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SEMI-ABELIAN MONADIC CATEGORIES

Dedicated to Aurelio Carboni on the occasion of his sixtieth birthday.

MARINO GRAN AND JIŘÍ ROSICKÝ

Abstract. We characterize semi-abelian monadic categories and their localizations.
These results are then used to obtain a characterization of pointed protomodular quasi-
monadic categories, and in particular of protomodular quasivarieties.

1. Introduction

The notion of semi-abelian category can be considered as intermediate between the notion
of Barr-exact category and the one of abelian category. Semi-abelian categories were
introduced by Janelidze, Márki and Tholen [12] in a closed connection with the more
general protomodular categories due to Bourn [4]. A finitely complete category with a
zero object is protomodular if and only if it satisfies the split short five lemma. Semi-
abelian categories are defined as exact protomodular categories with finite coproducts and
a zero object. These categories are suitable to develop several basic aspects of homological
algebra of groups and rings [6], as well as an abstract theory of commutators and of ideals
[5]. Among the examples of semi-abelian categories there are the categories of groups,
rings, commutative rings, Lie algebras, Heyting semilattices, crossed modules and compact
Hausdorff groups.

Every variety of universal algebras is an exact category, and abelian varieties are
precisely those whose theories contain abelian group operations 0, − and + in such a way
that these operations are homomorphisms. When the theory of a variety V only contains
group operations 0, − and +, then V is semi-abelian. Bourn and Janelidze recently
characterized semi-abelian varieties [7] as those whose theories contain a unique constant
0, binary operations α0, α1, ..., αn−1 for n ≥ 1 and a (n+1)-ary operation β satisfying the
equations αi(x, x) = 0 for i = 0, 1, ..., n − 1 and β(α0(x, y), α1(x, y), ..., αn−1(x, y), y) = x.
The case n = 1 shows that the above-mentioned existence of a group operation suffices
to guarantee that V is semi-abelian, by setting α0(x, y) = x − y and β(x, y) = x + y.
Varieties of algebras satisfying these axioms have been also studied by Ursini [19], who
called them classically ideal determined.
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In the present paper we show that the characterization of semi-abelian varieties can
be extended to infinitary and many sorted ones. As a consequence we prove that C∗-
algebras form a semi-abelian category, and we provide explicit operations witnessing this
fact. Every variety of infinitary many-sorted algebras is exact and locally presentable.
Having a general exact locally presentable category C, we can consider the varietal hull
V of C with respect to a chosen regular generator G of C. Following [21] the category C
is a localization of V and, thus, C is semi-abelian whenever V is semi-abelian. Using our
characterization of semi-abelian infinitary many-sorted varieties we get a characterization
of their localizations. In particular, any exact locally presentable category C containing a
regular generator G which is a cogroup in C is semi-abelian.

In the last section we characterize protomodular quasimonadic categories, and then
protomodular quasivarieties and their localizations.

2. Semi-abelian monadic categories

Let us recall that a functor U :V → Sets is monadic if it has a left adjoint F and the
comparison functor from V to the category of algebras Alg(T ) of the induced monad
T = UF is an equivalence. A category V is monadic over sets if there exists a monadic
functor U :V → Sets. Monadic categories are precisely those given by a class of single-
sorted infinitary operations and a class of equations such that free algebras exist [14]. Free
algebras always exist if V is determined by a set of operations and a set of equations. In
any case, the elements of UF (n) (where n is a cardinal and F (n) is a free algebra over n)
correspond to n-ary terms.

The first result we are going to prove is a straightforward generalization of the char-
acterization of semi-abelian varieties given in [7]. We shall follow the presentation given
in [3].

Let us recall that in any finitely complete pointed category the split short five lemma
means the following statement: given a diagram (1)

A′

f

��

k′
�� B′

g

��

p′
�� C ′

h

��

s′��

A
k

�� B
p

�� C
s��

where all squares are commutative, p ◦ s = 1C , p′ ◦ s′ = 1C′ , k = ker(p), k′ = ker(p′) and
f and h are isomorphisms, then g is an isomorphism.

2.1. Theorem. Let U :V → Set be a monadic functor. Then V is semi-abelian if and
only if the corresponding theory has a unique constant 0, binary terms αi i ∈ n, where
n ≥ 1 is a cardinal, and a (n + 1)-ary term β satisfying the equations

αi(x, x) = 0 for i ∈ n
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and
β(α0(x, y), α1(x, y), ..., αi(x, y), ..., y) = x.

Proof. Let F (x, y) and F (y) be the free algebras on {x, y} and {y} respectively, and
let p: F (x, y) → F (y) be the homomorphism determined by p(x) = p(y) = y. Then p
is split by the inclusion s: F (y) → F (x, y). Let k: K → F (x, y) be a kernel of p and A
a subalgebra of F (x, y) generated by UK ∪ UF (y). Since the codomain restriction of k
is a kernel of the domain restriction p′: A → F (y) of p, A = F (x, y) by the split short
five lemma. Hence there are elements ki ∈ K, with i ∈ n, (where n ≥ 1 is a cardinal)
and a (n + 1)-ary term β such that x = β(k0, k1, ..., ki, ..., y). Since ki ∈ K, there are
binary terms αi(x, y) such that αi(x, y) = ki for i ∈ n. Moreover, one obviously has that
αi(x, x) = 0.

