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BAER INVARIANTS IN SEMI-ABELIAN CATEGORIES I:
GENERAL THEORY

T. EVERAERT AND T. VAN DER LINDEN

ABSTRACT. Extending the work of Fröhlich, Lue and Furtado-Coelho, we consider
the theory of Baer invariants in the context of semi-abelian categories. Several exact
sequences, relative to a subfunctor of the identity functor, are obtained. We consider a
notion of commutator which, in the case of abelianization, corresponds to Smith’s. The
resulting notion of centrality fits into Janelidze and Kelly’s theory of central extensions.
Finally we propose a notion of nilpotency, relative to a Birkhoff subcategory of a semi-
abelian category.

Contents

1 Introduction 1
2 The context 4
3 The general case 8
4 The semi-abelian case 14
5 The case of Birkhoff subfunctors 20
6 V1 as a commutator 24
7 One more application of V1: nilpotency 28

1. Introduction

1.1. It is classical to present a group G as a quotient F/R of a free group F and a “group
of relations” R. The philosophy is that F is easier to understand than G. Working with
these presentations of G, it is relevant to ask which expressions of the datum R � F are
independent of the chosen presentation. A first answer to this was given by Hopf in [23],
where he showed that

[F, F ]

[R,F ]
and

R ∩ [F, F ]

[R,F ]

are such expressions. In [1], Baer further investigated this matter, constructing several of
these invariants: he constructed expressions of presentations such that “similar presenta-
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tions” induce isomorphic groups—different presentations of a group by a free group and
a group of relations being always similar. Whence the name Baer invariant to denote
such an expression. As in the two examples above, he constructed Baer invariants using
commutator subgroups.

The work of Baer was followed up by Fröhlich [18], Lue [30] and Furtado-Coelho
[19], who generalized the theory to the case of Higgins’s Ω-groups [22]. Whereas Baer
constructs invariants using commutator subgroups, these authors obtain, in a similar
fashion, generalized Baer invariants from certain subfunctors of the identity functor of
the variety of Ω-groups considered. Fröhlich and Lue use subfunctors associated with
subvarieties of the given variety, and Furtado-Coelho extends this to arbitrary subfunctors
of the identity functor. By considering the variety of groups and its subvariety of abelian
groups, one recovers the invariants obtained by Baer.

That the context of Ω-groups, however, could still be further enlarged, was already
hinted at by Furtado-Coelho, when he pointed out that

. . . all one needs, besides such fundamental concepts as those of kernel, image,
etc., is the basic lemma on connecting homomorphisms.

1.2. We will work in the context of pointed exact protomodular categories. A category
with pullbacks A is Bourn protomodular if the fibration of points is conservative [6]. In a
pointed context, this amounts to the validity of the Split Short Five Lemma—see Bourn
[6]. A category A is regular [2] when it has finite limits and coequalizers of kernel pairs
(i.e. the two projections k0, k1 : R[f ] �� A of the pullback of an arrow f : A �� B
along itself), and when a pullback of a regular epimorphism (a coequalizer) along any
morphism is again a regular epimorphism. In this case, every regular epimorphism is the
coequalizer of its kernel pair, and every morphism f : A �� B has an image factorization
f = Im f ◦p, unique up to isomorphism, where p : A �� I[f ] is regular epi and the image
Im f : I[f ] �� B of f is mono. Moreover, in a regular category, regular epimorphisms
are stable under composition, and if a composition f ◦ g is regular epi, then so is f . A
regular category in which every equivalence relation is a kernel pair is called Barr exact.

Note that, if, in addition to being pointed, exact and protomodular, we assume that
a category A has binary coproducts—an assumption which makes A a finitely cocom-
plete category, see Borceux [3]—A is called semi-abelian. This notion was introduced
by Janelidze, Márki and Tholen in [28]. Some examples of semi-abelian categories: any
variety of Ω-groups [22]—in particular groups, rings and crossed modules; any abelian ca-
tegory; the dual of the category of pointed sets. Semi-abelian varieties were characterized
by Bourn and Janelidze in [11].

An important implication of these axioms is the validity of the basic diagram lemmas
of homological algebra, such as the 3×3 Lemma and the Snake Lemma. Thus, keeping in
mind Furtado-Coelho’s remark, one could expect this context to be suitable for a general
description of Fröhlich’s, Lue’s and Furtado-Coelho’s theory of Baer invariants. Sections
4 and 5 of this text are a confirmation of that thesis.
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1.3. In Section 3 we give a definition of Baer invariants. We call presentation of an object
A of a category A any regular epimorphism p : A0

�� A. PrA will denote the category
of presentations in A and commutative squares between them, and pr : PrA �� A the
forgetful functor which maps a presentation to the object presented. Two morphisms of
presentations f , g : p �� q are called isomorphic, notation f � g , if pr f = pr g . A
functor B : PrA �� A is called a Baer invariant if f � g implies that Bf = Bg .

We prove that any functor L0 : PrA �� A can be turned into a Baer invariant by
dividing out a subfunctor S of L0 that is “large enough”. In case L0 arises from a functor
L : A �� A, the class FL0 of such subfunctors S of L0 is seen to have a minimum
L1 : PrA �� A. (A different interpretation of the functor L1 is given in Section 6.)
Finally we show that, given an appropriate subcategory of PrA, a Baer invariant can be
turned into a functor A �� A.

In Section 4, the context is reduced to pointed, exact and protomodular categories.
Next to L1, a second canonical functor in FL0 is obtained. Using Noether’s Third Iso-
morphism Theorem, we construct two exact sequences of Baer invariants. Finally, as an
application of the Snake Lemma, we find a six-term exact sequence of functors A �� A.

We call Birkhoff subfunctor of A any normal subfunctor V of 1A (i.e. a kernel V ��

1A) which preserves regular epimorphisms. In this way, we capture Fröhlich’s notion of
variety subfunctor. As introduced by Janelidze and Kelly in [25], a full and reflective
subcategory B of an exact category A is called Birkhoff when it is closed in A under
subobjects and quotient objects. A Birkhoff subcategory of a variety of universal algebra
[15] (thus, in particular, any variety of Ω-groups) is nothing but a subvariety. In Section
5, we see that Birkhoff subfunctors correspond bijectively to the Birkhoff subcategories
of A: assuming that the sequence

0 �� V � �� µ �� 1A
η � �� U �� 0

is exact, V is a Birkhoff subfunctor if and only if U reflects A onto a Birkhoff subcategory.
It follows that Baer invariants can be obtained by considering suitable subcategories of
a pointed, exact and protomodular category. This allows us to refine the six-term exact
sequence from Section 4.

In Section 6, we show that the functor V1 : PrA �� A associated with a Birkhoff
subcategory B of A may be interpreted as a commutator. The resulting notion of centrality
fits into Janelidze and Kelly’s theory of central extensions [25]. In case B is the Birkhoff
subcategory AAb of all abelian objects in A, our commutator corresponds to the one
introduced by Smith [33] and generalized by Pedicchio in [32].

Finally, in Section 7, we propose a notion of nilpotency, relative to a Birkhoff sub-
functor V of A. We prove that an object is V -nilpotent if and only if its V -lower central
series reaches 0. The nilpotent objects of class n form a Birkhoff subcategory of A.

1.4. In our forthcoming paper [16], we apply our theory of Baer invariants to obtain a
generalization of Hopf’s formula [23] in integral homology of groups. As a corollary we
find that sequence O is a version of the Stallings-Stammbach sequence [34], [35].
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1.5. For the basic theory of semi-abelian categories we refer to the Borceux’s survey [3]
and Janelidze, Márki and Tholen’s founding paper [28]. For general category theory we
used Borceux [4] and Mac Lane [31].

Acknowledgements. This work would not have existed but for Marino Gran pointing
us to the problem of considering Baer invariants in a semi-abelian context. We owe
him many thanks. We are also very grateful to Francis Borceux and Dominique Bourn,
who introduced us to protomodular and semi-abelian categories, and who kindly made
available their manuscript [5]. We vividly recommend it to anyone interested in the
subject. Finally we wish to thank George Janelidze for his helpful comments—especially
for suggesting Definition 3.3—and the referee, whose incitement to rewriting this text
resulted in the much more readable and, in our opinion, more beautiful, document in
front of you.

