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INVERTING WEAK DIHOMOTOPY EQUIVALENCE USING
HOMOTOPY CONTINUOUS FLOW

PHILIPPE GAUCHER

Abstract. A flow is homotopy continuous if it is indefinitely divisible up to S-homo-
topy. The full subcategory of cofibrant homotopy continuous flows has nice features.
Not only it is big enough to contain all dihomotopy types, but also a morphism between
them is a weak dihomotopy equivalence if and only if it is invertible up to dihomotopy.
Thus, the category of cofibrant homotopy continuous flows provides an implementation
of Whitehead’s theorem for the full dihomotopy relation, and not only for S-homotopy
as in previous works of the author. This fact is not the consequence of the existence of
a model structure on the category of flows because it is known that there does not exist
any model structure on it whose weak equivalences are exactly the weak dihomotopy
equivalences. This fact is an application of a general result for the localization of a
model category with respect to a weak factorization system.
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1. Introduction

There are numerous uses of the notion of “category without identities”. For recent papers,
see for example [30] [26] [32]. An enriched version of this notion, in the sense of [21],
over the category of general topological spaces can be found in [31]. By considering
“small categories without identities” enriched over the category of compactly generated
topological spaces, that is weak Hausdorff k-spaces in the sense of [20], one obtains an
object called a flow which allows a model categorical treatment of dihomotopy (directed
homotopy). Indeed, a flow X can model (the time flow of) a higher dimensional automaton
[27] [18] [33] as follows. A flow X consists of

1. a set of states X0;
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Figure 1: Bad identification of a 1-dimensional empty globe and a loop after a contraction
in the direction of time

2. for each pair of states (α, β) ∈ X0 ×X0, there is a compactly generated topological
space Pα,βX called the path space between α and β representing the concurrency
between α and β; each element of Pα,βX corresponds to a non-constant execution
path from α to β; the emptiness of the space Pα,αX for some state α means that
there are no loops from α to itself; let

PX =
⊔

(α,β)∈X0×X0

Pα,βX.

3. for each triple of states (α, β, γ) ∈ X0 × X0 × X0, there is a strictly associative
composition law Pα,βX × Pβ,γX −→ Pα,γX corresponding to the concatenation of
non-constant execution paths.

The main problem to model dihomotopy is that contractions in the direction of time
are forbidden. Otherwise in the categorical localization of flows with respect to the diho-
motopy equivalences, the relevant geometric information is lost [15] [17]. Here is a very
simple example. Take two non-constant execution paths going from one initial state to
one final state. If contractions in the direction of time were allowed, then one would find
in the same equivalence class a loop (cf. Figure 1): this is not acceptable.

Two kinds of deformations are of interest in the framework of flows. The first one is
called weak S-homotopy equivalence: it is a morphism of flows f : X −→ Y such that the
set map f 0 : X0 −→ Y 0 is a bijection and such that the continuous map Pf : PX −→ PY
is a weak homotopy equivalence. It turns out that there exists a model structure on the
category of flows whose weak equivalences are exactly the weak S-homotopy equivalences
([11] and Section 4 of this paper). However, the identifications allowed by the weak S-
homotopy equivalences are too rigid. So another kind of weak equivalence is required.
The T-homotopy equivalences are generated by a set T of cofibrations obtained by taking
the cofibrant replacement of the inclusions of posets 1 of Definition 4.2. This approach
of T-homotopy is presented for the first time in [15]. The latter models “refinement of
observation”. For instance, the inclusion of posets {0̂ < 1̂} ⊂ {0̂ < A < 1̂} corresponds to
the identification of a directed segment U going from the initial state 0̂ to the final state
1̂ with the composite U ′ ∗ U ′′ of two directed segments (cf. Figure 2).

The problem we face can then be presented as follows. We have:

1Any poset P can be viewed as a flow in an obvious way: the set of states is the underlying set of P
and there is a non-constant execution path from α to β if and only if α < β. Note that the inequality
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Figure 2: The simplest example of refinement of observation

1. A model structure on the category of flows Flow, called the weak S-homotopy model
structure, such that the class of weak equivalences is exactly the class S of weak
S-homotopy equivalences. One wants to invert the weak S-homotopy equivalences
because two weakly S-homotopy equivalent flows are equivalent from an observa-
tional viewpoint. This model structure provides an implementation of Whitehead’s
theorem for S-homotopy only.

2. A set of cofibrations T of generating T-homotopy equivalences one would like to
invert because these maps model refinement of observation.

3. Three known invariants with respect to weak S-homotopy and T-homotopy: the
underlying homotopy type functor [12], the branching homology and the merging
homology [14].

4. Every model structure on Flow which contains as weak equivalences the class of
morphisms S∪T , contains weak equivalences which do not preserve the three known
invariants [13]. In particular, the category Flow[S−1

T ] below is not the Quillen
homotopy category of a model structure of Flow. The left Bousfield localization of
the weak S-homotopy model structure with respect to the set of cofibrations T is
therefore not relevant here.

The negative result (4) prevents us from using the machinery of model category on the
category Flow for understanding the full dihomotopy equivalence relation. There are then
several possibilities: reconstructing some pieces of homotopy theory in the framework of
flows, finding new categories for studying S-homotopy and T-homotopy, or also relating
dihomotopy on Flow to other axiomatic presentations of homotopy theory. The possibility
which is explored in this paper is the first one.

