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CHANGE OF BASE FOR RELATIONAL VARIABLE SETS

SUSAN NIEFIELD

Abstract. Following [5], a relational variable set on a category B is a lax functor
B → Rel, where Rel is the category of sets and relations. Change-of-base functors and
their adjoints are considered for certain categories of relational variable sets and applied
to construct the simplification of a dynamic set (in the sense of [11]).

1. Introduction

A relational variable set on a category B is a lax functor B → Rel, where Rel is the locally
partially-ordered 2-category of sets and relations. Also called relational presheaves [8],
specification structures [1], and dynamic sets [11], these lax functors have played a role
in the study of modal and basic predicate logic [4, 5], concurrency [1], automata [8], and
spatio-temporal databases [11].

For a category RelB of relational variable sets and a functor p:E → B, we consider
adjoints to the change-of-base functor p∗: RelB → RelE. We will see that p∗ always has a
left adjoint Σp, while the existence of a right adjoint Πp is related to the exponentiability
of p in the category Cat of small categories and functors.

In “Powerful functors” [12], Street describes exponentiability in Cat via an equivalence
(due to Bénabou) between the slice 2-category Cat/B and a 2-category of normal lax func-
tors m:Bop → Mod, where Mod denotes the bicategory whose objects are small categories
and the hom category Mod(A,B) is the functor category SetBop×A, and a normal lax func-
tor strictly preserves identities. In particular, p:E → B is exponentiable if and only if the
corresponding mE:Bop → Mod is a pseudofunctor, and the latter readily translates into
the Giraud-Conduché [6, 3] factorization lifting condition for exponentiability in Cat.

A modification of Bénabou’s result yields an equivalence between RelB and the cate-
gory Catf/B of faithful functors over B. It turns out that a faithful functor p:E → B is
exponentiable in Catf/B if and only if the corresponding relational variable set B → Rel
is a non-unitary (i.e., not necessarily identity preserving) functor, or equivalently a certain
weak factorization lifting property (WFLP) holds. Thus, when p:E → B is faithful, using
the general relationship between exponentiability of p and the existence of Πp, it follows
that Πp: RelE → RelB exists if and only if p satisfies WFLP, and this generalizes to the
case when p is not assumed to be faithful.

Received by the editors 2003-08-14 and, in revised form, 2004-03-22.
Transmitted by Walter Tholen. Published on 2004-03-31.
2000 Mathematics Subject Classification: 18A40, 08A02, 18F20, 18A22.
Key words and phrases: relational variable set, specification structure, dynamic set, relational

presheaf, change of base, exponentiable.
c© Susan Niefield, 2004. Permission to copy for private use granted.

248



CHANGE OF BASE FOR RELATIONAL VARIABLE SETS 249

We begin with the introduction of the category RelB of relational variable sets and
morphisms, and its equivalence to Catf/B. In §4, we consider adjoints to the change-
of-base functor p∗: RelB → RelE, and their relationship to the exponentiability of p. We
conclude, in §5, with an application to the construction of the simplification of a dynamic
set with respect to a change in time domain (in the sense of [11]).

2. Relational Variable Sets

Let Rel denote the locally partially-ordered 2-category of sets and relations, i.e., Rel(X,Y )
is the poset of relations R ⊆ X×Y , with the identity morphism onX given by the diagonal
∆ ⊆ X ×X and composition by the usual relation composites. To distinguish relations
from functions, elements of Rel(X,Y ) will be denoted by R:X−�→ Y . The composite of
R:X−�→ Y and S:Y−�→ Z will be written S ◦R, and abbreviated as SR.

A relational variable set or Rel-set on a category B consists of a set Xb, for every
object b of B, and a relation Xβ:Xb−�→Xb′ , for every morphism β: b→ b′ of B, satisfying

(RS1) ∆Xb
⊆ Xidb

(RS2) Xβ′Xβ ⊆ Xβ′β

for all objects b and for all morphisms β: b→ b′ and β′: b′ → b′′ of B. Writing x→β x
′ for

the infix form of (x, x′) ∈ Xβ, and x →b x
′ when β is the identity morphism on b, these

conditions become

(RS1*) x→b x, for all x ∈ Xb

(RS2*) x→β x
′, x′ →β′ x′′ ⇒ x→β′β x

′′

Note that a Rel-set is just a lax functor or morphism of bicategories, in the sense of [7]
or [2], respectively. Of course, X is a functor if and only if the containments in (RS1) and
(RS2) are equalities.

