $k=q_1+\cdots+q_m$ и $|k|\leq m$. Так как $H(a,b)\geq \sum\limits_{j=1}^m H(a_{j-1},a_j)\geq m\delta$, то $m\leq H(a,b)/\delta$, следовательно, $|k|\leq m\leq H(a,b)/\delta$. Утверждение доказано.

Утверждение 3.3. Пусть открытая жорданова дуга $\gamma = \gamma(0, \infty)$ в $\mathscr C$ однородна относительно семейства $BL_H(\gamma;K)$ K-билипшицевых в метрике H автоморфизмов γ . Тогда γ имеет ограниченное вращение $BR(\delta)$ c некоторым $\delta \in (0,1/2]$.

Доказательство. Фиксируем точку $e \in \gamma$ с |e| = 1. Пусть γ_0 — компонента связности пересечения $B_H(e,1/K) \cap \gamma$, содержащая e. Тогда $d = \operatorname{dist}_H(e,\gamma \setminus \gamma_0) > 0$ и, положив $\delta_0 = \min\{1/2K,d/2\}$, можно утверждать, что для любого $z \in \gamma \cap \overline{B}_H(e,\delta_0)$ верно включение $\gamma[e,z] \subset \gamma_0 \subset B_H(e,1/K)$.

Если $a,b \in \gamma$ и $H(a,b) \leq \delta_0/K$, то по условию однородности существует такое $f \in BL_H(\gamma;K)$, что f(a)=e. В силу гиперболической K-билипшицевости отображения f

$$f(\gamma \cap \overline{B}_H(a, \delta_0/K)) \subset \gamma \cap \overline{B}_H(e, \delta_0).$$

Следовательно, $f(\gamma[a,b]) \subset \gamma_0 \subset B_H(e,1/K)$. Но тогда $\gamma[a,b] \subset B_H(a,1)$. Так как $B_H(a,1)$ — односвязная область на плоскости, не содержащая точку 0, в ней любые две дуги с общими концами гомотопны. В частности, дуга $\gamma[a,b]$ гомотопна в $\mathscr C$ дуге $\lambda[a,b]$ — кратчайшей геодезической с концами a и b. Это означает, что γ удовлетворяет условию $BR(\delta)$ с константой $\delta = \delta_0/K$. Утверждение доказано.

§ 4. Ограниченность искривления в гиперболической метрике

В \mathscr{C} рассматриваем семейство $BL_H(\mathscr{C};K)$ всех K-билипшицевых в гиперболической метрике автоморфизмов пространства \mathscr{C} , подсемейство $BL_{H+}(\mathscr{C};K)$ отображений, сохраняющих ориентацию на плоскости, и подсемейство $BL_H^*(\gamma \subset \mathscr{C};K) \subset BL_{H+}(\mathscr{C};K)$ отображений, переводящих заданную открытую жорданову дугу $\gamma \subset \mathscr{C}$ в себя с сохранением направления на ней.

Отображение exp : $\mathbf{C} \to \mathscr{C}$, заданное формулой $z=e^w$, является локальной изометрией и осуществляет неразветвленное безграничное накрытие над \mathscr{C} (см.

[13, гл. 1, 4.12(c)]). Любой автоморфизм $f: \mathcal{C} \to \mathcal{C}$ имеет поднятие $F: \mathbf{C} \to \mathbf{C}$ (см. [13, гл. 1, предложение 4.17]), т. е. является таким гомеоморфизмом, что $F(w+2\pi i)=F(w)+2\pi i$ и $e^{F(w)}=f(e^w)$ при всех $w\in \mathbf{C}$. Любые поднятия F_1 и F_2 гомеоморфизма f связаны тождеством $F_1(w)\equiv F_2(w)+2k\pi i$ с некоторым целым k, поэтому для заданной пары точек $w_0,w_1\in \mathbf{C}$ с равенством $e^{w_1}=f(e^{w_0})$ существует единственное поднятие F, удовлетворяющее условию $F(w_0)=w_1$.

Любая жорданова дуга $\lambda \subset \mathcal{C}$ имеет поднятие $\Lambda \subset \mathbf{C}$ (см. [13, гл. 1, предложение 4.14]), являющееся жордановой дугой в \mathbf{C} , определенной единственным образом заданием пары точек $z_0 \in \lambda$ и $w_0 \in \exp^{-1}(z_0)$ с условием $w_0 \in \Lambda$.

Утверждение 4.1. Пусть открытая жорданова дуга $\gamma = \gamma(0,\infty)$ с концами $0,\infty$ однородна относительно семейства $BL_H^*(\gamma \subset \mathscr{C};K)$. Тогда любое ее поднятие $\Gamma \subset \mathbf{C}$ является некомпактной жордановой кривой в \mathbf{C} , однородной относительно семейства $BL^*(\Gamma \subset \mathbf{C};K)$.

Доказательство. Пусть сохраняющий ориентацию гиперболически K-билипшицев гомеоморфизм $f:\mathscr{C}\to\mathscr{C}$ переводит γ в себя с сохранением направления на γ . Покажем, что любое его поднятие $F:\mathbf{C}\to\mathbf{C}$ будет K-билипшицевым в евклидовой метрике. В силу выпуклости \mathbf{C} для этого достаточно доказать локальную K-билипшицевость гомеоморфизма F.

Пусть $w_1 \in \mathbf{C}$ и $w_2 = F(w_1)$. Тогда найдется такая окрестность V_2 точки w_2 , что ограничение $g_2 = \exp|V_2$ осуществляет изометрию $g_2: V_2 \to \exp(V_2) \subset \mathscr{C}$. Имеется такая окрестность V_1 точки z_1 , что $F(V_1) \subset V_2$ и ограничение $g_1 = \exp|V_1$ осуществляет изометрию $g_1: V_1 \to \exp(V_1) \subset \mathscr{C}$. Так как F — поднятие отображения f, имеем тождество $e^{F(w)} \equiv f(e^w)$, означающее, что $g_2 \circ F = f \circ g_1$ для всех $w \in V_1$, т. е. $F|V_1 = g_2^{-1} \circ f \circ g_1$. В силу изометричности отображений g_1, g_2^{-1} и гиперболической K-билипшицевости отображения f отображение $F|V_1$ будет K-билипшицевым в евклидовой метрике. Таким образом, гомеоморфизм $F: \mathbf{C} \to \mathbf{C}$ является локально K-билипшицевым и, следовательно, (глобально) K-билипшицевым на \mathbf{C} . Так как изометрии g_1 и g_2 сохраняют ориентацию, композиция $g_2^{-1} \circ f \circ g_1$ также сохраняет ориентацию. Следовательно, гомеоморфизм F сохраняет ориентацию в плоскости \mathbf{C} .