Indeed, the goal of this work is to prove that it is possible to find a full subcategory of
the category of flows which is big enough to contain all dihomotopy types and in which the
weak dihomotopy equivalences are exactly the invertible morphisms up to dihomotopy.
The main theorem of the paper states as follows (cf. Section 4 for a reminder about flows):

1.1. Theorem. (Theorem 4.6 and Theorem 4.7) Let Jgl be the set of generating trivial
cofibrations of the weak S-homotopy model structure of Flow. Let T be the set of gen-
erating T-homotopy equivalences. Let Flowcof be the full subcategory of cofibrant flows.

is strict. Indeed, the ordering of P represents the direction of time and the flow associated with a poset
must be loopless.
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There exists a full subcategory Flowf,T
cof of the category of cofibrant flows Flowcof , the one

of homotopy continuous flows, a class of morphisms of flows ST and a congruence ∼T
on the morphisms of Flow such that the inclusion functors Flowf,T

cof ⊂ Flowcof ⊂ Flow
induce the equivalences of categories

Flowf,T
cof /∼T � Flowcof [(S ∪ cof(Jgl ∪ T ))−1] � Flow[S−1

T ].

Moreover, one has:

1. The class of morphisms ST contains the weak S-homotopy equivalences and the
morphisms of cof(Jgl ∪ T ) with cofibrant domains.

2. Every morphism of ST preserves the underlying homotopy type, the branching ho-
mology and the merging homology.

We now outline the contents of the paper. The purpose of Section 3 is to give the
proof of the theorem above in a more abstract setting. The starting point is a model
category M together with a weak factorization system (L,R) satisfying some technical
conditions which are fulfilled by the weak S-homotopy model structure of Flow and by the
set of generating T-homotopy equivalences. Several proofs of Section 3 are adaptations
of standard proofs [28] [20]. But since the existence of a convenient model structure for
(L,R) is not supposed 2, there are some subtle differences and also new phenomena.
The idea of considering the path object construction comes from the reading of Kurz
and Rosický’s paper [22]. In this paper, Kurz and Rosický have the idea of considering
a cylinder object construction with any weak factorization system (L,R). This allows
them to investigate the categorical localization of the underlying category with respect to
the class of morphisms R viewed, morally speaking, as a class of trivial fibrations. The
dual situation is explored in this section, with an underlying category which is not only a
category but also a model category. The situation described in Section 3 makes one think
of the notion of fibration category in the sense of Baues [3]. However, we do not know how
to construct a fibration category from the results of Section 3. The path object functor
constructed in Section 3 cannot satisfy the whole set of axioms of a P-category in the
sense of Baues [3] since the associated homotopy relation is not transitive. In particular,
it does not even seem to satisfy the pullback axiom. Next, Section 4 proves the theorem
above as an application of Section 3.

Link with the series of papers “T-homotopy and refinement of observa-

tion”. This paper is independent from the series of papers “T-homotopy and refinement
of observation” except for the proof of Theorem 4.7 at the very end of this work in which
[15] Theorem 5.2 is used. This paper was written while the author was trying to un-
derstand whether the (categorical) localization Flow[cof(T )−1] of the category of flows
with respect to the T-homotopy equivalences introduced in [15] is locally small. Indeed,
the local smallness is not established in the series of papers “T-homotopy and refinement

2that is: a model structure such that L is the class of trivial cofibrations.
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of observation”. The result we obtain is more subtle. In the “correct” localization, all
morphisms of cof(Jgl ∪T ) with cofibrant domains are inverted. This is enough for future
application in computer science since the real concrete examples are all of them modelled
by cofibrant flows. But it is not known whether the other morphisms of cof(Jgl ∪ T )
are inverted. If this fact should be true, then it would probably be a consequence of the
left properness of the weak S-homotopy model structure of Flow (which is proved in [16]
Theorem 6.4).

2. Prerequisites and notations

The initial object (resp. the terminal object) of a category C, if it exists, is denoted by ∅

(resp. 1).
Let i : A −→ B and p : X −→ Y be maps in a category C. Then i has the left lifting

property (LLP) with respect to p (or p has the right lifting property (RLP) with respect
to i) if for every commutative square

A

i

��

α �� X

p

��
B

g

���
�

�
�

�
�

�
�

β
�� Y,

there exists a morphism g called a lift making both triangles commutative.
Let C be a cocomplete category. If K is a set of morphisms of C, then the class

of morphisms of C that satisfy the RLP (right lifting property) with respect to every
morphism of K is denoted by inj(K) and the class of morphisms of C that are transfinite
compositions of pushouts of elements of K is denoted by cell(K). Denote by cof(K) the
class of morphisms of C that satisfy the LLP (left lifting property) with respect to every
morphism of inj(K). The cocompleteness of C implies cell(K) ⊂ cof(K). Moreover,
every morphism of cof(K) is a retract of a morphism of cell(K) as soon as the domains
of K are small relative to cell(K) ([20] Corollary 2.1.15). An element of cell(K) is called
a relative K-cell complex. If X is an object of C, and if the canonical morphism ∅ −→ X
is a relative K-cell complex, one says that X is a K-cell complex.

A congruence ∼ on a category C consists of an equivalence relation on the set C(X,Y )
of morphisms from X to Y for every object X and Y of C such that if f, g ∈ C(X,Y ),
then f ∼ g implies u ◦ f ∼ u ◦ f and f ◦ v ∼ g ◦ v for any morphism u and v as soon as
u ◦ f and f ◦ v exist.

Let C be a cocomplete category with a distinguished set of morphisms I. Then let
cell(C, I) be the full subcategory of C consisting of the object X of C such that the
canonical morphism ∅ −→ X is an object of cell(I). In other terms, cell(C, I) = (∅ ↓
C) ∩ cell(I).
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It is obviously impossible to read this paper without some familiarity with model
categories. Possible references for model categories are [20], [19] and [9]. The original
reference is [28] but Quillen’s axiomatization is not used in this paper. The Hovey’s
book axiomatization is preferred. If M is a cofibrantly generated model category with
set of generating cofibrations I, let cell(M) := cell(M, I). Any cofibrantly generated
model structure M comes with a cofibrant replacement functor Q : M −→ cell(M).
For every morphism f of M, the morphism Q(f) is a cofibration, and even an inclusion
of subcomplexes. A set K of morphisms of a model category permits the small object
argument if the domains of the morphisms of K are small relative to cell(K). For such a
set K, one can use the small object argument. The small object argument is recalled in
the proof of Proposition 3.18.

