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ABSTRACT. We discuss the existence of multiple radial symmetric solutions for non-
linear boundary value problems of p-Laplacian, based on Leggett-Williams’s fixed
point theorem.
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1. INTRODUCTION.

In this paper, we consider the existence of multiple radial symmetric solutions
of the p-Laplacian equation

(1.1) —div(|Vul[P~2Vu) = g(x) f(z,u), =€Q,

subject to the nonlinear boundary value condition

(1.2) B(%)+u:0, x € 00

where 0 C R"™ is the unit ball centered at the origin, v denotes the unit outward
normal to the boundary 99, g(z), f(z,s) and B(s) are all the given functions. In
order to discuss the radially symmetric solutions, we assume that g(z) and f(z,s)
are radially symmetric, namely, g(z) = g(|z|), f(z,s) = f(|z|,s). Let w(t) = u(|z|)
with ¢ = |z| be a radially symmetric solution. Then a direct calculation shows that

(1.3) (" (' (1)) + " g(t) f(tw(t) =0,  0<t<l,
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where p(s) = |s|P72s and p > 1, with the boundary value condition

(1.4) w'(0) = 0,

(1.5) w(1) + B(w'(1)) = 0.

Such a problem arises in many different areas of applied mathematics and the fields
of mechanics, physics and has been studied extensively, see [1]-[6]. In particular,
the Leggett-Williams fixed point theorem has been used to discuss the multiplicity
of solutions. For example, He, Ge and Peng [1] considered the following ordinary
differential equation

() +gt)f(t,y) =0, 0<t<1,

which corresponds to the special case n = 1 of the equation (1.3), with the boundary
value conditions

y(0) = Bo(y'(0)) =0,
y(1) = Bi(y'(1)) = 0.

They used the Leggett-Williams fixed point theorem and proved the existence of
multi-nonnegative solutions.

In this paper, we extent the results in [1] with n > 1. We want to use Leggett-
Williams’s fixed-point theorem to search for solutions of the problem (1.3)—(1.5)
too.

This paper is organized as follows. Section 2 collects the preliminaries and
statements of results. The proofs of theorems will be given subsequently in Section
3.

2. Preliminaries and Main Results

As a preliminary, we first assume that the given functions satisfy the following
conditions Preliminaries and Main Results

(A1) f:]0,1] x [0,+00) — [0,400) is a continuous function.

(A2) g¢:(0,1) — [0, +00) is continuous and is allowed to be singular at the end
points of (0, 1), g(t) # 0 on any subinterval of (0,1). In addition,

1
0< / g(r)dr < 4o0.
0

(A3) B(s) is a continuous, nondecreasing, odd function, defined on (—oo, +00).
And there exists a constant m > 0, such that

0 < B(s) < ms, 5> 0.

In order to prove the existence of the multi-radially symmetric solutions of the
problem (1.3)—(1.5), we need some lemmas.

First, we introduce some denotations. Let E = (E,|| - ||) be a Banach space,
P C FE is a cone. By a nonnegative continuous concave functional o on P, we mean
a mapping « : P — [0,4+00) that is « is continuous and

a(twr + (1 — t)ws) > ta(wr) + (1 — t)a(ws),
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for all wy,we € P, and all t € [0,1]. Let 0 < a < b, r > 0 be constants. Denote
P.={w e P||w| <},

and
P(a,a,b) = {w € Pla < a(w), [|w|| < b}.

We need the following two useful lemmas.

Lemma 2.1 (Leggett-Williams’s fixed point theorem)Let T : P, — P, be com-
pletely continuous and o be a nonnegative continuous concave functional on P such
that a(w) < ||wl|, for all w € P... Suppose there exist 0 < a < b < d < ¢ such that

(B1) {w € P(a,b,d)|a(w) > b} # 0 and a(Tw) > b, for w € P(a,b,d),

(B2) ||Tw| < a, for ||w|| < a, and

(B3) o(Tw) >b, for we P(a,b,c) with |Tw| > d.

Then, T has at least three fized points wy, we and ws satisfying

|lwi|| < a, b<a(ws), and Jws|]|>a, o(ws)<bd.

Lemma 2.2 Let w € P and § € (0,1/2). Then
(C1) Ifo<o<1,

t
[wlt o<y <o,
w(t) v
) el =8
(l—0o) 7 — =7

(C2) w(t) > d|w|, for all t € [6,1—4].

(C3) w(t) > |w|t, 0<t<1,ifoc=1.