An example (in the spirit of [11]) of a Rel-set as a model of a data base changing over
time is given by

�

W

�B1
������
�B2 ������

�

N

�

B

�

N������
������

�

W

�

B

�

N2

�N1

�

t1

� �

t2

� �

t3

Here, the objects of the category t1 → t2 → t3 are time values (perhaps, certain years),
the elements of Xt represent daily flights to three airports (say, Newark, Boston, and
Washington) with subscripts used to indicate multiple flights.
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Among the examples from Logics for Concurrency [1] is the Rel-set on B = Rel with
Xb = P(b) = Rel(1, b), and S →R T whenever RS ⊆ T . Note that this example can be
generalized to any bicategory B, where 1 is replaced by any fixed object of B.

Also, Rel-sets on the power set P(M) of a monoid M arise in a categorical approach
to automata theory. For details of this and other applications, see [8].

A morphism f :X → Y of Rel-sets on B is an op-lax natural transformation. Thus,
f consists of a function fb:Xb → Yb, for every object b, such that for every morphism
β: b→ b′ there is a diagram

Xb

Xb′

Yb

Yb′

�
Xβ –

�
Yβ–

�fb

�
fb′

⊆

in Rel, i.e., x→β x
′ ⇒ fbx→β fb′x

′.
Note that this is the notion of morphism given by Ghilardi and Meloni [4, 5] and

Rosenthal [8]. A more general definition of morphism, in which the functions fb are
replaced by relations, is also given in [8]. Abramsky, Gay, and Nagarajan do not consider
morphisms of specification structures in [1].

When B is a small category, Rel-sets and their morphisms form a locally small locally
preordered 2-category RelB with f → g, if fbx →b gbx, for all b ∈ B and x ∈ Xb, and
consequently, x →β x′ ⇒ fbx →β gb′x

′, for all β: b → b′, x ∈ Xb, and x′ ∈ Xb′ . The
symbol “→” is used here for a preorder to distinguish it from a partial order “≤” since
both arise on the same set in §5.

3. Rel-Sets and Faithful Functors

In this section, we assume B is a small category and consider a 2-adjunction

RelB
L←−−→
Γ

Cat/B

which gives rise to an equivalence between RelB and the category Catf/B of faithful
functors over B. In particular, Γ is given by the lax fibration for the Grothendieck
construction on a Rel-set.

Recall that Cat/B is the 2-slice category whose objects are functors p:E → B, mor-
phisms are commutative triangles

E F

B

�f

�
��

p �
��

q
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in Cat, and 2-cells are natural transformations θ: f → g such that qθ = idp.
For p:E → B and an object b of B, the fiber Eb of E over b is the subcategory of

E consisting of objects over b and morphisms over idb. Let Lp denote the Rel-set with
(Lp)b = Eb and e →β e

′ if there exists ξ: e → e′ such that pξ = β. As is customary for
slice categories, we will often suppress the explicit reference to p and write LE instead of
Lp. If f :E → F is a functor over B, then fb:Eb → Fb defines a morphism f :LE → LF ,
since e →β e′ when there exists ξ: e → e′ over β: b → b′, and hence fξ: fe → fe′ over
β, showing that fbe →β fb′e

′. Moreover, f → g for every 2-cell θ: f → g, since the
morphism θe: fe → ge satisfy qθe = idpe = idb, and so fbe →b gbe, for all e in (LE)b.
Thus, L: Cat/B → RelB is a 2-functor.

Note that the lax functor LE:B → Rel need not be a functor. In fact, it is unitary
(i.e., identity preserving) precisely when p:E → B has discrete fibers, and it preserves
composition when p satisfies the weak factorization lifting property (WFLP)

E

�

p

B

e e′′�ξ′′

···	ξ e′
···
ξ′

pe pe′′�pξ′′

��	β
b′

�
β′

i.e., for every morphism ξ′′ of E and every factorization pξ′′ = β′β in B, there exists a
factorization ξ′′ = ξ′ξ in E such that pξ = β and pξ′ = β′.