In this paper, the notation � means weak equivalence or equivalence of categories, and
the notation ∼= means isomorphism.

A partially ordered set (P,≤) (or poset) is a set equipped with a reflexive antisymmetric
and transitive binary relation ≤. A poset (P,≤) is bounded if there exist 0̂ ∈ P and 1̂ ∈ P
such that P ⊂ [0̂, 1̂] and such that 0̂ = 1̂. Let 0̂ = min P (the bottom element) and
1̂ = max P (the top element).

Every poset P , and in particular every ordinal, can be viewed as a small category
denoted in the same way: the objects are the elements of P and there exists a morphism
from x to y if and only if x ≤ y. If λ is an ordinal, a λ-sequence (or a transfinite sequence)
in a cocomplete category C is a colimit-preserving functor X from λ to C. We denote by
Xλ the colimit lim−→X and the morphism X0 −→ Xλ is called the transfinite composition
of the Xµ −→ Xµ+1.

If C is a locally small category, and if Σ is a class of morphisms of C, then we denote
by C[Σ−1] the (categorical) localization of C with respect to Σ [10] [24] [6]. The category
C[Σ−1] is not necessarily locally small. If M is a model category with class of weak
equivalences W , then the localization M[W−1] is locally small and it is called the Quillen
homotopy category of M. It is denoted by Ho(M).

3. Localizing a model category w.r.t. a weak factorization system

3.1. Definition. [1] Let C be a category. A weak factorization system is a pair (L,R) of
classes of morphisms of C such that the class L is the class of morphisms having the LLP
with respect to R, such that the class R is the class of morphisms having the RLP with
respect to L and such that every morphism of C factors as a composite r ◦ � with � ∈ L
and r ∈ R. The weak factorization system is functorial if the factorization r ◦ � can be
made functorial.

In a weak factorization system (L,R), the class L (resp. R) is completely determined
by R (resp. L).

3.2. Definition. Let C be a cocomplete category. A weak factorization system (L,R) is
cofibrantly generated if there exists a set K of morphisms of C permitting the small object
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argument such that L = cof(K) and R = inj(K).

A cofibrantly generated weak factorization system is necessarily functorial. Defini-
tion 3.2 appears in [4] in the context of locally presentable category as the notion of small
weak factorization system.

The data for this section are:

1. a complete and cocomplete category M equipped with a model structure denoted
by (Cof, Fib,W) for respectively the class of cofibrations, of fibrations and of weak
equivalences such that the weak factorization system (Cof ∩ W, Fib) is cofibrantly
generated : the set of generating trivial cofibrations is denoted by J .

2. a cofibrantly generated weak factorization system (L,R) on M satisfying the follow-
ing property: Cof ∩W ⊂ L ⊂ Cof. So there exists a set of morphisms K such that
L = cof(J ∪K) and R = inj(J ∪K) and such that J ∪K permits the small object
argument. Therefore every morphism f factors as a composite f = β(f) ◦ α(f)
where α(f) ∈ cell(J ∪ K) ⊂ L and where β(f) ∈ R. The functorial factorization
is supposed to be obtained using the small object argument. It is fixed for the whole
section.

3.3. Definition. Let X be an object of M. The path object of X with respect to L is
the functorial factorization

X
α(IdX ,IdX) �� PathL(X)

β(IdX ,IdX) �� X × X

of the diagonal morphism (IdX , IdX) : X −→ X×X by the morphism α(IdX , IdX) : X −→
PathL(X) of L composed with the morphism β(IdX , IdX) : PathL(X) −→ X × X of R.

3.4. Notation. Let Mcof be the full subcategory of cofibrant objects of M.

The path object of X with respect to L is cofibrant as soon as X is cofibrant since the
morphism α(IdX , IdX) : X −→ PathL(X) is a cofibration. So the path object construction
yields an endofunctor of Mcof .

The reader must notice that we do not assume here that α(IdX , IdX) is a weak equiv-
alence of any kind, contrary to the usual definition of a path object. As in [22] for
the construction of the cylinder functor, we do use the functorial factorization and we
do suppose that α(IdX , IdX) belongs to L. A morphism of L being an isomorphism of
Mcof [(W ∪ L)−1], our condition is stronger than the usual one for the construction of a
path object in a model category.

3.5. Definition. An object X of M is fibrant with respect to L if the unique morphism
fX : X −→ 1, where 1 is the terminal object of M, is an element of R.

An object which is fibrant with respect to Cof ∩ W is a fibrant object in the usual
sense.
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3.6. Notation. Let Mf,L be the full subcategory of M of fibrant objects with respect to
L. Let Mf,L

cof be the full subcategory of Mcof of fibrant objects with respect to L.

If X is fibrant with respect to L, the morphism X ×X −→ X × 1 ∼= X belongs to R.
Therefore the composite

PathL(X) −→ X × X −→ X −→ 1

belongs to R as well. So the path object PathL(X) is also fibrant with respect to L.
Thus, the path object construction yields endofunctors of Mf,L and of Mf,L

cof .

If f : X −→ Y is a morphism of Mf,L
cof , then the functorial factorization (α, β) yields

a composite a priori in Mcof (since L ⊂ Cof)

X
α(f) �� Z

β(f) �� Y

equal to f . The unique morphism Z −→ 1 is equal to the composite Z −→ Y −→ 1 of
two morphisms of R. Therefore Z is fibrant with respect to L and the functorial weak
factorization system (L,R) restricts to a functorial weak factorization system of Mf,L

cof

denoted in the same way.