2. The context

2.1. Notation. Given a morphism f : A �� B in A, (if it exists) its kernel is
denoted by Ker f : K[f ] �� A, its image by Im f : I[f ] �� B and its cokernel by
Coker f : B �� Cok[f ]. In a diagram, the forms A �� �� B , A � �� �� B and A � �� B
signify that the arrow is, respectively, a monomorphism, a normal monomorphism and a
regular epimorphism.

The main results in this paper are proven in categories that are pointed, Barr exact
and Bourn protomodular—thus, semi-abelian, but for the existence of binary coproducts.
The reason is that such categories form a natural context for the classical theorems of
homological algebra—as the Snake Lemma and Noether’s Isomorphism Theorems—to
hold: see, e.g. Bourn [8] or Borceux and Bourn [5]. We think it useful to recall some
definitions and basic properties, and start with the crucial notion of protomodularity.

2.2. Definition. [6] A pointed category with pullbacks A is protomodular as soon as
the Split Short Five-Lemma holds. This means that for any commutative diagram

0 �� K ′ � �� k
′

��

u

��

A′ f ′
��

v

��

B′
s′

��

w

��
0 �� K � ��

k
�� A

f �� B
s

��

such that f and f ′ are split epimorphisms (with resp. splittings s and s′) and such that
k = Ker f and k′ = Ker f ′, u and w being isomorphisms implies that v is an isomorphism.

In a protomodular category A, an intrinsic notion of normal monomorphism exists
(see Bourn [7]). We will, however, not introduce this notion here. It will be sufficient
to note that, if A is moreover exact, the normal monorphisms are just the kernels. The
following property is very important and will be needed throughout the paper. Note that
we will only apply it in the case that A is exact.



BAER INVARIANTS IN SEMI-ABELIAN CATEGORIES I: GENERAL THEORY 5

2.3. Proposition. [Non-Effective Trace of the 3×3 Lemma [9, Theorem 4.1]] Consider,
in a regular and protomodular category, a commutative square with horizontal regular
epimorphisms

A′

v

��

f ′ � �� B′

w

��
A

f

� �� B.

When w is a monomorphism and v a normal monomorphism, then w is normal.

A morphism f : A �� B in a pointed regular protomodular category is proper [8]
when its image is a kernel.

In a pointed and regular context, the notion of protomodularity is strong enough to
imply the basic lemma’s of homological algebra, such as the 3× 3 Lemma and the Snake
Lemma. In a pointed, exact and protomodular category also Noether’s Isomorphism
Theorems hold.

We shall call a sequence

K k �� A
f �� B (A)

in a pointed category short exact, if k = Ker f and f = Coker k. We denote this situation

0 �� K � �� k �� A
f � �� B �� 0.

If we wish to emphasize the object K instead of the arrow k, we denote the cokernel f
by ηK : A �� A/K. In a regular and protomodular category the exactness of sequence
A is equivalent to demanding that k = Ker f and f is a regular epimorphism. Thus, a
pointed, regular and protomodular category has all cokernels of kernels. A sequence of
morphisms

. . . �� Ai+1
fi+1 �� Ai

fi �� Ai−1
�� . . .

in pointed, regular and protomodular category is called exact if Im fi+1 = Ker fi, for any
i.

2.4. Proposition. [Noether’s Third Isomorphism Theorem, [5]] Let A ⊆ B ⊆ C be
objects of a pointed, exact and protomodular category A, such that A and B are normal
in C (i.e. the inclusions are kernels). Then

0 �� B
A

� �� �� C
A

� �� C
B

�� 0

is a short exact sequence in A.
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2.5. Proposition. [Snake Lemma [8, Theorem 14]] Let A be a pointed, regular and
protomodular category. Any commutative diagram with exact rows as below such that u, v
and w are proper, can be completed to the following diagram, where all squares commute,

K[u] ��
���

Ker u
��

K[v] ��
���

Ker v
��

K[w]
���
Ker w

��

δ
��

K ′
k′

��

u

��

A′
f ′

� ��

v
��

B′

w
��

�� 0

0 �� K � �� k ��

Coker u
���

A
f ��

Coker v
���

B

Coker w
���

Cok[u] �� Cok[v] �� Cok[w]

in such a way that

K[u] �� K[v] �� K[w]
δ �� Cok[u] �� Cok[v] �� Cok[w]

is exact. Moreover, this can be done in a natural way, i.e. defining a functor pAr(PrA) ��

6tE(A), where pAr(PrA) is the category of proper arrows of PrA and 6tE(A) the category
of six-term exact sequences in A.

In fact, in [8] only the exactness of the sequence is proven. However, it is quite
clear from the construction of the connecting morphism δ that the sequence is, moreover,
natural.

The converse of the following property is well known to hold in any pointed category.
In fact, the condition that f ′ be regular epi, vanishes.

2.6. Proposition. [8, 5] Let A be a pointed, regular and protomodular category.
Consider the following commutative diagram, where k = Ker f , f ′ is regular epi and the
left hand square a pullback:

K ′ k′
��

u

��

A′ f ′ � ��

v

��

B′

w

��
0 �� K � ��

k
�� A

f
�� B.

If k′ = Ker f ′, then w is a monomorphism.

The converse of the following property is well known to hold in any pointed category.
In fact, to conclude the converse, it is enough for u to be an epimorphism.
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2.7. Proposition. [10, Lemma 1.1] Consider, in a pointed, exact and protomodular
category, a commutative diagram with exact rows

0 �� K ′ � �� k
′

��

u

��

A′

(I)

f ′ � ��

v
���

B′

w
���

�� 0

0 �� K � ��
k

�� A
f

� �� B �� 0

such that v and w are regular epimorphisms. If (I) is a pushout, then u is a regular
epimorphism.

We will also need the following concept, introduced by Carboni, Lambek and Pedicchio
in [13].

2.8. Definition. A category A is a Mal’cev category if every reflexive relation in A is
an equivalence relation.

As regular categories constitute a natural context to work with relations, regular
Mal’cev categories constitute a natural context to work with equivalence relations. If A
has finite limits, then A protomodular implies A Mal’cev.

It is well known that when, in a regular category, a commutative square of regular
epimorphisms

A′ f ′ � ��

v
���

B′

w
���

A
f

� �� B

is a pullback, it is a pushout. (When the category is protomodular, one gets the same
property for pullbacks of any map along a regular epimorphism: this is Proposition 14
in Bourn [6].) In a regular category, a commutative square of regular epimorphisms is
said to be a regular pushout when the comparison map r : A′ �� P to the pullback of f
along w is a regular epimorphism (see Carboni, Kelly and Pedicchio [12]).

A′
f ′

� ����������������

v

���
��

��
��

��
��

��
��

r

��
P � ��

���

B′

w
���

A
f

� �� B

(B)

The following characterizes exact Mal’cev categories among the regular ones.
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2.9. Proposition. [12, Theorem 5.7] A regular category is exact Mal’cev if and only if,
given regular epimorphisms v : A′ �� A and f ′ : A′ �� B′ such as in B, their pushout
(the diagram of solid arrows in B) exists, and moreover the comparison map r—where
the square is a pullback—is a regular epimorphism.

It follows that in any exact Mal’cev category, a square of regular epimorphisms is a
regular pushout if and only if it is a pushout. Thus the following can be viewed as a
denormalized version of Proposition 2.7.

2.10. Proposition. [9, Proposition 3.3] Consider, in a regular Mal’cev category, a
commutative diagram of augmented kernel pairs, such that p, p′, q and r are regular
epimorphisms:

R[p′]

s

��

k′
1

��
k′
0 �� A′

q
���

p′ � �� B′

r
���

R[p]
k1

��
k0 �� A p

� �� B.

The right hand square is a regular pushout if and only if s is a regular epimorphism.

3. The general case

We start this section by giving a definition of Baer invariants. In order to turn a functor
L0 : PrA �� A into a Baer invariant, we consider a class FL0 of subfunctors of L0.
Proposition 3.7 shows that for any L0 and any S ∈ FL0 , L0/S : PrA �� A is a Baer
invariant. We give equivalent descriptions of the class FL0 in case L0 arises from a functor
A �� A. In that case the class FL0 is shown to have a minimum L1 (Proposition 3.9).
Finally, in Proposition 3.18, we show that a Baer invariant can be turned into a functor
A �� A, given an appropriate subcategory of PrA.

