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BIRKHOFF’S VARIETY THEOREM WITH AND WITHOUT FREE
ALGEBRAS

To the memory of Jan Reiterman

JIŘÍ ADÁMEK, VĚRA TRNKOVÁ

Abstract. For large signatures Σ we prove that Birkhoff’s Variety Theorem holds
(i.e., equationally presentable collections of Σ-algebras are precisely those closed under
limits, subalgebras, and quotient algebras) iff the universe of small sets is not measurable.
Under that limitation Birkhoff’s Variety Theorem holds in fact for F -algebras of an
arbitrary endofunctor F of the category Class of classes and functions.

For endofunctors F of Set, the category of small sets, Jan Reiterman proved that if
F is a varietor (i.e., if free F -algebras exist) then Birkhoff’s Variety Theorem holds
for F -algebras. We prove the converse, whenever F preserves preimages: if F is not a
varietor, Birkhoff’s Variety Theorem does not hold. However, we also present a non-
varietor satisfying Birkhoff’s Variety Theorem. Our most surprising example is two
varietors whose coproduct does not satisfy Birkhoff’s Variety Theorem.

1. Introduction

Garrett Birkhoff characterized in 1935 varieties of finitary algebras; in his proof he used
free algebras substantially. In the present paper we investigate the limitations of gen-
eralizations of Birkhoff’s result beyond “finitary” and, to a restricted extent, beyond
“over Set”. Recall the original statement of Birkhoff’s Variety Theorem: a full sub-
category of Alg Σ, the category of algebras on a finitary signature Σ, is presentable by
equations iff it is closed under

(a) regular quotients,

(b) subobjects, and

(c) products

in Alg Σ. Well, this is not the original formulation: instead of full subcategory Birkhoff
used classes of Σ-algebras, and he spoke about homomorphic images in (a), and subal-
gebras in (b). However, for algebras over Set it is well-known and easy to prove that

Both authors supported by the Czech Grant Agency under No. 201/02/0148; the second author
supported also by MSM 0021620839.

Received by the editors 2005-08-22 and, in revised form, 2005-11-14.
Transmitted by Walter Tholen. Published on 2005-12-18.
2000 Mathematics Subject Classification: 18C10.
Key words and phrases: variety, Birkhoff’s Theorem.
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regular epimorphisms are precisely the surjective homomorphisms, and subobjects are
precisely the subalgebras. Notice also that in (c) above closure under limits may be felt
as more “natural”—but in the presence of (b) this is equivalent to closure under products,
of course. This fact is (dramatically) no longer true if we move from sets to classes, as we
mention below.

There are good reasons for attempting to generalize Birkhoff’s Variety Theorem in
Categorical Algebra: for some “juicy” examples of categories that we consider algebraic,
e.g., the category CompT2 of compact Hausdorff spaces, the corresponding signature
is not finitary, and, in fact, it is not a small signature. There are two ways of dealing
with this: we either substitute signatures by endofunctors of Set (e.g., for CompT2 the
canonical endofunctor to consider is the ultrafilter functor β, see Example 2.5 (iii) and 3.4)
or we admit that a signature may be a class of operation symbols—and then we move
from Set to Class, the category of classes. In the present paper we do both:

(1) For F -algebras where F is an endofunctor of Set we study the question of when
Birkhoff’s Variety Theorem holds. Jan Reiterman observed that whenever F is a varietor,
i.e., free F -algebras exist, then Birkhoff’s Variety Theorem holds. We prove the converse
implication for all functors preserving nonempty preimages (which is a weak requirement
fulfilled e.g. by all functors weakly preserving pullbacks): whenever such a functor is not
a varietor than Birkhoff’s Variety Theorem does not hold for F -algebras. On the other
hand, we present an example of a set functor which is not a varietor, although it satisfies
Birkhoff’s Variety Theorem. A full characterization of all set functors for which Birkhoff’s
Variety Theorem holds is an open problem. We also present varietors F and G such that
Birkhoff’s Variety Theorem fails for F +G, where algebras of F +G are just “bialgebras”
carrying a structure of an F -algebra as well as that of a G-coalgebra; we consider this to
be very surprising.

(2) For endofunctors of Class, Birkhoff’s Variety Theorem (with closure under limits
in (c) above) is proved to hold whenever the universe Set of small sets is not “too large”:
what we need is the set-theoretical assumption that Set is not measurable. In fact, this
assumption is also necessary: if Set is measurable then even Σ-algebras do not satisfy
Birkhoff’s Variety Theorem for large signatures Σ.

Standard categorical concepts and facts used in the text without explanation can be
found in Mac Lane [15] or Adámek-Herrlich-Strecker [5].

Acknowledgement. In his seminal dissertation entitled “Categorical Algebraic Con-
structions” [17] Jan Reiterman developed a theory of algebraized chains, and later he
summarized the main ideas in his paper [18]. That paper was a basic inspiration for
us: the reader will see that the part concerning endofunctors of Set uses ideas of [18]
extensively. In particular, algebraized chains play a crucial role in the proof of the Main
Theorem in Section 3.
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2. Preliminary Facts About Set Functors

2.1. Throughout this section F denotes an endofunctor of Set, the category of small sets.
We also use the notation

Set∗

for the full subcategory of Set on all nonempty sets.

2.2. Fact. (See [20] or [9].) For every set functor F there exists a set functor F ∗ preserving

(i) monomorphisms and

(ii) finite intersections (i.e., pullbacks of monomorphisms)

such that F ∗ coincides on Set∗ with F .

2.3. Notation. We denote by C01 the functor with ∅ � �� ∅ and X � �� 1 for all
nonempty sets X.

A natural transformation � : C01
�� F is called a distinguished point of F . In 2.2 we

can define F ∗ by taking as F ∗∅ the set of all distinguished points (and, for f : ∅ �� X
defining F ∗f by � � �� �X).

2.4. Remark. Recall from the survey paper [19] that in coalgebra one often works with
set functors which preserve weak pullbacks (i.e. turn pullback squares to squares having
the same factorization property except that factorizations need not be unique). We will
use a weaker assumption: F preserve nonempty preimages, i.e., it preserve pullbacks along
a monomorphism in Set∗. The implication

weakly preserves pullbacks =⇒ preserves nonempty preimages

is easily verified: given a preimage

Y0 Y��
n

��

X0

Y0

f0

��

X0 X�� m �� X

Y

f

��

with X0 �= ∅, then m is a split monomorphism, therefore, Fm is a monomorphism. Thus,
the F -image of the square, being a weak pullback, is a pullback.

2.5. Examples. (i) Preservation of weak pullbacks is a relatively weak assumption: the
collection of all set functors preserving weak pullbacks is closed under

product (in particular power-to-n for any cardinal n)

coproduct, and
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composition.

Since that collection contains the identity functor Id and the constant functors, it contains
all the polynomial functors HΣ where Σ is a signature: recall that HΣ is given on objects X
by

HΣX =
∐
σ∈Σ

Xn n = arity of σ

and is thus a coproduct of limit-preserving functors.
(ii) Also the power-set functor P weakly preserves pullbacks. Recall that P is defined

on objects X by PX = exp X and on morphisms f : X �� Y by Pf : M � �� f [M ].
The composite functor P(Σ ×−) whose coalgebras are the labelled transition system
with action set Σ, see [19], consequently also preserves pullbacks.