3.7. Definition. Let f, g : X ⇒ Y be two morphisms of M. A right homotopy with
respect to L from f to g is a morphism H : X −→ PathL(Y ) such that

β(IdY , IdY ) ◦ H = (f, g).

This situation is denoted by f ∼r
L g.

Note the binary relation ∼r
L does not depend on the choice of the functorial factoriza-

tion (α, β). Indeed, with another functorial factorization (α′, β′), and the corresponding
path object functor Path′

L, one can consider for every object Y of M the commutative
diagram

Y

��

Y

��
PathL(Y )

��

k �������� Path′
L(Y )

��
Y × Y

IdY × IdY �� Y × Y.

The lift k exists since the arrow Y −→ PathL(Y ) is in L and since the arrow Path′
L(Y ) −→

Y × Y is in R.

The morphism α(IdY , IdY ) ◦ f : X −→ PathL Y yields a right homotopy from f to f
with respect to L. If H : X −→ PathL(Y ) is a right homotopy from f to g with respect
to L, then the usual way for obtaining a right homotopy from g to f with respect to L
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consists of considering the commutative diagram:

Y

��

Y

��
PathL(Y )

��

k �������� PathL(Y )

��
Y × Y

τ �� Y × Y

with τ(y, y′) = (y′, y). The existence of the lift k comes from the definition of the path
object and of the fact that (L,R) is a weak factorization system. So the binary relation
∼r

L is reflexive and symmetric.

This relation is not transitive in general. The pair (Rop,Lop) is a weak factorization
system of the opposite category Mop (the model structure of M is forgotten for this
paragraph only). The path object becomes a cylinder object and the binary relation
∼r

L becomes the homotopy relation of [22]. [22] Example 3.6 gives an example where
the homotopy is not transitive. Thus, the opposite category with the opposite weak
factorization system gives an example where ∼r

L is not transitive.

3.8. Notation. Let us denote by ∼L the transitive closure of the binary relation ∼r
L.

3.9. Proposition. Let X be an object of Mcof . Let Y be an object of M. Let f, g :
X ⇒ Y be two morphisms between them. Then f ∼Cof∩W g if and only if f and g are
right homotopic in the usual sense of model categories.

Notice that it is crucial in the proof for X to be cofibrant.

Proof. Indeed, two morphisms f, g : X ⇒ Y with X cofibrant are right homotopic in the
usual sense if the pair (f, g) is in the transitive closure of the following situation denoted
by f ∼r g (cf. [20] p7):

1. Decompose the diagonal morphism (IdY , IdY ) : Y −→ Y ×Y into a weak equivalence
Y −→ PY of M followed by a fibration (p1, p2) : PY −→ Y × Y of M.

2. There exists H : X −→ PY such that (p1, p2) ◦ H = (f, g).

Let us factor the weak equivalence Y −→ PY as a composite Y −→ P ′Y −→ PY where
Y −→ P ′Y is a trivial cofibration and where P ′Y −→ PY is a trivial fibration. Then
one can lift the right homotopy H : X −→ PY to a morphism H : X −→ P ′Y since X
is cofibrant. But H is not yet a right homotopy from f to g with respect to Cof ∩ W
since P ′Y is not necessarily the functorial path object PathCof∩W(Y ) ! Let us consider
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the commutative diagram

Y

��

Y

��
P ′Y

��

k ��������� PathCof∩W(Y )

��
Y × Y

IdY × IdY �� Y × Y

Since the arrow Y −→ P ′Y is a trivial cofibration and since the arrow PathCof∩W(Y ) −→
Y × Y is a fibration, there exists a lift k. Then k ◦H is a right homotopy with respect to
Cof ∩W from f to g.

Conversely, the path object with respect to Cof ∩ W is a path object in the above
sense of model categories. So a right homotopy from f to g with respect to Cof ∩W is a
right homotopy in the usual sense of model categories.

The following proposition gives a sufficient condition for the binary relation ∼r
L to be

transitive.

3.10. Proposition. Let us suppose that there exists a model structure (CofL, FibL,WL)
on M such that L = CofL ∩WL and such that every cofibrant object of M is a cofibrant
object of (CofL, FibL,WL). Let X and Y be two objects of Mf,L

cof . Then the binary relation

∼r
L is an equivalence relation on Mf,L

cof (X,Y ).

Notice that we do not need suppose in the proof of Proposition 3.9 that the weak
factorization system (Cof ∩ W, Fib) is cofibrantly generated. So we do not need this
hypothesis in the proof of Proposition 3.10.

Proof. By Proposition 3.9 applied to the model structure (CofL, FibL,WL), the binary
relation ∼r

L coincides with right homotopy for the model structure (CofL, FibL,WL).
Since Y is fibrant for the latter model structure, one deduces that ∼r

L is transitive by [20]
Proposition 1.2.5.

3.11. Corollary. If L is the class of trivial cofibrations of a left Bousfield localization of
the model structure of M, then the binary relation ∼r

L on the set of morphisms M(X,Y )
with X ∈ Mcof and with Y fibrant with respect to L is an equivalence relation.

3.12. Proposition. (dual to [22] Lemma 3.2) Let f, g : X ⇒ Y be two morphisms of
M. Let u : Y −→ U and v : V −→ X be two other morphisms of M. If f ∼r

L g, then
u ◦ f ∼r

L u ◦ g and f ◦ v ∼r
L g ◦ v.

In other terms, the equivalence relation ∼L defines a congruence in the sense of [24].