3.1. Definition. Let A be a category. By a presentation of an object A of A we mean
a regular epimorphism p : A0

� �� A . We denote by PrA the category of presentations
of objects of A, a morphism f = (f0, f) : p �� q being a commutative square

A0

p
���

f0 �� B0

q
���

A
f

�� B.

Let pr : PrA �� A denote the forgetful functor which maps a presentation to the
object presented, sending a morphism of presentations f = (f ′, f) to f . Two morphisms
of presentations f, g : p �� q are called isomorphic, notation f � g, if pr f = pr g (or
f = g).
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3.2. Remark. Note that in any category A, a kernel pair (R[p], k0, k1) of a morphism
p : A0

�� A is an equivalence relation, hence an internal category. In case A has kernel
pairs of regular epimorphisms, a morphism of presentations f : p �� q gives rise to an
internal functor

R[p]
Rf ��

k0

��
k1

��

R[q]

l0
��

l1
��

A0 f0

�� B0.

Then f � g : p �� q if and only if the corresponding internal functors are naturally
isomorphic.

3.3. Definition. A functor B : PrA �� A is called a Baer invariant if f � g implies
that Bf = Bg.

The following shows that a Baer invariant maps “similar” presentations—in the sense
of Baer [1]—to isomorphic objects.

3.4. Proposition. In A let p and p′ be presentations and f and g maps

A0

p � ��
��

��
��

�

f �� A′
0g

��

p′	�� 











A

such that p′ ◦f = p and p◦g = p′. If B : PrA �� A is a Baer invariant, then Bp ∼= Bp′.

Proof. The existence of f and g amounts to p and p′ being such that (g, 1A)◦(f, 1A) � 1p

and (f, 1A) ◦ (g, 1A) � 1p′ . Obviously then, B(f, 1A) : Bp �� Bp′ is an isomorphism
with inverse B(g, 1A).

Recall that a subfunctor of a functor F : C �� D is a subobject of F in the functor
category Fun(C,D). We shall denote such a subfunctor by a representing monic natural
transformation µ : G �� F , or simply by G ⊆ F or G. Now let D be a pointed category.
A subfunctor µ : G �� F is called normal if every component µC : G(C) �� F (C) is
a kernel. This situation will be denoted by G � F . In case D has cokernels of kernels, a
normal subfunctor gives rise to a short exact sequence

0 �� F � �� µ �� G
ηF � �� G

F
�� 0

of functors C �� D. Like here, in what follows, exactness of sequences of functors will
always be pointwise. If confusion is unlikely we shall omit the index F , and write η for
ηF and ηC for (ηF )C .

The following, at first, quite surprised us:
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3.5. Example. Any subfunctor G of 1Gp : Gp �� Gp is normal. Indeed, by the
naturality of µ : G �� 1Gp, every µC : G(C) �� C is the inclusion of a fully-invariant,
hence normal, subgroup G(C) into C—and kernels in Gp and normal subgroups coincide.

This is, of course, not true in general: consider the category ω-Gp of groups with
an operator ω. An object of ω-Gp is a pair (G,ω), with G a group and ω : G �� G
an endomorphism of G, and an arrow (G,ω) �� (G′, ω′) is a group homomorphism
f : G �� G′ satisfying f ◦ ω = ω′ ◦ f . Then putting L(G,ω) = (ω(G), ω|ω(G)) defines
a subfunctor of the identity functor 1ω-Gp : ω-Gp �� ω-Gp. L is, however, not normal:
for any group endomorphism ω : G �� G of which the image is not normal in G, the
inclusion of L(G,ω) in (G,ω) is not a kernel.

If A is pointed and has cokernels of kernels, any functor PrA �� A can be turned
into a Baer invariant by dividing out a “large enough” subfunctor. In order to make this
precise, we make the following

3.6. Definition. [19] Consider a functor L0 : PrA �� A and a presentation q :
B0

�� B. Then F q
L0

denotes the class of kernel subobjects S � L0q for which f � g :
p �� q implies that ηS ◦ L0f = ηS ◦ L0g, i.e. that the two compositions in the diagram

L0p
L0f ��

L0g
�� L0q

ηS � �� L0q
S

are equal.

FL0 is the class of functors S : PrA �� A with Sq ∈ F q
L0

, for every q ∈ PrA. Hence,
S ∈ FL0 if and only if the following conditions are satisfied:

(i) S � L0;

(ii) f � g : p �� q implies that ηq ◦ L0f = ηq ◦ L0g, i.e. that the two compositions in
the diagram

L0p
L0f ��

L0g
�� L0q

ηq � �� L0

S
q

are equal.

The class F q
L0

(resp. FL0) may be considered a subclass of Sub(L0q) (resp. Sub(L0)), and
as such carries the inclusion order.

3.7. Proposition. [19, Proposition 1] Suppose that A is pointed and has cokernels
of kernels. Let L0 : PrA �� A be a functor and S an element of FL0. Then L0/S :
PrA �� A is a Baer invariant.

Proof. Condition (i) ensures that L0/S exists. The naturality of η : L0
�� L0/S

implies that, for morphisms of presentations f , g : p �� q, both left and right hand
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downward pointing squares

L0p
ηp � ��

L0f

��
L0g

��

L0

S
p

L0
S

f
��

L0
S

g
��

L0q ηq

� �� L0

S
q

commute. If f � g then, by (ii), ηq ◦ L0f = ηq ◦ L0g , so L0

S
f ◦ ηp = L0

S
g ◦ ηp, whence the

desired equality L0

S
f = L0

S
g .

Proposition 3.7 is particularly useful for functors L0 : PrA �� A induced by a functor
L : A �� A by putting

L0(p : A0
�� A) = L(A0) and L0((f0, f) : p �� q) = Lf0.

In this case, the class F q
L0

in Definition 3.6 has some equivalent descriptions.

3.8. Proposition. Suppose that A is pointed with cokernels of kernels. Given a functor
L : A �� A and a presentation q : B0

�� B, the following are equivalent:

1. S ∈ F q
L0

;

2. f � g : p �� q implies that ηS ◦ L0f = ηS ◦ L0g;

3. for morphisms f0, g0 : A0
�� B0 in A with q ◦ f0 = q ◦ g0, ηS ◦Lf0 = ηS ◦Lg0, i.e.

the two compositions in the diagram

L(A0)
Lf0 ��

Lg0

�� L(B0)
ηS � �� L(B0)

S

are equal.

If, moreover, A has kernel pairs of regular epimorphisms, these conditions are equivalent
to

4. L(R[q]) ⊆ R
[
ηS : L(B0) �� L(B0)

S

]
.

Proof. We show that 2. implies 3.: a presentation p and maps of presentations
f � g : p �� q such as needed in condition 2. are given by

A0

f0 ��
g0

�� B0

q
���

A0 q◦f0

�� B

p = 1A0 , f = (f0, q ◦ f0), g = (g0, q ◦ f0).
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3.9. Proposition. [cf. [19, Proposition 4]] Suppose that A is pointed with pullbacks,
coequalizers of reflexive graphs and cokernels of kernels. For any L : A �� A, the
ordered class FL0 has a minimum L1 : PrA �� A.

Proof. For a morphism of presentations f : p �� q, L1f is defined by first taking
kernel pairs

R[p]

(I)Rf
��

k0 ��

k1

�� A0

(II)f0

��

p � �� A

f

��
R[q]

l0 ��

l1
�� B0 q

� �� B,

(C)

next applying L and taking coequalizers

L(R[p])

LRf
��

Lk0 ��

Lk1

�� L(A0)

(III)Lf0

��

c � �� Coeq [Lk0, Lk1]

Coeq(LRf ,Lf0)
��

L(R[q])
Ll0 ��

Ll1
�� L(B0) d

� �� Coeq [Ll0, Ll1]

(D)

and finally taking kernels

L1p

L1f

��

� ��Ker c �� L(A0)

(III)Lf0

��

c � �� Coeq [Lk0, Lk1]

Coeq(LRf ,Lf0)
��

L1q
� ��
Ker d

�� L(B0) d

� �� Coeq [Ll0, Ll1].

(E)

It is easily seen that this defines a functor L1 : PrA �� A which is a minimum in FL0

for the inclusion order.

3.10. Remark. Observe that the construction of L1 above is such that, for every
p ∈ PrA, L1p is a minimum in the class Fp

L0
.