This condition is a weakening of the usual Giraud-Conduché [6, 3] factorization lifting
property characterizing exponentiable objects of Cat/B. In particular, it does not require
the usual “zigzag” relating any two liftings of the same factorization. However, restricting
to posets, p:E → B satisfies WFLP if and only if it is exponentiable in the category Pos
of posets and order-preserving maps [10]. The fact that WFLP arises (instead of FLP)
should be clear from the discussion of exponentiability in the next section.

To define Γ: RelB → Cat/B, let X be a Rel-set on B, and consider the category EX

whose objects are pairs (x, b) where b is an object of B and x ∈ Xb, and morphisms
β: (x, b) → (x′, b′) are morphisms β: b → b′ of B such that x →β x

′ in X. Then EX is a
category over B via the projection ΓX:EX → B which is, in fact, a faithful functor. A
morphism f :X → Y of Rel-sets gives rise to a functor Γf :EX → EY over B defined by
Γf(x, b) = (fbx, b) and Γf(β) = β. Note that every functor g:EX → EY over B is of this
form, for given such a g, define fb:Xb → Yb by fb(x) = π1g(x, b) and f(β) = β. Then f
is a morphism of Rel-sets, since

x→β x
′ ⇒ β: (x, b)→ (x′, b′)⇒ gβ: (fbx, b)→ (fb′x

′, b′)⇒ fbx→β fb′x
′

and Γf = g. A 2-cell f → g induces a natural transformation θ: Γf → Γg over B given by
idb: (fbx, b) → (gbx, b) since fbx →b gbx, for all b. Thus, Γ: RelB → Cat/B is a 2-functor
whose image is the full subcategory of Catf/B of faithful functors over B.
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To see that L is left adjoint to Γ, define ε:LΓ→ id and η: id→ ΓL, as follows. Given
a Rel-set X, note that

(LΓX)b = (EX)b = {(x, b)|x ∈ Xb}
Then the projections (εX)b: (LΓX)b → Xb define a morphism εX :LΓX → X, which is
clearly a 2-natural isomorphism. Likewise, given p:E → B in Cat/B, ΓLE is the category
whose objects are pairs (e, b) where e ∈ LEb, i.e., pe = b, and morphisms β: (e, b)→ (e′, b′)
are morphisms β: b → b′ such that e →β e

′ in LE, i.e., there exists ξ: e → e′ in E with
pξ = β. Then ηE:E → ΓLE, given by ηE(e) = (e, pe) and ηE(ξ) = pξ, gives rise to a
2-natural transformation η: p→ Lp, such that ηE is full and surjective on objects, in any
case, and faithful if and only if p is faithful. Moreover, the adjunction identities easily
follow. Therefore, the following has been established:

3.1. Theorem. There is a 2-adjunction

RelB
L←−−→
Γ

Cat/B

which induces an equivalence between the locally preordered 2-category RelB and the slice 2-
category Catf/B of faithful functors over B. As a result, Catf/B is a reflective subcategory
of Cat/B with reflection ΓL.

Note that the equivalence RelB 
 Catf/B is essentially that of Bénabou mentioned
in the introduction and described by Street in [12]. But, the “op” does not appear here
since the morphisms of Rel are opposite those of Mod. Also, normal (i.e., strictly identity-
preserving) lax functors Bop → Mod are considered there in order to obtain all of Cat/B.
Normality does not arise here since the identity morphisms of Rel are the diagonals. In
fact, normal lax functors B → Rel correspond to faithful functors E → B whose fiber Eb

are discrete.
Since Catf/B is a reflective subcategory of Cat/B, it is closed under limits. Using the

equivalence with RelB, we get:

3.2. Corollary. Limits exist and are computed point-wise in RelB.

In the case where B a preordered set (in particular, a poset), Catf/B is the category
Pr/B of preordered sets over B. Thus, Theorem 3.1 gives rise to the following equivalence
which was used by Ghilardi and Meloni [4] in their relational semantics.

3.3. Corollary. If B is a preordered set, then RelB 
 Pr/B.

4. Change of Base and Exponentiability

A functor p:E → B induces a 2-functor p∗: RelB → RelE, given by (p∗X)e = Xpe with
x →ξ x

′ whenever x →pξ x
′ in X, and (p∗f)e = fpe, since f → f ′ implies p∗f → p∗f ′. A

straightforward calculation shows that p∗ has a left adjoint Σp given by (ΣpY )b =
∐

pe=b Ye

with y →β y
′ whenever y →ξ y

′ for some ξ such that pξ = β, and (Σpg)b =
∐

pe=b ge.
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In this section, we will show that p∗ has a right adjoint if and only if p satisfies the
weak factorization lifting property (WFLP) introduced in the previous section, and then
establish a connection to exponentiability in Catf/B.

