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ALGEBRAICALLY CLOSED AND EXISTENTIALLY CLOSED
SUBSTRUCTURES IN CATEGORICAL CONTEXT

MICHEL HÉBERT

Abstract. We investigate categorical versions of algebraically closed (= pure) embed-
dings, existentially closed embeddings, and the like, in the context of locally presentable
categories. The definitions of S. Fakir [Fa, 75], as well as some of his results, are revisited
and extended. Related preservation theorems are obtained, and a new proof of the main
result of Rosický, Adámek and Borceux ([RAB, 02]), characterizing λ-injectivity classes
in locally λ-presentable categories, is given.

Introduction

Algebraically closed embeddings are used in module theory and category theory (where
they are called pure morphisms), as well as in model theory. The model theoretic defini-
tion allows seeing this concept as one of several related types of morphisms (like elemen-
tary embeddings and existentially closed embeddings) defined in terms of preservation
of certain families of formulas. Adapting this line of thought, S. Fakir ([Fa, 75]) pro-
posed a categorical version of the concepts of algebraically closed and existentially closed
morphisms in the context of locally presentable categories.

In this paper, we first revisit Fakir’s definitions, extending and simplifying them using
two ideas: the first one is to use λ-presentable morphisms instead of λ-presentable (and
λ-generated) objects, and the second one involves what we will call locally presentable
factorization systems.

The former idea was already exploited for the algebraically closed case in [H1, 98]. In
a category C, a morphism f : A −→ B will be called λ-presentable if it is λ-presentable
as an object of the comma category (A ↓ C). In [H1, 98], we characterized the classes
closed under algebraically closed subobjects as the ones which are injective with respect
to some class of cones formed by λ-presentable morphisms. As a corollary, we obtained
a solution to a problem of L. Fuchs in the context of abelian groups ([Fu, 70]). In this
paper, we use this characterization to obtain a different proof of the main result of [RAB,
02], characterizing the λ-injectivity classes as the ones closed under λ-algebraically closed
subobjects and λ-reduced products (Theorem 3.5 below).

As for the latter idea, we define a λ-presentable factorization system as a proper
factorization system (E,M) in which the morphisms in E between λ-presentable objects are
sufficient to determine the morphisms in M. In a locally λ-presentable category C, (Strong
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Epi, Mono) is λ-presentable, but (Epi, Strong Mono) is not necessarily so. Also, if one
sees C as the concrete category of all the models of a λ-limit theory, the embeddings (in
the usual classical sense) form the right-hand part of a λ-presentable factorization system.
We then propose a definition of existentially closed morphisms which is relative to a given
λ-presentable factorization system. Apart from being somewhat simpler then Fakir’s, the
definition fits the classical model theoretic one even when the signature contains relation
symbols, when one chooses the appropriate factorization system.

As an application, Theorem 2.4 below completes the picture regarding the following
set of characterizations. [Fa, 75] gives a categorical proof of the well-known characteriza-
tion of algebraically closed morphisms as those which can be extended to the canonical
diagonal morphism into some ultrapower of their domain. The result also holds when
“ultrapower” is replaced by “reduced power”, and the proof is given in the infinitary
context. Fakir also uses his method to prove that the existentially closed morphisms are
those which can be extended by a monomorphism to the canonical diagonal morphism into
some ultrapower of their domain. However, in this case ultrapowers cannot be replaced by
reduced powers, so that in particular there is no obvious extension available in the infini-
tary context. Our definition allows considering intermediate types of morphisms (between
the algebraically closed and the existentially closed ones), and we identify precisely, in
these terms, the morphisms which can be extended by a monomorphism to the canoni-
cal diagonal morphism into some reduced power of their domain. We call those weakly
λ-existentially closed morphisms, and we also characterize them in terms of preservation
of a certain type of formulas.

1. Preliminary concepts

For basic definitions and results in category theory, we refer the reader to [AR, 94] and
[Bo, 94]. For convenience, we recall the following.

If λ is a regular infinite cardinal, an object A of a category C is λ-presentable if the
hom-functor C(A,−): C −→Set preserves λ-directed colimits. Then, C is λ-accessible if
it has a (small) set S of λ-presentable objects such that every object is the λ-directed
colimit of a diagram with all its vertices in S. Finally, C is locally λ-presentable if it is
λ-accessible and cocomplete (or, equivalently, complete). We write finitely presentable for
ω-presentable.

Given an object A in a locally λ-presentable (resp. λ-accessible) category C, both the
category C2 (of all morphisms in C) and the comma category (A ↓ C) (of all morphisms in
C with domain A) are also locally λ-presentable (resp. λ-accessible). Our definitions and
results will be stated for locally λ-presentable categories, but the interested reader will
see easily that all of them apply to λ-accessible categories with pushouts. Throughout
the paper we will adopt the following:

1.1. Convention. A morphism f : A −→ B in a category C will be called λ-presentable
if it is λ-presentable as an object of the comma category (A ↓ C).



272 MICHEL HÉBERT

Note that being a λ-presentable morphism in our sense is weaker than being a λ-
presentable object in C2 (which turns out to be the same as a morphism between λ-
presentable objects in C: see [AR, 94], Exercise 2.c). Intuitively (in the context of a
variety, say), f : A −→ B being λ-presentable means that f provides a way to present B
by adding less than λ generators and relations to some presentation of A: see Section 3
for more on that. In categorical terms, this description translates as follows:

1.2. Proposition. Let C be a locally λ-presentable category. Then f : A −→ B is
λ-presentable if and only if there exists a commutative diagram:

C

��

�� D

��
A ��

f ���
��

��
��

E

r
����
B

��
s

��

where C and D are λ-presentable, the square is a pushout, and rs = 1B.

Proof. (⇒) Let f : A −→ B be λ-presentable. C2 being locally λ-presentable, there
exists a λ-directed diagram ((aij, bij): fi −→ fj)I of λ-presentable objects of C2 with
colimit ((ai, bi): fi −→ f)I .

Let (f ∗
i , a∗

i ) be the pushout of (fi, ai) (i ∈ I), and f ∗
ij and f ′

i be the induced morphisms,
as in the following diagram:

Ai

ai

����
��
��
��
��
��
��
��
��
��
��
��
��
��
�

aij

��

fi �� Bi

a∗
i

����
��
��
��
��
��
��
��
��
��
��
��
�

bi

���
��
��
��
��
��
��
��
��
��
��
��
��
��
��

bij

��
Aj

aj

����
��
��
��
��
��
��
�

fj �� Bj
a∗

j

		��
��
��
�

bj



�
��
��
��
��
��
��
��

Pi

f ′
i

��������������
f∗

ij ��			 Pj
f ′

j

��










A
f

��

f∗
i



���������������
f∗

j

������������������������� B

It is straightforward to verify that in (A ↓ C), one has colim
I

(f ∗
ij: f

∗
i −→ f ∗

j )I =

(f ′
i : f

∗
i −→ f). Now, if f is λ-presentable (in (A ↓ C)), then 1B: f −→ f must factorize

through one of the f ′
i : f

∗
i −→ f , i.e., there exist i ∈ I and s: f −→ f ∗

i in (A ↓ C) with
f ′

is = 1B. Taking C = Ai, D = Bi, Pi = E and r = f ′
i , one gets the required diagram as

in the statement of the proposition.
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(⇐) The converse implication follows from the following facts, which are either known
or easily verified: (i) a morphism between λ-presentable objects in C is a λ-presentable
morphism, (ii) the pushout (by any morphism) of a λ-presentable morphism is a λ-
presentable morphism, and (iii) every retraction in (A ↓ C) of a λ-presentable morphism
is a λ-presentable morphism.

Proposition 1.2 says that f : A −→ B is λ-presentable if it is, up to a retraction in
(A ↓ C), the pushout of a morphism between λ-presentable objects.