Proof. By considering the opposite of the category M, the proof is complete using [22]
Lemma 3.2.
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The proof of Proposition 3.12 does use the factorization (α, β) and its functoriality.
We could avoid using the functoriality since the morphism α(IdY , IdY ) : Y −→ PathL(Y )
belongs to L and since the morphism β(IdU × IdU) : PathL(U) −→ U × U belongs to R.
But anyway, the proof of Proposition 3.12 cannot be adapted to the usual notion of right
homotopy. This is once again a difference between our notion of right homotopy and the
usual one on model category.

Proposition 3.12 allows to consider the quotients M/∼L (resp. Mcof/∼L, Mf,L/∼L,

Mf,L
cof/∼L) of the category M (resp. Mcof , Mf,L Mf,L

cof ) by the congruence ∼L. By defini-

tion, the objects of M/∼L (resp. Mcof/∼L, Mf,L/∼L, Mf,L
cof/∼L) are the objects of M

(resp. Mcof , Mf,L, Mf,L
cof ), and for any object X and Y of M (resp. Mcof , Mf,L, Mf,L

cof ),
one has M/ ∼L (X,Y ) = M(X,Y )/ ∼L (resp. Mcof/ ∼L (X,Y ) = Mcof (X,Y )/ ∼L,

Mf,L/∼L (X,Y ) = Mf,L(X,Y )/∼L, Mf,L
cof/∼L (X,Y ) = Mf,L

cof (X,Y )/∼L). Let

[−]L : M −→ M/∼L

[−]L : Mcof −→ Mcof/∼L

[−]L : Mf,L −→ Mf,L/∼L

[−]L : Mf,L
cof −→ Mf,L

cof/∼L

be the canonical functors.

3.13. Proposition. (dual to [22] Lemma 3.7) Let f : X −→ Y be a morphism of M
belonging to L. Let us suppose that X is fibrant with respect to L. Then there exists
g : Y −→ X such that f ◦ g ∼L IdY and g ◦ f = IdX .

Proof. Let us consider the commutative diagram of M

X

f

��

X

��
Y ��

g

���
�

�
�

�
�

�
�

1.
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Since the left vertical arrow is in L and since the right vertical arrow is in R by hypothesis,
there exists a lift g : Y −→ X. In other terms, g ◦ f = IdX . The diagram of M

Y

α(IdY ,IdY )
��

X

f

�������������������������
α(IdY ,IdY )◦f

��

f

��

PathL(Y )

β(IdY ,IdY )

��
Y

H

		������������

(f◦g,IdY )
�� Y × Y

is commutative since

β(IdY , IdY ) ◦ α(IdY , IdY ) ◦ f = (IdY , IdY ) ◦ f = (f, f) = (f ◦ g, IdY ) ◦ f.

Since f ∈ L by hypothesis and since β(IdY , IdY ) ∈ R, there exists H : Y −→ PathL(Y )
preserving the diagram above commutative. The morphism H is by construction a right
homotopy from f ◦ g to IdY with respect to L.

3.14. Proposition. (almost dual to [22] Theorem 3.9) One has the isomorphism of
categories Mf,L

cof/∼L∼= Mf,L
cof [L−1]. In particular, this means that the category Mf,L

cof [L−1]
is locally small.

The proof of Proposition 3.14 also shows the isomorphism of categories

Mf,L/∼L∼= Mf,L[L−1].

Proof. We know that the pair (L,R) restricts to a weak factorization system of Mf,L
cof .

By considering the opposite category, the proposition is then a consequence of [22] The-
orem 3.9.

3.15. Proposition. (Detecting weak equivalences) A morphism f : A −→ B of Mf,L
cof is

an isomorphism of Mf,L
cof [L−1] if and only if for every object X of Mf,L

cof , the map

M(B,X)/∼L−→ M(A,X)/∼L

is bijective.

Note the “opposite” characterization M(X,A)/∼L−→ M(X,B)/∼L also holds. The
statement of the theorem is chosen for having a characterization as close as possible to
the characterization of weak equivalences in a left Bousfield localization.
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Proof. The condition means that the map

(Mf,L
cof/∼L)(B,X) −→ (Mf,L

cof/∼L)(A,X)

is a bijection. By Yoneda’s lemma applied within the locally small category Mf,L
cof/∼L,

the condition is equivalent to saying that f : A −→ B is an isomorphism of Mf,L
cof/∼L. By

Proposition 3.14, the condition is equivalent to saying that f : A −→ B is an isomorphism
of Mf,L

cof [L−1].

3.16. Definition. Let X be an object of Mcof . The fibrant replacement of X with
respect to L is the functorial factorization

X
α(fX) �� RL(X)

β(fX) �� 1

of the unique morphism fX : X −→ 1.

The mapping X �→ RL(X) is functorial and yields a functor from Mcof to Mf,L
cof since

the morphism α(fX) : X −→ RL(X) is a cofibration.

3.17. Lemma. Let λ be a limit ordinal. Let X : λ −→ M and Y : λ −→ M be two
transfinite sequences. Let f : X −→ Y be a morphism of transfinite sequences such that
for any µ < λ, fµ : Xµ −→ Yµ belongs to L. Then fλ : Xλ −→ Yλ belongs to L. Moreover,
if for any µ < λ, fµ : Xµ −→ Yµ belongs to cell(J ∪ K), then fλ : Xλ −→ Yλ belongs to
cell(J ∪ K) as well.

Lemma 3.17 and Proposition 3.18 are very close to [19] Proposition 12.4.7. The dif-
ference is that we do not suppose here that the underlying model category is cellular.