Conversely, assume that the terms satisfying the conditions in the theorem exist. Let
us then consider the diagram (1), and we are going to prove that the arrow g is an
isomorphism.

First consider a and b in B′ such that g(a) = g(b). Then

(h ◦ p′)(αi(a, b)) = (p ◦ g)(αi(a, b)) = p(αi(g(a), g(b))) = p(0) = 0

and then αi(a, b) is in A′ for i ∈ n. Since (k ◦ f)(αi(a, b)) = 0, it follows that αi(a, b) = 0
for i ∈ n, which implies that a = b because

b = β(α0(b, b), α1(b, b), ..., b) = β(0, 0, ..., b) = β(α0(a, b), α1(a, b), ..., b) = a.

Consequently, g is injective.
In order to check that g is surjective, let us consider any b ∈ B. We define a =

(s′ ◦ h−1 ◦ p)(b). We have

p(αi(b, g(a)) = αi(p(b), (p ◦ g)(a)) = αi(p(b), p(b)) = 0.

Hence αi(b, g(a)) is in A for i ∈ n and then

b = β(α0(b, g(a)), α1(b, g(a)), ..., g(a)) = β(g(a0), g(a1), ..., g(a)) = g(β(a0, a1..., a))

where f(ai) = αi(b, g(a)) for i ∈ n. Thus g is surjective.

2.2. Remark. a) The same argument applies to varieties of S-sorted algebras, i.e. to
monadic categories U :V → SetS. One just needs terms αi for i ∈ n and β in each sort
s ∈ S.
b) A similar argument allows one to characterize protomodular monadic categories: one
simply has to replace the single constant 0 by constants ei for i ∈ n, with the properties
αi(x, x) = ei and one keeps the axiom

β(α0(x, y), α1(x, y), ..., αi(x, y), ..., y) = x.

The following well-known simple lemma [6] immediately follows from the definitions:
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2.3. Lemma. Let H: C → L be a conservative pullback preserving functor, where C and
L are pointed categories with pullbacks and L satisfies the split short five lemma. Then C
satisfies the split short five lemma.

2.4. Example. Let C be the category of non-unital C∗-algebras, where arrows are
continuous homomorphisms of involutive algebras. The forgetful functor from C to the
category of involutive algebras preserves finite limits and reflects isomorphisms (see 1.3.3
and 1.3.7 in [9]). Following Lemma 2.3, C satisfies the split short five lemma. Since
C is monadic via the unit ball functor U : C → Set (see [15], [20]) it is exact and thus
semi-abelian. We are now going to give explicitely the operations witnessing this fact.

Following [18], in the theory of non-unital C∗-algebras we have the operations

α0(x, y) =
1

2
x − 1

2
y

and

β(x, y) = 2 2(
1

2
x +

1

4
y)

where
2 = 2(1 ∨ 2 | z |)−1z

and
| z |= (z∗ · z)

1
2 .

Then

α0(x, x) =
1

2
x − 1

2
x = 0

and

β(α0(x, y), y) = β(
1

2
x − 1

2
y, y) = 2 2(

1

4
x − 1

4
y +

1

4
y) = 2 2(

1

4
x) = 2(

1

2
x) = x.

2.5. Remark. The fact that commutative C∗-algebras form an exact Maltsev category
was first observed in [8].

2.6. Example. The category CompGrp of compact groups is monadic via the usual
forgetful functor U : CompGrp → Set. This immediately follows from the existence of free
compact groups [11]. Since a group operation is present, CompGrp is semi-abelian.

3. Localizations of semi-abelian varieties

Let C be a cocomplete category with a regular generator G and consider the functor
U : C(G,−): C → Set. There is a left adjoint F to U sending a set n to the n-th copower
n · G of G. Let T = UF be the induced monad and H: C → Alg(T ) be the comparison
functor. Since G is a regular generator, H is a full embedding. Theorem 2.1 tells us when
Alg(T ) is semi-abelian. In terms of a generator G, the conditions in Theorem 2.1 can be
expressed as follows:
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1. there is exactly one arrow 0:G → 0 (where 0 is the initial object in C).

2. there exist arrows αi: G → 2 · G, i ∈ n (where n ≥ 1 is a cardinal) such that the
square

G
αi ��

��

2 · G
∇

��
0 �� G

commutes (∇ is the codiagonal).

3. there is an arrow β: G → n · G such that the diagram

G
β ��

i1 ���������� n · G
(α0,α1,...,αi,...)������
���

��

2 · G
commutes (i1 is the first injection into the coproduct).

We shall call a semi-abelian generator any regular generator G satisfying these three
conditions. Now, let us recall that a full reflective subcategory C of a category L is a
localization if the reflector L:L → C preserves finite limits.