1.3. Open Problem. Is every λ-presentable morphism (in a locally λ-presentable
category) the pushout of a morphism between λ-presentable objects?

A positive answer to this rather intriguing question would have interesting conse-
quences for what is to come. See the paragraph following Lemma 2.2.

We quickly recall the definition of a factorization system (see [Bo, 94] or [CHK, 85]
for more).

Given morphisms p and i, we write p ⊥ i if for every commutative square vp = iu, there
exists a unique morphism w making both triangles commute in the following diagram:

u

��

p ��

v

��
w

		








i
��

If N is a class of morphisms, denote by E(N) and M(N) the classes

E(N) = {p | p ⊥ i for all i ∈ N}
M(N) = {i | p ⊥ i for all p ∈ N}.

Then a factorization system in C is a pair (E,M) of classes of morphisms which are closed
under composition and contain all isos, and such that: (1) E(M)= E (or, equivalently,
M(E) = M), and (2) every morphism f in C has a factorization f = me with m ∈ M and
e ∈ E. The class of all epimorphisms (resp. strong epimorphisms, monomorphisms, etc.)
is denoted by Epi (resp. Strong Epi, Mono, etc.). A factorization system (E,M) is proper
if E ⊆ Epi and M ⊆ Mono.

In what follows, Eλ denotes the class of all morphisms in E with λ-presentable domain
and codomain.

1.4. Definition. A proper factorization system (E,M) in a category C is λ-presentable
if M(Eλ) ⊆ M.

The idea behind 1.4 is that in order to check that a given morphism is in M, it will be
sufficient to verify that it has the diagonal property with respect to all morphisms in E
between “small” objects only. This will be used crucially in Theorems 2.4 and 2.5 below.
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1.5. Examples.

(a) Let Σ be a multisorted λ-ary signature (with or without relation symbols), and
C = Mod(Σ ) be the category of all Σ-structures and Σ-homomorphisms. Denoting
by Emb the class of all (Σ-) embeddings in C (in the usual sense of model theory),
and by Sur the class of all surjective homomorphisms, then (Sur, Emb) is a λ-
presentable factorization system in C. This is readily verified directly, but it also
follows from Proposition 1.6 (and its proof) below.

(b) It is well-known that in any locally λ-presentable category, (Strong Epi, Mono) and
(Epi, Strong Mono) are (proper) factorization systems. The former is λ-presentable;
again, this will follow from Proposition 1.6 (see Example (c) below). However the
latter is not, as we will see from the following counterexample.

Let Σ be the signature with a (n+2)-ary relation Rn for each positive integer n.
Consider the set

T = {φn| n > 0}
where φn is the Σ-sentence

∀x∃≤1(y1 . . . yn)∃yn+1(R1(x, y1, y2) ∧ R2(x, y1, y2, y3) ∧ . . . ∧ Rn(x, y1, . . . , yn+1)).

Here, “∃≤1(y1 . . . yn)” means “there exists at most one string y1 . . . yn”. The φn’s
are equivalent to universal Horn sentences, and consequently the category Mod(T )
of all models of T (with all Σ-homomorphisms) is locally finitely presentable (see
(c) below). Hence (Epi, Strong Mono) is a factorization system in the category. We
show it is not finitely presentable.

Let
A =

〈{a}; RA
n = ∅ for all n

〉

be the Σ-structure with one element a and all relations empty, and

B = 〈{a, b1, b2, ...} ; RB
n = {(a, b1, b2, ..., bn+1)} for all n〉.

Both are models of T , and f : A −→ B, defined by f(a) = a, is a homomorphism.
Then f is easily seen to be an epi in Mod(T ), since every homomorphism from B to
another T -model is entirely determined by its value on a. Hence it is not a strong
mono (otherwise it would be an isomorphism). However it is in M(Epiω). In order
to see this, consider a commutative square

C

��

g �� D

��
A

f
�� B

with g epi and C and D finitely presentable. First note that the finitely presentable
objects of Mod(T ) must be finite. Then, the syntactic description of epimorphisms
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in categories of models due to P.D. Bacsich (see [Ba, 72] or [H2, 98]) says that for
every element d in D, there exists a finite conjunction β of atomic formulas such
that

T |= ∀x∃≤1y∃z (β(x , y, z ))

and
D |= ∃z (β[g(c), d, z ])

for some string c in C. Let us say that such a d is determined by β. We show that
RD

n = ∅ for all n.

Suppose that D |= Rn[d0, d1, . . . , dn+1] holds for some n and some di’s in D. Then
all the di’s must be distinct, since their images in B are distinct. Note also that dn+1

cannot be in the image of g. Hence, there must be a greatest integer n for which
D |= Rn[d0, d1, . . . , dn+1] holds for some di’s. But then there is no conjunction of
atomic formulas β which can determine dn+1. Hence RD

n = ∅. As a consequence, g
is surjective, and the required diagonal clearly exists.

(c) Recall that, up to a categorical equivalence, locally λ-presentable categories are the
categories of models of λ-limit theories, i.e., set of sentences of the form

∀x (ϕ(x ) −→ ∃1y(β(x ,y))

where x and y are strings of less than λ variables, “∃1y” means “there exists
exactly one string y”, and ϕ and β are conjunction of less than λ atomic formulas
in a multisorted λ-ary signature Σ (see [AR, 94] or [H, 01]).

Let C = Mod(T ) be such a (concrete) category of all the models of a λ-limit theory
T in some signature Σ. Generalizing Example (a), the following proposition will
show that Emb is the right hand part of a λ-presentable factorization system in
C. In addition, note that in the categorical equivalence mentioned above, one can
always choose Σ to have no relation symbols. Since in this case we have Emb =
Mono, the proposition will also imply that (Strong Epi, Mono) is λ-presentable in
every locally λ-presentable category, as claimed in the first paragraph of Example
(b).

1.6. Proposition. Let C be the category of all models of a λ-limit theory. Then
(E(Emb), Emb) is a λ-presentable factorization system in C.

Proof. It follows immediately from [CHK, 85], Lemma 3.1, that (E(Emb), Emb)is a
factorization system in C . From [H2, 98], Theorem 20, one deduces that Strong Mono
⊆ Emb, so that E(Strong Mono) = Epi ⊇ E(Emb) (since (Epi, Strong Mono) is a
factorization system). Hence (E(Emb), Emb) is proper. We now show that it is λ-
presentable.

Let Σ be the (λ-ary) signature of the theory. C is a full reflective subcategory of
the category Mod(Σ ) of all Σ-structures and Σ-homomorphisms. Now, in Mod(Σ ), the
λ-presentable objects are precisely the structures presentable in the classical sense by less
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than λ “generators and relations”; this is carefully explained in [AR, 94], 5.5 and 5.28.
Let us fix some notations which will be used again later on.

A set of generators and relations can be seen as a set of atomic formulas (identifying
the set of generators with a string of variables), so that a typical λ-presentable object of
Mod(Σ ) can be denoted by

〈x ; ϕ(x )〉Σ
for some set ϕ of less than λ atomic formulas. Note that the length of x must then be
< λ. The reflection of 〈x ; ϕ(x )〉Σ in C is denoted by 〈x ; ϕ(x )〉C, and it is λ-presentable
in C. We show that M(E(Emb)∗λ) ⊆ Emb, where E(Emb)∗λ is the class of morphisms
in E(Emb) with λ-presentable domain and codomain of the form 〈x ; ϕ(x )〉C. This will
imply in particular that M(E(Emb)λ) ⊆ Emb, as required.

Given a morphism f : A −→ B in M(E(Emb)∗λ), suppose that B |= R[f(a)] for some
relation symbol R in Σ∪{=} and some string a in A. We write xa for a string of variables
corresponding to a . Then there exists a commutative diagram

〈xa ; ∅〉Σ i′
��

i

��

〈xa ; R(xa)〉Σ

j

��
A

f
�� B

in Mod(Σ ) with i(xa) = a , i′ is the identity function, and j(xa) = f(a). In order to show
that A |= R[a ], we need to show that there exists a diagonal morphism from 〈xa ; R(xa)〉Σ
to A making the two triangles commute.