(iii) Another example: the ultrafilter functor β defined on objects X by

βX = the set of all ultrafilters on X

and on morphisms f : X �� Y by

βf : U � �� {V ⊆ Y ; f−1(V ) ∈ U }

weakly preserves pullbacks. In fact, let

Z Tg
��

X

Z

f̄

��

X Y
ḡ �� Y

T

f

��

be a pullback. We are to show that given ultrafilters U ∈ βY and V ∈ βZ with
βf(U ) = βg(V ), there exists an ultrafilter W ∈ βX with βf̄(W ) = V and βḡ(W ) = U .
Observe that the collection of all sets

DA,B = f̄−1(A) ∩ ḡ−1(B)

with A ∈ V and B ∈ U fulfilling f [B] = g[A] is closed under finite intersections, and
does not contain ∅. (In fact, choose C ∈ βf(U ) with f−1(C) ⊆ B and g−1(C) ⊆ A, then
DA,B contains the preimage of C.) Therefore, there exists an ultrafilter W containing
all DA,B’s. It is easy to verify that W is mapped to V by βf̄ and to U by βḡ.

2.6. Fact. Preservation of nonempty preimages is even weaker than preservation of weak
pullbacks: The collection of all set functors preserving nonempty preimages is closed under

product,

coproduct,
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composition, and

subfunctor.

And the collection of all functors preserving weak pullbacks is its a proper subcollection.
The proofs of the four closure properties are trivial and we omit them.

Recall from [1] the subfunctor (−)3
2 of the polynomial functor (−)3 assigning to every

set X the subset X3
2 ⊆ X × X × X of all triples whose components are not pairwise

distinct. Then (−)3
2 does not preserve weak pullbacks, but it does preserve nonempty

preimages because (−)3 does.

2.7. Examples. (1) The polynomial functors, the power-set functor P and the func-
tor P(Σ ×−) preserve weak pullbacks, thus, preserve nonempty preimages.

(2) Our insistence on “nonempty” is inspired by the fact that the implication

preserves weak pullbacks =⇒ preserves preimages

is false in general. A counterexample is C2,1, taking ∅ to a two-element set and all
nonempty sets to 1. This functor preserves weak pullbacks (obviously), but it does not
preserve the preimage

1 1 + 1
inr

��

∅

1
��

∅ 1�� 1

1 + 1

inl

��

(where inl or inr denote the left and the right coproduct injections).
(3) A functor not preserving nonempty preimages: let D be the quotient of (−)2

modulo the diagonal. That is, on objects X we have DX = X × X/∼ where ∼ is the
smallest equivalence relation with the diagonal 	 ⊆ X × X as one class. For every
function f : X �� 1 where X has at least two elements the functor D does not preserve
the preimage

1 1 + 1
inl1

��

X

1

f

��

X X + X
inlX �� X + X

1 + 1

f+f

��

2.8. Remark. (i) Let us call a set functor preconstant if its restriction to the category Set∗

of all nonempty sets is naturally isomorphic to a constant functor. It follows from results
of V. Koubek [13], see also 3.4.7 in [9], that every set functor F is either preconstant, or
there exists a cardinal γ such that for every set X we have:

card X ≥ γ implies card FX ≥ card X.
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(In [9] preconstant functors are called constant.)
(ii) Every set functor F is a coproduct

F =
∐
s∈S

Fs

of indecomposable functors, called the components of F . (In fact, put S = F1 and for
s ∈ F1 let FsX ⊆ FX be the preimage of s under FtX for the unique tX : X �� 1. See
[20] or [9] for more details.)

2.9. Lemma. Every component of a set functor preserving nonempty preimages is faithful
or preconstant.

Proof. It is easy to see that a set functor preserves nonempty preimages iff every com-
ponent does. Therefore, we can restrict ourselves to indecomposable set functor F (i.e.,
with card F1 = 1).

Suppose that F is a non-faithful indecomposable functor preserving nonempty preim-
ages. Every non-faithful set functor has a distinguished point ϕ : C01

�� F , see [20]
or [9]. Consider the preimage as in 2.7 (3). (We denote by inlX and inrX the left and
right coproduct injections X �� X + X.) Since Ff is a constant function, it follows that
F (f+f) maps both of the subobjects F inlX and F inrX onto the element ϕ1+1 ∈ F (1 + 1),
and so does F inl1. Thus, the preimage of F inl1 under F (f + f) contains F inrX . How-
ever, this preimage is F inlX , and since F is indecomposable, the intersection of F inlX
and F inrX has one element. This proves that FX has one element. Thus, F is precon-
stant.

2.10. Remark. Faithful components G of any set functor preserve finite intersections,
see [9]. In particular, they preserve disjointness of subobjects: if m1 : M1

�� X and
m2 : M2

�� X are disjoint subobjects of X, then Gm1 and Gm2 are disjoint subobjects
of GX.

3. Birkhoff’s Variety Theorem in Set

3.1. We work here with algebras in the category Set (of small sets) whose type is de-
termined by an endofunctor F of that category. That is, an algebra is a set A equipped
by a mapping α : FA �� A. Given algebras (A,α) and (B, β), a homomorphism is a
function f : A �� B such that the square

FB B
β

��

FA

FB

Ff

��

FA A
α �� A

B

f

��

commutes. These algebras were first studied by J. Lambek [14]. We denote the category
of these algebras by Alg F .
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3.2. Example. The classical Σ-algebras (for a signature Σ, i.e., a set Σ of operation sym-
bols with prescribed arities which are arbitrary cardinals) are captured by the polynomial
functor, see 2.5.

3.3. Example. The category Alg P where P is the power-set functor, see 2.5 (iii),
contains e.g. the variety of complete join semilattices as a full subcategory: to every
such semilattice A assign the function α : PA �� A of formation of joins, then P-
homomorphisms are precisely the functions preserving joins.

3.4. Example. As in 2.5 (iii), let β denote the ultrafilter functor. Then the category Alg β
contains e.g. the category of compact Hausdorff spaces as a full subcategory: to every
such space A assign the function α : βA �� A taking every ultrafilter to its unique limit
point in A. Then β-homomorphisms are precisely the continuous functions (because,
among compact Hausdorff spaces, these are precisely the functions preserving limit points
of ultrafilters).

3.5. Example. Let F be a preconstant functor. Then Alg F is the category of Σ-algebras
for a signature Σ consisting of nullary operation symbols, except that the empty algebra
is possibly added.

In fact, a preconstant functor F with F∅ = ∅ has the property that cardFX = n,
for X �= ∅, independent of X. Then Alg F is the category of algebras with n nullary
operation symbols plus the empty algebra.

If a preconstant functor F fulfils F∅ �= ∅ then Alg F contains only nonempty algebras;
they are, again, just algebras on n nullary operations for the above n.