Если Γ — поднятие дуги γ , то ограничение $g = \exp |\Gamma$ является гомеоморфизмом $g: \Gamma \to \gamma$. Для любого $w \in \Gamma$ имеем равенство $g(F(w)) = f(g(w)) \in \gamma$. Поэтому $F(w) = g^{-1}(f(g(w))) \in \Gamma$. Значит, гомеоморфизм $F: \mathbf{C} \to \mathbf{C}$ сохраняет некомпактную жорданову кривую Γ .

Напомним, что направление на жордановой дуге (компактной или открытой) задается указанием одного из двух классов гомотопных параметризаций этой дуги. Гомеоморфизм $F:\Gamma\to\Gamma$ переводит каждую параметризацию $\varphi:(0,1)\to\Gamma$ дуги Γ в параметризацию $F\circ\varphi$ этой дуги, и требуется показать, что эти параметризации гомотопны, т. е. $\varphi\sim F\circ\varphi$. Так как по условию гомеоморфизм f сохраняет направление на γ , параметризации $g\circ\varphi$ и $f\circ g\circ\varphi$ дуги γ гомотопны, т. е. $g\circ\varphi\sim f\circ g\circ\varphi$. Гомеоморфизм $g^{-1}:\Gamma\to\gamma$ сохраняет отношение гомотопности параметризаций, поэтому

$$\varphi = g^{-1} \circ g \circ \varphi \sim g^{-1} \circ f \circ g \circ \varphi = F \circ \varphi,$$

т. е. $F \circ \varphi \sim \varphi$. Это и означает, что $F : \Gamma \to \Gamma$ сохраняет направление на Γ .

Таким образом, для любого $f \in BL_H^*(\gamma \subset \mathscr{C}; K)$ его поднятие F принадлежит классу $BL^*(\Gamma \subset \mathbf{C}; K)$. Для любой пары точек $a, b \in \Gamma$ существует такое $f \in BL_H^*(\gamma \subset \mathscr{C}; K)$, что $f(g^{-1}(a)) = g^{-1}(b)$. Тогда $F(a) = g \circ f \circ g^{-1}(a) = g \circ f \circ g^{-1}(a)$

 $g \circ g^{-1}(b) = b$, что и означает однородность Γ относительно семейства $BL^*(\Gamma \subset \mathbf{C}; K)$. Утверждение доказано.

Теорема 4.2. Пусть открытая жорданова дуга $\gamma \subset \mathscr{C}$ с концами $0, \infty$ имеет ограниченное вращение $BR(\delta)$ и однородна относительно семейства $BL_H^*(\gamma \subset \mathscr{C}; K)$. Тогда γ имеет ограниченное искривление в гиперболической метрике с константой $C \leq (1+2K^2)(1+2\pi/\delta)$.

Доказательство. Фиксируем какое-нибудь поднятие $\Gamma \subset \mathbf{C}$ дуги γ . В силу утверждения 4.1 некомпактная жорданова кривая Γ однородна относительно семейства $BL^*(\Gamma \subset \mathbf{C};K)$ и по теореме 2.1 имеет ограниченное евклидово искривление с константой $1+2K^2$. Рассмотрим гомеоморфизм $g=\exp|\Gamma:\Gamma\to\gamma$. Для дуги $\gamma[a,b]$ с концами $a,b\in\gamma$ и ее поднятия $g^{-1}(\gamma[a,b])=\Gamma[g^{-1}(a),g^{-1}(b)]$ имеем оценку

$$\operatorname{diam} g^{-1}(\gamma[a,b]) \le (1+2K^2)|g^{-1}(a) - g^{-1}(b)|. \tag{4.2.1}$$

В силу локальной изометричности отображение $\exp: \mathbb{C} \to \mathscr{C}$ 1-липшицево, поэтому $\dim_H \gamma[a,b] \leq \dim \Gamma[g^{-1}(a),g^{-1}(b)]$. С учетом (4.2.1) нужно получить оценку для $|g^{-1}(a)-g^{-1}b|$. Пусть $\lambda[a,b]$ — кратчайшая геодезическая с концами a,b и $\Lambda[g^{-1}(a),b^*]$ — ее поднятие, $\exp(b^*)=b$. Из условия $BR(\delta)$ и утверждения 3.2 вытекает равенство

$$egin{align} g^{-1}(b)-g^{-1}(a)&=\operatorname{Ln}rac{|b|}{|a|}+i(\Delta\operatorname{Arg}\gamma[a,b])\ &=\operatorname{Ln}rac{|b|}{|a|}+i(\Delta\operatorname{Arg}\lambda[a,b]+2\pi k)=b^*-g^{-1}(a)+2\pi ki, \end{split}$$

где $|k| < H(a,b)/\delta$. Следовательно,

$$|g^{-1}(b) - g^{-1}(a)| \le |b^* - g^{-1}(a)| + 2\pi H(a,b)/\delta = H(a,b)(1 + 2\pi/\delta).$$

Тогда из (4.2.1) следует требуемая оценка гиперболического диаметра дуги $\gamma[a,b]$:

$$\operatorname{diam}_{H} \gamma[a, b] \le (1 + 2K^{2})(1 + 2\pi/\delta)H(a, b).$$

Теорема доказана.

Теорема 4.3. Пусть открытая жорданова дуга $\gamma \subset \mathscr{C}$ с концами $0, \infty$ однородна относительно семейства $BL_H^*(\gamma \subset \mathscr{C}; K)$. Тогда γ имеет ограниченное искривление в гиперболической метрике c некоторой константой C, которая в общем случае зависит от γ .

Доказательство. По утверждению 3.3 жорданова дуга γ имеет ограниченное вращение $BR(\delta)$ с некоторой константой $\delta>0$, зависящей от γ . Требуемое утверждение непосредственно вытекает из теоремы 4.2.

ПРИМЕР. Логарифмическая спираль

$$\gamma = \{ z(t) = e^{(1+ki)t} : -\infty < t < +\infty \}$$

с произвольно большим параметром k>0 однородна относительно семейства $BL_H^*(\gamma\subset \mathscr{C};1)$ гиперболических изометрий и имеет ограниченное искривление в гиперболической метрике, которое, однако, существенно зависит от параметра k. Этот пример показывает, что не существует такого C^* , зависящего лишь от K, чтобы любая открытая дуга, удовлетворяющая условиям теоремы 4.3, имела в гиперболической метрике ограниченное искривление с константой $\leq C^*$.