Now, i and j factorize through the reflections:

〈xa ; ∅〉Σ i′
��

��

〈xa ; R(xa)〉Σ

��
〈xa ; ∅〉C

��

i′′
�� 〈xa ; R(xa)〉C

��
A

f
�� B

It is easily verified that i′ is in E(Emb) (in Mod(Σ )). From the fact that i′′ is the reflection
of i′ in C, it follows that it is in E(Emb) (in C). Hence the bottom square of the above
diagram has a diagonal morphism with the required property, and the outer square too,
as a consequence.

1.7. Convention. From now on, a locally λ-presentable category will always be
assumed to come equipped with a locally λ-presentable factorization system (E,M). As
is customary, morphisms in E will be denoted by “ �� �� ” , and morphisms in M by
“ �� �� ”.
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2. Algebraically and existentially closed morphisms

In [Fa, 75], Fakir proposed categorical definitions of algebraically closed and existentially
closed morphisms in a locally presentable category C. His definitions generalize the fa-
miliar model theoretic concepts (see [CK, 90] or [E, 77]). Algebraically closed morphisms
generalize the “pure embeddings” in the theory of abelian groups or, more generally, mod-
ules. For that reason they are also called “pure morphisms” (see [AR, 94] and [R, 97]).
The following reformulates Fakir’s definitions. An intermediate concept is also introduced;
its purpose will appear clearly in Theorem 2.4 below.

2.1. Definitions. Let f : A −→ B be a morphism in a locally λ-presentable category
C. In (c) below, a λ-presentable cone in E is a cone c = (kj: C �� �� Dj )J where |J | < λ
and each kj is a λ-presentable morphism in E.

(a) f is λ-algebraically closed if for every factorization f = hg with g λ-presentable, g
has a left inverse.

(b) f is weakly λ-existentially closed if it is λ-algebraically closed and for every factor-
ization f = hg with g λ-presentable, and every λ-presentable morphism k in E from
the domain of h, and through which h does not factorize, g has a left inverse which
does not factorize through k.

(c) f is λ-existentially closed if for every factorization f = hg with g λ-presentable, and
every λ-presentable cone c in E from the domain of h, and through which h does
not factorize, g has a left inverse which does not factorize through c.

The three concepts could be defined in a uniform way using (c), by adjusting the size of
the cone accordingly: replacing “λ-presentable cone” by “cone c = (kj)J of λ-presentable
morphisms with |J | < 1, |J | < 2 and |J | < λ” respectively, one gets the definitions (a),
(b) and (c). This will be useful in the proofs below. It also allows the same following
diagram to be used to illustrate the three definitions:

A
Dj


J

A




 ��

����	 	 	 	 	 	 	

Dj


J

C

(λ)

�� ���������������� (λ)



 

��������������

h
����

���
���

���
��





 ��
��

��

C

�� ����������������

�� ���������������

���
�
�
�
�
�
�

A

1A

��

(λ)

g

����������

f
�� B A

1A

��

��









kj

���
�
�
�
�
�
�

One reads this as “every diagram of the type on the left can be completed as shown on
the right”.

The above definitions are quite different from the formulations in [Fa, 75]. The fol-
lowing lemma shows the connection.
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2.2. Lemma. Let f : A −→ B be a morphism in a locally λ-presentable category C. The
following are equivalent:

(i) f is λ-algebraically closed (resp. weakly λ-existentially closed, λ-existentially closed);

(ii) for every commutative square fl = hg with g λ-presentable (resp., and every cone

c = (kj: dom(h) �� �� Dj )J of less than 2, resp. less than λ, λ-presentable mor-

phisms in E, and through which h does not factorize), there exists d: dom(h) −→ A
such that dg = l (resp., and such that d does not factorize through c).

Proof. Condition (ii) can be represented by the diagram:

J JC

l

��

(λ)

g
�� D

h

��

kj Dj


 C ��

��

D

d

���
�
�
�
�
�
�

Dj




A
f

�� B A

�
�
�

		�
�
�

�
�
�
�
�

���
�
�
�
�

��

(λ) �� ���������������

(λ)
�� �������

������

�� ���������������

�� �������
������

(i) ⇒ (ii): Let (g′, l′) be the pushout of (g, l), and then (k′
j, l

′
j) be the pushout of (kj, l

′),
j ∈ J :

C
g ��

l

��

D
kj �� ��

l′

����
��
��
��

h

��

Dj

l′j����
��
��
�

P
k′

j �� ��

u

���
�

�
� Pj

A

g′
����������

f
�� B

(u: P −→ B is the morphism induced by the commutativity of the square). Then g′ and
the k′

j are λ-presentable. Furthermore, pushouts (by any morphism) of morphisms in
E are in E (see [CHK, 85]). Finally, u does not factorize through the cone c′ = (k′

j)J

(otherwise h would factorize through the cone c = (kj)J).

By (i), g′ has a left inverse g′′ which does not factorize through c′. It is easily verified
that the diagonal morphism g′′l′ satisfies the conditions required for d in (ii).
(ii) ⇒ (i): Take l: C −→ A in the square to be 1A.
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Let (ii)′ be the statement obtained from 2.2(ii) by replacing all λ-presentable mor-
phisms by morphisms with λ-presentable domain and codomain. Clearly the implication
(ii) ⇒ (ii)′ holds. It follows easily from 1.2 above that the reverse implication holds for
the λ-algebraically closed case. This shows that our λ-algebraically closed morphisms are
just the λ-pure morphisms of [AR, 94] (Note however that pushouts are needed here; the
two concepts are different in general accessible categories: see [H1, 98]). Whether the
equivalence (ii) ⇔ (ii)′ holds for the other two cases is unknown to us, but one can show
that it would be the case if the open problem 1.3 had a positive answer.

Fakir’s definitions ([Fa, 75]) are obtained from 2.2(ii) by replacing (1) the λ-presentable
morphism g by a mono from a λ-generated object to a λ-presentable object, (2) the cone c
by a set {(mj, nj)}J of pairs of morphisms from λ-presentable objects Dj to D, and (3) our
condition that h (resp. d) does not factorize through c by the condition that hmj �= hnj

(resp. dmj �= dnj). Instead of showing directly that our definitions do generalize the ones
of Fakir, we will devote the rest of this section to prove characterization theorems (2.4 and
2.5 below), which will clearly correspond to Fakir’s characterizations of his λ-algebraically
closed and λ-existentially closed morphisms (Theorems 5.7 and 5.10 in [Fa, 75]), when we
choose the factorization system (Strong Epi, Mono).

At this point, the reader who wishes to see explicitly the link between the categorical
definitions and the classical model theoretic formulations, in terms of preservation of
formulas of certain types, may have a look at Proposition 3.1 and its proof.

Recall from [CK, 90] that a λ-complete filter on a set I is a non-empty set F of non-
empty subsets of I such that all supersets of elements of F are elements of F , and all
intersections of less than λ elements of F are elements of F . An ω-complete filter is just
called a filter. An ultrafilter on I is a filter F in which every subset of I not in F has its
complement in F .

Given a set {Ai}i∈I of objects in a locally λ-presentable category C, and a λ-complete
filter F on I, the reduced product

∏
F Ai of {Ai}i∈I (with respect to F ) is the colimit of

the (λ-directed) diagram ( πK,J :
∏
i∈K

Ai −→
∏
i∈J

Ai ; J ⊆ K, J,K ∈ F ) of the canonical

projections between the products.