3.6. Definition. (See [9].) An endofunctor F is called a varietor if free F -algebras
exist, i.e., if the forgetful functor of Alg F has a left adjoint.

3.7. Theorem. (See [21] and [9].) A set functor F is a varietor iff

(a) F has arbitrarily large fixed points (i.e., arbitrarily large sets X with FX ∼= X), or

(b) F is preconstant.

3.8. Example. HΣ is a varietor, but neither P nor β are.

3.9. Remark. (i) Let F be a varietor. By an equation is understood a pair (u, v) of
elements in a free F -algebra φ(X) on set X (of variables). Notation: u = v.

An F -algebra A satisfies the equation u = v if for every map f : X �� A (“interpre-
tation” of the variables in A) the corresponding homomorphism f# : φ(X) �� A fulfills
f#(u) = f#(v).

(ii) What do we mean by equations in case F is not a varietor? For a general end-
ofunctor F a transfinite chain “approximating” the free algebra φ(X) has been defined
in [2] (see also [9]). We denote this chain by

W (X) : Ord �� Set
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and call it the free-algebra chain. Its objects Wi(X) and connecting morphisms
wi,j : Wi(X) �� Wj(X) (for i ≤ j in Ord) are determined uniquely up-to natural
isomorphism by the following rules:

a) W0(X) = X and W1(X) = X + FX; w0,1 : X �� X + FX is the coproduct
injection,

b) Wj+1(X) = X + FWj(X) and wi+1,j+1 = X + Fwi,j for all ordinals i ≤ j,

and

c) Wj(X) = colimi<j Wi(X) with the colimit cocone (wi,j)i<j for all limit ordinals j.

(iii) Given an F -algebra FA α �� A and an interpretation f : X �� A of variables,
we denote by f#

i : Wi(X) �� A the unique cocone with

f#
0 = f and f#

i+1 = [f, α·Ff#
i ] : X + FWi(X) �� A.

(iv) By an equation u = v is meant a pair u, v ∈ Wi(X) for a set X of variables and
an ordinal i.

The equation is called trivial if u and v is the same element of Wi(X). And it is called
reduced if it is non-trivial, and u or v lies in the complement of

⋃
j<i wj,i[Wj(X)].

3.10. Definition. We say that an algebra A satisfies an equation u = v (u, v ∈ Wi(X))
provided that for every map f : X �� A we have

f#
i (u) = f#

i (v).

By a variety of F -algebras is meant a full subcategory V of Alg F which is equationally
presentable (i.e., for which a class of equations exists such that V consists of precisely all
F -algebras satisfying each of the given equations).

3.11. Remark. Every non-trivial equation u = v, u, v ∈ Wi(X) determines a reduced
equation u′ = v′ logically equivalent to it; an algebra satisfies u = v iff it satisfies u′ = v′.
In fact, find the smallest j such that wj,i(u

′) = u and wj,i(v
′) = v for some u′, v′ ∈ Wj(X).

Then u′ = v′ is reduced.

3.12. Remark. As proved in [21], for every varietor a free algebra on X always has the
form Wi(X) for some ordinal i. Thus, the above concept of equation is, for varietors, just
the usual one.

3.13. Example. Complete lattices. These can be canonically represented as a full subcat-
egory of Alg(P + P): to every complete lattice A assign the function [join, meet] : PA+
PA �� A. Then homomorphisms in Alg(P + P) are precisely the functions preserv-
ing joins and meets.

This full subcategory is a variety of Alg(P + P). For example, the axiom join{x} = x
is expressed by forming, for X = {x}, the elements u = x and v = ({x}, 1) in W1(X) =
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X+PX×{1, 2} (where PX×{1, 2} represents PX + PX) and considering an equation
u = v. Analogously for all other axioms expressing the fact that an abstract algebra
α : PA + PA �� A has the form α = [join, meet] for a complete lattice on A. In this
case we will need a proper class of equations.

3.14. Example. Monadic algebras. For every monad (T, η, µ) the category of Eilenberg-
Moore algebras is a variety of Alg T . Conversely, whenever a variety of F -algebras has
free algebras, then it is monadic. See [8] (where the terminology was slightly different:
the concept of variety was called equational subcategory there).

3.15. Remark. (i) The above Definition 3.10 was introduced in [3].
(ii) Jan Reiterman uses (in [18]) algebraized chains, rather than the free-algebra con-

struction, to define varieties (which he calls “equational varieties”). For the present case
where the base category is Set he remarks (see his 3.3) that his concept is obviously
equivalent to that of 3.10 above.

(iii) Whenever a free F -algebra X# exists, then the free-algebra construction stops,
i.e., wi,i+1 : Wi

�� X + FWi is an isomorphism for some i, and X# = Wi (where
the universal arrow X �� X# and the algebra structure FX# �� X# form the
components of w−1

i,i+1).
Conversely, whenever the free-algebra construction stops after i steps, then it yields a

free algebra X# = Wi. See [21] or also [9].

3.16. Lemma. Every variety of F -algebras is closed in Alg F under regular quotients,
subobjects and products.

The proof is trivial.

3.17. Definition. We say that a set functor F satisfies Birkhoff’s Variety Theo-
rem if varieties of F -algebras are precisely the full subcategories of Alg F closed under
regular quotients, subobjects, and products.

3.18. Examples. (See [18].)
(i) Every varietor in Set satisfies Birkhoff’s Variety Theorem.
(ii) The power-set functor does not satisfy Birkhoff’s Variety Theorem. In fact, a

counter-example is the class of all P-algebras A for which there exists a cardinal α such
that A satisfies u = v whenever u, v lie in Wi(X) but not in Wα(X) for some i > α. We
use the same idea in the proof of the Main Theorem.

3.19. Example. For every small set A of F -algebras the closure A of A under products,
subalgebras and regular quotient algebras is a variety.

To prove this, let A ′ be a closure of A under limits and subalgebras. Then the
canonical forgetful functor U : A ′ �� Set is a right adjoint. In fact, the category
of F -algebras has small limits and large intersections created by its forgetful functor.
Therefore, A ′ has limits and large intersections, and U preserves them. Since A is a small
cogenerator of A ′, the Special Adjoint Functor Theorem guarantees a left adjoint ΦA

of U . Now A is the closure of A ′ under regular quotient algebras, which implies that the
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algebras ΦA X are free on X in A (recall that epimorphisms split in Set). By Theorem 4.4
in [18] we conclude that A is a variety.

3.20. Example. All compact Hausdorff spaces, see 3.4, have the property that the trivial
ultrafilter ẋ (of all sets containing x) converges to x. Thus, they satisfy the equation

x = ẋ for x, ẋ ∈ W1(X) = X + βX.

In fact, compact Hausdorff spaces form a variety of β-algebras. This follows from the fact,
established by E. Manes [16], that they are Eilenberg-Moore algebras of the well-known
monad whose underlying functor is β, see 3.14.

3.21. Lemma. For every set functor and every set X �= ∅ of variables the connecting
morphisms wi,j : Wi(X) �� Wj(X) are always monomorphisms.