§ 5. Мёбиус-билипшицевы отображения

В этом параграфе вместо гиперболически билипшицевых автоморфизмов мы используем отображения, введенные в $[9,\ \S 5]$ под названием «конформно билипшицевы отображения».

Напомним (см. [14]), что гомеоморфизм $f: \mathcal{M} \to \mathcal{M}'$ метрических пространств называется η -квазимёбиусовым, если для любой четверки попарно различных точек ($mempa\partial \omega$) $x_1, x_2, x_3, x_4 \in \mathcal{M}$ выполняется неравенство

$$\frac{|f(x_1) - f(x_2)|_{\mathscr{M}'}|f(x_3) - f(x_4)|_{\mathscr{M}'}}{|f(x_1) - f(x_3)|_{\mathscr{M}'}|f(x_2) - f(x_4)|_{\mathscr{M}'}} \le \eta \left(\frac{|x_1 - x_2|_{\mathscr{M}}|x_3 - x_4|_{\mathscr{M}}}{|x_1 - x_3|_{\mathscr{M}}|x_2 - x_4|_{\mathscr{M}}}\right),\tag{5.0}$$

где оценка искажения η — заданный гомеоморфизм числовой полуоси $[0,+\infty)$ на себя. В частном случае, когда $\eta(t)=Kt$ с $K\geq 1$, такое отображение будем называть K-мёбиус-билипшицевым. При K=1 это будут мёбиусовы отображения (отображения, сохраняющие абсолютное двойное отношение). Семейство $MBL(\mathcal{M};K)$ всех K-мёбиус-билипшицевых автоморфизмов пространства \mathcal{M} инвариантно относительно композиций с мёбиусовыми автоморфизмами. В дальнейшем наделяем пространство $\overline{\mathbb{R}}^n$ хордовым расстоянием (см. [11, (1.15)]) $\sigma(x,y)$ и отождествляем $\overline{\mathbb{R}}^2$ с расширенной комплексной плоскостью $\overline{\mathbb{C}}$.

Утверждение 5.1. Пусть гомеоморфизм $f: \overline{\mathbb{R}}^n \to \overline{\mathbb{R}}^n$ имеет неподвижные точки 0 и ∞ .

(1) Если $f \in MBL(\overline{\mathbb{R}}^n; K)$, то для любых $x, y \in \mathbb{R}^n \setminus \{0\}$

$$\frac{1}{K} \frac{|x-y|}{|x|} \le \frac{|f(x) - f(y)|}{|f(x)|} \le K \frac{|x-y|}{|x|}.$$
 (5.1.1)

(2) Если (5.1.1) выполняется для любой пары точек $x,y\in\mathbb{R}^n\setminus\{0\}$, то $f\in MBL(\overline{\mathbb{R}}^n;K^4).$

Доказательство. Пусть $f \in MBL(\overline{\mathbb{R}}^n; K)$ и $x, y \in \mathbb{R}^n \setminus \{0\}$. Применив (5.0) к тетраде $x, y, 0, \infty$, получим правую часть оценки (5.1.1):

$$\frac{|f(x)-f(y)|}{|f(x)|} = \frac{\sigma(f(x),f(y)\cdot\sigma(f(0),f(\infty)))}{\sigma(f(x),f(0))\cdot\sigma(f(y),f(\infty))}$$

$$\leq K \frac{\sigma(x,y) \cdot \sigma(0,\infty)}{\sigma(x,0) \cdot \sigma(y,\infty)} = K \frac{|x-y|}{|x|}.$$

Такое же вычисление для тетрады $x,0,y,\infty$ приводит к левой части оценки (5.1.1).

Пусть оценка (5.1.1) выполняется для всех $x,y \in \mathbb{R}^n \setminus \{0\}$. Для произвольной тетрады $a,b,c,d \in \mathbb{R}^n \setminus \{0\}$, записав неравенства

$$|f(a) - f(b)| \le K|a - b| \frac{|f(a)|}{|a|}, \quad |f(c) - f(d)| \le K|c - d| \frac{|f(d)|}{|d|}$$

И

$$|f(a)-f(c)| \geq (1/K)|a-c|\frac{|f(a)|}{|a|}, \quad |f(b)-f(d)| \geq (1/K)|b-d|\frac{|f(d)|}{|d|},$$

получим требуемую оценку

$$\begin{split} \frac{\sigma(f(a),f(b))\cdot\sigma(f(c),f(d))}{\sigma(f(a),f(c))\cdot\sigma(f(b),f(d))} &= \frac{|f(a)-f(b)|\cdot|f(c)-f(d)|}{|f(a)-f(c)|\cdot|f(b)-f(d)|} \\ &\leq K^4\frac{|a-b|\cdot|c-d|}{|a-c|\cdot|b-d|} = K^4\frac{\sigma(a,b)\cdot\sigma(c,d)}{\sigma(a,c)\cdot\sigma(b,d)}. \end{split}$$

В случае, когда одна из точек тетрады есть 0 (или ∞), заменяем ее переменной точкой $x \in \mathbb{R}^n \setminus \{0\}$, используем полученную оценку для конечных тетрад в $\mathbb{R}^n \setminus \{0\}$ и переходим к пределу при $x \to 0$ (или при $x \to \infty$). В силу непрерывности абсолютного двойного отношения в $\overline{\mathbb{R}}^n$, придем в пределе к требуемой оценке для исходной тетрады. Утверждение доказано.