If C is the category of all models of a λ-limit theory in some signature Σ, as in 1.5 (c)
above, one verifies easily that this corresponds to the classical model theoretic concept:∏

F Ai is the Σ-structure on the quotient of the product
∏
i∈I

Ai, where for an α-ary relation

symbol R in Σ∪{=}, ∏
F Ai |= R[(fβ)β<α] if and only if {i ∈ I | Ai |= R[(fβ(i))β<α] } ∈ F

(see [CK, 90]).
∏

F Ai is called an ultraproduct if F is an ultrafilter.

In [Fa, 75], Fakir shows that his ω-algebraically closed (resp. ω-existentially closed)
embeddings coincide with the classical algebraically closed (resp. existentially closed)
embeddings. He then gives a categorical proof of the known facts that a morphism
f : A −→ B is ω-algebraically closed (resp. ω-existentially closed) if and only if there exists
an ultrafilter F and a homomorphism g: B −→ ∏

F A (resp. a monomorphism) to the
ultrapower

∏
F A, such that gf is the canonical “diagonal” morphism ∆F : A −→ ∏

F A,
induced by the diagonal morphisms to the powers of A (see [E, 77] for the classical
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model theoretic proof). He actually proves the first part of this result for λ-algebraically
closed morphisms (any λ), replacing “ultrafilters” by “λ-complete filters”. This does
not hold for the existential closed morphisms: for example, even the diagonal morphism
∆F : A −→ ∏

F A into a reduced power is easily seen not to be existentially closed if F
is not an ultrafilter. The next theorem fills the gap by showing that the right concept
for the extension is the one of weakly λ-existentially closed. In addition, it covers the
concrete cases where relation symbols are present and where one uses embeddings instead
of monos. First, a few simpler facts.

2.3. Proposition. Let C be a locally λ-presentable category.

(a) Let f : A −→ B and g: B −→ C be morphisms in C. Then:

(i) if gf is λ-algebraically closed, then so is f;

(ii) if gf is λ-existentially closed (resp. weakly λ-existentially closed), then so is f,
whenever g lies in M.

(b) All three concepts in 2.1 are stable under λ-directed colimits.

(c) For any λ-complete filter F, the diagonal morphism ∆F : A −→ ∏
F A to the reduced

power of A is weakly λ-existentially closed.

(d) If λ = ω, then for any ultrafilter U, the diagonal morphism ∆U : A −→ ∏
U A to the

ultrapower of A is ω-existentially closed.

Proof.

(a) (i) is trivial.

(ii) is an immediate consequence of the implication

A
Dj


J

A
Dj


J

C

�� ����������������



 

��������������

h
����

���
���

���
��





 ��
�� �� C

�� ����������������



 

��������������

����
���

���
���

��

A

1A

��

����������

f
�� B ��

g∈M
�� D A

1A

��

����������

f
�� B ��

g
�� D

kj∈E

���
�
�
�
�
�
�

�
�
�
�

���
�
�

(i.e., h does not factorize through the cone (kj)J implies that gh does not
either), which itself follows from the facts that kj ∈E, g ∈M, and (E,M) is a
factorization system.
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(b) In the diagram

A
Dj


J

C

(λ)

�� ���������������� (λ)



 

��������������

h
����

���
���

���
��





 ��
��

A

1A

��

g

(λ) ����������

f
��

fi ���
��

��
��

B

Ai

f ′
i

���������������

���
�
�
�
�
�
�kj

(f ′
i : fi −→ f) is the colimit of a λ-directed diagram (fij: fi −→ fj)I with each fi

λ-existentially closed. Then h: g −→ f must factorize through some fi, and clearly
the induced morphism hi: C −→ Ai cannot factorize through any of the kj’s. The
existence of the required left inverse to g follows since fi is λ-existentially closed.

(c)-(d) We prove (c) and (d) in parallel.

Let F be a λ-complete filter on a set I, ∆F : A −→ ∏
F A the canonical diagonal

morphism. Consider a diagram

Dj


J

C

(λ)

�� ��������������� (λ)

�� �����������������

h ����
���

���
���

��




 ��

��

A

g

(λ)
����������

∆F

��
∏

F A
���
�
�
�
�
�
�kj

with g λ-presentable and |J | < λ, and where h does not factorize through any of
the kj’s.

∏
F A is the λ-directed colimit of the powers AS, S ∈ F , and from this it

follows that ∆F is the colimit in (A ↓ C) of the diagonal morphisms ∆S: A −→ AS.
g being λ-presentable, h: g −→ ∆F must factorize h = cS · hS through one of the
colimit components cS: AS −→ ∏

F A :

A

∆S

��

g �� C

h
��

hS

 ��
�
�
�
�

AS
cS

��
∏

F A
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Clearly hS does not factorize through any of the kj’s. Let s ∈ S, and
πs: A

S −→ As = A be the canonical projection. Then πs · hS · g = πs · ∆S = 1A, so
that πshS is a left inverse to g. This takes care of the case J = ∅. If J = {j}, then
πshS cannot factorize through kj for all s, otherwise hS would also factorize through
kj. Hence one of the πshS’s is an adequate left inverse to g. These two cases solve
(c).

To complete the proof of (d), we now assume that λ = ω, and that F is an ultrafilter.
For each j ∈ J , let

Sj : = {s ∈ S | πshS factorizes through kj} .

Then Sj /∈ F , otherwise the colimit component cj: A
Sj −→ ∏

F A would provide
a factorization of h through kj. Hence its complement S ′

j in I is in F , and then
S ′ = S∩ ( ∩

j∈J
S ′

j) is also in F (since |J | < ω). Now S ′ = S− ( ∪
j∈J

Sj), so that one can

see that for any s ∈ S ′, the morphism πshS: C → AS → As = A does not factorize
through any of the kj’s.

An example of a diagonal morphisms ∆I : A −→ AI which is not λ-existentially closed,
is easily constructed.

The following two theorems should be compared to [Fa, 75]’s Theorems 5.7 and 5.10.

2.4. Theorem. Let C be a locally λ-presentable category.

(a) A morphism f : A −→ B is λ-algebraically closed iff there exists a λ-complete filter
F and a morphism g: B −→ ∏

F A such that gf = ∆F : A −→ ∏
F A.

(b) A morphism f : A −→ B is weakly λ-existentially closed iff there exists a λ-complete
filter F and a morphism g: B �� ��

∏
F A in M such that gf = ∆F : A −→ ∏

F A.

Before giving the proof, let us state the following theorem, to emphasize that an
analogous characterization for the λ-existentially closed morphisms is known only for
λ = ω. The proof of both theorems will follow.

2.5. Theorem. Let C be a locally finitely presentable category.
A morphism f : A −→ B is ω-existentially closed iff there exists an ultrafilter U and a

morphism g: B �� ��
∏

U A in M such that gf = ∆U : A −→ ∏
U A.

Proof.

2.4(a) (⇐) This is immediate from 2.3(a)(i) and (c), since weakly λ-existentially closed
morphisms are λ-algebraically closed.

(⇒) The construction will follow a familiar pattern (see the proof of 2.31 in [AR,
94], for instance), but we recall it since it will also be our starting point for the
proofs of (b) and of 2.5 below.
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Let (fij: (fi: A −→ Bi) −→ (fj: A −→ Bj))I be a λ-directed diagram in (A ↓ C) with
the fi’s λ-presentable, and with colimit diagram (f ′

i : (fi: A −→ Bi) −→ (f : A −→
B))I .