3.11. Corollary. Let A be a pointed category with pullbacks, coequalizers of reflexive
graphs and cokernels of kernels, and L : A �� A a functor. Then

1. S ∈ FL0 if and only if L1 ≤ S � L0;

2. S ∈ Fp
L0

if and only if L1p ≤ S � L0p.

We now show how a Baer invariant gives rise to a functor A �� A, given the following
additional datum:

3.12. Definition. Let A be a category. We call a subcategory W of PrA a web on A
if

1. for every object A of A, a presentation p : A0
�� A in W exists;

2. given presentations p : A0
�� A and q : B0

�� B in W, for every morphism
f : A �� B of A there exists a morphism f : p �� q in W such that pr f = f .
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3.13. Example. A split presentation is a split epimorphism p of A. (Note that an
epimorphism p : A0

�� A with splitting s : A �� A0 is a coequalizer of the maps 1A0

and s◦p : A0
�� A0.) The full subcategory of PrA determined by the split presentations

of A is a web Wsplit, the web of split presentations. Indeed, for any A ∈ A, 1A : A �� A is
a split presentation of A; given split presentations p and q and a map f such as indicated
by the diagram

A0
t◦f◦p ��

p
���

B0

q
���

A

s

		

f
�� B,

t

		

(t ◦ f ◦ p, f) is the needed morphism of W .

3.14. Example. Let F : A �� A be a functor and let π : F �� 1A be a natural
transformation of which all components are regular epimorphisms. Then the presentations
πA : F (A) �� A, for A ∈ A, together with the morphisms of presentations (F (f), f) :
πA

�� πB, for f : A �� B in A, constitute a web WF on A called the functorial web
determined by F .

3.15. Example. A presentation p : A0
�� A is called projective if A0 is a projective

object of A. If A has sufficiently many projectives every object A obviously has a projec-
tive presentation. In this case the full subcategory Wproj of all projective presentations of
objects of A is a web, called the web of projective presentations.

Recall [4] that a graph morphism F : C �� D between categories C and D has the
structure, but not all the properties, of a functor from C to D: it need neither preserve
identities nor compositions.

3.16. Definition. Let W be a web on a category A and i : W �� PrA the inclusion.
By a choice c of presentations in W, we mean a graph morphism c : A �� W such that
pr ◦i ◦ c = 1A.

A functor B : PrA �� A is called a Baer invariant relative to W when

1. for any choice of presentations c : A �� W, the graph morphism B◦i◦c : A �� A
is a functor;

2. for any two choices of presentations c, c′ : A �� W, the functors B ◦ i ◦ c and
B ◦ i ◦ c′ are naturally isomorphic.

3.17. Example. Any functor B : PrA �� A is a Baer invariant relative to any
functorial web WF : there is only one choice c : A �� WF , and it is a functor.

3.18. Proposition. If B : PrA �� A is a Baer invariant, it is a Baer invariant
relative to any web W on A.
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Proof. Let W be a web and c, c′ : A �� W two choices of presentations in W . For the
proof of 1., let f : A �� A′ and g : A′ �� A′′ be morphisms of A. Then 1ic(A) � ic1A

and ic(f ◦ g) � icf ◦ icg; consequently, 1Bic(A) = Bic1A and Bic(f ◦ g) = Bicf ◦ Bicg.
The second statement is proven by choosing, for every object A of A, a morphism

τA : c(A) �� c′(A) in the web W . Then νA = BiτA : Bic(A) �� Bic′(A) is independent
of the choice of τA, and the collection (νA)A∈A is a natural isomorphism B◦i◦c �� B◦i◦c′.

This proposition implies that a Baer invariant B : PrA �� A gives rise to functors
B ◦ i ◦ c : A �� A, independent of the choice c in a web W . But it is important to note
that such functors do depend on the chosen web: indeed, for two choices of presentations
c and c′ in two different webs W and W ′, the functors B ◦ i ◦ c and B ◦ i′ ◦ c′ need not be
naturally isomorphic—see Remark 4.8.

Suppose that A is a pointed category with cokernels of kernels and let c be a choice
in a web W on A. If L0 : PrA �� A is a functor and S ∈ FL0 , then by Proposition 3.7

L0

S
◦ i ◦ c

is a functor A �� A.
If, moreover, A has pullbacks and coequalizers of reflexive graphs, and if L : A �� A

is a functor, then, by Proposition 3.9, we have the canonical functor

DLW = L0

L1
◦ i ◦ c : A �� A.

4. The semi-abelian case

In this section we show that, when working in the stronger context of pointed exact pro-
tomodular categories, we have a second canonical functor in FL0 . Then, as an application
of Noether’s Third Isomorphism Theorem, we construct two exact sequences. As a con-
sequence, we get some new Baer invariants. Finally, applying the Snake Lemma, we find
a six-term exact sequence of functors A �� A.

4.1. Remark. If A is pointed, regular and protomodular, giving a presentation p is
equivalent to giving a short exact sequence

0 �� K[p] � ��Ker p �� A0
p � �� A �� 0.

K[·] : Fun(2,A) �� A, and its restriction K[·] : PrA �� A, denote the kernel functor.

4.2. Proposition. [19, Proposition 2] Let A be a pointed, regular and protomodular
category. If L is a subfunctor of 1A : A �� A then K[·] ∩ L0 : PrA �� A is in FL0.
Hence

L0

K[·] ∩ L0

: PrA �� A

is a Baer invariant.
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Proof. Let µ : L �� 1A be the subfunctor L, and L0 : PrA �� A the functor
defined above Proposition 3.8. By Proposition 3.7 it suffices to prove the first statement.
We show that, for every presentation q : B0

�� B, K[q] ∩ L(B0) ∈ F q
L0

, by checking
the third condition of Proposition 3.8. Since pullbacks preserve kernels—see the diagram
below—K[q] ∩ L(B0) � L(B0). Moreover, applying Proposition 2.6, the map mq, defined
by first pulling back Ker q along µB0 and then taking cokernels

0 �� K[q] ∩ L(B0)
� �� ��

��

��

L(B0)
� ��

��
µB0

��

L(B0)
K[q]∩L(B0)

mq

��

�� 0

0 �� K[q] � ��
Ker q

�� B0 q
� �� B �� 0,

is a monomorphism. Consider morphisms f0, g0 : A0
�� B0 in A with q ◦ f0 = q ◦ g0.

We are to prove that in the following diagram, the two compositions above are equal:

L(A0)
Lf0 ��

Lg0

�� L(B0)
� ��

��
µB0

��

L(B0)
K[q]∩L(B0)

��
mq

��
B0 q

� �� B.

Since mq is a monomorphism, it suffices to prove that q ◦ µB0 ◦ Lf0 = q ◦ µB0 ◦ Lg0. But,
by naturality of µ, q ◦ µB0 = µB ◦ Lq, and so

q ◦ µB0 ◦ Lf0 = µB ◦ L(q ◦ f0) = µB ◦ L(q ◦ g0) = q ◦ µB0 ◦ Lg0.

From now on, we will assume A to be pointed, exact and protomodular.

4.3. Remark. Note that any exact Mal’cev category, hence, a fortiori, any exact and
protomodular category, has coequalizers of reflexive graphs. We get that Proposition 3.9
is applicable.

4.4. Remark. For L ⊆ 1A we now have the following inclusion of functors PrA �� A:

L ◦ K[·] � L1 � K[·] ∩ L0 � L0.

Only the left-most inclusion is not entirely obvious. For a presentation p, let r denote the
cokernel of the inclusion L1p �� L(A0). Then p◦Ker p = p◦0, thus r◦LKer p = r◦L0 = 0.
This yields the required map.

4.5. Remark. Note that, since L(A) = L1(A �� 0), the functor L may be regained
from L1: indeed, evaluating the above inclusions in A �� 0, we get

L(A) = (L ◦ K[·])(A �� 0) ⊆ L1(A �� 0) ⊆ L0(A �� 0) = L(A).
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4.6. Proposition. [cf. [19, Proposition 6]] Consider a subfunctor L of 1A. For S ∈ FL0

with S ⊆ K[·] ∩ L0, the following sequence of functors PrA �� A is exact, and all its
terms are Baer invariants.

0 �� K[·]∩L0

S
� �� �� L0

S
� �� L0

K[·]∩L0

�� 0 (F)

If, moreover, L � 1A, the sequence

0 �� K[·]∩L0

S
� �� �� L0

S
�� pr � �� pr

L0/(K[·]∩L0)
�� 0 (G)

is exact, and again all terms are Baer invariants.