Утверждение 5.2. В пространстве $\overline{\mathbb{R}}^n$

$$\bigcup_{K\geq 1} MBL(\overline{\mathbb{R}}^n; K) = \bigcup_{K'\geq 1} BL(\overline{\mathbb{R}}^n; K').$$
 (5.2.1)

Доказательство. Пусть $f\in BL(\overline{\mathbb{R}}^n;K')$ с некоторым $K'\geq 1$. Тогда $(1/K')\sigma(x,y)\leq \sigma(f(x),f(y))\leq K'\cdot\sigma(x,y)$ для всех $x,y\in\overline{\mathbb{R}}^n$, поэтому для любой тетрады $z_1,z_2,z_3,z_4\in\overline{\mathbb{R}}^n$

$$\frac{\sigma(f(z_1), f(z_2)) \cdot \sigma(f(z_3), f(z_4))}{\sigma(f(z_1), f(z_3)) \cdot \sigma(f(z_2), f(z_4))} \le (K')^4 \frac{\sigma(z_1, z_2) \cdot \sigma(z_3, z_4)}{\sigma(z_1, z_3) \cdot \sigma(z_2, z_4)},$$

т. е. $BL(\overline{\mathbb{R}}^n;K')\subset MBL(\overline{\mathbb{R}}^n;(K')^4)$ при любом $K'\geq 1.$

Пусть $f\in MBL(\overline{\mathbb{R}}^n;K)$. Для мёбиусова преобразования $\mu:\overline{\mathbb{R}}^n\to\overline{\mathbb{R}}^n$, переводящего точки $f(0),f(e),f(\infty)$ (где |e|=1) соответственно в точки $0,e,\infty,$ композиция $g:=\mu\circ f$ является K-мёбиус-билипшицевым отображением с неподвижными точками $0,e,\infty$. Для любой точки $a\in\mathbb{R}^n\setminus\{0\}$ рассмотрим тетраду $0,a,e,\infty$ и получим оценку

$$|g(a)| = \frac{\sigma(0, g(a)) \cdot \sigma(e, \infty)}{\sigma(0, e) \cdot \sigma(g(a), \infty)} \le K \frac{\sigma(0, a) \cdot \sigma(e, \infty)}{\sigma(0, e) \cdot \sigma(a, \infty)} = K|a|.$$
 (5.2.2)

Для различных точек $x,y\in\mathbb{R}^n\setminus\{0\}$ с учетом утверждения 5.1(1) и оценки (5.2.2) получаем неравенство

$$|g(x) - g(y)| \le K|x - y| \frac{|g(x)|}{|x|} \le K^2|x - y|.$$

Применив то же рассуждение к обратному гомеоморфизму g^{-1} , получим оценку $|g(x)-g(y)|\geq (1/K^2)|x-y|$. Таким образом, отображение g K^2 -билипшицево на $\mathbb{R}^n\setminus\{0\}$ в евклидовой метрике. В силу непрерывности расстояния оно K^2 -билипшицево в евклидовой метрике на всем \mathbb{R}^n . Тогда g K^4 -билипшицево в хордовой метрике на $\overline{\mathbb{R}}^n$. Действительно, для любой пары точек $x,y\in\mathbb{R}^n\setminus\{0\}$ выполняются неравенства $|g(x)|\geq (1/K)|x|,\,|g(y)|\geq (1/K)|y|$. Поэтому

$$\begin{split} \frac{\sigma(g(x),g(y))}{\sigma(x,y)} &= \frac{|g(x)-g(y)|}{|x-y|} \sqrt{\frac{(1+|x|^2)(1+|y|^2)}{(1+|g(x)|^2)(1+|g(y)|^2)}} \\ &\leq K^2 \sqrt{\frac{(1+|x|^2)(1+|y|^2)}{K^{-4}(K^2+|x|^2)(K^2+|y|^2)}} \leq K^4. \end{split}$$

Любое мёбиусово преобразование μ $L(\mu)$ -билипшицево в хордовой метрике на $\overline{\mathbb{R}}^n$, однако не существует единой верхней оценки для $L(\mu)$, не зависящей от выбора μ . Поэтому композиция $f=\mu^{-1}\circ g$ является K'-билипшицевым гомеоморфизмом в хордовой метрике на $\overline{\mathbb{R}}^n$ с $K'=K^4L(\mu^{-1})$, но не существует единой верхней оценки для K', зависящей только от K. Тем не менее $f\in BL(\overline{\mathbb{R}}^n;K')$, и, следовательно, равенство (5.2.1) доказано.

Таким образом, в пространстве $\overline{\mathbb{R}}^n$ семейство мёбиус-билипшицевых отображений совпадает с семейством билипшицевых отображений, но имеет иное (мёбиусово-инвариантное) определение коэффициента билипшицевости.

Лемма 5.3. Любой K-мёбиус-билипшицев автоморфизм f сферы $\overline{\mathbb{C}}$ c неподвижными точками $0, \infty$ K-билипшицев в гиперболической метрике на $\mathbf{C} \setminus \{0\}$.

Доказательство. Пусть заданы произвольно малое $\varepsilon>0$ и точка z_0 . Тогда найдется связная открытая окрестность U точки z_0 такая, что

- (1) любая кратчайшая гиперболическая геодезическая с концами из U содержится в U (выпуклость U в гиперболической метрике);
 - (2) при любом $z \in U$ выполняется оценка $(1+\varepsilon)^{-1} \le |z|/|z_0| \le (1+\varepsilon)$. Рассмотрев тетраду $0, z, z_0, \infty$, получим для любого $z \in U$ неравенство

$$\frac{|f(z)|}{|f(z_0)|} = \frac{\sigma(0,f(z))\cdot\sigma(f(z_0),\infty)}{\sigma(0,f(z_0))\cdot\sigma(f(z),\infty)} \leq K\frac{\sigma(0,z)\cdot\sigma(z_0,\infty)}{\sigma(0,z_0)\cdot\sigma(z,\infty)} = K\frac{|z|}{|z_0|} \leq 1+\varepsilon. \quad (5.3.1)$$

Такое же вычисление для тетрады $0, z_0, z, \infty$ приводит к оценке

$$\frac{|f(z_0)|}{|f(z)|} \le 1 + \varepsilon. \tag{5.3.2}$$

Если $x, y \in U$, то (5.1.1) и (5.3.1) приводят к оценке

$$|f(x) - f(y)| \le K \frac{|f(x)|}{|x|} |x - y| = K \frac{|f(x)|}{|f(z_0)|} \cdot \frac{|z_0|}{|x|} \cdot \frac{|f(z_0)|}{|z_0|} |x - y|$$

$$\le K(1 + \varepsilon)^2 \frac{|f(z_0)|}{|z_0|} |x - y|. \quad (5.3.3)$$

Это означает, что отображение f|U липшицево в евклидовой метрике с константой $L:=K(1+\varepsilon)^2|f(z_0)|/|z_0|$ и, следовательно, переводит спрямляемые кривые в спрямляемые кривые. Тогда для любой спрямляемой дуги $\lambda\subset U$ с концами $x,y\in U$ имеем оценку (используем (5.3.2), L-липшицевость отображения f|U и (5.3.1))

$$H(f(x), f(y)) \leq \int\limits_{z \in f(\lambda)} \frac{|dz|}{|z|} \leq \int\limits_{z \in f(\lambda)} |dz| \cdot \frac{(1+\varepsilon)}{|f(z_0)|} = \frac{(1+\varepsilon)}{|f(z_0)|} \mathscr{H}^1(f(\lambda))$$

$$\leq K \frac{(1+\varepsilon)^3}{|z_0|} \int\limits_{z \in \lambda} |dz| = K(1+\varepsilon)^4 \int\limits_{z \in \lambda} \frac{|dz|}{|z|}.$$