Let F be the filter defined on (the directed poset) I by

F = {D ⊆ I | D ⊇ i∗ for some i ∈ I},
where i∗ = {j ∈ I | j ≥ i}. From the fact that I is λ-directed, one sees that F is
a λ-complete filter on I. Then the λ-reduced product

∏
F Bn is the colimit of the

diagram (πi,j:
∏

n∈i∗
Bn −→ ∏

n∈j∗
Bn)I of the canonical projections (i ≤ j) between

products (since (
∏

n∈i∗
Bn | i ∈ I) is final in (

∏
n∈D

Bn | D ∈ F )). Now, for each j ∈ I,

there exists a left inverse f̄j to fj, so that we have the following induced diagram

(1)

A

fj
! �

��
��

��
��

��
� f

"!
fi

��
Bi fij

��

f̄i

��

〈fin〉n∈i∗
��

Bj

f̄j

#"������������
��

〈fjn〉n∈j∗
��

. . . colim
i∈I

(Bi) = B

f∗
���
�
�

∏
n∈i∗

Bn
��

∏
n∈i∗

f̄n

��

∏
n∈j∗

Bn
��

∏
n∈j∗

f̄n

��

. . . colim
i∈I

(
∏

n∈i∗
Bn) =

∏
F Bn

f̄

���
�
�

Ai∗ �� Aj∗ �� . . . colim
i∈I

(Ai∗) =
∏

F A

It is a straightforward exercise to check that f̄f∗f : A → B → ∏
F A is the canonical

diagonal morphism ∆F .

2.4(b) (⇐) This is immediate from 2.3(a)(ii) and (c).

(⇒) As in the proof of (a), let (f ′
i : (fi −→ f)I = colim

I
(fij: fi → fj) in (A ↓ C), with

the fi’s λ-presentable. Let H be the set of all λ-presentable morphisms in E

h: Bi
�� �� C ,

i ∈ I, through which f ′
i does not factorize.

First case: H = ∅. Then consider the same construction than in the proof of (a)
(⇒), see diagram (1). We show that u = f̄f∗ is in M.

(E,M) being λ-presentable, this amounts to show that for all commutative square

(2)

X v
�� ��

p

��

Y

q
��

B
u ��

∏
F A
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with v ∈ Eλ, there exists a unique diagonal d: Y −→ B such that dv = p and
ud = q. Since (f ′

i : Bi −→ B)I is also the colimit in C of (fij: Bi −→ Bj)I , there
exists a factorization p = f ′

ipi of p for some i ∈ I, pi: X → Bi. Let (h, p′i) be the
pushout of (v, pi)

(3)

X
v �� ��

p

��pi

����
��
��
��
��
��
��
��
��

Y

p′i

���
�
�
�
�
�
�
�

B

Bi

f ′
i

���������������

h
�� ��										 C

Note that h is a λ-presentable morphism in E, since v is. But H = ∅ means that f ′
i

factorizes through all λ-presentable morphisms in E with domain Bi. Hence there
exists t: C → B such that th = f ′

i , and tp′i is easily checked to be the required
diagonal.

Second case: H �= ∅. The required reduced power will be the product
∏

h∈H

(
∏

Fh
A)

of the reduced powers
∏

Fh
A, h ∈ H, where Fh is the filter defined as follows.

Let Ih be the set of all pushouts hj: Bj
�� �� Cj of h by the fij’s, j ≥ i:

Bi

fij ��

h
����

Bj

hj
�����
�
�

C
h′

j ��						 Cj

Note that

1) Ih is a set of λ-presentable morphisms in E,

2) f ′
j: Bj → B does not factorize through hj, and

3) if i ≤ j ≤ k in I, then fij and h′
k induce a morphism h′

jk such that the diagram

Bi

fij ��

h
����

Bj
fjk ��

hj
����

Bk

hk
����

C
h′

j ��

h′
k

$#
Cj

h′
jk �� Ck

commutes.
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For j ≥ i, define j∗ = {hk | k ≥ j}. We then define Fh = {D ⊆ Ih | D ⊇ j∗ for some
j ≥ i}. From the fact that I is λ-directed, one sees that Fh is a λ-complete filter on
Ih.

The λ-reduced product
∏

Fh
Bn is the colimit of the diagram (πj,k:

∏
n∈j∗

Bn −→
∏

n∈k∗
Bn | i ≤ j ≤ k) of the canonical projections, since (

∏
n∈j∗

Bn | i ≤ j) is final

in (
∏

n∈D

Bn | D ∈ Fh). Now, for each j ≥ i there exists a left inverse f̄h,j to fj, which

does not factorize through hj

A Cj

���
�
�
�
�
�
� A





 ��
�� Cj

��	 	 	 	 	 	 	

Bj

f ′
j ���

��
��

��
�

(λ)

hj

$# $#�������




 ��

�� �� Bj
f̄h,j

%$�
�
�
� hj

$# $#�������

A

1A

��

��������� fj

(λ)
���������

f
�� B A

1A

��

fj

���������

For each h: Bi = Bi(h)
�� �� C, we have a diagram similar to (1) in the proof of

part (a). Taking the product over all h ∈ H, we get the following diagram

A

fj
! �

��
��

��
��

��
� f

��fi

��
Bi fij

��

〈fin〉n∈i∗
��

f̄h,i

��

Bj

f̄h,j

#"������������
��

〈fjn〉n∈j∗
��

. . . colim
j≥i

(Bj) = B

f∗
h
���
�
� 〈f∗

h〉h∈H

"! 
      

∏
n∈i∗

Bn
��

∏
n∈i∗

f̄h,n

��

∏
n∈j∗

Bn
��

∏
n∈j∗

f̄h,n

��

. . . colim
j≥i

(
∏

n∈j∗
Bn) =

∏
Fh

Bn

f̄h

���
�
�

∏
h∈H

(
∏

Fh
Bn)πh

��

∏
h∈H

f̄h

���
�
�

Ai∗
gij

�� Aj∗ �� . . . colim
j≥i

(Aj∗) =
∏

Fh
A

∏
h∈H

(
∏

Fh
A)πh

��

Note that the product
∏

h∈H

(
∏

Fh
A) is actually a reduced power

∏
F A for some

λ-complete filter F (see [CK, 90]). The required morphism u: B −→ ∏
F A is the

composition (
∏

h∈H

f̄h)·〈f ∗
h〉h∈H =

〈
f̄hf

∗
h

〉
h∈H

. It is easy to verify that uf : A −→ ∏
F A

is the canonical diagonal morphism. What remains to be shown is that u is in M.

As in the case H = ∅, we need to consider a commutative square up = qv, with
v: X → Y in Eλ, and show that there exists a unique diagonal d: Y −→ B such
that dv = p and ud = q (see diagram (2) above). As before, p factorizes p = f ′

ipi

through some colimit component f ′
i , and we consider the pushout (h, p′i) of (v, pi)

(see diagram (3)). Again we’ll be looking for a factorization of f ′
i through h.
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Suppose there is no such factorization of f ′
i . Then h ∈ H, by definition of H.

Let qh = πhq: Y −→ ∏
F A =

∏
h∈H

(
∏

Fh
A) −→ ∏

Fh
A, where πh is the canonical

projection. Because Y is λ-presentable, there exists j∗ ∈ Fh such that qh factorizes
through the colimit component gj: A

j∗ −→ ∏
Fh

A = colim
j≥i

(Aj∗):

Y

q
��

pj∗

		�
�
�
�
�
�
�
�
�
�

qh

 �

∏
F A

πh

��

Aj∗
gj

��
∏

Fh
A

Put pn = finpi and pn∗ = ginpi. X being λ-presentable, the fact that

gj ·
∏
n∈j∗

f̄h,n · 〈pn〉n∈j∗ = gj · pj∗ · v

implies that there exists k ≥ j such that

X

〈pn〉n∈k∗
��

v �� Y

pk∗

��∏
n∈k∗

Bn ∏
n∈k∗

f̄h,n

�� Ak∗

commutes. Composing with the projection πk: A
k∗ −→ Ak = A , we have a commu-

tative diagram

X
v ��

pk

��

pi

&%!!
!!
!!
!!