To begin, one easily shows that pulling back along p preserves faithful functors, i.e.,
if q:F → B is faithful, then so is the projection E ×B F → E in the pullback diagram

E ×B F

E

F

B
� �

q

�

�
p

and that p∗: RelB → RelE corresponds (via the equivalence of Theorem 3.1) to the pullback
functor Catf/B → Catf/E, also denoted by p∗. Moreover, by uniqueness of adjoints,
Σp: RelE → RelB corresponds to the functor obtained by first composing with p and then
reflecting, i.e.,

Catf/E
Σp−→Cat/B −̂→Catf/B

4.1. Theorem. The following are equivalent for a functor p:E → B.

(a) p∗: RelB → RelE has a right 2-adjoint

(b) p∗: Catf/B → Catf/E has a right 2-adjoint

(c) p satisfies the weak factorization lifting property (WFLP)

(d) The lax functor Lp:B → Rel is a non-unitary functor

Proof. Since (a)⇔(b) and (c)⇔(d) in any case, it suffices to prove (c)⇒(a) and
(b)⇒(c).

For (c)⇒(a), suppose p satisfies WFLP, and define a 2-functor

Πp: RelE → RelB

as follows. Given Y in RelE, let (ΠpY )b denote the set of functions

σ:Eb →
∐
pe=b

Ye

such that σe ∈ Ye and σe1 →ι σe2 for all ι: e1 → e2 over idb, and define σ →β σ′ if
σe→ξ σ

′e′, for all ξ: e→ e′ over β: b→ b′.
Then (RS1*) holds, since σ →b σ, for all σ ∈ (ΠpY )b, by definition. For (RS2*),

suppose σ →β σ
′ and σ′ →β′ σ′′, where β: b → b′ and β′: b′ → b′′. To see that σ →β′′ σ′′

for β′′ = β′β, suppose ξ′′: e → e′′ over β′′. Applying WFLP, there exists a factorization
ξ′′ = ξ′ξ such that pξ = β and pξ′ = β′. Then σe →ξ σ

′e′ and σ′e′ →ξ′ σ
′′e′′, and so

σe →ξ′′ σ
′′e′′, since Y is a Rel-set over E. Therefore, σ →β′′ σ′′, and it follows that ΠpY

is a Rel-set over B.
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A morphism g:Y → Z of RelE induces a function

(Πpg)b: (ΠpY )b → (ΠpZ)b

for each b, which takes σ to the composite

Eb
σ−→

∐
pe=b

Ye

∐
ge−→

∐
pe=b

Ze

A straightforward calculation shows that this is a morphism of RelB.
To see that a 2-cell g → g′ gives rise to Πpg → Πpg

′, we must show that (Πpg)bσ →b

(Πpg
′)bσ, for all σ ∈ (ΠpY )b, i.e., ge1σe1 →ι g

′
e2
σe2, for all ι: e1 → e2 over idb. Now,

σe1 →ι σe2 since σ ∈ (ΠpY )b, and so ge1σe1 →ι ge2σe2 since g is a morphism. Also,
ge2σe2 →e2 g

′
e2
σe2, since g → g′, and so ge1σe1 →ι g

′
e2
σe2 follows from transitivity in Z.

It remains to show that p∗ is left adjoint to Πp. For the counit ε: p∗Πp → id, note that
(p∗ΠpY )e = (ΠpY )pe, where elements are functions

σ:Epe →
∐

pe′=pe

Ye′

such that σe′ ∈ Ye′ and σe′1 →ι′ σe
′
2 for all ι′: e′1 → e′2 over idpe. Then one can show that

the evaluation map (εY )e: (ΠpY )pe → Ye given by (εY )eσ = σe, defines a morphism of
RelE. To define the unit η: id→ Πpp

∗, note that (Πpp
∗X)b is the set of functions

σ:Eb →
∐
pe=b

Xpe

such that σe ∈ Xpe and σe1 →ι σe2 for all ι: e1 → e2 over idb. Then the function
(ηX)b:Xb → (Πpp

∗X)b, which takes x to the constant function at x

�x
:Eb →
∐
pe=b

Xpe

defines a morphism of RelB. One checks that the adjunction identity holds, to complete
the proof of (c)⇒(a).