Proof. Let T0 = Xλ. Let us consider the unique transfinite sequence T : λ −→ M such
that one has the pushout diagram

Xµ
fµ ��

��

Yµ

��
Tµ

�� Tµ+1

where the left vertical arrow is the composite Xµ −→ Xλ −→ Tµ for any µ < λ. Let Z be
an object of M and let φ : Yλ −→ Z be a morphism of M. The composite Xλ −→ Yλ −→
Z together with the composite Y0 −→ Yλ −→ Z yields with the pushout diagram above
for µ = 0 a morphism T1 −→ Z since f is a morphism of transfinite sequences. And by an
immediate transfinite induction, one obtains a morphism lim−→µ

Tµ −→ Z. So one has the

isomorphism lim−→µ
Tµ

∼= Yλ since the two objects of M satisfy the same universal property.

Hence the result since the class of morphisms L and cell(J ∪ K) are both closed under
transfinite composition.
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3.18. Proposition. One has RL(L) ⊂ L, and even RL(cell(J ∪ K)) ⊂ cell(J ∪ K).

Proof. A morphism f ∈ cof(J ∪ K) is a retract of a morphism g ∈ cell(J ∪ K) since
J ∪ K permits the small object argument. And the morphism Rcof(J∪K)(f) is then a
retract of the morphism Rcof(J∪K)(g). Therefore it suffices to prove that f ∈ cell(J ∪K)
implies Rcof(J∪K)(f) ∈ cell(J ∪ K). The functor Rcof(J∪K) is obtained by a transfinite
construction involving the small object argument. Let X0 = X and Y0 = Y and f = f0.
For any ordinal λ, let Yλ be the object of M defined by the following commutative
diagram:

X0
f ��

��

Y0

��

Y0

��
Xλ

�� Yλ
�� Yλ

Let us suppose fλ : Xλ −→ Yλ constructed for some λ ≥ 0 and let us suppose that
the morphism Yλ −→ Yλ is an element of cell(J ∪ K). The small object argument
consists of considering the sets of commutative squares {k −→ fXλ

, k ∈ J ∪ K} and
{k −→ fYλ

, k ∈ J ∪ K} where fXλ
: Xλ −→ 1 and fYλ

: Yλ −→ 1 are the canonical
morphisms from respectively Xλ and Yλ to the terminal object of M. The morphism fλ

allows the identification of {k −→ fXλ
, k ∈ J∪K} with a subset of {k −→ fYλ

, k ∈ J∪K}.
And the morphism fλ+1 : Xλ+1 −→ Yλ+1 is obtained by the diagram (where the notations
dom(k) and codom(k) mean respectively domain and codomain of k):⊔

{k−→fXλ
,k∈J∪K} dom(k) ��

��

Xλ

��

�� Yλ

��⊔
{k−→fXλ

,k∈J∪K} codom(k) �� Xλ+1
�� Yλ

��⊔
{k−→fYλ

,k∈J∪K}\{k−→fXλ
,k∈J∪K} dom(k)

������������������������

��

Yλ+1

⊔
{k−→fYλ

,k∈J∪K}\{k−→fXλ
,k∈J∪K} codom(k)

�����������������������

Therefore fλ+1 : Xλ+1 −→ Yλ+1 is an element of cell(J ∪K). The proof is complete with
Lemma 3.17.

Note the same kind of argument as the one of Proposition 3.18 leads to the following
proposition (worth being noticed, but useless for the sequel):

3.19. Proposition. One has PathL(L) ⊂ L, and even PathL(cell(J∪K)) ⊂ cell(J∪K).

Proposition 3.18 will be used in particular in the proof of Proposition 3.22 with the
functorial weak factorization system (Cof ∩W, Fib) and in the proof of Proposition 3.20.
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3.20. Proposition. The inclusion functor Mf,L
cof ⊂ Mcof induces an equivalence of cat-

egories Mf,L
cof [L−1] � Mcof [L−1]. In particular, this implies that the category Mcof [L−1]

is locally small.

Proof. Since RL(L) ⊂ L by Proposition 3.18, there exists a unique functor L(RL) making
the following diagram commutative:

Mcof
RL ��

��

Mf,L
cof

��

Mcof [L−1]
L(RL) ����������� Mf,L

cof [L−1].

If i : Mf,L
cof −→ Mcof is the inclusion functor, then there exists a unique functor L(i)

making the following diagram commutative:

Mf,L
cof

i ��

��

Mcof

��
Mf,L

cof [L−1]
L(i) ����������� Mcof [L−1].

There are two natural transformations µ : IdMcof
⇒ i ◦ RL and ν : IdMf,L

cof
⇒ RL ◦ i such

that for any X ∈ Mcof and any Y ∈ Mf,L
cof , the morphisms µ(X) and ν(Y ) belong to L.

So at the level of localizations, one obtains the isomorphisms of functors IdMcof [L−1]
∼=

L(i) ◦ L(RL) and IdMf,L
cof [L−1]

∼= L(RL) ◦ L(i). Hence the result.

3.21. Proposition. Let (L′,R′) be another cofibrantly generated weak factorization of
M such that Cof ∩ W ⊂ L′ ⊂ Cof. Let us suppose that L′ ⊂ L. Then the localization
functor Mcof −→ Mcof [L−1] factors uniquely as a composite

Mcof −→ Mcof [L′−1] −→ Mcof [L−1].

Proof. One has L′ ⊂ L.

3.22. Proposition. The localization functor L : Mcof −→ Mcof [L−1] sends the weak
equivalences of M between cofibrant objects to isomorphisms of Mcof [L−1].

Proof. The localization functor L : Mcof −→ Mcof [L−1] factors uniquely as a composite

Mcof −→ Mcof [(Cof ∩W)−1] −→ Mcof [L−1]

by Proposition 3.21 and since Cof ∩W ⊂ L. By Proposition 3.20 and Proposition 3.18
applied to L = Cof ∩W, one has the equivalence of categories

Mcof [(Cof ∩W)−1] � Mf,Cof∩W
cof [(Cof ∩W)−1].
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By Proposition 3.14 applied to L = Cof ∩W, one has the isomorphism of categories

Mf,Cof∩W
cof [(Cof ∩W)−1] ∼= Mf,Cof∩W

cof /∼Cof∩W .