Y

πkpk∗
��

p′i

��""
""
""
""
""
""
""
""
""
""
""
""
""
""

Bi

h

����

fik �� Bk
f̄h,k

�� A

C

which induces g: C −→ A such that gh = f̄h,kfik (since (h, p′i) is the pushout of
(v, pi)). This in turn induces w: Ck −→ A, which in particular satisfies whk = f̄h,k:

Bi
fik ��

h
����

Bk

f̄h,k ��

hk
����

A

C
h′

k

��
g

'&

Ck

w
$#�

�
�

�



ALGEBRAICALLY AND EXISTENTIALLY CLOSED SUBSTRUCTURES 287

This contradicts the definition of f̄h,k.
Hence there exists t: C −→ B such that th = f ′

i :

X
v �� ��

p

��pi

('

Y
tp′i

)(� � � � � � � � �

p′i
*)##
##
##
##
##
##
##
##

q
��

B u
��
∏

F A

Bi

f ′
i

��









h
�� �� C

t

%$$
$
$
$

We have tp′iv = thpi = f ′
ipi = p. Since v is epi, we also have utp′i = q, and the

unicity of tp′i as a diagonal.

2.5 (⇐) This is immediate from 2.3(a)(ii) and (d).

(⇒) Let f : A → B be existentially closed, and, as in 2.4 (a) and (b),
(f ′

i : (fi −→ f))I = colim
I

(fij: fi → fj), with the fi’s finitely presentable. Let

R: = {(i, c) | i ∈ I, c ∈ Ĉi},

where Ĉi is the set of all finitely presentable cones in E (= finite cones of finitely
presentable morphisms in E) with domain Bi, and through which f ′

i : Bi → B does
not factorize.

We define a preorder on R by

(i, c) ≤ (i′, d)

if and only if i ≤ i′ and for all s: Bi′ → A, we have:

sfii′ factorizes through c =⇒ s factorizes through d.

Then R is directed: let (i, c) and (i′, d) be in R, with c = (hij | j ∈ J(c)) and
d = (hi′j | j ∈ J(d)). Choose i′′ ≥ i, i′, and let hi′′j be the pushout of hij by fii′′

(respectively of hi′j by fi′i′′). Then, for e = (hi′′j | j ∈ J(c) ∪ J(d)), we clearly have
(i, c), (i′, d) ≤ (i′′, e). Note that e is a finitely presentable cone in E.

For r ∈ R, define r∗ = {r′ | r ≤ r′}, and

F = {R′ ⊆ R | R′ ⊇ r∗ for some r ∈ R}.

F is a filter on R, which can be extended to an ultrafilter U . For r = (i, c) ≤
(i′, d) = r′ in R, we write frr′ : Br → Br′ for the morphism fii′ : Bi → Bi′ ; similarly
we put fr = fi and f ′

r = f ′
i .
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Let f̄r: Br → A be a left inverse to fr which does not factorize through c. Then, we
get a diagram similar to (1):

A

fs +*%
%%

%%
%%

%%
f

,+
fr

��
Br frs

��

f̄r

��

ur

��

Bs

f̄s

-,%%%%%%%%%
��

us

��

. . . colim
r∈R

(Br) = B

u

���
�
�

Ar∗
grs

�� As∗ �� . . . colim
r∈R

(Ar∗) =
∏

U A

where ur = (
∏

t∈r∗ f̄t) · 〈frt〉t∈r∗ : Br −→
∏

t∈r∗ Bt −→ Ar∗ .

We need to show that uf = ∆U , and u ∈ M.

uf = ∆U is straightforward. To show that u ∈ M, we consider, as in 2.4 (b), a
commutative square qv = up (see (2) above with F = U), with v ∈ Eω. Then again
p factorizes p = f ′

ipi for some i ∈ I, and we let (h, p′i) be the pushout of (v, pi) (see
(3) above). h is a finitely presentable morphism in E, and we now show that f ′

i

factorizes through it.

Suppose that there is no such factorization. Then r = (i, {h}) is in R. We rename
Bi as Br, pi = pr and f ′

i = f ′
r:

X
v �� ��

p

��pr

.-&&
&&
&&
&&
&&
&&
&&
&&
&&

Y

p′r
		�
�
�
�
�
�
�
�
�
�

q
��

B
u ��

∏
U A

Br

f ′
r

���������������

h
�� ��						 C

Y being finitely presentable, there exists s∗ ∈ U such that q factorizes q = gsps∗

through the colimit component gs: A
s∗ −→ ∏

U A. We can assume s ≥ r, and we
have gs · ps∗ · v = gs · us · frs · pr

X

pr

��

v �� �� Y

ps∗
��

Br frs

�� Bs us
�� As∗

gs
��
∏

U A

X being finitely presentable, there exists t ≥ s and gst: A
s∗→ At∗ such that

gst · ps∗ · v = gst · us · frs · pr. Hence the diagram

X

pr

��

v �� �� Y

pt∗
��

Br frt

�� Bt ut
�� At∗
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commutes. Composing with the projection πt: A
t∗ → A, we get πtutfrt = f̄tfrt, and

the commutative square πtpt∗v = f̄tfrtpr induces a morphisms g: C → A making

X

pr

��

v �� �� Y

p′r
�� πtpt∗



�
��
��
��
��
��
��
��

Br
h �� ��

f̄tfrt ��''
'''

'''
'''

'''
' C

g

���
�

�
�

A

commute.

Now, from the definition of r = (i, {h}) ≤ t = (k, c), the fact that f̄tfrt factorizes
through h implies that f̄t factorizes through the cone c = (cj: Bk → Cj | j ∈ J(c)).
But this contradicts the definition of f̄t. Hence there must exist t: C → B such that
th = f ′

r, and one checks as in 2.4 (b) that tp′r: Y → B is the required diagonal in
the square qv = up. This completes the proof that u lies in M.

3. Injectivity and syntactic characterizations

In this section, we study the relations between injectivity classes and closure under the
three types of subobjects considered so far.

It may be useful first to see explicitly how the categorical Definitions 2.1 specialize in
the classical model theoretic context C = Mod(Σ ). We already mentioned that if M is the
class Emb of all (Σ-) embeddings, then the class E(M), in this category, is the family Sur
of all the surjective (Σ-) homomorphisms. Recall also that a basic formula is an atomic
formula or the negation of an atomic formula. We have:

3.1. Proposition. Let C = Mod(Σ ), Σ a λ-ary signature, with (E,M)=(Sur, Emb).
Below, β and δ (resp. γ) are arbitrary sets of less than λ atomic (resp. basic) formulas.
Let f : A −→ B be a morphism in C. Then

(a) f is λ-algebraically closed iff for every β(x ,y) such that

B |= ∃y(∧β[f(a),y ])

for some string a in A, we have

A |= ∃y(∧β[a ,y ]).

(b) f is weakly λ-existentially closed iff for every β(x ,y) and δ(x ,y) such that

B |= ∃y(∧β[f(a),y ] ∧ (¬ ∧ δ[f(a),y ]))

for some string a in A, we have

A |= ∃y(∧β[a ,y ] ∧ (¬ ∧ δ[a ,y ])).
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(c) f is λ-existentially closed iff for every γ(x ,y) such that

B |= ∃y(∧γ[f(a),y ])

for some string a in A, we have

A |= ∃y(∧γ[a ,y ]).

Proof. For λ = ω, (a) and (c) follow from Theorems 2.4 and 2.5, by the well-
known model theoretic characterizations of the algebraically closed and existentially closed
embeddings ([E, 77]). The general statement in (a) and (b) can be derived from 2.4 and
2.5 using the same standard technique than [E, 77]. However, we will sketch a direct
proof, in order to make the connection explicit.