3.1. Proposition. A category C is a localization of a semi-abelian monadic category
over Set if and only if C is a cocomplete exact category with a semi-abelian generator.

Proof. Due to the main result in [21] one already knows that localizations of monadic
categories over Set are precisely cocomplete exact categories with a regular generator G.
More precisely, having such a category C then the comparison functor H: C → Alg(T )
is a localization. This immediately yields the sufficiency. For the necessity it suffices to
observe that any localization of a semi-abelian category is semi-abelian by Lemma 2.3.

3.2. Remark. There is an evident many-sorted version characterizing localizations
of semi-abelian monadic categories over many-sorted sets as cocomplete exact categories
having a semi-abelian generator. It is also possible to characterize localizations of semi-
abelian varieties of universal algebras (see [22]).

3.3. Proposition. A pointed category C having copowers, pullbacks and a semi-abelian
generator satisfies the split short five lemma.

Proof. Under our assumption there is still a left adjoint F to U = C(G,−) and the
comparison functor H: C → Alg(T ) is a full embedding. Since U preserves pullbacks, the
forgetful functor V : Alg(T ) → Set creates them and V ◦ H = U , the functor H preserves
pullbacks. Since Alg(T ) satisfies the split short five lemma, we conclude by Lemma 2.3
that C satisfies it as well.



SEMI-ABELIAN MONADIC CATEGORIES 111

3.4. Remark. In order to give an example of a protomodular locally finitely presentable
category C with a zero object which does not have a semi-abelian generator, we will present
it as an essentially algebraic theory Γ (see [1]). Let Γ contain a unique constant 0, binary
total operations α0, γ and a binary partial operation β(z, t) whose domain of definition
Def(β) is given by the equation γ(z, t) = 0. Let Γ contain the equations α0(x, x) = 0,
γ(α0(x, y), y) = 0 and β(α0(x, y), y) = x. Then the argument used in Theorem 2.1 is still
valid and Alg(T ) then satisfies the split short five lemma. On the other hand, β is not
everywhere defined, which means that there is no reason for Alg(T ) to have a semi-abelian
generator.

4. Protomodular quasivarieties

A category is quasimonadic over Set if it is a full regular epireflective subcategory of a
monadic category over Set (i.e. a full reflective subcategory with the property that the
unit of the adjunction is a regular epimorphism). Quasimonadic categories over Set are
precisely cocomplete regular categories C with a regular projective regular generator [10].
Again one uses H: C → Alg(T ) to present C as a full regular epireflective subcategory of
a monadic category.

4.1. Theorem. Let C be a pointed category. Then the following conditions are
equivalent:

1. C is a full regular epireflective subcategory of a semi-abelian monadic category

2. C is cocomplete, regular, and it has a regular projective semi-abelian generator.

Moreover, if C satisfies these equivalent conditions, then C is protomodular.

Proof. Every cocomplete regular category C with a regular projective semi-abelian
generator is a full regular epireflective subcategory of a semi-abelian monadic category
Alg(T ) by Theorem 2.1.

Conversely, let C be a regular epireflective subcategory of a semi-abelian monadic
category Alg(T ), and let F (1) be a free T -algebra on 1. Then the reflection of F (1) to C
is a regular projective semi-abelian generator of C. Moreover, C is clearly cocomplete and
regular.

The last statement in the Theorem follows from Lemma 1.3.

In order to give a characterization of semi-abelian quasivarieties, let us recall that an
object G is abstractly finite if for any small set n there exists the n-th copower S · G of
G and, moreover, any arrow G → S · G factors through S ′ · G for some finite subset S ′

of S [13]. Any finitely presentable object is abstractly finite. Then from Corollary 4.4,
Corollary 4.6 in [17] and Theorem 4.1 above the following results easily follow:

4.2. Corollary. A pointed category C is a regular epireflective subcategory of a
protomodular finitary variety of universal algebras if and only if it is cocomplete, regular
and has a regular projective abstractly finite semi-abelian generator.



112 MARINO GRAN AND JIŘÍ ROSICKÝ

4.3. Corollary. A pointed category C is a protomodular quasivariety if and only
if it is cocomplete, regular and has a finitely presentable regular projective semi-abelian
generator.

4.4. Example. The category Abtf of torsion-free abelian groups is an example of
a pointed protomodular quasivariety. Indeed, Abtf is reflective in the category Ab of
abelian groups, and it is closed in it under subobjects.

We conclude with the following

4.5. Theorem. A pointed category C is a localization of a protomodular quasimonadic
category if and only if C is a cocomplete regular category with a semi-abelian generator.

Proof. Necessity is clear. Let then C be a cocomplete regular category with a semi-
abelian generator. Following the proof of Theorem 1.1 in [16], the category C is a localiza-
tion of its regular epireflective hull in Alg(T ). Then C is a localization of a protomodular
quasimonadic category over Set.

All the results in this section have obvious many-sorted versions.
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