Therefore one obtains the equivalence of categories

Mcof [(Cof ∩W)−1] � Mf,Cof∩W
cof /∼Cof∩W .

The category Mf,Cof∩W
cof is the full subcategory of cofibrant-fibrant objects of M. Since

right homotopy with respect to Cof∩W corresponds to the usual notion of right homotopy
by Proposition 3.9, one has the equivalence of categories

Mf,Cof∩W
cof /∼Cof∩W� Ho(M)

where Ho(M) = M[W−1]. Hence the result.

3.23. Proposition. The categories Mcof [L−1] and Mcof [(W∪L)−1] are isomorphic. In
particular, this implies that the category Mcof [(W ∪L)−1] is locally small.

Proof. By Proposition 3.22, there exists a unique functor

Mcof [(W ∪L)−1] −→ Mcof [L−1]

such that the following diagram is commutative:

Mcof

��

Mcof

��
Mcof [(W ∪L)−1] �������� Mcof [L−1].

Since L ⊂ W ∪ L, there exists a unique functor Mcof [L−1] −→ Mcof [(W ∪ L)−1] such
that the following diagram is commutative:

Mcof

��

Mcof

��
Mcof [L−1] �������� Mcof [(W ∪L)−1].

Hence the result.

In the same way, one can prove the

3.24. Proposition. The categories Mf,L
cof [L−1] and Mf,L

cof [(W∪L)−1] are isomorphic. In

particular, this implies that the category Mf,L
cof [(W ∪L)−1] is locally small.

3.25. Notation. Let

WL =
{

f : X −→ Y,∀Z ∈ Mf,L
cof ,M(RL(Q(Y )), Z)/∼L∼= M(RL(Q(X)), Z)/∼L

}
.
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3.26. Proposition. The inclusion functor Mcof ⊂ M induces an equivalence of cate-
gories Mcof [(W∪L)−1] � M[W−1

L ]. In particular, this implies that the category M[W−1
L ]

is locally small.

Proof. Let us consider the composite

M Q �� Mcof
L �� Mcof [(W ∪L)−1]

where Q is the cofibrant replacement functor of M. By definition of WL and by Propo-
sition 3.15, by Proposition 3.20 and by Proposition 3.23, the functor L ◦ Q sends the
morphisms of WL to isomorphisms. Thus, there exists a unique functor L(Q) making the
following diagram commutative:

M Q ��

��

Mcof

��
M[W−1

L ]
L(Q) ����������� Mcof [(W ∪L)−1].

Let i : Mcof −→ M be the inclusion functor. Let f : X −→ Y ∈ W ∪ L be a morphism
of Mcof . Then Q(f) : Q(X) −→ Q(Y ) is still invertible in Mcof [(W ∪ L)−1] since the
morphism Q(X) −→ X and Q(Y ) −→ Y are both weak equivalences of M between
cofibrant objects. So by Proposition 3.20, the morphism RL(Q(f)) : RL(Q(X)) −→
RL(Q(Y )) is invertible in Mf,L

cof [(W ∪ L)−1] � Mf,L
cof [L−1]. So by Proposition 3.15, one

deduces that f ∈ WL. Thus, there exists a unique functor L(i) making the following
diagram commutative:

Mcof
i ��

��

M

��
Mcof [(W ∪L)−1]

L(i) ����������� M[W−1
L ].

There exist two natural transformations µ : Q◦i ⇒ IdMcof
and ν : i◦Q ⇒ IdM. If X is an

object of Mcof , then µ(X) is a trivial fibration between cofibrant objects, i.e. µ(X) ∈ W.
So one deduces that L(µ(X)) is an isomorphism of Mcof [(W∪L)−1]. Therefore one obtains
the isomorphism of functors L(Q) ◦ L(i) ∼= IdMcof [(W∪L)−1]. If Y is an object of M, then
ν(Y ) : Q(Y ) −→ Y is a trivial fibration of M. Thus, Q(ν(Y )) : Q(Q(Y )) −→ Q(Y )
is a trivial cofibration of M between cofibrant objects. So Q(ν(Y )) ∈ Cof ∩ W ⊂ L.
Since RL(L) ⊂ L, one deduces that RL(Q(ν(Y ))) is an isomorphism of Mf,L

cof [L−1]. Again
by Proposition 3.15, one deduces that ν(Y ) ∈ WL and one obtains the isomorphism of
functors L(i) ◦ L(Q) ∼= IdM[W−1

L ]. The proof is complete.
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3.27. Theorem. (Whitehead’s theorem for the localization of a model category with re-
spect to a weak factorization system) The inclusion functors Mf,L

cof ⊂ Mcof ⊂ M induce
the equivalences of categories

Mf,L
cof/∼L� Mcof [(W ∪L)−1] � M[W−1

L ].

The functor M[W−1
L ] −→ Mf,L

cof/ ∼L is given by the cofibrant-fibrant w.r.t. L functor

RL ◦ Q : M −→ Mf,L
cof . Moreover, the localization functor M −→ M[W−1

L ] factors
uniquely as a composite

M −→ M[W−1] −→ M[W−1
L ].

The equivalence of categories Mcof [(W ∪ L)−1] � M[W−1
L ] shows that up to weak

equivalence and up to the 2-out-of-3 axiom, a morphism of WL is a morphism of W ∪ L
between cofibrant objects of M. This means that the class of morphisms WL is not too
big.