(Ch) wit)> Jul(l—1),0<t<1, if o =0,
Here o € [0, 1], such that

w(o) = |lw|| = sup |w(t)].
telo,1]

We want to use the fixed-point theorem in Lemma 2.1 to search for solutions of
the problem (1.3)—(1.5). By (A2), there exists a constant ¢ € (0,1/2), so that

1-96

L(m)zw(/;g(t)dt)—i—w(/x g(t)dt>, §<z<1-4,

a1 _
is a positive and continuous function in [§, 1 — §], where ¥ (s) = |s| »=Dsgn s is the
inverse function of ¢(s) = |s|P~2?s. For convenience, we set

L= min L(z),
0<zx<1-46

and .
A= (m+ 1)¢(/ o(r)dr).
0
And in this paper, we set the Banach space E = C[0, 1] with the norm defined by

[wl| = sup |w(t)|, weE.
te(0,1]



MULTIPLE RADIAL SYMMETRIC SOLUTIONS 99

The cone P C FE is specified as,
P = {w € EJw is a nonnegative concave function in [0, 1]}.

Furthermore, we define the nonnegative and continuous concave function a satis-

fying
w(d) + w(l —9)

., weP
D) w

alw) =

Obviously,
a(w) < |w|l, forallweP

Under all the assumptions (A1)—(A3), we can get the main result as follows

Theorem 2.1 Let a, b, d, § be given constants with 0 < a < b <b < b/§ < d,
and let the following conditions on f and  are fulfilled:

(D1) For all (t,w) €10,1] x [0,a], f(t,w) < (%);

(D2) FEither

i) hmsupf(f, w) < (p( ), uniformly oll t € [0,1], or

w—)
i) f(t,w) < (%), for all (t,w) € [0,1] x [0,n] with some n > d, X > 0;
2b
(D3) f(t,w) > (E)’ for (t,w) € [§,1 — 6] x [0b, d] with some L > 0.

Then, the problem (1.8)—(1.5) have at least three radially symmetric solutions w1,
wo and ws, such that

lwi]] <@, a(we) >b, and |ws] >a, alws)<b.

3. Proofs of the Main Results

We are now in a position to prove our main results.

Proof of Theorem 2.1. Define T : P — E, w — W, where W is determined
by

W(t) =(Tw)(¢)
£Bo @b(/() " g(r) f(r, w(r))dr)
+ /t1 w(s_("_l) /S " Lg(r) f(r, w(r))dr) ds, t €[0,1],

0

for each w € P.
First we prove each fixed point of W in P is a solution of (1.3)- (1.5). By the
definition of W, we have

W) = (T =~ (0 [ttt i)

Noticing that

< ﬂ/} g(r )dr)‘
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and by the integrability of g and f, we have

(3.1) T W(6) = Tim / 9(r)F(r,w(r))dr) = 0.
Considering
W'(O) = %1_{% w,
and
W (t) — W(0)

— /t1 w(s—<"—1> /Os " rg(r) f(r, w(r))dr) ds
_ /Olw(s(”” /0 P lg(r)f(rw(r))dr ) ds
:—/Otw(s_(”_l) /Osr"_lg(r)f(r,w(r))dr>d5,

and by using L'Hospital’s rule, we get

W’(O) f%l_{% ( ) ; W(O)
= lim (W ()~ W(0))
=l (1Y /Ot P L) £ w(r)dr ) ds

Recalling (3.1), we know that W'(¢) is right-continuous at the point ¢t = 0, and
W’(0) = 0, namely, the fixed point of W satisfies (1.4). By the assumption (A1)
and (A2), we also have

W'(t) = (Tw)'(t) < 0.

Then [|[Tw| = (Tw)(0). On the other hand, since

w = e ([ 7o),

and

s = - 1 g0 o))

we see that
W(1) + B(w'(1)) = 0,

namely, the fixed point of W also satisfies (1.5).
Next we show that the conditions in Lemma 2.1 are satisfied. We first prove
that condition (D2) implies the existence of a number ¢ where ¢ > d such that

W .P,— P..
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If ii) of (D2) holds, by the condition (A3), we see that

7wl =(Tw)(0)
~Bo z/)(/ol P g(r) f(rw(r))dr)
# oo [Tt ey as
<o [ #9001t
([ () smsewtar)as
<tm+100( [ 90150, w0)ar)
<(m+1u( [ ot () ar)
(f sa)o(e(3)

=2+ )0 [ orar)

=n, for w € Fn-

—(m+ 1)

Then, if we select ¢ = 7, there must be W : P.— P..
If i) of (D2) is satisfied, then there must exist D > 0 and € < ¢(1/X), so that

(3.2) <e, for (t,w)e€0,1] x [D,+00).
Let M = max{f(t,w)] 0 <t <1,0<w < D}. By (3.2), we obtain

(3.3) ft,w) <M +ewP™t,  for (t,w) € [0,1] x [0, +00).