We associate to any given family {kjg: A −→ C �� �� Dj }J of λ-presentable mor-

phisms, |J | < λ, the following (classical) presentations. First, we present A by its positive
diagram

A = 〈XA;Φ(XA)〉Σ ,

i.e., Φ(XA) := {ϕ(xa) | A |= ϕ[a ], ϕ atomic}. Here, as in the proof of 1.6, xa is a
string of variables corresponding to a . Capitalized (bold) letters will generally represent
strings or sets of unrestricted cardinality; we write ϕ(xa) to emphasize the fact that only
a substring xa of XA of length < λ can actually appear in any given ϕ (since Σ is λ-ary).

Then, applying the characterization of λ-presentable morphisms (1.2) to g, the fact
that λ-presentability in C = Mod(Σ ) has the usual meaning (see the proof of Proposition
1.6) allows one to see that C has a presentation of the form

〈XA ∪ xc;Φ(XA) ∪ β(xa ,xc)〉Σ

where β is some set of less than λ atomic formulas, and c is a string of elements of C of
length < λ. In this presentation, g is identified with the function xa �→ xa; if g(a) = g(a′),
the identification xa = xa′ (in the presentation of C) follows from the identities in β.

Similarly, for each j there exists a presentation of Dj which adds less than λ (variables
and) atomic formulas to the ones presenting C. All kj’s are surjective, so that for each
generator xd of Dj, we have d = kj(c) for some c ∈ C. Because |J | < λ, we can add one
xc to the generators of C for each c such that xkj(c) is involved in the presentation of Dj

(if it is not already there), and the cardinality of the set of all these extra xc will still be
< λ. Assuming this has been done in the presentation of C above, we can then present
Dj by

Dj = 〈XA ∪ xc;Φ(XA) ∪ β(xa ,xc) ∪ δj(xa ,xc)〉Σ ,

for some set δj of less than λ atomic formulas.
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Consider the diagram

A
Dj


J

C

�� ����������������



 

��������������

h
����

���
���

���
��





 ��
��

A

1A

��

g

����������

f
�� B

kj

���
�
�
�
�
�
�

where f and h are some Σ-homomorphisms. Then we have

B |= ∧β[f(a), h(c)] ∧ (∧j∈J(¬ ∧ δj[f(a), h(c)])).

If the diagram can be completed by some appropriate r:

A




 ��

����	 	 	 	 	 	 	

Dj


J

C

�� ����������������



 

��������������

r

���
�
�
�
�
�
�

����
���

���
���

��

A

1A

��

g

$#��������

f
�� B

then

A |= ∧β[a , r(c)] ∧ (∧j∈J(¬ ∧ δj[a , r(c)])).

Using this translation, the details of the proof are now straightforward.

We fix some notations to represent injectivity with respect to specific types of cones
and morphisms:

3.2. Definitions. Let C be a locally λ-presentable category.

(a) A λm-cone is a cone made of λ-presentable morphisms.

(b) If d is a morphism or a cone with domain A, we say that an object C is d-injective,
denoted by

C ||= d,

if every morphism f : A −→ C factorizes through d.
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(c) If D is a class of morphisms or of cones, Mod||=(D) will denote the class

{C ∈ C | C ||= d for all d ∈ D} .

Then, a class K of objects is a λm-injectivity class (resp. a λm-cone-injectivity class)
if there exists a class D of λ-presentable morphisms (resp. of λm-cones) such that
K = Mod||=(D). If D is a class of morphisms between λ-presentable objects, we say
that K is a λ-injectivity class.

Consider again the classical context C = Mod(Σ ), with Σ λ-ary, and (E,M) = (Sur,
Emb). Proceeding as in the proof of Proposition 3.1, each morphism gi of a λm-cone
d = (gi: A −→ Bi)I can be presented by generators and relations

〈XA,Φ(XA)〉Σ
gi �� 〈XA ∪ xbi

;Φ(XA) ∪ βi(xai
,xbi

)〉Σ

where gi(x) = x for all x ∈ XA. Then one sees that for C ∈ C,

C ||= d

if and only if

C |= ∀X (∧Φ(X ) −→ ∨i∈I(∃yi (∧βi(xi ,yi )))),

where we wrote X for XA, xi for xai
and yi for xbi

. Note that the xi ’s are substrings of
X , and that for each i ∈ I, the formula ∃yi (∧βi(xi ,yi )))) is in Lλ(Σ).

The following was proved in [H1, 98].

3.3. Theorem. [H1, 98] Let K be a class of objects in a locally λ-presentable category.

(a) The class of all λ-algebraically closed subobjects of the objects in K is a λm-cone-
injectivity class.

(b) K is a λm-cone-injectivity class iff it is closed under λ-algebraically closed subobjects.

(c) K is a λm-injectivity class iff it is closed under λ-algebraically closed subobjects and
products.

The proof uses in particular the characterization in Lemma 2.2.

For C = Mod(Σ ), Theorem 3.3 says that the classes of Σ-structures closed under λ-
algebraically closed subobjects are the ones axiomatizable by classes of sentences of the
appropriate type, as given after Definition 3.2. Adding closure under products is easily
seen to correspond to removing the disjunctions:
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3.4. Corollary. A class K of λ-ary Σ-structures is closed in Mod(Σ) under λ-
algebraically closed substructures (resp. under λ-algebraically closed substructures and
products) iff it can be axiomatized by a class of sentences of the form

∀X (∧Φ(X ) −→ ∨i∈I(∃yi (∧βi(xi ,yi))))

(resp.
∀X (∧Φ(X ) −→ ∃y(∧β(x ,y))) ),

where Φ is a set (of any cardinality) of atomic formulas, and each βi (resp. β) is a set of
less than λ atomic formulas.

The sentences in Corollary 3.4 are in L∞(Σ). What prevent them to be in Lλ(Σ),
are the sizes of β and of I. Adding closure under λ-directed colimits to closure under
products will give the expected preservation theorem in Lλ(Σ). In terms of injectivity, this
means we will pass from injectivity with respect to λ-presentable morphisms to injectivity
with respect to morphisms between λ-presentable objects (i.e., from λm-injectivity to λ-
injectivity). This will be shown in the context of locally λ-presentable categories (Theorem
3.5 below), giving us a different proof of the main result of [RAB, 02].

To reduce the class of λ-presentable morphisms in Theorem 3.3 to a set, the additional
condition needed of C is precisely to be closed under α-directed colimits for some α. This
was shown already in [AR, 93]. We will obtain the refined version of [RAB, 02] by
showing that closure under λ-directed colimits allows replacing λ-presentable morphisms
by morphisms between λ-presentable objects (of which essentially only a set exists).

It is known from the 60’s that an elementary class K of finitary Σ-structures is closed
under directed colimits and (reduced) products if and only if it can be axiomatized by
(Lω(Σ)-) sentences of the form

∀x (∧ϕ(x )) −→ ∃y(∧β(x ,y))

where ϕ and β are finite sets of atomic formulas (see [CK, 90]). More recently, Rothmaler
([R, 97]) noticed that the assumption of elementarity of K can be replaced by closure
under (ω-) algebraically closed substructures. This amounts to replace closure under
elementary substructures by closure under algebraically closed substructures. Krause ([K,
98]) also obtained this characterization, in a context which roughly corresponds to the
additive locally finitely presentable categories (note that his locally presented categories
are different from the locally presentable categories). Finally, this characterization without
the additivity and the finitary assumptions is obtained in [RAB, 02], by very different
methods. We reach the same result following a different path altogether, as a consequence
of our Theorem 3.3.

3.5. Theorem. [RAB, 02] Let K be a class of objects in a locally λ-presentable category
C. Then K is a λ-injectivity class iff it is closed under products, λ-directed colimits and
λ-algebraically closed subobjects (or, equivalently, closed under λ-reduced products and
λ-algebraically closed subobjects).
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Proof. Clearly, closure under λ-directed colimits and products implies closure under
λ-reduced products. Hence we need to show that

1) if K is a λ-injectivity class, then it is closed under λ-directed colimits, products and
λ-algebraically closed subobjects, and

2) if K is closed under λ-reduced products and λ-algebraically closed subobjects, then
it is a λ-injectivity class.