Proof. This follows easily by transfinite induction: in the isolated step

wi+1,j+1 = idX +Fwi,j

use the fact that Fwi,j is a monomorphism since wi,j is a split monomorphism (in fact, X �=
∅ implies Wi(X) �= ∅), and coproducts of monomorphisms in Set are monomorphisms. In
the limit steps use the fact that

(a) a colimit cone wi,j : Wi(X) �� Wj(X) (for i < j) of a chain of monomorphisms
in Set is formed by monomorphisms, and

(b) the connecting morphism wj,j+1 : Wj(X) �� Wj+1(X) of a cone

Wi+1(X) = X + FWi(X) � � idX +Fwi,j �� X + FWj(X) = Wj+1(X)

of monomorphisms is a monomorphism.

3.22. Observation. (i) The free-algebra construction Wi(X) of 3.9 yields a chain of
endofunctors Wi on Set. The definition of Wi on morphisms y : Y �� X is an obvious
transfinite induction: W0(y) = y and Wi+1(y) = y + FWi(y).

(ii) Given an algebra A and two functions

Y
y �� X

f �� A,

then for every ordinal i we have

f#
i ·Wi(y) = (fy)#

i : Wi(Y ) �� A.

This is trivial to prove by transfinite induction.
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In the isolated step we use the triangle

Y + FWi(Y )

A

[fy,α·F (fy)#i ]

������������������
Y + FWi(Y ) X + FWi(X)

y+FWi(y) �� X + FWi(X)

A

[f,α·Ff#
i ]

������������������

which commutes by the induction hypothesis. Limit steps just use the uniqueness of
factorizations through colimit cones.

3.23. Main Theorem. For a set functor which preserves nonempty preimages the fol-
lowing conditions are equivalent:

(i) Birkhoff’s Variety Theorem holds for F -algebras, and

(ii) F is a varietor.

Proof. Let F preserve nonempty preimages. If it is not a varietor, then we find a
class V of F -algebras which is not a variety although it is closed under regular quotients,
subalgebras, and products.

Given a cardinal α, we choose a set X of cardinality α and denote, for every i > α,
by ∼i the equivalence relation on Wi(X) given by

t ∼i s iff t = s or t, s /∈ wα,i

[
Wα(X)

]
.

Denote by Vα the variety of F -algebras presented by all equations

u = v for u, v ∈ Wi(X) with i > α and u ∼i v.

Observe that α ≤ β implies Vα ⊆ Vβ. Consequently, since each Vα is closed under regular
quotients, subalgebras and products, so is the union

V =
⋃

α∈Card

Vα.

We now prove that V is not a variety by verifying that

(a) for every nontrivial equation u = v there exists an algebra in V which does not
satisfy u = v

and

(b) V is a proper subcategory of Alg F .
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Proof of (a).
For every cardinal α > 0 choose a set X of cardinality α and denote by (W (X), p)

the free algebra construction considered as an algebraized chain in the sense of [18], i.e.,
p is the collection pi : FWi(X) �� Wi+1(X) = X + FWi(X) of the right coproduct
injections. Define a quotient functor

e : W (X) �� W (X)

of this functor W (X) : Ord �� Set by the following rule: given an ordinal i then
ei : Wi(X) �� Wi(X)/∼i

is the canonical quotient map of the above equivalence ∼i

on Wi(X). It is obvious that this defines a functor W (X) : Ord �� Set and a natural
transformation e : W (X) �� W (X). We will prove that this is a quotient object of the
algebraized chain (W (X), p), i.e., that for every i ∈ Ord there exists p̄i such that the
square

FW i(X) W i+1(X)p̄i

��

FWi(X)

FW i(X)

Fei

��

FWi(X) X + FWi(X) = Wi+1(X)
pi �� X + FWi(X) = Wi+1(X)

W i+1(X)

ei+1

��

commutes. Here it is where our assumption that F preserves nonempty preimages is
applied. For i ≤ α there is nothing to prove; also all i > α with Wi(X) = wα,i[Wα(X)] are
obvious: in this case, ei is a bijection hence Fei is also a bijection. In the remaining case,
i.e. i > α and Wi(X) � wα,i[Wα(X)], we have a canonical isomorphism r : Wα(X) + 1

�� W i(X) such that the square

Wα(X) + 1 Wi(X)r
��

Wα(X)

Wα(X) + 1

inl

��

Wα(X) Wi(X)
wα,i �� Wi(X)

Wi(X)

ei

��

commutes (where inl denotes the left coproduct injection). Here we can observe that
Wα(X) �= ∅ (because α > 0 and X has cardinality α) and the above square is a
preimage. Consequently, the F -image of that square is a preimage. This clearly im-
plies that whenever Fei merges two distinct elements of FWi(X), then they both lie
outside Fwα,i[FWα(X)], i.e., as elements of Wi+1(X) they are equivalent (under ∼i+1).
Consequently, ei+1·pi merges such elements too. This proves the existence of p̄i above.

Thus, we define an algebraized chain (W (X), p̄) which is a quotient of the free-algebra
chain, and is stationary (i.e., the connecting morphisms of W (X) are, from some ordinal
on, isomorphisms). From 3.9 in [18] we conclude that the chain (W (X), p̄) has a reflec-
tion Aα in the full category Alg F . This F -algebra Aα lies in the variety Vα and does not
satisfy any non-trivial equation u = v with u, v ∈ Wi(Y ) for any set Y with card Y ≤ α
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and any ordinal i ≤ α. See the detailed argument of Example 4.6 in [18] (formulated
for the power-set functor, but valid generally). Since α was any cardinal, this proves the
claim (a).

Proof of (b).
We construct a set D and an F -algebra on it, denoted also by D, such that for every

ordinal α there exists an ordinal i > α and elements

t1, t2 ∈ Wi+1(D) − wα,i+1

[
Wα(D)

]
(1)

such that
D does not satisfy t1 = t2, (2)

This proves D /∈ Vα. Consequently, D lies in Alg F − V .
From Lemma 2.9 we know that F = G + H where

G has all components faithful

and

H is preconstant.

It follows that
G preserves disjointness of subobjects, (3)

see Remark 2.10. Next, there exists an infinite cardinal γ such that for every set X we
have

card X ≥ γ implies card GX > card X. (4)

In fact, since H is preconstant and F is not a varietor, it follows from Theorem 3.7 that
G is not a varietor; i.e., it does not have arbitrarily large fixed points. On the other
hand, since G is faithful, for every set X �= ∅ we have card GX ≥ card X, see [9]—thus,
(4) follows. Since H is preconstant, we can choose the above γ so that

card X ≥ γ implies card FX = card GX. (5)

Moreover, from (4) we conclude that

card X ≥ γ implies card Wi(X) < card Wi+1(X) for all i ∈ Ord. (6)

In fact, we have Wi+1(X) = X + FWi(X) and we can apply (4) to Wi(X) in place of X
(since by 3.21 card Wi(X) ≥ card X ≥ γ). Finally observe that 3.21 and (4), (5) yield
that

card X ≥ γ implies card Wi+1(X) = card FWi(X). (7)

Choose a set Z of cardinality γ. We define an F -algebra on the coproduct

D = Z + Z with injections ul, ur : Z �� D
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for which we prove that the identity function f = idD has for every ordinal i the following
property:

the preimages of ul and ur under
f#

i+1 : Wi+1(D) �� D have cardinali-
ties at least card Wi+1(D).