Selecting a proper real number ¢, so that

(3.4) w(c) > max{cp(d),M(ga <§> — 6)71}.
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Utilizing (3.2), (3.3) and (3.4), we have
[Tw]| =(Tw)(0)

:Bow(/ol P g(r) £ (r,w(r))dr)

+/01w(s<"” /Osrnlg(r)f(r,w(r))dr) ds

< [ o)1 w)ar)

/ ¢</O ( )" 19(7’)f(7”,w(r))dr)ds

1

w ; g(r )dr)
1

z/J g(r)(M + ewP™ 1)dr)
0

o)) )
e ([0 (505 (3) ) )
—map([omar)i=e  forweT.

So we obtain |[W| < ¢, that is W : P, — P..
Then we want to verify that W satisfies the condition (B2) in Lemma 2.1. If
||w|| < a, then by the condition (D1), we know

f(t,w)<cp(§>, for0<t<1, 0<w<a.

We use the methods similarly to the above, and can get |W|| = || Tw| < a, that is,
W satisfies (B2).

To fulfill condition (B1l) of Lemma 2.1, we note that w(t) = (b + d)/2 > b,
0 <t < 1, is the member of P(a,b,d) and a(w) = «a((b+ d)/2) > b, hence
{w € P(a,b,d)| a(w) > b} # 0. Now assume w € P(«a,b,d). Then

w(d) +w(l —9) > b

aw) = ST >,

and b < ||w|| < d.

Utilizing the condition (C2) in Lemma 2.2, we know that for all s, which satisfying
6 < s<1-—4, there has
5b < d|lw]] < w(s) < d.

And meanwhile, we can select a proper ¢, so that

O (5) >y
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Combining the condition (D3), we can see

(Tw)(9) + (Tw)(1 = 9)

o Tw) = -
> (Tu)(1 - 9)
> [ o ([ () awsanar) as
> [ o ([ () awsanar) as
z/jéw(/ (5)" ot swtonyar ) as
> /5w< /6 o) fr wlr))dr | ds
>/; G <§—z>dr>ds

5 (/;

That is (B1) is well verified.
Finally, we prove (B3) of Lemma 2.1 is also satisfied. For w € P(a, b, ¢), we have
|[Tw] > d. By using the condition (C2) in Lemma 2.2, we get

°“ w|»—~

(Tw)(9) + (Tw)(1 = 9)

a(Tw) = 5

> §||Tw|| > dd > b.

Then, the condition (B3) in Leggett-Williams’s fixed point theorem is well verified.

Using the above results and applying Leggett-Williams’s fixed point theorem,
we can see that the operator W has at least three fixed points, that is the problem
(1.3)—(1.5) have at least three radially symmetric solutions w1, ws and ws, which
satisfying

lwil] < a, a(wz)>b, and |ws|| >a, o(ws)<b.

The proof is complete.

REFERENCES

1. He, X. M., Ge, W. G. and Peng, M. S. : Multiple positive solution for one-
dimensional p-Laplacian boundary value problems, Applied Mathematics Letters,
15(2002), 937-943.

2. Wang, J. Y. : The existence of positive solution for one-dimensional p-Laplacian,
Proc. Amer. Math. Soc., 125(1997), 2275-2283.

3. Yao, Q. L. and Lu, H. C. : Positive solution of one-dimensional singular p-
Laplacian equations, (in Chinese), Acta Mathematica Sinica, 14(1998), 1255—
1264.



104 SOUTHWEST JOURNAL OF PURE AND APPLIED MATHEMATICS

4. Henderson, J. and Thompson, H. B. : Multiple symmetric positive solutions for
a second order boundary value problem, Proc. Amer. Math. Soc., 128(2000),
2372-2379.

5. Anderson, D. : Multiple positive solutions for a three-point boundary value
problem, Math. J. Comput. Modelling, 27(1998)(6), 49-57.

6. Avery, R. I. : Three symmetric positive solutions for a second-order boundary
value problem, Appl. Math. Lett., 13(2000)(3), 1-7.