As for 1), λ-injectivity classes are special λm-injectivity classes, so by 3.3, only closure
under λ-directed colimits remains to be shown. This is left as a straightforward exercise.
We now prove 2).

Products are special λ-reduced products, so we know from 3.3 that K = Mod||=(D)
for some class D of λ-presentable morphisms. To be able to replace D by a class (and
then, by a set) of morphisms between λ-presentable objects of C, we will use Proposition
1.2.

We first note that for a diagram

C

��

m �� D

��
A

m∗
��

f ���
��

��
��

E

r
����
B

��
s

��

satisfying the conditions in the statement of 1.2, we have, for any object X in C,

a) X ||= m∗ ⇔ X ||= f , and

b) X ||= m ⇒ X ||= m∗.

This follows easily from the facts that the square is a pushout and that rs = 1f in (A ↓ C).
Then by a), we can assume that the class D above is made of morphisms of type m∗, i.e.,
pushouts of morphisms between λ-presentable objects. Using b), we will be done if we
prove the following:

3.6. Lemma. Let K be a class of objects in C closed under λ-reduced products. Let
K ||= f for some f which is the pushout of a morphism between λ-presentable objects.
Then f is the pushout of some morphism mf between λ-presentable objects such that
K ||= mf .

Proof. Let then

C

n

��

m �� D

q

��
A

f �� B
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be a pushout diagram, where C and D are λ-presentable and K ||= f .
Let (n′

i: (ni: C −→ Ai) −→ (n: C −→ A))I be the colimit in (C ↓ C) of the λ-
directed diagram (nij: ni −→ nj)I , where the ni’s are λ-presentable morphisms. Taking
the pushout (qi,mi) of (ni,m) for each i, we get the commutative diagram

C

n

��

m ��

ni

���
��

��
��

D

q

��

qi

���
��

��
��

Ai

nij

��

mi �� Pi

pij

��
Aj

n′
j����

��
��
�

mj �� Pj

pj		��
��
��
�

A
f

�� B

where the pi’s and the pij’s are the induced morphisms. We now assume K ||= f , and we
suppose K �||= mi for all i ∈ I. We will reach a contradiction.

K �||= mi means that there exists gi: Ai −→ Ki, Ki ∈ K, which does not factorize
through mi: Ai −→ Pi. Choose a λ-complete filter F on I which contains all i∗ = {j ∈
I | i ≤ j}, i ∈ I. Denote by (ci:

∏
k∈i∗

Ak −→ ∏
F Ak)I the colimit diagram (in C) of the

λ-directed diagram of the projections

( πij:
∏
k∈i∗

Ak −→
∏
k∈j∗

Ak | i ≤ j )I .

Denoting by ni∗ : Ai −→
∏

k∈i∗
Ak the morphism ni∗ = 〈nij〉j∈i∗ , the family {ni∗}i∈I induces

a morphism n∗: A = colim
i∈I

(Ai) −→
∏

F Ak = colim
i∈I

(
∏

k∈i∗
Ak) such that n∗n′

i = cini∗ for all

i ∈ I. The family {gi: Ai −→ Ki}I induces morphisms
∏

k∈i∗
gk:

∏
k∈i∗

Ak −→ ∏
k∈i∗

Kk and
∏

F gk:
∏

F Ak −→ ∏
F Kk, such that the diagram

C

n

��

ni

/.(
((

((
((

(
m �� D

q

��

qi

/.(
((

((
((

(

Ki

∏
k∈i∗

Kk
πi

��

ci
 �)))

))
))
))

∏
k∈i∗

Ak∏
k∈i∗

gk

��

ci
 �)))

))
))
))

Ai

gi

0/
ni∗

�� mi ��

n′
i

.-&&
&&
&&
&&
&

Pi

pi

.-&&
&&
&&
&&
&

∏
F Kk

∏
F Ak∏

F gk

�� A
n∗

��
f

�� B

commutes. Now,
∏

F Kk ∈ K, so that (
∏

F gk)n
∗: A −→ ∏

F Kk must factorize (
∏

F gk)n
∗ =

gf through f , for some g: B −→ ∏
F Kk. We have gq: D −→ ∏

F Kk = colim
i∈I

(
∏

k∈i∗
Kk)
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with D λ-presentable, so that there must exist i ∈ I and ti: D −→ ∏
k∈i∗

Kk such that

citi = gq.
In the diagram

C
m ��

ni
/.(

((
((

((
(

tim

&%**
**
**
**

D

Ki

∏
k∈i∗

Kk
πi

��

ci

��

Ai(
∏

k∈i∗
gk)ni∗

��

∏
F Kk

we have ci · (
∏

k∈i∗
gk) · (ni∗) = ci · (tim) (by chasing the previous diagram). C being λ-

presentable, we can choose i such that (
∏

k∈i∗
gk)ni∗ = tim. This equality induces (a unique)

d: Pi −→ Ki such that dmi = gi (and dqi = πiti)

C
m ��

ni

��%
%%

%%
%%

% D ��

��

πiti

��

qi

���
��

��
��

Ai
mi ��

gi

��""
""
""
""

Pi

d

10� � � � � � � � � � � �

Ki

(noting that gi = πi · (
∏

k∈i∗
gk) · ni∗). This contradicts the assumption above.

Using 3.6 and the remarks preceding it, it follows that K = Mod||=(D′), where D′ =
{ mf | f ∈ D }. This completes the proof of 3.5.

3.7. Notes.

1) Lemma 3.6 can be seen as the categorical version of an infinitary “compactness-
like” property: following the translation just after Definition 3.2, its meaning in
C = Mod(Σ ), Σ λ-ary, is that if K is a class of Σ-structures closed under λ-reduced
products, then for any given sentence of the form

∀X (∧Φ(X ) −→ ∃y(∧β(x ,y)))

true in K, where Φ is a set (of any cardinality) of atomic formulas, x ⊆ X , and β
is a set of less than λ atomic formulas, there exists a subset ϕ of Φ of cardinality
less than λ, and x ′ ⊇ x such that K satisfies

∀x ′(∧ϕ(x ′) −→ ∃y(∧β(x ,y))).
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Clearly this and Corollary 3.4 imply that the classes of Σ-structures closed under
products, λ-directed colimits and λ-algebraically closed substructures are the ones
axiomatizable by sets of Lλ(Σ)-sentences as above (called λ-regular sentences). In
[RAB, 02], a counterexample shows that the analogous reduction is not possible if
the class is not closed under products.

2) What was done in Theorem 3.3 and Corollary 3.4 for algebraically closed embed-
dings can be done for existentially closed and weakly existentially closed embeddings.

First, instead of λm-cones, one considers diagrams of the form ( A
(λ)

gi

�� Bi hij

(λ) �� �� Cij |
i ∈ I, j ∈ Ji ), with each |Ji| < λ (resp., |Ji| < 2), and then defines injectivity with
respect to these diagrams in an appropriate way. Then, using a very similar tech-
nique than the proof in [H1, 98], and using the relevant parts of Lemma 2.2, one
shows that the classes of objects closed under λ-existentially closed (resp., weakly
λ-existentially closed) subobjects are precisely the injectivity classes with respect
to the above special types of diagrams. A syntactic characterization (in the context
of C = Mod(Σ )) follows easily. However, serious difficulties arise when one adds
closure under λ-directed colimits, in trying to obtain the analogous of the charac-
terization 3.5. This is not surprising, considering the difficulty of the proofs of the
classical preservation theorem for reduced products, even for ∀∃-theories (see [CK,
90], Section 3.5). The infinitary case also seems to raise additional problems, see
[HS, 81]. Actually, the very fact that the known proof of the classical preservation
theorem for reduced products is so intricate may be seen as an incentive to look for
a different (more categorical?) line of attack.
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