Взяв в правой части этого неравенства инфимум по всем спрямляемым дугам λ с концами x и y, приходим к оценке

$$H(f(x), f(y)) \le K(1+\varepsilon)^4 H(x, y).$$

В силу произвольности выбора точки z_0 получаем гиперболическую локальную $K(1+\varepsilon)^4$ -липшицевость гомеоморфизма $f:\mathscr{C}\to\mathscr{C}$, из которой следует глобальная $K(1+\varepsilon)^4$ -липшицевость f на \mathscr{C} . Ввиду произвольного задания $\varepsilon>0$ это означает K-липшицевость отображения f в гиперболической метрике на $\mathbf{C}\setminus\{0\}$. Такой же вывод верен и для обратного гомеоморфизма f^{-1} , т. е. $f\in BL(\mathscr{C};K)$. Лемма доказана.

Следующее утверждение — частный случай общей теоремы о сходимости последовательностей μ -квазимёбиусовых отображений (см. [15, теоремы 2.3.9(1), 2.3.2]).

Утверждение 5.4. Пусть $\{f_n\}$ — последовательность K-мёбиус-билиппицевых автоморфизмов римановой сферы $\overline{\mathbb{C}}$ с неподвижными различными точками $a,b\in\overline{\mathbb{C}}$. Если имеется точка $c\in\overline{\mathbb{C}}\setminus\{a,b\}$ такая, что $f_n(c)\to c^*\in\overline{\mathbb{C}}\setminus\{a,b\}$, то существует подпоследовательность $\{f_{n,k}\}\subset\{f_n\}$, сходящаяся равномерно в хордовой метрике на $\overline{\mathbb{C}}$ к K-мёбиус-билипшицеву автоморфизму $f:\overline{\mathbb{C}}\to\overline{\mathbb{C}}$. При этом если все отображения f_n сохраняют (обращают) ориентацию на сфере, то и предельное отображение сохраняет (соответственно обращает) ориентацию на $\overline{\mathbb{C}}$.

§ 6. Мёбиус-билипшицево однородные дуги

Следующая лемма является мёбиус-билипшицевым аналогом утверждений [3, лемма 2.5] и [4, лемма 2.1], схема доказательства которых переносится на рассматриваемую ситуацию.

Лемма 6.1. Пусть $\gamma\subset\overline{\mathbb{C}}$ — открытая жорданова дуга с концами $0,\infty.$ Пусть $MBL(\gamma\subset\overline{\mathbb{C}};K)$ — семейство всех таких K-мёбиус-билипшицевых автоморфизмов сферы $\overline{\mathbb{C}}$, у которых $f(\gamma)=\gamma,$ и подсемейство $MBL^0(\gamma\subset\overline{\mathbb{C}};K)\subset MBL(\gamma\subset\overline{\mathbb{C}};K)$ состоит из тех автоморфизмов сферы $\overline{\mathbb{C}}$, у которых f(0)=0, $f(\infty)=\infty.$

Если γ однородна относительно семейства $MBL(\gamma\subset\overline{\mathbb{C}};K)$, то она однородна

- (1) относительно семейства $MBL^0(\gamma \subset \overline{\mathbb{C}}; K^2)$,
- (2) относительно семейства $MBL^0_+(\gamma \subset \overline{\mathbb{C}}; K^4)$ всех тех $f \in MBL^0(\gamma \subset \overline{\mathbb{C}}; K^4)$, которые сохраняют ориентацию на сфере $\overline{\mathbb{C}}$.

Доказательство. (1) Пусть $p \in \gamma$ и L — множество всех точек $x \in \gamma$, для которых не существует отображения $f \in MBL^0(\gamma \subset \overline{\mathbb{C}};K)$ такого, что f(p) = x. Если $L = \emptyset$, то для любой пары точек $x, y \in \gamma$ существуют такие $f_1, f_2 \in MBL^0(\gamma \subset \overline{\mathbb{C}};K)$, что $x = f_1(p), \ y = f_2(p)$. Тогда $f = f_2 \circ f_1^{-1} \in MBL^0(\gamma \subset \overline{\mathbb{C}};K^2), \ f(x) = y$, т. е. в этом случае утверждение (1) истинно.

Если $L \neq \varnothing$, то, будучи собственным подмножеством $(p \notin L)$ связного множества γ , L имеет в нем непустую границу ∂L [16, § 46.1, теорема 1]). Значит, найдутся $q \in \partial L$ и последовательность $\{q_n\} \subset \gamma \setminus L$, сходящаяся к q. Для каждого q_n существует $f_n \in MBL^0(\gamma \subset \overline{\mathbb{C}}; K)$ такое, что $f(p) = q_n$. В силу утверждения 5.4 можно считать, перейдя при необходимости к подпоследовательности, что $\{f_n\}$ сходится равномерно в хордовой метрике на $\overline{\mathbb{C}}$ к автоморфизму $f \in MBL^0(\gamma \subset \overline{\mathbb{C}}; K)$, у которого f(p) = q. Стало быть, $q \notin L$, поэтому имеется последовательность точек $\{w_n\} \subset L$, сходящаяся к q, при этом для каждой точки w_n существует $g_n \in MBL(\gamma \subset \overline{\mathbb{C}}; K)$ такое, что $g_n(0) = \infty$, $g_n(\infty) = 0$ и $g_n(p) = w_n$. Воспользовавшись утверждением 5.4 и перейдя, если нужно, к подпоследовательности, можно считать, что $\{g_n\}$ равномерно на $\overline{\mathbb{C}}$ сходится к отображению $g \in MBL(\gamma \subset \overline{\mathbb{C}}; K)$ такому, что $g(0) = \infty$, $g(\infty) = 0$ и g(p) = q.

Для произвольно заданной точки $y \in \gamma$ возьмем отображение $\varphi \in MBL(\gamma \subset \overline{\mathbb{C}};K)$ такое, что $\varphi(q)=y$. Если $\varphi \in MBL^0(\gamma \subset \overline{\mathbb{C}};K)$, то положим $h=\varphi \circ f$. Если $\varphi(0)=\infty$ и $\varphi(\infty)=0$, то полагаем $h=\varphi \circ g$. В обоих случаях $h\in MBL^0(\gamma \subset \overline{\mathbb{C}};K^2)$ и h(p)=y. В силу произвольного задания точек $p,y\in \gamma$ получаем однородность γ относительно семейства $MBL^0(\gamma \subset \overline{\mathbb{C}};K^2)$. Таким образом, утверждение (1) в этой лемме доказано.