For (b)⇒(c), suppose p∗: Catf/B → Catf/E has a right adjoint. To see that p satisfies
WFLP, suppose ξ′′: e→ e′′ in E and pξ′′ = β′β, where β: pe→ b′ and β′: b′ → pe′′. Then
the composite β′β gives rise to a pushout in Catf/B of the form

1

2
�

2

3
�

�

�
��	
B

β′β



�β

�
�
�
��

β′



CHANGE OF BASE FOR RELATIONAL VARIABLE SETS 255

where 2 and 3 are the categories 0→ 1 and 0→ 1→ 2, respectively.
Since p∗ preserves pushouts (being a left adjoint), we get a corresponding pushout in

Catf/E

E ×B 1

E ×B 2
�

E ×B 2

E ×B 3

�

�
�

��	
E

�
�
�
��

p∗β′

��������p∗β

Since Catf/E is a reflective subcategory of Cat/E, pushouts are formed in Cat/E and
reflected to Catf/E. Thus, the pushout P → E of this diagram can be constructed as
follows. Let Eβ and Eβ′ denote the subcategories of E obtained by identifying p∗β and
p∗β′ with their images in E. Then the objects of P are the union of those of Eβ and
Eβ′ , and the morphisms are those of Eβ and Eβ′ together with pairs (ξ, ξ′): e → e′′ such
that ξ: e→ e′ in Eβ and ξ′: e′ → e′′ in Eβ′ , subject to an appropriate equivalence relation.
Since ξ′′: e→ e′′ corresponds to a morphism of E ×B 3, and hence one of P over β′β, the
desired factorization of ξ′′ follows, to complete the proof.

Recall that, for a category A with binary products, an object X is called exponentiable
if the functor X ×−:A → A has a right adjoint, and A is called cartesian closed if every
object is exponentiable. By Corollary 3.2, RelB has products and X × Y is given by
(X × Y )b = Xb × Yb with (x, y) →β (x′, y′) whenever x →β x

′ and y →β y
′. It turns out

that RelB is not cartesian closed, and so exponentiable objects are of interest there.
Now, it is well-known that if A is has pullbacks and p:E → B is a morphism of A,

then the pullback functor p∗:A/B → A/E has a left adjoint (denoted by Σp) defined by
composition with p. Moreover, p∗ has a right adjoint (denoted Πp) if and only if p:E → B
is exponentiable in A/B (e.g., see [9]).

Thus, when p:E → B is faithful, it is an object of Catf/B, and so Theorem 4.1 yields:

4.2. Corollary. The following are equivalent for a faithful functor p:E → B.

(a) p∗: RelB → RelE has a right 2-adjoint

(b) Lp:B → Rel is 2-exponentiable in RelB

(c) p∗: Catf/B → Catf/E has a right 2-adjoint

(d) p:E → B is 2-exponentiable in Catf/B

(e) p satisfies WFLP

(f) Lp:B → Rel is a non-unitary functor
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Using the equivalence Catf/B 
 RelB, one obtains:

4.3. Corollary. The following are equivalent for a Rel-set X on B.

(a) X is 2-exponentiable in RelB

(b) Given x→β′′ x′′ and a factorization β′′ = β′β, there exists x′ such that x→β x
′ and

x′ →β′ x′′

(c) The lax functor X:B → Rel is a non-unitary functor

Also, the equivalence RelB 
 Pr/B of Corollary 3.3 yields:

4.4. Corollary. The following are equivalent for p:E → B in Pr/B.

(a) p∗: RelB → RelE has a right 2-adjoint

(b) Lp:B → Rel is 2-exponentiable in RelB

(c) p∗: Pr/B → Pr/E has a right 2-adjoint

(d) p:E → B is 2-exponentiable in Pr/B

(e) p satisfies WFLP, i.e., if e ≤ e′′ in E and pe ≤ b′ ≤ pe′′ in B, there exists e′ ∈ E
such that e ≤ e′ ≤ e′′ and pe′ = b′

(f) The lax functor Lp:B → Rel is a non-unitary functor

5. Application to Granularity

In [11], Stell uses unitary lax functors X:T → Rel, on a (finite) poset T , to model data
varying over time. In this context, T is called a time domain and X is a dynamic set.
Thus, a dynamic set is just a unitary Rel-set. The laxity is intended to account for data
such as “countries or states which have had multiple episodes of existence through history,
such as Austria [11].” A classification structure is then added so that objects of the data
base can be further identified, for example, as roads, railways, houses, or by other features.