Proof. The exactness of F follows from Proposition 2.4, since S and K[·] ∩ L0 are
normal in L0, both being in FL0 . The naturality is rather obvious.

Now suppose that L � 1A. To prove the exactness of G, it suffices to show that
L0/(K[·] ∩ L0) is normal in pr. Indeed, if so,

0 �� L0

K[·]∩L0

� �� �� pr � �� pr
L0/(K[·]∩L0)

�� 0

is a short exact sequence, and by pasting it together with F, we get G. Reconsider,
therefore, the following commutative diagram from the proof of Proposition 4.2:

L(A0)
� ��

���
µA0

��

L(A0)
K[p]∩L(A0)

��
mp

��
A0 p

� �� A.

The Non-Effective Trace of the 3 × 3 Lemma 2.3 implies that mp is normal, because µA0

is.

The terms of F and G being Baer invariants follows from the exactness of the se-
quences, and from the fact that L0/S, L0/(K[·] ∩ L0) and pr are Baer invariants.

4.7. Corollary. Let L be a subfunctor of 1A : A �� A and S ∈ FL0 with S ⊆
K[·] ∩ L0. Then

1. for any A ∈ A, S1A = 0;

2. for any split presentation p : A0
�� A in A, Sp ∼= K[p] ∩ L(A0);

3. for any presentation p : A0
�� A of a projective object A of A, Sp ∼= K[p]∩L(A0).
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Proof. The first statement holds because S1A ⊆ (K[·] ∩ L0)(1A) = 0 ∩ L(A) = 0.
For the second statement, let s : A �� A0 be a splitting of p. Then (s, 1A) : 1A

�� p
and (p, 1A) : p �� 1A are morphisms of presentations. By Proposition 4.6,

K[·]∩L0

S
: PrA �� A

is a Baer invariant. Hence, Proposition 3.4 implies that

0 = K[·]∩L0

S
(1A) ∼= K[·]∩L0

S
(p) = K[p]∩L(A0)

Sp
,

whence the isomorphism Sp ∼= K[p] ∩ L(A0).
The third statement immediately follows from 2.

Let c be a choice in a web W on A. If L ⊆ 1A, Proposition 4.6 and 3.9 tell us that

∆LW =
K[·] ∩ L0

L1

◦ i ◦ c and ∇LW =
L0

K[·] ∩ L0

◦ i ◦ c

are functors A �� A. If, moreover, L � 1A, then

MW =
pr

L0/(K[·] ∩ L0)
◦ i ◦ c : A �� A

is a functor as well. We omit the references to c, since any other choice c′ gives naturally
isomorphic functors. In the following we shall always assume that a particular c has
been chosen. When the index W is omitted, it is understood that W is the web Wproj of
projective presentations.

4.8. Remark. Note that these functors do depend on the chosen web; for instance,
by Corollary 4.7, ∆LW1A = 0, for any L ⊆ 1A. But, as will be shown in Example 6.1
and Proposition 6.2, if A = Gp and L is the subfunctor associated with the Birkhoff
subcategory Ab of abelian groups, then for any R � F with F projective,

∆(ηR : F �� F
R
) =

R ∩ [F, F ]

[R,F ]
.

By Hopf’s formula [23], this is the second integral homology group of G = F/R—which
need not be 0.

From Proposition 4.6 we deduce the following.

4.9. Proposition. [19, Proposition 6,7] Let W be a web on a pointed, exact and
protomodular category A. If L ⊆ 1A, then

0 �� ∆LW
� �� �� DLW

� �� ∇LW �� 0 (H)

is exact. If, moreover, L � 1A, then also

0 �� ∆LW
� �� �� DLW �� 1A

� �� MW �� 0 (I)

is exact.
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4.10. Remark. [cf. [19, Proposition 8]] In the important case that the functor L :
A �� A preserves regular epimorphisms, we get that L and ∇LW represent the same
subfunctor of 1A. (Accordingly, in this case, ∇LW does not depend on the chosen web.)
Of course, the exact sequence H then simplifies to

0 �� ∆LW
� �� �� DLW

� �� L �� 0. (J)

Let, indeed, A be an object of A and p : A0
�� A a presentation of A. Then the converse

of Proposition 2.6 implies that the upper sequence in the diagram

0 �� K[p] ∩ L(A0)
� �� ��

��

��

L(A0)
Lp � ��

��
µA0

��

L(A)
��
µA

��

�� 0

0 �� K[p] � ��
Ker p

�� A0 p
� �� A �� 0.

is short exact, since µA is a monomorphism and the left hand square a pullback.

To prove Theorem 4.13, we need the following two technical lemma’s concerning the
functor L1. The second one essentially shows that Fröhlich’s V1 [18] and Furtado-Coelho’s
L1 [19] coincide, although Fröhlich demands V1p to be normal in A0, and Furtado-Coelho
only demands that L1p is normal in L0p ⊆ A0.

4.11. Lemma. Let L : A �� A be a functor. If a morphism of presentations f : p �� q
is a pullback square

A0

p
���

f0

� �� B0

s0��

q
���

A
f

� �� B

in A with f0 split epi, then L1f is a regular epimorphism.

Proof. First note that, if square (II) of diagram C is a pullback, then so are both
squares (I). Consequently, if, moreover, f0 is split epi, LRf is a split, hence regular,
epimorphism—Ais a regular category. Because, in this case, also Lf0 is split epi, the
Proposition 2.10 implies that square (III) of Diagram D is a regular pushout, so L1f is
regular epi by Proposition 2.7.

4.12. Lemma. Suppose that L � 1A, and let p : A0
�� A be a presentation in A. Then

L1p is normal in A0.

Proof. Taking the kernel pair of p

R[p]
k0 � ��

k1���

A0

p
���

A0 p
� �� A
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yields split epimorphisms k0 and k1 and defines a morphism of presentations (k0, p) :
k1

�� p. Now, by Lemma 4.11, the arrow L1(k0, p) in the square

L1k1

L1(k0,p)

��

� �� �� R[p]

k0���
L1p �� �� A0

is regular epi. (In fact it is an isomorphism.) Moreover, L1k1 is normal in R[p], since,
according to Corollary 4.7, it is the intersection K[k1]∩L(R[p]) of two normal subobjects
of R[p]. The Non-Effective Trace of the 3× 3 Lemma 2.3 now implies that L1p is normal
in A0.

We will now apply the Snake Lemma to obtain a six term exact sequence of Baer
invariants.

In what follows, A will be a pointed, exact and protomodular category with sufficiently
many projectives. Let

0 �� K � �� �� A
f � �� B �� 0

be a short exact sequence in A. By naturality of the sequence I we get a commutative
square (II) and thus we have a factorisation γ, such that (I) commutes:

0 �� K[DLf ]

(I)

� �� ��

γ

��

DL(A)

(II)

DLf ��

αA

��

DL(B)

αB

��

�� 0

0 �� K � �� �� A
f

� �� B �� 0.

(K)

A priori, only the left exactness of the upper row is clear. Nevertheless, it is easily shown
that DLf is a regular epimorphism by choosing a projective presentation p : A0

�� A
of A and then using the map (1A0 , f) : p �� f ◦ p of Wproj.

4.13. Theorem. [19, Theorem 9] Let A be a pointed, exact and protomodular category
with enough projectives. Consider a short exact sequence

0 �� K � �� �� A
f � �� B �� 0

in A. If L � 1A there is an exact sequence

0 �� K[γ] � �� �� ∆L(A)
∆Lf �� ∆L(B) �� K

I[γ]
�� M(A)

Mf � �� M(B) �� 0. (L)

This exact sequence depends naturally on the given short exact sequence.
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Proof. It suffices to prove that γ is proper. Indeed, we already know that αA and αB

are proper, as they can be put into exact sequences, and thus we get L by applying the
Snake Lemma 2.5. The naturality then follows from 2.5 and Proposition 4.9.

Choose projective presentations p : A0
�� A and f ◦ p : A0

�� B of A and B as
above. Then, by the Noether’s Third Isomorphism Theorem 2.4, diagram K becomes

0 �� L1(f◦p)
L1p

� �� ��

γ

��

L(A0)
L1p

� ��

αA

��

L(A0)
L1(f◦p)

αB

��

�� 0

0 � �� �� K[f◦p]
K[p]

� �� �� A0

K[p]
� �� A0

K[f◦p]
�� 0.