Утверждение (2) доказывается аналогичным рассуждением с заменой исходного семейства $MBL(\gamma \subset \overline{\mathbb{C}}; K)$ на $MBL^0(\gamma \subset \overline{\mathbb{C}}; K^2)$. Лемма 6.1 доказана.

Лемма 6.2. Пусть открытая жорданова дуга $\gamma \subset \overline{\mathbb{C}}$ с концами $0, \infty$ однородна относительно семейства $MBL(\gamma \subset \overline{\mathbb{C}}; K)$. Тогда для любой поддуги $\tau \subset \gamma$ с концами $a,b \in \{z: 0 < r \leq |z| \leq R < +\infty\}$ выполняется включение

$$\tau \subset \{z : r/K^2 \le |z| \le K^2 R\}. \tag{6.2.1}$$

ДОКАЗАТЕЛЬСТВО. Пусть концы дуги τ помечены так, что точки $0,a,b,\infty$ расположены последовательно на дуге γ . На поддуге $\gamma(0,b]$ выберем точку b^* так, что $|b^*| = \max\{|z|; z \in \gamma[0,b]\}$. По лемме 6.1 существует отображение $f \in MBL^0(\gamma \subset \overline{\mathbb{C}}; K^2)$, у которого $f(b) = b^*$. Тогда $f(\gamma(0,b]) = \gamma(0,b^*] \subset \overline{B}(0,|b^*|)$. В частности, $|f(b^*)| \leq |b^*|$. Применив к тетраде $0,b,b^*,\infty$ условие K^2 -мёбиус-билипшицевости отображения f, получим неравенство

$$1 \le \frac{|b^*|}{|f(b^*)|} = \frac{|f(b)|}{|f(b^*)|} \le K^2 \frac{|b|}{|b^*|},$$

означающее, что $|b^*| \le K^2 |b| \le K^2 R$. Следовательно, $\tau \subset \overline{B}(0, K^2 R)$.

Выберем точку $a^* \in \gamma[a,\infty)$ такую, что $|a^*| = \min\{|z| : z \in \gamma[a,\infty)\}$. Тогда $\tau \subset \mathbf{C} \setminus B(0,|a^*|)$. По лемме 6.1 существует $f \in MBL^0(\gamma \subset \overline{\mathbb{C}};K^2)$, у которого $f(a) = a^*$. Тогда $f(\gamma[a,\infty)) = \gamma[a^*,\infty)$ и, в частности, $|f(a^*)| \geq |a^*|$. Применив к тетраде $0,a,a^*,\infty$ условие K^2 -мёбиус-билипшицевости отображения f^{-1} , получим неравенство

$$\frac{|a|}{|a^*|} \leq K^2 \frac{|f(a)|}{|f(a^*)|} = K^2 \frac{|a^*|}{|f(a^*)|} \leq K^2,$$

из которого следует, что $|a^*| \ge |a|/K^2 \ge r/K^2$. Поэтому $\tau \subset \mathbf{C} \setminus B(0, r/K^2)$. Таким образом, требуемое включение (6.2.1) доказано.

Теорема 6.3. Если открытая жорданова дуга $\gamma \subset \overline{\mathbb{C}}$ с концами $0, \infty$ имеет ограниченное вращение $BR(\delta)$ и однородна относительно семейства $MBL(\gamma \subset \overline{\mathbb{C}}; K)$, то для евклидова диаметра любой поддуги $\gamma[a, b] \subset \gamma$ справедлива оценка

$$\operatorname{diam} \gamma[a, b] \le 32K^4(1 + 2K^8)(1 + 2\pi/\delta)|a - b|.$$

ДОКАЗАТЕЛЬСТВО. ШАГ 1. Если поддуга $\tau \subset \gamma$ имеет концы a,b, удовлетворяющие условию $2|a| \leq |b|,$ то для ее евклидова диаметра верна оценка

$$\operatorname{diam} \tau \le 4K^2|a-b|. \tag{6.3.1}$$

Действительно, концы дуги τ лежат в кольце $\{z: |b|/2 \le |z| \le |b|\}$. Тогда по лемме 6.2, дуга τ лежит в круге $\overline{B}(0,K^2|b|)$, поэтому diam $\tau \le 2K^2|b|$. Так как $|b-a| \ge |b|-|a| \ge |b|/2$, то diam $\tau \le 4K^2|b-a|$.

ШАГ 2. Пусть поддуга $\tau \subset \gamma$ с концами p,q не удовлетворяет условию, рассмотренному на шаге 1, т. е. (1/2)|p| < |q| < 2|p|. Покажем, что тогда для евклидова диаметра этой дуги справедлива оценка

$$\operatorname{diam} \tau \le 4K^4(1 + 2K^8)(1 + 2\pi/\delta)|p - q|. \tag{6.3.2}$$

Действительно, по лемме 6.2 дуга τ лежит в кольце $T:=\{z:|p|/2K^2\leq |z|\leq 2K^2|p|\}$. Для любой спрямляемой дуги $\lambda\subset T$ ее евклидова длина length λ и ее длина length λ в гиперболической метрике связаны неравенствами

$$\frac{1}{2K^2|p|}\operatorname{length}\lambda \leq \operatorname{length}_H\lambda \leq \frac{2K^2}{|p|}\operatorname{length}\lambda. \tag{6.3.3}$$

Для любой пары точек $x,y\in \tau$, используя левую часть оценки (6.3.3), получаем неравенство

$$|x - y| \le 2K^2 |p| H(x, y) \le 2K^2 |p| \operatorname{diam}_H \tau.$$

Так как это неравенство верно для всех $x, y \in \tau$, то diam $\tau \leq 2K^2|p|$ diam $_H \tau$. Используя лемму 6.1(2) и теорему 4.2, приходим к оценке

$$\operatorname{diam} \tau \le 2K^2 |p|(1 + 2K^8)(1 + 2\pi/\delta)H(p, q). \tag{6.3.4}$$