(8)

We then derive D /∈ Vα by choosing t1 in the preimage of ul under f#
i+1 and t2 in the

preimage of ur. It follows that f#
i+1 does not merge t1 and t2, consequently, (2) follows.

And from (6) we derive that cardWi+1(D) > card Wα(D), therefore we can choose t1, t2
so that (1) holds.

Due to (3) there exists an algebra structure δ : FD �� D for which the following
diagram

GD

FD

inl

��
FD

D

δ

��

GZ GD
Gul ��GZ

Z

vl

��
Z Dul

��

GZGD
Gur�� GZ

Z

vr

��
ZD ur

��

commutes, where vl, vr are arbitrarily chosen and inl denotes the left coproduct injection
GD �� FD = GD +HD. This algebra fulfils (8) for all ordinals i: The proof for ul will
be performed by transfinite induction on i. The proof for ur follows by symmetry.

First step: this follows from our choice of Z and of f = id above.
Isolated step: we have, by induction hypothesis, subobjects

ml : Ml
�� Wi(D) and mr : Mr

�� Wi(D)

such that f#
i ·ml factorizes through ul and f#

i ·mr through ur:

Z Dul

��

Ml

Z

pl

��

Ml Wi(D)
ml �� Wi(D)

D

f#
i

��
D Z��

ur

Wi(D)

D
��

Wi(D) Mr
�� mr

Mr

Z

pr

��

and card Ml = card Mr = card Wi(D). From this we prove that the preimage of ul

under f#
i+1 has cardinality card Wi+1(D), analogously for ur. In fact, consider the following

subobject of Wi+1(D)

GMl
Gml �� GWi(D) inl �� FWi(D) inr �� Wi+1(D)

(with inl or inr being the left or the right coproduct injections) whose cardinality is, due
to (5) and (7),

card GMl = card FMl = card FWi(D) = card Wi+1(D).
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This subobject when composed with f#
i+1 = [f, δ·Ff#] factorizes through ul:

GZ GD
Gul

��

GMl

GZ

Gpl

��

GMl GWi(D)
Gml �� GWi(D)

GD

Gf#
i

��
GD FD

inl
��

GWi(D)

GD
��

GWi(D) FWi(D)
inl �� FWi(D)

FD

Ff#
i

��

FWi(D) Wi+1(D)
inr ��

GZ

Z

vl

��
Z Dul

��

FD

D

δ

������������������

Wi+1(D)

D

f#
i+1

��

Limit step: for every limit ordinal i the preimage of ul under f#
i = colimj<i f

#
j is a

colimit of the subchain of Wj(D) (j < i) formed by the preimages of ul under f#
j (j < i)

— in fact, pullbacks commute with chain colimits in Set. The cardinality of the colimit
of all preimages of ul is, by induction hypothesis, the supremum of card Wj(D) for j < i,
and this is precisely card Wi(D).

3.24. Corollary. For a functor F : Set �� Set preserving nonempty preimages the
following conditions are equivalent :

(i) F is a varietor,

(ii) Birkhoff’s Variety Theorem holds for F -algebras,

(iii) the category of F -algebras is cocomplete,

(iv) F has arbitrarily large fixed points.

In fact, (ii) �� (i) by Theorem 3.23, (i) �� (ii) due to Theorem 4.4 in [18], the
equivalence (i) �� �� (iii) was proved in [6] and (i) �� �� (iv) in [21].

3.25. Example. We present two endofunctors F1 and F2 of Set such that

(i) F1 and F2 are varietors

therefore, Birkhoff’s Variety Theorem holds for F1 and F2, but

(ii) F1 + F2 is not a varietor and does not satisfy Birkhoff’s Variety Theorem.

This example, based on ideas of Václav Koubek (private communication) was already
presented in [9], Example 4.4.4, but there we only mentioned the fact that F1 + F2 is not
a varietor.

We begin by choosing a class C1 ⊆ Card of cardinal numbers such that both C1 and
C2 = Card−C1 have the property that, for k = 1 or 2,

there exist arbitrarily large cardinal β with (β, 2β] ⊆ Ck (∗)
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(where (β, 2β] denotes the cardinal interval of all α ∈ Card with β < α ≤ 2β). The
class C1 can be defined as C1 =

⋃
i∈Ord Di where D0 = (ℵ0, 2

ℵ0 ], Di+1 = Di ∪ (2δ, 22δ
] for

δ = sup Di, and Di =
⋃

j<i Dj for limit ordinals i. We then define a functor Fk (k = 1
or 2) on objects X by

FkX = {M ⊆ X; M = ∅ or card M ∈ Ck}

and on morphisms f : X �� Y by

Fkf : M � ��

{
f [M ] if f restricted to M is monic

∅ else

This is well defined: Fk preserves composition and identity maps obviously. Observe
that F1 is a varietor by 3.7: whenever C2 contains (β, 2β] with β infinite, then a set X
of cardinality 2β is a fixed point of F1: for every cardinal α ≤ β we have card Xα =
(2β)α = 2β = card X, thus, F1X ∼= X. By symmetry, F2 is a varietor. But F1 + F2 is
not a varietor since it has no fixed point: for every set X with card X ∈ Ck we have
card FkX ≥ card XX > card X.

3.26. Proposition. The functor F1 + F2 in Example 3.25 does not satisfy Birkhoff’s
Variety Theorem.

Proof. This is a modification of the proof of Theorem 3.23 in which we have to overcome
the difficulty that F = F1 + F2 does not preserve nonempty preimages.

Modification of the proof of (a). The only argument in the proof of 3.23 (a) using
preservation of preimages concerned the existence of p̄i : FW i(X) �� W i+1(X). This is
clear in our case: given distinct elements a, b ∈ FWi(X) with Fei(a) = Fei(b), we verify
directly that ei+1·pi also merges a, b. Suppose, e.g., that a, b ∈ F1Wi(X) (these elements
clearly lie in the same component of F ).

(i) Let F1ei(a) = ∅. Then F1ei(b) = ∅ which means that a, b are either empty or
contain distinct elements equivalent under ∼i. In the latter case the image under pi

contains elements equivalent under ∼i+1, thus, ei+1·pi merges a and b.

(ii) Let F1ei(a) �= ∅. Then a contains no pair of distinct elements equivalent under ∼i,
and the same holds for b. Therefore a and b have the same intersection with wα,i[Wα(X)]
and at most one element is outside wα,i[Wα(X)]. Moreover, from F1ei(a) = F1ei(b) it
follows that if one of the sets a, b is a subset of wα,i[Wα(X)] then so is the other one. This
implies that ei+1·pi merges a and b.

Modification of the proof of (b). Choose a cardinal γ such that for every set X and
every k = 1, 2 we have

card X ≥ γ implies card FkX ≥ card X.