The map γ is unique for the diagram with exact rows

0 �� L1p
� �� ��

���

��

L1(f ◦ p) � ��
���

��

L1(f◦p)
L1p

γ

��

�� 0

0 �� K[p] � �� �� K[f ◦ p] � �� K[f◦p]
K[p]

�� 0

to commute. By Lemma 4.12, we get that L1(f ◦ p) is normal in A0, thus in K[f ◦ p].
The Non-Effective Trace of the 3 × 3 Lemma 2.3 now implies that Im γ is normal. Hence
γ is proper.

5. The case of Birkhoff subfunctors

We will now improve our main result of Section 4—Theorem 5.9—by putting extra condi-
tions on the subfunctor L ⊆ 1A. We therefore introduce the notion of Birkhoff subfunctor.
We show that these subfunctors correspond to the Birkhoff subcategories of A, as defined
by Janelidze and Kelly in [25]. But first we prove that that L1 : PrA �� A preserves
regular epimorphisms if L : A �� A does so. What are the regular epimorphisms of
PrA?

5.1. Proposition. If A is an exact Mal’cev category, then the regular epimorphisms
of PrA are exactly the regular pushout squares in A.

Proof. PrA is a full subcategory of the “category of arrows” Fun(2,A), which has the
limits and colimits of A, computed pointwise (see Section II.4 of Mac Lane [31] or Section
I.2.15 of Borceux [4]). Hence, given a pair f , g : p �� q of parallel arrows in PrA, their
coequalizer in Fun(2,A) exists:

A0

p
���

f0 ��
g0

�� B0

(I)q
���

c0 � �� Coeq (f0, g0)

r
���

A
f ��
g

�� B c
� �� Coeq (f, g).
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Since r is a regular epimorphism, (c0, c) is an arrow in PrA; moreover, by Proposition
2.10, the right hand square (I) is a regular pushout.

Conversely, given a regular pushout square such as (I), Proposition 2.10 ensures that
its kernel pair in Fun(2,A) is a pair of arrows in PrA. Their coequalizer is again the
regular pushout square (I).

5.2. Proposition. Let A be a pointed, exact and protomodular category, and L :
A �� A a functor. If L preserves regular epimorphisms, then so does L1.

Proof. Suppose that L preserves regular epis. If f is a regular epimorphism of
PrA, square (II) of diagram C is a regular pushout. Proposition 2.10 implies that Rf
is a regular epimorphism. By assumption, Lf0 and LRf are regular epis; hence, again
using Proposition 2.10, we get that square (III) of Diagram D is a regular pushout. An
application of Proposition 2.7 on E shows that L1f is regular epi, which proves the first
statement.

Recall the following definition from Janelidze and Kelly [25].

5.3. Definition. Let A be an exact category. A reflective subcategory B of A which
is full and closed in A under subobjects and quotient objects is said to be a Birkhoff
subcategory of A. We will denote by U : A �� B the left adjoint of the inclusion
I : B �� A and by η : 1A �� I ◦ U the unit of the adjunction. We shall omit all
references to the functor I, writing ηA : A �� U(A) for the component of η at A ∈ A.

5.4. Remark. In [25] it is shown that a Birkhoff subcategory B of an exact category
A is necessarily exact. We may add that if A is, moreover, pointed, protomodular and
finitely cocomplete, then so is B. Obviously, then, B is pointed. The Split Short Five
Lemma holds in B because it holds in A and because I preserves kernels. Finally, a full
and reflective subcategory B of A has all colimits that exist in A. We conclude that a
Birkhoff subcategory of a semi-abelian category is semi-abelian.

If the functor L from Remark 4.10 is a normal subfunctor of 1A, L satisfies the condi-
tions Fröhlich used in the article [18] to obtain his Baer invariants. Because of Corollary
5.7, and its importance in what follows, we think this situation merits a name and slightly
different notations.

5.5. Definition. Let A be a pointed, exact and protomodular category. We call Birkhoff
subfunctor of A any normal subfunctor V of 1A which preserves regular epimorphisms.

The following establishes a bijective correspondence between Birkhoff subfunctors and
Birkhoff subcategories of a given pointed, exact and protomodular category A.

5.6. Proposition. [25, Section 3.1] Let A be an exact category and U : A �� B a
reflector (with unit η) onto a full replete subcategory B of A. Then

1. B is closed in A under subobjects if and only if the component ηA : A �� U(A) of
η at an A ∈ A is a regular epimorphism;
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2. if 1. holds, then B is closed in A under quotient objects if and only if, for any
regular epimorphism f : A �� B in A, the naturality square

A

f
���

ηA � �� U(A)

Uf
���

B ηB

� �� U(B)

is a pushout.

5.7. Corollary. [cf. 18, Theorem 1.2] Let A be a pointed, exact and protomodular
category.

1. If U : A �� B is the reflector of A onto a Birkhoff subcategory B, setting V (A) =
K[ηA] and µA = Ker ηA defines a Birkhoff subfunctor µ : V �� 1A of A.

2. Conversely, if µ : V �� 1A is a Birkhoff subfunctor of A, putting U(A) = Cok[µA],
ηA = Coker µA defines a full functor U : A �� A and a natural transformation
η : 1A �� U . Here we can, and will, always choose Coker (0 �� A) = 1A. The
image of U is a Birkhoff subcategory B of A. Furthermore, U , considered as a
functor A �� B, is left adjoint to the inclusion B �� A, and η is the unit of this
adjunction.

In both cases, for any A ∈ A, the sequence

0 �� V (A) � �� µA �� A
ηA � �� U(A) �� 0

is exact.

Proof. For 1. we only need to prove that V preserves regular epimorphisms. But this
follows immediately from Proposition 5.6 and Proposition 2.7, applied to the diagram

0 �� V (A)

V f

��

� �� µA �� A

f
���

ηA � �� U(A)

Uf
���

�� 0

0 �� V (B) � ��
µB

�� B ηB

� �� U(B) �� 0.

(M)

To prove 2, we first show that, for any C ∈ A, V (U(C)) = 0. In the diagram

0 �� V (C) � �� µA ��

V ηC ���

C
ηC � ��

ηC
���

U(C) ��

UηC

��

0

0 �� V (U(C)) � ��
µU(C)

�� U(C) ηU(C)

� �� U(U(C)) �� 0,

the right square is a pushout, because V ηC is an epimorphism, as V preserves regular
epimorphisms. It follows easily that ηU(C) is a split monomorphism, hence an isomorphism,
and V (U(C)) = 0.
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For the fullness of U , any map h : U(A) �� U(B) should be Ug for some g. But h
itself is such a g: indeed ηU(C) = 1U(C), as we just demonstrated that µU(C) = 0, for any
C ∈ A.

Now let A be any object, and f : A �� U(B) any map, of A. To prove that a unique
arrow f exists in B such that

0 �� V (A) � �� µA �� A
ηA � ��

f 

��
��

��
��

� U(A)

f
��

�� 0

U(B)

commutes, it suffices to show that f ◦µA = 0. (The unique f in A such that the diagram
commutes is a map of B, because U is full.) But, as V is a subfunctor of the identity
functor, f ◦ µA = µU(B) ◦ V f = 0.

This shows that for any object A of A, the morphism ηA : A �� U(A) is a universal
arrow from A to U(A). It follows that U is a reflector with unit η. The subcategory
B is then Birkhoff by 5.6, as in M the right square is a pushout, V f being a regular
epimorphism.

5.8. Remark. In case V is a Birkhoff subfunctor of A, note that, by Remark 4.10 and
Corollary 5.7, the exact sequence I becomes

0 �� ∆V � �� �� DV �� 1A
� �� U �� 0. (N)

Theorem 4.13 now has the following refinement.

5.9. Theorem. [cf. [18, Theorem 3.2]] Let A be a pointed, exact and protomodular
category with enough projectives. Consider a short exact sequence

0 �� K � �� �� A
f � �� B �� 0

in A. If V is a Birkhoff subfunctor of A, then the sequence

0 �� K[γ] � �� �� ∆V (A)
∆Lf �� ∆V (B) �� K

V1f
�� U(A)

Uf � �� U(B) �� 0 (O)

is exact and depends naturally on the given short exact sequence.