Случай (а). Пусть $|p-q| \leq |p|/2$. Из правой части оценки (6.3.3), примененной к прямолинейному отрезку L с концами p,q ($L \subset T$ благодаря условию $|q-p| \leq |p|/2$), выводим неравенство $H(p,q) \leq 2K^2|p-q|/|p|$. Поэтому из (6.3.4) вытекает оценка

$$\operatorname{diam} \tau \le 4K^4(1 + 2K^8)(1 + 2\pi/\delta)|p - q|. \tag{6.3.5}$$

Случай (b). Пусть |p-q|>|p|/2. Так как $H(p,q)\leq \pi+{\rm Ln}\,4$, то (6.3.4) и неравенство |p|<2|p-q| дают оценку

$$\begin{aligned} \dim \tau &\leq 2K^2(1+2K^8)|p|(\pi+\ln 4)(1+2\pi/\delta) \\ &\leq 4K^2(1+2K^8)(\pi+\ln 4)|p-q|(1+2\pi/\delta) \\ &< 32K^2(1+2K^8)(1+2\pi/\delta)|p-q|. \end{aligned} \tag{6.3.6}$$

Соединяя (6.3.1), (6.3.5) и (6.3.6), получаем оценку $\dim \tau \leq C |p-q|$ с константой

$$\begin{split} C &= \max\{4K^2, 4K^4(1+2K^8)(1+2\pi/\delta), 32K^2(1+2K^8)(1+2\pi/\delta)\} \\ &\leq 32K^4(1+2K^8)(1+2\pi/\delta). \end{split}$$

Теорема доказана.

Следствие 6.4. Если открытая жорданова дуга $\gamma \subset \overline{\mathbb{C}}$ с концами $0, \infty$ однородна относительно семейства $MBL(\gamma \subset \overline{\mathbb{C}}; K)$, то она имеет ограниченное искривление с некоторой константой C, зависящей в общем случае от γ .

Доказательство непосредственно вытекает из леммы 5.3, утверждения 3.3 и теоремы 6.3.

§ 7. Ограниченное искривление дуг по Рикману

Недостаток используемого в $\S 5$ понятия ограниченного искривления в том, что константа C в его определении (1.1) не инвариантна при мёбиусовых преобразованиях пространства. Свойством мёбиусовой инвариантности обладает характеристика ограниченного искривления дуги (или кривой) по Рикману, введенная в [17].

Жорданова дуга или жорданова кривая $\gamma \subset \mathcal{M}$ в метрическом пространстве имеет ограниченное искривление по Рикману, если существует такая константа $RT(\gamma) \geq 1$, что для любой четверки x_1, x_2, x_3, x_4 попарно различных точек, расположенных последовательно на γ , выполняется оценка

$$\frac{|x_1 - x_2|_{\mathscr{M}}|x_3 - x_4|_{\mathscr{M}} + |x_1 - x_4|_{\mathscr{M}}|x_2 - x_3|_{\mathscr{M}}}{|x_1 - x_3|_{\mathscr{M}}|x_2 - x_4|_{\mathscr{M}}} \le RT(\gamma). \tag{7.0}$$

Из свойств рикманова искривления дуги или кривой $\gamma\subset\overline{\mathbb{R}}^n$ отметим следующие:

- (1) рикманова характеристика искривления $RT(\gamma)$ не меняется при мёбиусовых преобразованиях $\mu: \overline{\mathbb{R}}^n \to \overline{\mathbb{R}}^n$, т. е. $RT(\mu(\gamma)) = RT(\gamma)$;
- (2) если дуга или кривая $\gamma \subset \mathbb{R}^n$ имеет ограниченное евклидово искривление с константой C, то она имеет ограниченное рикманово искривление $RT(\gamma) \leq 4C^2$ (см. [18, утверждения 2.2.2, 2.2.3]);
- (3) равенство $RT(\gamma) = 1$ равносильно тому, что жорданова дуга $\gamma \subset \overline{\mathbb{R}}^n$ является дугой окружности (соответственно жорданова кривая $\gamma \subset \overline{\mathbb{R}}^n$ является окружностью) это известная теорема Птолемея;
- (4) для любой жордановой дуги $\gamma \subset \overline{\mathbb{C}}$ с ограниченным рикмановым искривлением $RT(\gamma)$ существует квазиконформный гомеоморфизм $f: \overline{\mathbb{C}} \to \overline{\mathbb{C}}$, переводящий γ в дугу окружности, с верхней оценкой для коэффициента квазиконформности K[f], зависящей только от $RT(\gamma)$ (см. [17]).

Условие ограниченного вращения, введенное в §3, сформулируем в мёбиусово-инвариантной форме.

Определение 7.1. Открытая жорданова дуга $\gamma(a,b) \subset \mathbb{C}$ с различными концами a,b удовлетворяет условию $BR(\delta)$ с константой $\delta \in (0,1/2]$ (используем запись $\gamma(a,b) \in BR(\delta)$), если любая ее поддуга $\gamma[p,q] \subset \gamma(a,b)$, концы которой удовлетворяют неравенству

$$\frac{\sigma(p,q) \cdot \sigma(a,b)}{\sigma(a,p) \cdot \sigma(b,q)} \le \delta, \tag{7.1.1}$$

гомотопна в $\overline{\mathbb{C}}\backslash\{a,b\}$ некоторой дуге $\lambda[p,q]$, у которой для любой точки $z\in\lambda[p,q]$ выполняется оценка

$$\frac{\sigma(p,z) \cdot \sigma(a,b)}{\sigma(a,p) \cdot \sigma(z,q)} \le \delta. \tag{7.1.2}$$

Из инвариантности абсолютного двойного отношения относительно мёбиусовых автоморфизмов сферы $\overline{\mathbb{C}}$ следует, что для любого мёбиусова преобразования μ из $\gamma(a,b) \in BR(\delta)$ вытекает $\mu(\gamma(a,b)) \in BR(\delta)$.