Define an algebra on D = Z + Z (with card Z = γ and with injections ul and ur) so that
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the diagram

Z Dul

��

F1D

Z

vl

��

F1D F1D + F2D
inl �� F1D + F2D

D

δ

��
D Z��

ur

F1D + F2D

D
��

F1D + F2D F2D�� inr
F2D

Z

vr

��

commutes. We will prove that f = idD has the analogous property to (8) in 3.23:

the preimages of ul and ur under
f#

i+2 : Wi+2(D) �� D have cardinali-
ties at least card Wi+1(D).

(9)

This implies D /∈ V as in the proof in 3.23.
For every ordinal i, recalling Wi+1(D) = D+FWi(D), we have the following subobject

of Wi+2(D):

F1FWi(D)
F1 inr �� F1Wi+1(D) inl �� FWi+1(D) inr �� Wi+2(D).

This subobject is contained in the preimage of ul under f#
i+2 because its composite with

f#
i+2 =

[
f, δ·Ff#

i+1

]
factorizes through ul:

F1FD F1DF1δ
��

F1FWi(D)

F1FD

F1Ff#
i

��

F1FWi(D) F1Wi+1(D)
F1 inr �� F1Wi+1(D)

F1D
��

F1D FD
inl

��

F1Wi+1(D)

F1D

F1f#
i+1

��

F1Wi+1(D) FWi+1(D)
inl �� FWi+1(D)

FD

Ff#
i+1

��

FWi+1(D) Wi+2(D)
inr ��

F1D

Z

vl

��
Z Dul

��

FD

D

δ

��������������������

Wi+2(D)

D

f#
i+2

��

Consequently, the preimage of ul has cardinality at least

card F1FWi(D) ≥ card FWi(D) = card Wi+1(D).

In fact, the first inequality follows from the above choice of γ and X, since, obviously,

card FWi(D) ≥ γ.

The proof that preimage of ur has cardinality at least cardWi+1(D) follows by sym-
metry.
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3.27. Example. A modification β̄ of the ultrafilter functor, see 2.5 (iii), which

(a) is not a varietor, but

(b) fulfils Birkhoff’s Variety Theorem.

Recall that ẋ denotes the trivial ultrafilter of all sets containing x. Define β̄ on objects
by

β̄X = βX/∼
where ∼ is the least equivalence relation merging all trivial ultrafilters. Its equivalence
class {ẋ; x ∈ X} is denoted by

b ∈ β̄X.

For a function f : X �� Y define β̄f by

β̄f(b) = b

and given a nontrivial ultrafilter U ∈ βX then

β̄f(U ) =

{
βf(U ) if f ·m is monic for some member M

m
↪→ X of U

b else

It is clear that since βX has cardinality larger than X for infinite sets X, we have

card β̄X > card X for X infinite.

Thus, β̄ is not a varietor.

3.28. Proposition. β̄ fulfils Birkhoff’s Variety Theorem.

Proof. (1) Let us prove that for every β̄-algebra (A,α) and the smallest infinite cardinal
cA > card A we have that A satisfies all reduced (see 3.9 (iv)) equations t = b in Wi(A)
with i ≥ cA.

We proceed by induction in i, where both the first step (i = cA) and every limit step
are trivial by default: given a reduced equation in Wi(A) the ordinal i is not a limit
ordinal.

Isolated step: We assume that A satisfies every reduced equation s = b where s ∈
Wj(A) for some j with cA ≤ j ≤ i. Then we prove that A satisfies every reduced equation

t = b with t ∈ Wi+1(A).

Assuming the contrary, i.e.,

f#
i+1(t) �= α(b) for some f : A �� A
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we derive a contradiction. Since t = b is reduced, t ∈ A + β̄[Wi(A)] lies in the right-hand
summand, i.e., t is an ultrafilter on Wi(A). Since f#

i+1(t) �= α(b) there exists

m : M ↪→ Wi(A) a member of t such that f#
i ·m is monic.

In particular,

card M ≤ card A < cA.

Moreover, without loss of generality we can assume

f#
i (s) �= α(b) for all s ∈ M

(since f#
i ·m is monic of M , and we can substitute M by M − {s0} for any s0 ∈ M : the

ultrafilter t is non-trivial, thus, with M it contains M − {s0}). By induction hypothesis
none of the equations s = b (with s ∈ M) is reduced in Wi(A). Let s′ = b be a logically
equivalent reduced equation in Wi(s)(A) for some ordinal i(s) < i, see Remark in 3.10.

From f#
i (s) �= α(b) it follows that A does not satisfy s′ = b which, by induction hypothesis,

implies

i(s) < cA.

Moreover, card M < cA, thus, there exists j < cA which is an upper bound of all i(s)—that
is,

M ⊆ wj,i

[
Wj(A)

]
.

Denote by t̄ the ultrafilter of all preimages of the members of t under wj,i. Since wj,i is a
monomorphism, see Lemma 3.21, we get

t = β̄wj,i(t̄) = wj+1,i+1(t̄).

Since j < cA, this contradicts to t = b being reduced.
(2) For every class A of β̄-algebras denote by E(A ) the class of all reduced equations

satisfied by every algebra of A . Assuming that A is closed under limits, subalgebras and
regular quotient algebras, we prove that A is presented by E(A ). Express A as a union
of an increasing chain of small sets

A =
⋃

j∈Ord

Aj.

Each Aj generates the variety A j of Example 3.19. Given an algebra B satisfying all
equations which hold for all algebras of A :

E(B) ⊇ E(A ) =
⋂

j∈Ord

E(Aj)

we prove B ∈ A . Then A is a variety.
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Denote by Ω the small set of all reduced equations in Wr(B) for all r < cB (see (1)
above). Since Ω − E(Aj) is an increasing chain with

Ω − E(B) ⊆ Ω − E(A ) =
⋃

j∈Ord

Ω − E(Aj)

and Ω is small, there exists an ordinal k with Ω−E(B) ⊆ Ω−E(Ak). It follows that for
every reduced equation t = b which holds in Ak we have: t = b holds in B. (If t = b lies
in Ω, this is obvious from Ω − E(B) ⊆ Ω − E(Ak), if t = b does not lie in Ω, apply (1)
above and 3.22.) Consequently, also all non-reduced equations t = b holding in Ak hold
in B, see the Remark in 3.10.

The set Ak is small, thus we can choose an infinite cardinal

d > card A for every algebra A ∈ Ak.

Given a reduced equation

t = s in Wi(A) lying in E(Ak) − E(B) (+)

(i.e., such that B does not satisfy it but algebras of Ak do), we conclude that

i < d.

In fact, for i ≥ d assume, without loss of generality, that t is reduced in Wi(A)−wj,i[Wj(A)]
for all j < i—then t = b holds in Ak, see (1) above. From (+) we conclude that b = s
holds in Ak. By our choice of k it follows that t = b and b = s hold in B—in contradiction
to t = s not being an element of E(B).