Proof. To get O from L, it suffices to recall Remark 5.8, and to prove that the image
I[γ] of γ is V1f . Choosing presentations p : A0

�� A and f ◦ p : A0
�� B such as in

the proof of Theorem 4.13, γ becomes a map

V1(f ◦ p)

V1p
�� K[f ◦ p]

K[p]
.
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Hence, to prove that I[γ] = V1f , we are to show that the arrow

V1(f ◦ p)

V1p
�� V1f

is regular epi. But this is equivalent to V1(p, 1B) : V1(f ◦ p) �� V1f being regular epi.
This is the case, since by Proposition 5.2, V1 preserves regular epimorphisms, and

A0
p � ��

f◦p���

A

f
���

B B

is a regular pushout square, which means that (p, 1B) : (f ◦ p) �� f is a regular epimor-
phism of PrA.

5.10. Remark. Recalling Corollary 4.7, note that in case A (or B) is projective, the
exact sequences L and O become much shorter, because then ∆L(A) and ∆V (A) (or
∆L(B) and ∆V (B)) are 0.

6. V1 as a commutator

In an exact Mal’cev category with coequalizers (hence, in a semi-abelian category) an
intrinsic notion of abelian object exists. In fact, an object is abelian if and only if it can
be provided with a (necessarily unique) structure of internal abelian group—see Gran [21]
or Borceux and Bourn [5]. In [21, Theorem 4.2] it is proven that the full subcategory
of abelian objects AAb in any exact Mal’cev category with coequalizers A is a Birkhoff
subcategory of A. In the case of groups we get the following.

6.1. Example. [Abelianization of groups] Consider the category Gp of groups and its
Birkhoff subcategory Ab = GpAb of abelian groups. The associated Birkhoff subfunctor
(cf. 5.7) sends G to [G,G], the commutator subgroup of G. Indeed, it is well known that
the abelianization of a group G, i.e. the reflection of G along the inclusion Ab �� Gp, is
just G/[G,G]. For groups N�G we denote by [N,G] the (normal) subgroup of G generated
by the elements ngn−1g−1, with g ∈ G and n ∈ N . Proposition 19 of Furtado-Coelho [19]
states the following

6.2. Proposition. If V : Gp �� Gp is the Birkhoff subfunctor defined by V (G) =
[G,G] then

V1

(
ηN : G �� G

N

)
= [N,G].

Thus one could ask whether, even in a more general situation, it makes sense to view
V1 as a commutator. The aim of this section to give a positive answer to this question.
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The last decade, a lot has research has been done on commutators and the related
topic of central extensions, in Mal’cev and protomodular categories. Very important are
the papers [25] and [32]. In [25], Janelidze and Kelly discuss central extensions in the
context of exact categories, an extension being a regular epimorphism. The definition is
relative to a so-called admissible subcategory B of an exact category A. If A is Mal’cev
or has the weaker Goursat property, then its admissible subcategories are exactly the
Birkhoff subcategories of A. In [32] Pedicchio considers Smith’s notion of commutator
of equivalence relations [33] in the (more general) context of exact Mal’cev categories
with coequalizers. Janelidze and Pedicchio show in [29] that it is possible to consider
commutator theory in a very general context (that of finitely well-complete categories) by
basing it on the theory of internal categorical structures. The correspondence between
the two notions—centrality and commutators—was made clear, first by Janelidze and
Kelly in [27] and [26], next by Bourn and Gran in [10], then, most generally, by Gran,
in [20]. In this article, he proves that, in any factor permutable category (hence, in any
exact Mal’cev category with coequalizers), an extension p : A �� B is central relative
to the subcategory of “abelian objects”, precisely when (a generalization of) the Smith
commutator [R[p],∇A] is equal to ∆A. Here ∇A = (A × A, p0, p1) and ∆A = (A, 1A, 1A)
denote, respectively, the largest and the smallest equivalence relation on A.

Now, following Fröhlich [18], we use V1 to define a notion of central extension relative
a Birkhoff subcategory. This notion coincides with Janelidze and Kelly’s. Moreover, in
the case of abelianization, our V1 corresponds to the Smith commutator—this is Theorem
6.9. Let us make all this precise.

6.3. Definition. Let A be a pointed, exact and protomodular category, V a Birkhoff
subfunctor of A and V1 : PrA �� A the associated functor. Then a presentation p ∈ PrA
is called V -central if V1p = 0.

6.4. Example. An inclusion of groups N �G is called central when N lies in the centre
of G. This is clearly equivalent to saying that [N,G] = 0.

6.5. Proposition. [[10, Theorem 2.1], [25, Theorem 5.2]] Let A be a pointed, exact
and protomodular category, B a Birkhoff subcategory of A and V : A �� A associated
Birkhoff subfunctor. Let p : A0

�� A be a presentation in A. Then the following are
equivalent:

1. p is central (relative to B) in the sense of Janelidze and Kelly;

2. for every f0, g0 : B0
�� A0 with p ◦ f0 = p ◦ g0, one has V f0 = V g0;

3. V (R[p]) = ∆V (A0);

4. p is V -central (in the sense of Definition 6.3).
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Two equivalence relations (R, r0, r1) and (S, s0, s1) on an object A admit a centralizing
relation if there exists a double relation [14]

C
σ1

��
σ0 ��

ρ0

��
ρ1

��

R

r0

��
r1

��
S

s1

��
s0 �� A

such that the square r0 ◦ σ0 = s0 ◦ ρ0 is a pullback ([32], Definition 2.7).
For a regular epimorphism p : A �� B in a regular category A and a relation

(R, r0, r1) on A, p(R) denotes the relation obtained from the regular epi-mono factorization

R

r0

��
r1

��

π � �� p(R)

ρ0

��
ρ1

��
A p

� �� B

of p◦ (r0, r1) : R �� B×B. Clearly, when R is reflexive, p(R) is reflexive as well. Hence,
when A is Mal’cev, if R is an equivalence relation, then so is q(R).

If A is exact and (R, r0, r1) is an equivalence relation on an object A of A, then
qR : A �� A/R denotes the coequalizer of r0 and r1.

Now, the following characterizes the commutator introduced by Pedicchio ([32], Defi-
nition 3.1, Theorem 3.9):

6.6. Definition. Let A be an exact Mal’cev category with coequalizers and R and
S equivalence relations on an object A ∈ A. The commutator [R,S] is the equivalence
relation on A defined by the following properties:

1. q[R,S](R) and q[R,S](S) admit a centralizing relation;

2. for any equivalence relation T on A such that qT (R) and qT (S) admit a centralizing
relation, there exists a unique δ : A/[R,S] �� X/T with qT = δ ◦ q[R,S].

When we choose the subcategory AAb of abelian objects as Birkhoff subcategory of A,
the list of equivalent statements of Proposition 6.5 can be enlarged:

6.7. Proposition. Consider an exact Mal’cev category with coequalizers A and its
Birkhoff subcategory of abelian objects AAb. If p be a presentation in A, then the following
are equivalent:

1. p : A0
�� A is central in the sense of Janelidze and Kelly;

2. [R[p],∇A0 ] = ∆A0;

3. R[p] and ∇A0 admit a centralizing relation.

Proof. The equivalence of 1. and 2. is proven in Gran [20] (in the context of factor
permutable categories), and the equivalence of 2. and 3. in Proposition 3.6 of Pedicchio
[32] (in the context of exact Mal’cev categories with coequalizers).
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6.8. Proposition. Let AAb be the Birkhoff subcategory of abelian objects of a pointed,
exact and protomodular category with coequalizers A, V the associated Birkhoff subfunctor
and p : A0

�� A ∈ PrA. For a subobject F ⊆ V (A0) such that F � A0, the following are
equivalent:

1. F ∈ Fp
V0

;

2. V1

(
qηF R[p] : A0

F
�� A0

F
/ηF (R[p])

)
= 0;

3. ηF (R[p]) and ηF (∇A0) = ∇A0/F admit a centralizing relation.

Proof. The equivalence of 2. and 3. follows from Proposition 6.5 and 6.7. We will
prove the equivalence of 1. and 2.

Consider the image ηF R[p] of R[p] along ηF .

R[p]

k0

��
k1

��

π � �� ηF (R[p])

κ0

��
κ1

��
0 �� F � �� �� A0 ηF

� �� A0

F
�� 0

Applying V yields the following commutative diagram of A, where the isomorphism exists
due to the fact—see Remark 4.10—that ∇V and V represent the same subfunctor.