Теорема 7.2. Если открытая жорданова дуга $\gamma \subset \overline{\mathbb{C}}$ с различными концами удовлетворяет условию $BR(\delta)$ с $0 < \delta \leq 1/2$ и однородна относительно семейства $MBL(\gamma \subset \overline{\mathbb{C}}; K)$ мёбиус-билипшицевых автоморфизмов сферы $\overline{\mathbb{C}}$, то она имеет ограниченное искривление по Рикману с константой

$$RT(\gamma) \le 4(32K^4(1+2K^8)(1+2\pi/\delta))^2.$$
 (7.2.1)

Доказательство. Построим какое-нибудь мёбиусово преобразование $\mu:\overline{\mathbb{C}}\to\overline{\mathbb{C}}$, переводящее концы дуги γ в точки 0 и ∞ . В силу свойства (2) достаточно доказать, что дуга $\tau=\mu(\gamma)$ имеет ограниченное евклидово искривление с константой

$$C \le 32K^4(1+2K^8)(1+2\pi/\delta).$$
 (7.2.2)

Покажем, что τ удовлетворяет условию $BR(\delta)$ в определении 3.1. Пусть $a,b\in \tau, H(a,b)\leq \delta$ и λ — кратчайшая гиперболическая геодезическая с концами a,b. Не ограничивая общности, можно считать, что $|a|\leq |b|$. Тогда

$$H(a,b) = \int\limits_{z \in \lambda_0} |dz|/|z| \ge \frac{\operatorname{length} \lambda_0}{|b|} \ge \frac{|a-b|}{|b|}.$$

Таким образом, $|a-b|/|b| \le \delta$ и в силу условия $BR(\delta)$ дуга $\tau[a,b]$ гомотопна в $\mathbb{C} \setminus \{0\}$ некоторой дуге $\lambda'[a,b]$, у которой $|z-b|/|b| \le \delta$ для любого $z \in \lambda'[a,b]$.

Так как $\delta \leq 1/2$, то $\lambda'[a,b] \subset \overline{B}(b,|b|/2)$ и, следовательно, $\lambda'[a,b]$ гомотопна в $\mathscr C$ дуге $\lambda[a,b]$ — кратчайшей гиперболической геодезической с концами a,b. Стало быть, $\tau[a,b] \sim \lambda[a,b]$ в $\mathscr C$.

Поскольку $\tau = \mu(\gamma)$ однородна относительно семейства $MBL(\tau \subset \overline{\mathbb{C}}; K)$ и, как показано выше, имеет ограниченное вращение $BR(\delta)$ в смысле определения 3.1, по теореме 6.3 она имеет ограниченное евклидово искривление с требуемой константой (7.2.2). Теорема доказана.

Следствие 7.3. Если открытая жорданова дуга $\gamma \subset \overline{\mathbb{C}}$ с различными концами однородна относительно семейства $MBL(\gamma \subset \overline{\mathbb{C}};K)$ мёбиус-билипшицевых автоморфизмов сферы $\overline{\mathbb{C}}$, то она имеет ограниченное искривление по Рикману.

Доказательство. Построив мёбиусово преобразование $\mu: \mathbf{C} \to \mathbf{C}$, переводящее концы дуги γ в точки 0 и ∞ , рассмотрим дугу $\tau = \mu(\gamma)$ с концами $0, \infty$. Так как τ однородна относительно семейства $MBL(\tau \subset \overline{\mathbb{C}}; K)$, по следствию 6.4 она имеет ограниченное евклидово искривление. Тогда по свойству (2) дуга τ , а значит, и дуга $\gamma = \mu^{-1}(\tau)$ имеют ограниченное рикманово искривление. Следствие доказано.

Заметим, что в условиях следствия 7.3, не имея верхней оценки для ограниченного вращения дуги γ , мы не можем указать верхнюю оценку для $RT(\gamma)$, зависящую только от K.

Автор чрезвычайно признателен рецензенту за сделанные им замечания, с учетом которых удалось значительно улучшить текст этой статьи.

ЛИТЕРАТУРА

- 1. Rogers J. T. Homogeneous continua // Topology Proc. 1983. V. 8. P. 213–233.
- Mayer V. Trajectories de groupes a 1-parametre de quasi-isometries // Revista Mat. Iberoam. 1995. V. 11, N 1. P. 143–164.
- Ghamsari M., Herron D. Bilipschitz homogeneous Jordan curves // Trans. Amer. Math. Soc. 1999. V. 351, N 8. P. 3197–3216.
- 4. Bishop Ch. J. Bi-Lipschitz homogeneous curves in \mathbb{R}^2 are quasicircles // Trans. Amer. Math. Soc. 2001. V. 353, N 7. P. 2655–2663.
- Herron D. A., Mayer V. Bilipschitz group actions and homogeneous Jordan curves // Illinois J. Math. 1999. V. 43, N 4. P. 770–792.
- **6.** Ghamsari M., Herron D. Higher dimensional Ahlfors regular sets and chordarc curves in \mathbb{R}^n // Rocky Mount. J. Math. 1998. V. 28, N 1. P. 191–222.
- Freeman D. M. Bilipschitz homogeneous Jordan curves, Möbius maps, and dimensions // Illinois J. Math. 2010. V. 54, N 2. P. 753–770.
- Freeman D. M. Inversion invariant bilipschitz homogeneity // Michigan Math. J. 2012. V. 61. P. 415–430.
- Асеев В. В. О метризации пространства областей с помощью коэффициентов искажения // Групповые и метрические свойства отображений. Новосибирск: Новосиб. гос. ун-т, 1995. С. 97–105.
- 10. Erkama T. Quasiconformally homogeneous curves // Michigan Math. J. 1977. V. 24, N 2. P. 157–159.
- 11. Tukia P., Väisälä J. Lipschitz and quasiconformal approximation and extension // Ann. Acad. Sci. Fenn., Ser. A I Math. 1981. V. 6, N 2. P. 303–342.
- 12. Шабат Б. В. Введение в комплексный анализ. М.: Наука, 1969.
- 13. Форстер О. Римановы поверхности. М.: Мир, 1980.
- 14. Väisälä J. Quasimöbius maps // J. Anal. Math. 1984/85. V. 44. P. 218–234.
- $\textbf{15.} \ \ \textit{Aseev V. V.} \ \textit{Quasisymmetric embeddings} \ / / \ \textit{J.} \ \textit{Math. Sci.} \ (\textit{NY}). \ 2002. \ \textit{V.} \ 108, \ \textit{N} \ 3. \ \textit{P.} \ 375-410.$
- **16.** *Куратовский К.* Топология. М.: Мир, 1969. Т. 2.
- Rickman S. Characterization of quasi-conformal arcs // Ann. Acad. Sci. Fenn., Ser. A I Math. 1996. V. 395. P. 1–30.

18. Aсеев B. B. Условие мёбиусовых середин как признак квазиконформности и квазимёбиусовости // Сиб. мат. журн. 2012. Т. 53, № 1. С. 38–46.

Cтатья поступила 10 января 2014 г., окончательный вариант — 29 мая 2015 г.

Асеев Владислав Васильевич Институт математики им. С. Л. Соболева СО РАН, пр. Академика Коптюга, 4, Новосибирск 630090 btp@math.nsc.ru