We conclude that the set E(Ak) − E(B) is small. Since E(B) contains E(A ) =⋂
i∈Ord E(Ai), for every member t = s of E(Ak) − E(B), there exists an ordinal l ≥ k

such that E(Al) does not contain t = s. Now E(Ak)−E(B) is small, so we can choose l
independently of k. Then E(Al) is disjoint from E(Ak)−E(B)—that is, E(B) ⊇ E(Al).
Now A l is a variety (see 3.19) with E(Al) = E(A l). This proves B ∈ A l ⊆ A .

3.29. Concluding Remark. For set functors F preserving nonempty preimages the
question of Birkhoff’s Variety Theorem is completely answered by Theorem 3.22: it is
equivalent to F being a varietor. However, by a slight modification of the proof also
some interesting functors can be included which do not preserve nonempty preimages.
For example the functor F1 + F2 in 3.26—this functor is a modification of the power-set
functor strongly resembling the modification of β performed in 3.27. Yet, the conclusion
of 3.27 is opposite to that of 3.26, which indicates that the precise characterization of set
functors for which Birkhoff’s Variety Theorem holds is a complicated problem.

The functor β̄ of 3.26 is not faithful. However, by a modification of the proof of 3.28
one can show that the faithful functor β̄ + Id also satisfies Birkhoff’s Variety Theorem
without being a varietor.
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4. Birkhoff’s Variety Theorem for Classes

4.1. The Category Class. We work here in ZFC (Zermelo-Fraenkel Set Theory with
the Axiom of Choice) with a choice of a universe of “small” sets. If ℵ∞ denotes the
cardinality of this universe, then the category Set of small sets can, as in [7], be identified
with the category of all sets of cardinalities smaller than ℵ∞. And the category Class of
classes can be identified with that of all sets of cardinalities at most ℵ∞. More precisely:
our foundation is ZFC with a strongly inaccessible cardinal ℵ∞. Then Set is the category
of all sets which hereditarily have cardinality smaller than ℵ∞. This is clearly equivalent
to the category of all sets of cardinality smaller than ℵ∞. Analogously for Class. Thus,
the above identification does not influence any categorical results.

We denote by Ord and Card the classes of all small ordinals and small cardinals,
respectively. Thus, ℵ∞ is the first ordinal outside of Ord.

4.2. Notation. Given an endofunctor F of Class, we denote, analogously to 3.1, by Alg F

the category of all F -algebras FA α �� A and homomorphisms and we call F a varietor if
the forgetful functor Alg F �� Class has a left adjoint—i.e., every object K generates
a free F -algebra Φ(K). We denote by ηK : K �� Φ(K) the universal arrow.

4.3. Theorem. (See [7].) Every endofunctor of Class is a varietor.

4.4. Remark. We say that Set is measurable if the cardinal ℵ∞ is measurable. In other
words, a nontrivial two-valued measure exists on a proper class which is α-additive for
all small cardinals α. The negation of this assumption states that every ultrafilter on a
class closed under small intersections is trivial (i.e., consists, for some element x, of all
classes containing x). As proved by J. Isbell [12], this is equivalent to Set being codense
in Class. In other words: every class is a limit of a large diagram of small sets.

4.5. Definition. Given an endofunctor F of Class, by an equation is meant a pair t1, t2
of elements of a free algebra Φ(K). An F -algebra A is said to satisfy the equation
provided that for every map f : K �� A the corresponding homomorphism f# : Φ(K)

�� A fulfils f#(t1) = f#(t2).

A collection A of F -algebras is called a variety if it can be presented by equations,
i.e., if there exists a class E of equations such that members of the collection A are
precisely the F -algebras which satisfy every equation in E .

4.6. Remark. A class E of equations can also be described by an epimorphism in Class
e : Φ(K) � E. An F -algebra A satisfies the equations of E iff every homomorphism
from Φ(K) to A factorizes through e.

4.7. Example. Let Σ = (Σn)n∈Card be a (possibly large) signature, i.e., a class of “oper-
ation” symbols together with an “arity” function assigning to every operation symbol a
small cardinal. Then Σ-algebras are precisely the algebras on the polynomial endofunctor
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FΣ : Class �� Class defined on objects by

FΣX =
∐

n∈Card

Σn × Xn.

As a concrete example consider Σ = Card where each symbol has arity zero. H. Herrlich
observed in [11] that the class A of all algebras A for which there exists i ∈ Card such
that all the constants j ≥ i form the same element in A is closed under

(i) products

(ii) subalgebras, and

(iii) regular quotient algebras.

And it is clear that A is not a variety. However, if in (i) “products” are substituted
by “limits”, it turns out that A is no longer a counter-example to Birkhoff’s Variety
Theorem. At least not if Set is not (compare Example 4.9):

4.8. Birkhoff’s Variety Theorem for Classes. Assuming that Set is not mea-
surable, every endofunctor F of the category of classes has the property that varieties are
precisely the classes of F -algebras closed under regular quotients, subobjects, and limits.

4.9. Remark. (i) Limits are not restricted to mean “small limits” but all limits existing
in Alg F . (In 4.7 (i), products are also not restricted to mean “small products” but all
products existing in Alg F .)

(ii) Every variety can be presented by a single quotient of a free F -algebra as will be
seen in the following proof.

Proof. (1) Let A be a full subcategory of Alg F closed as above. Let K be a proper
class, and denote by Φ(K) a free F -algebra on K. Let ∼i (i ∈ I) be the collection of all
congruences on Φ(K) such that the quotient algebra

Ai = Φ(K)/∼i

lies in A . We prove below that if ∼ is the meet of these congruences, then also the algebra

A = Φ(K)/∼

lies in A . This implies that A is a variety presented by the canonical quotient c : Φ(K) ��A.
In fact, let B be an algebra in A , then for every homomorphism h : Φ(K) �� B the
kernel congruence of h is ∼i for some i (because A is closed under subalgebras), thus,
h = m·ci for the canonical quotient ci : Φ(K) �� Φ(K)/∼i and for some homomorphism
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m : Ai
�� B.

A

Ai = Φ(K)/∼i

c̄i ������������

Φ(K)

A

c

�����
���

���
�
Φ(K)

Ai = Φ(K)/∼i

��

Φ(K) B
h ��Φ(K)

Ai = Φ(K)/∼i

ci

��

B

Ai = Φ(K)/∼i

��

m

��
��

��
��

��
��

��
��

��
��

Since ∼ refines ∼i, we also have a canonical homomorphism

c̄i : A �� Ai with ci = c̄i·c (i ∈ I).

This implies that h factorizes through c, i.e., B satisfies the equations in the kernel of c.
Conversely, let B be an F -algebra satisfying them. We prove B ∈ A . Without loss of
generality, B �= ∅ (if B = ∅ then B is a subalgebra of every F -algebra, thus, it lies in A ).
Let f : K �� B be an epimorphism (which exists since K is a proper class). Then the
corresponding homomorphism f̄ : Φ(K) �� B factorizes though c:

Φ(K) B
f̄ ��Φ(K)

A

c

��

B

A

��

h

��
��

��
��

��
��

�

and h is a homomorphism (because both hc and c are homomorphisms and, since c is a
split epimorphism in Class, Fc is an epimorphism). Since for the universal arrow ηK we
see that f = h·c·ηK is an epimorphism in Class, so is h. Thus, A ∈ A implies B ∈ A ,
due to closedness under quotient algebras.