A classification structure is a preordered set (Φ,→) together with a partial order ≤
(denoted by � in [11]) on Φ. In practice, φ ≤ φ′ indicates that φ′ is a more general class
than φ, e.g., a building is more general than a house. And, → signifies that one class can
evolve into another, e.g., a child can become an adult. The structure is assumed to satisfy

(C1) For all φ→ φ′, there exists ψ with φ ≤ ψ and φ′ ≤ ψ.
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(C2) Any set of elements in the same connected component of (Φ,≤) has a least upper
bound.

(C3) These least upper bounds preserve →, in the sense that, if some element of one
such set A can evolve into an element of another set B, then lubA→ lubB.

A classification of a Rel-set X is given by a family of functions λt:Xt → Φ, t ∈ T ,
such that

λtx→ λt′x
′, for all x→ x′ x ∈ Xt, x

′ ∈ Xt′ ,

where the subscript has been omitted on x →β x
′ since there is at most one morphism

t → t′ in T . Thus, a classification on X is just a morphism λ:X → T ∗Φ in RelT , where
T ∗Φ is the image of Φ under the functor

Pr 
 Rel1
T ∗−→RelT

and T denotes the unique morphism T → 1. Then a classified dynamic set (in the sense
of [11]) is just a unitary classified Rel-set.

Loss of detail in the time domain is represented in [11] via a simplification from T to
S, which is a span

T S

U
���

p ��	
q

of order-preserving maps, where p is injective and q is surjective. In [11], the author
constructs the simplification of a classified dynamic setX over T to one over S. Properties
(C1)–(C3) play a crucial role in obtaining the classification in the unitary case.

In what follows, we obtain this construction in stages. For general Rel-sets, we get a
simplification from T to S via the functor

RelT
p∗−→RelU

Σq−→RelS

To obtain the simplification of a dynamic set (in the sense of [11]), we first introduce a
unitary reflection, and then we adapt the construction to the classified case.

Let DynT denote the full subcategory of RelT consisting of dynamic sets, and define
(̄ ): RelT → DynT as follows. Given a Rel-set X, let ∼t (or simply ∼) denote the equiv-
alence relation on Xt generated by →, and let X̄t = Xt/ ∼t. For t ≤ t′, x ∈ X̄t, and
x′ ∈ X̄t′ , define x̄→ x̄′ if

x→ x1 ∼t1 x
′
1 → · · · → xn ∼tn x

′
n → x′

for some x1, x
′
1, . . . , xn, x

′
n. Then → is well-defined and makes X̄ into a dynamic set on

T . Note that X̄ would not necessarily be unitary if T were merely a preordered set. If
f :X → Y is a morphism of Rel-sets on T , then f̄t: X̄t → Ȳt, given by f̄t(x̄) = ftx, is
well-defined and provides a Rel-set morphism f̄ : X̄ → Ȳ , since f is order-preserving.
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5.1. Proposition. The functor (̄ ): RelT → DynT is left 2-adjoint to the inclusion.

Proof. With the unit ηX :X → X̄ given by ηX(x) = x̄ and the counit by the “identity”
functor, the adjunction identities easily follow.

Now, suppose T
p←−U q−→S is any span of posets. Then

DynT p∗−→RelU
Σq−→RelS

¯( )−→DynS

gives a simplification functor for (non-classified) dynamic sets. If p is injective, then p∗

preserves dynamic sets, since unitary Rel-sets on T correspond to posets with discrete
fibers over T , and so this simplification functor becomes

DynT p∗−→DynU Σq−→RelS
¯( )−→DynS

Next, we consider classified Rel-sets. Let RelT//Φ denote the category whose objects
are classified Rel-sets on T , i.e., λ:X → T ∗Φ in RelT , with morphisms given by triangles

X Y

T ∗Φ

�f

�
��

λ �
��

µ
≤

i.e., morphisms f :X → Y in RelT such that λtx ≤ µtftx, for all x ∈ Xt.
Given a morphism p:U → T of posets, it is easy to show that the adjunction Σp � p∗

restricts to

RelU//Φ
Σp−→←−
p∗

RelT//Φ

Thus, for a span T
p←−U q−→S, we get a simplification functor for classified Rel-sets

RelT//Φ
p∗−→RelU//Φ

Σq−→RelS//Φ

Note that (C1)–(C3) were not needed for this general (not necessarily unitary) case which
was not considered in [11].