R[V ηF ]

�� ��
V (R[p])

V k1

��
V k0 ��

V π
���

V (A0)

V ηF ���

η′
F

� ��





V ηF (R[p])
V κ1

��
V κ0 �� V (A0

F
) ∼=

�� V (A0)
F

V π is a regular epimorphism because V is Birkhoff; it follows that V (R[p]) ⊆ R[V ηF ] =
R[η′

F ] precisely when V ηF (R[p]) = ∆V (A0/F ).
Now, on one hand, by Proposition 3.8, F ∈ Fp

V0
if and only if

V (R[p]) ⊆ R
[
η′

F : V (A0) �� V (A0)
F

]
;

on the other hand, Proposition 6.5 implies that V ηF (R[p]) = V (R[qηF (R[p])]) = ∆V (A0/F )

if and only if V1qηF R[p] = 0. This shows that 1. and 2. are equivalent.

Let (R, r0, r1) be an equivalence relation on an object A in a pointed and exact category
A. If it exists, we denote the kernel K[qR] of the coequalizer qR : A �� A/R by NR. This
defines a one-one correspondence between (isomorphism classes of) equivalence relations
on A and normal subobjects of A. Furthermore, this bijection Eq(A) ∼= NSub(A) is
an order isomorphism, the order on both classes being (induced by) the usual order on
subobjects.
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6.9. Theorem. Consider a pointed, exact and protomodular category A, its Birkhoff
subcategory AAb of abelian objects, the associated Birkhoff subfunctor V , and the resulting
functor V1 : PrA �� A. For any presentation p : A0

�� A in A, the following equality
holds:

V1p = N[R[p],∇A0
].

Proof. By the above mentioned order isomorphism and Definition 6.6, N = N[R[p],∇A0
]

is the smallest normal subobject of A0 such that ηN(R[p]) and ηN(∇A0) = ∇A0/N admit
a centralizing relation. Thus, by Proposition 6.8, it is the smallest element in Fp

V0
; hence,

it is V1p.

7. One more application of V1: nilpotency

Using our notion of commutator, we now propose a notion of nilpotency. We show that,
as in the case of abelianization of groups, an object is nilpotent if and only if its lower
central series reaches 0. The nilpotent objects of class n form a Birkhoff subcategory.

Note that in their book [17], Freese and McKenzie study nilpotency in the context of
congruence modular varieties.

From now on, A will be a pointed, exact and protomodular category and V a Birkhoff
subfunctor of A.

7.1. Definition. Let A be an object of A. A V -central series of A is a descending
sequence

A = A0 ⊇ A1 ⊇ · · · ⊇ An ⊇ . . .

of normal subobjects of A, such that, for all n ∈ N, the natural arrow A
An+1

�� A
An

is
V -central.

A is called V -nilpotent when there exists in A a V -central series that reaches 0, i.e.
such that An = 0 for some n ∈ N. In that case, A is said to be V -nilpotent of class n.

The V -lower central series of A is the descending sequence

A = V 0
1 (A) ⊇ V 1

1 (A) ⊇ · · · ⊇ V n
1 (A) ⊇ . . . (P)

defined, for n ∈ N, by putting V 0
1 (A) = A and V n+1

1 (A) = V1(ηV 1
n (A) : A �� A

V n
1 (A)

).

7.2. Remark. Note that, by Lemma 4.12, V i
1 (A) is a normal subobject of A.

7.3. Remark. In case A = Gp and V the kernel of the abelianization functor—see
Example 6.1—by Proposition 6.2, one has V1(ηB : A �� A/B) = [B,A]. Thus P
becomes the sequence

A ⊇ [A,A] ⊇ [[A,A], A] ⊇ [[[A,A], A], A] ⊇ . . . ,

whence the name “lower central series”.
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7.4. Proposition. Let A ⊇ B ⊇ C be objects in A with C �A and B�A. The following
are equivalent:

1. V1

(
p : A

C
�� A
B

) = 0;

2. C ⊇ V1

(
ηB : A �� A

B

)
.

Proof. Consider the following diagram.

R[ηB]

σ

��

���� A
ηB � ��

ηC
���

A
B

R[p] ���� A
C

p

���
�������

By Proposition 2.10, the factorization σ is a regular epimorphism. Now, applying V , we
get the following diagram; the isomorphism exists due to the fact—see Remark 4.10—that
∇V and V represent the same subfunctor.

R[V ηC ]

�� ��
V (R[ηB]) ����

V σ
���

V (A)

V ηC ���

η′
V (A)∩C

� ���������

V (R[p]) ���� V (A
C

) ∼=
�� V (A)
V (A)∩C

V being Birkhoff, V σ is an epimorphism, hence V (R[ηB]) ⊆ R[V ηC ] = R[η′
V (A)∩C ] pre-

cisely when V (R[p]) = ∆V (A/C).

Using Proposition 3.8 and Proposition 6.5, we get that 1. holds if and only if V (A) ∩
C ∈ FηB

V0
. But, by Corollary 3.11, V (A) ∩ C is an element of FηB

V0
if and only if V1ηB ⊆

V (A) ∩ C. This last statement is equivalent to condition 2.

7.5. Corollary. For any object A ∈ A, the V -lower central series in A

V 0
1 (A) ⊇ V 1

1 (A) ⊇ V 2
1 (A) ⊇ . . .

is a V -central series, i.e.

V1

(
A

V n+1
1 (A)

�� A
V n
1 (A)

)
= 0

for all n ∈ N.

Proof. Take A = A, B = V n
1 (A) and C = V n+1

1 (A) in Proposition 7.4; then 2. is
trivially fulfilled.
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7.6. Corollary. A ∈ A is V -nilpotent of class n if and only if V n
1 (A) = 0.

Proof. By Corollary 7.5, one implication is obvious. For the other, suppose that there
exists a descending sequence

A = A0 ⊇ A1 ⊇ · · · ⊇ An = 0

with all objects normal in A, and that for all i ∈ {0, . . . , n−1}, V1

(
A

Ai+1

�� A
Ai

)
= 0. We

will show by induction that, for all i ∈ {0, . . . , n}, V i
1 (A) ⊆ Ai. If so, V n

1 (A) ⊆ An = 0,
which proves our claim.

The case i = 0 is clear. Now suppose V i
1 (A) ⊆ Ai for a certain i ∈ {0, . . . , n − 1}.

Recall from Remark 4.4 that there is an inclusion of functors V1 ⊆ K[·]∩V0 ⊆ K[·]. Hence
we get a commutative diagram of inclusions (all normal, since the four objects are normal
subobjects of A):

V1

(
A �� A

V i
1 (A)

) � �� ��
���

��

V i
1 (A)

���

��
V1

(
A �� A

Ai

) � �� �� Ai.

In particular, we have V1

(
A �� A

V i
1 (A)

) ⊆ V1

(
A �� A

Ai

)
and thus

V i+1
1 (A) = V1

(
A �� A

V i
1 (A)

) ⊆ V1

(
A �� A

Ai

) ⊆ Ai+1,

where the last inclusion follows from Proposition 7.4, as V1

(
A

Ai+1

�� A
Ai

)
= 0.

7.7. Remark. Since, by Remark 4.5, V 1
1 = V , a 1-nilpotent object is nothing but an

object in the Birkhoff subcategory associated with V .

The following was inspired by Section 4.3 in Huq [24].

7.8. Proposition. For n ∈ N, V n
1 : A �� A is a Birkhoff subfunctor of A. The

corresponding Birkhoff subcategory is the full subcategory of all objects of V -nilpotency
class n.

Proof. Let p : A �� B be a regular epimorphism. The first statement is clear in
case n = 0, so suppose that V n

1 preserves regular epimorphisms. Then, by the converse
of Proposition 2.7, the induction hypothesis implies that the right hand square in the
diagram with exact rows

0 �� V n
1 (A) � �� ��

V n
1 p

���

A � ��

p

���

A
V n
1 (A)

���

�� 0

0 �� V n
1 (B) � �� �� B � �� B

V n
1 (B)

�� 0

is a pushout. Hence, the category A being exact Mal’cev, it is a regular pushout; by
Proposition 2.9 we get that it is a regular epimorphism f of PrA. We conclude with
Proposition 5.2 that V n

1 p = V1f is regular epi.
The second statement immediately follows from Corollary 5.7.
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