It remains to prove A ∈ A . Let D be the diagram in A whose objects are Ai for i ∈ I
and whose morphisms are the canonical quotients cij : Ai

�� Aj

Ai Ajcij

��

A

Ai

c̄i

����
��

��
��

��
��

�
A

Aj

c̄j

		�
��

��
��

��
��

��

for all i, j ∈ I such that ∼i refines ∼j. We prove that the cone (c̄i)i∈I is a limit cone of D—
then A ∈ A since A is closed under limits. The only nontrivial part is the verification
that given a compatible collection

xi ∈ Ai (i ∈ I),



BIRKHOFF’S VARIETY THEOREM WITH AND WITHOUT FREE ALGEBRAS 447

there exists a unique x ∈ A with xi = c̄i(x) for all i ∈ I. In fact, consider

F =
{
F ⊆ A; xi ∈ c̄i[F ] for all i ∈ I

}
.

This is, obviously, a filter; in fact, an ultrafilter: given a disjoint decomposition A = V1∪V2,
then Vt ∈ F for t = 1 or 2. (Assuming the contrary, we have for t = 1, 2 an index i(t)
with xi(t) /∈ c̄i(t)[Vt]. The kernel of 〈c̄i(1), c̄i(2)〉 : A �� Ai(1) × Ai(2) has the form ∼j for
some j ∈ I—this follows from A being closed under finite products and subalgebras.
Since ∼j refines ∼i(1), we have

xi(1) = cj,i(1)(xj),

therefore c̄i(1) = cj,i(1)·c̄j implies
xj /∈ c̄j[V1].

Analogously, xj /∈ c̄j[V2]—a contradiction, since c̄j is an epimorphism.) In fact, the same
argument as above can be used to prove that for every disjoint decomposition A =

⋃
t∈T Vt

where T is a small set we have Vt ∈ F for some t ∈ T . In other words, F is closed under
small intersections. Since Set is not measurable, F contains {x} for a unique x ∈ A.
Then c̄i(x) = xi.

(2) If A is a variety, then it is closed under limits. In fact, suppose that (A,α)
hi �� (Ai, αi) (i ∈ I) is a limit cone of a diagram D in Alg F and suppose that each (Ai, αi)

satisfies equations e : Φ(K) � E see 4.6. We prove that (A,α) also satisfies them.
For every homomorphism f̄ : Φ(K) �� A we have factorizations

hi·f̄ = ki·e (ki : E �� Ai)

for all i ∈ I. Since (ki·e)i∈I is a cone of D and e is an epimorphism in Class, (ki)i∈I is a
cone of D in Class, thus, we have a unique k : E �� A with

hi·k = ki (i ∈ I).

Here we use the (trivial) fact that the forgetful functor of Alg F preserves limits. From
the equalities

hi·f̄ = hi·(k·e) (i ∈ I)

it follows that f̄ = k·e. Therefore, A satisfies e.
The verification that A is closed under subalgebras and regular quotient algebras is

straightforward.

4.10. Example. A class of Σ-algebras which is not a variety but is closed under limits,
subalgebras, and regular quotient algebras. We assume here that Set is measurable,
i.e., a proper class K is not a limit of the canonical diagram K/Set �� Class of all
maps f : K �� X with X small. Consider Σ = K as the signature of nullary operation
symbols. Let A be the collection of all algebras (A, (kA)k∈K) such that A∗ = {kA; k ∈ K}
is a small set. Then A is clearly closed under subalgebras and regular quotient algebras.
We verify that it is also closed under limits. Let D : D �� A be a diagram with a
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limit A
cd �� Ad (d ∈ Dobj) in Alg Σ. Then A∗ is contained in a limit, L, in Class, of

the diagram formed by the sets A∗
d and the corresponding restrictions of the connecting

morphisms of D. Since each A∗
d is a small set, and since Set is measurable, L cannot be

isomorphic to K—thus, A∗ is a small set. That is, A ∈ A .
However, A is not a variety: for every pair k �= l in K there exists an algebra A ∈ A

with kA �= lA.

4.11. Example. Denote by P ′ the extension of the power-set functor to Class: P ′X is
the class of all small subsets of X. Assuming that Set is not measurable, Birkhoff’s Variety
Theorem holds for P ′, but not for P. This is surprising because the equations used
for P ′ are not more expressive than those used for P. However, given a collection V of
P-algebras closed under products, subalgebras and regular quotients in Alg P, it is in
general not closed under limits in Alg P ′. Now let V ′ be the closure of V under limits,
subalgebras and regular quotients in Alg P ′. This is an equational class of P ′-algebras,
but there is no reason why its intersection with Alg P should be V . Thus, things are
not all that surprising, after all: the collection of all P-algebras lying in V ′ is simply the
equational hull of V in Alg P.

5. Conclusions and Related Research

Jan Reiterman proved in [18] that for varietors F on Set Birkhoff’s Variety Theorem holds.
That is, presentability by equations is equivalent to closure under limits, subalgebras
and regular quotient algebras. Originally, we wanted to prove the converse, inspired by
ideas of [18]. This goal was achieved for endofunctors F preserving nonempty preimages
(which is a weak side condition). For such functors we proved that Birkhoff’s Variety
Theorem holds iff F is a varietor. For general functors the converse is not true, i.e., there
exist functors F : Set �� Set which are not varietors and for which Birkhoff’s Variety
Theorem holds.

Open problem. Characterize endofunctors F of Set for which Birkhoff’s Vari-
ety Theorem holds in Alg F .

In ZFC with a choice of small sets, the “standard” set theory plus the axiom of choice,
we also proved that all endofunctors of Class fulfill Birkhoff’s Variety Theorem under the
set-theoretic assumption that the cardinality of Set is non-measurable. In view of the
above result of J. Reiterman, and the fact that all endofunctors of Class are varietors,
see [7], it seems in fact surprising that any set-theoretical assumptions are needed. But
they are: we presented a simple example of a non-equational class of Σ-algebras which is
closed under limits, subalgebras and regular quotient algebras, where Σ is just a class of
nullary symbols—whenever the set-theoretical assumption above is not fulfilled.

How far can the results above be generalized to categories other than Set and Class?
Nothing much is known for general categories. However, for the dual categories Setop

and Classop the following is proved in [4]:
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(a) Every endofunctor of Classop is a varietor and Birkhoff’s Variety Theorem holds.

(b) There exists an endofunctor of Setop for which Birkhoff’s Variety Theorem does not
hold.
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[4] J. Adámek, Birkhoff’s covariety theorem without limitations, Comment. Math. Univ.
Carolinae 46 (2005), 197–215.
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[6] J. Adámek, V. Koubek and V. Pohlová, Colimits in the generalized algebraic cate-
gories, Acta Univ. Carolinae 13 (1972) 311–324.
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