Now, let DynT//Φ be the full subcategory of RelT//Φ consisting of classified dynamic
sets. Then the reflection (̄ ): RelT → DynT extends to the classified case, as follows.
Given a classified Rel-set λ:X → T ∗Φ, using (C1) and (C2), define λ̄t: X̄t → Φ by
λ̄tx̄ = lub{λta|a ∼ x}. Then, by property (C3), λ̄ is a classification on X̄, i.e.,

x̄→ x̄′ ⇒ λ̄tx̄→ λ̄t′x̄
′

for all x ∈ Xt, x
′ ∈ Xt′ , and t ≤ t′. To see that (̄ ): RelT//Φ → DynT//Φ is a functor,

suppose f :X → Y is a morphism of classified Rel-sets. Then so is f̄ , that is,

X̄ Ȳ

T ∗Φ

�f̄

�
��

λ̄ �
��

µ̄
≤

since λ̄tx̄ = lub{λta|a ∼ x} ≤ lub{µtfta|a ∼ x} ≤ lub{µtfta|fta ∼ ftx} ≤ lub{µtb|b ∼
ftx} = µ̄tf̄tx̄.
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5.2. Lemma. The functor (̄ ): RelT//Φ→ DynT//Φ is left adjoint to the inclusion.

Proof. It suffices to show that the unit ηX :X → X̄ (given by ηX(x) = x̄ in the proof
of Proposition 5.1) is a morphism of DynT//Φ. But, this is clear, since λtx ≤ lub{λta|a ∼
x} = λ̄tx̄ = λ̄tηtx.

Thus, we get:

5.3. Theorem. The simplification of classified dynamic sets relative to the span
T

p←−U q−→S (in the sense of [11]) is given by

DynT//Φ
p∗−→RelU//Φ

Σq−→RelS//Φ
¯( )−→DynS//Φ

We conclude with a consideration of right adjoints to the simplification functors.

5.4. Theorem. If T
p←−U q−→S is a span of preordered sets, then the simplification

functor RelT
p∗−→RelU

Σq−→RelS has a right adjoint if and only if p∗ does, i.e., p is a WFLP
map.

Proof. Consider the corresponding composite Pr/T
p∗−→Pr/U

Σq−→Pr/S. By [9, Propo-
sition 1.1], a functor F : Pr/T → Pr/S has a right adjoint if and only if

Pr/T
F−→Pr/S

ΣS−→Pr

does, and so the desired result follows.

5.5. Theorem. If T
p←−U q−→S is a span of posets and p is an injective WFLP map,

then the simplification functor

DynT p∗−→DynU Σq−→RelS
¯( )−→DynS

has a right 2-adjoint.

Proof. Since Σq: RelU → RelS and (̄ ): RelS → DynS have right adjoints and q∗ preserves
dynamic sets, it suffices to show that p∗ has a right adjoint. Now, p∗: RelT → RelU does
by Corollary 4.4, since p satisfies WFLP, and one can show using the description in the
proof of Theorem 4.1, that Πp preserves dynamic sets, since p is injective, and the desired
result follows.
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For the classified case, the situation is more complicated. In particular, Πp cannot
be easily adapted unless we impose conditions on Φ which may not make sense for the
intended interpretation [11] of the relations on Φ. For example, taking T = {0, 1} and
p to be the inclusion of U = {1}, one can show that Φ would need an element φ0 such
that φ ≤ φ0 and φ0 → φ, for all φ ∈ Φ, i.e., a class that is more general than and could
evolve into any other class. This can be seen using Y = T ∗Φ and the description of ΠpY
in Theorem 4.1. On the other hand, using the inclusion of U = {0} in T , one can show
that Φ would need an element φ1 such that φ ≤ φ1 and φ → φ1, for all φ ∈ Φ, i.e., φ1

would be a class that is more general than any other class and such that any class could
evolve into φ1.
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