Proof. The equivalence of categories M[W−1
L ] � Mcof [(W ∪L)−1] is given by Proposi-

tion 3.26. By Proposition 3.26, the functor M[W−1
L ] −→ Mcof [(W ∪L)−1] is induced by

the cofibrant replacement functor Q : M −→ Mcof . Therefore every morphism of W is
in WL. At last, one has

Mcof [(W ∪L)−1]
∼= Mcof [L−1] by Proposition 3.23

� Mf,L
cof [L−1] by Proposition 3.20

� Mf,L
cof/∼L by Proposition 3.14.

Theorem 3.27 says that the category M[W−1
L ] inverts all weak equivalences of M and

all morphisms of L with cofibrant domains. We do not know if all morphisms of L (and
not only the ones with cofibrant domain) are inverted in the category M[W−1

L ]. But there
is a kind of reciprocal statement:

3.28. Proposition. Let us suppose that M is left proper. Let f be a cofibration of M
such that Q(f) ∈ L. Then f ∈ L.

Proof. Let p ∈ R. Since Cof ∩ W ⊂ L, the morphism p is a fibration of M. By
hypothesis, p satisfies the RLP with respect to Q(f). Since f is a cofibration and by [19]
Proposition 13.2.1, one deduces that p satisfies the RLP with respect to f . So f ∈ L.

Before treating the case of T-homotopy equivalences in Section 4, let us give some
examples of the situation explored in this section.
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Example 1. Let M be a cofibrantly generated model category with set of generating
cofibrations I and with set of generating trivial cofibrations J and with class of weak
equivalences W . Let (L,R) = (cof(J), inj(J)). The main theorem gives the equivalences
of categories

Mfib
cof/∼cof(J)� Mcof [cof(J)−1] � M[W−1

cof(J)]

where Mfib
cof is the full subcategory of cofibrant-fibrant objects. One can directly check

that W−1
cof(J) = W . This is not surprising since the category Mfib

cof/∼cof(J) is the category
of cofibrant-fibrant objects of M up to homotopy.

Example 2. Let M be a cofibrantly generated model category with set of generating cofi-
brations I and with set of generating trivial cofibrations J and with class of weak equiva-
lences W . Then one can consider the model structure (All, All, Iso) where all morphisms
are a cofibration and a fibration and where the weak equivalences are the isomorphisms.
Indeed, one has (Iso, All) = (cof(Id∅), inj(Id∅)). The main theorem applied with the
latter model structure and with the weak factorization system (L,R) = (cof(J), inj(J))
gives the equivalences of categories

Mfib/∼cof(J)� M[cof(J)−1] � M[Iso−1
cof(J)]

where Mfib is the full subcategory of fibrant objects, where ∼cof(J) is a congruence on
the morphisms of the full subcategory of fibrant objects of M. The functor Rcof(J) is a
fibrant replacement functor of M and the functor Q is a cofibrant replacement functor of
the model structure (All, All, Iso). That is one can suppose that Q = IdM.

Example 3. Let M be a combinatorial model category (in the sense of Jeff Smith), that
is a cofibrantly generated model category such that the underlying category is locally
presentable [2]. Let J be the set of generating trivial cofibrations. Then for any set K
of morphisms of M, the pair (cof(J ∪ K), inj(J ∪ K)) is a cofibrantly generated weak
factorization system by [4] Proposition 1.3. Then the main theorem of this section applies.
One obtains the equivalences of categories

Mf,cof(J∪K)
cof /∼cof(J∪K)� Mcof [(W ∪ cof(J ∪ K))−1] � M[W−1

cof(J∪K)].

Assume Vopěnka’s principle ([2] chapter 6). If M is left proper, then the left Bousfield
localization LKM of the model category M with respect to the set of morphisms K
exists by a theorem of Jeff Smith proved in [4] Theorem 1.7 and in [29] Theorem 2.2. The
category M[W−1

cof(J∪K)] is not necessarily equivalent to the Quillen homotopy category

Ho(LKM) of this Bousfield localization. But all morphisms inverted by M[W−1
cof(J∪K)]

are inverted by the Bousfield localization. In other terms, the functor M −→ Ho(LKM)
factors uniquely as a composite M −→ M[W−1

cof(J∪K)] −→ Ho(LKM).

Example 4. Let M be a model category with model structure denoted by (Cof, Fib,W)
for respectively the class of cofibrations, of fibrations and of weak equivalences such that
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the weak factorization system (Cof ∩ W, Fib) is cofibrantly generated : the set of gen-
erating trivial cofibrations is denoted by J . Let (L,R) be a cofibrantly generated weak
factorization system such that Cof ∩W ⊂ L ⊂ Cof. Let us suppose that the left Bous-
field localization LLM of M with respect to L exists and let us suppose that L is the
class of trivial cofibrations of this Bousfield localization. One obtains the equivalences of
categories

Mf,L
cof/∼L� Mcof [(W ∪L)−1] � M[W−1

L ].

The category Mf,L
cof is the full subcategory of M containing the cofibrant-fibrant object of

LLM. The congruence ∼L is the usual notion of homotopy in M ([19] Proposition 3.5.3).
Then the category Mf,L

cof/∼L is equivalent to the Quillen homotopy category Ho(LLM).

4. Application : homotopy continuous flow and Whitehead’s theorem

The category Top of compactly generated topological spaces (i.e. of weak Hausdorff k-
spaces) is complete, cocomplete and cartesian closed (more details for this kind of topo-
logical spaces in [7, 25], the appendix of [23] and also the preliminaries of [11]). For the
sequel, all topological spaces will be supposed to be compactly generated. A compact
space is always Hausdorff. The category Top is equipped with the unique model struc-
ture having the weak homotopy equivalences as weak equivalences and having the Serre
fibrations 3 as fibrations [20].

As already described in the introduction, the time flow of a higher dimensional au-
tomaton is encoded in an object called a flow. The category Flow is equipped with the
unique model structure such that [11]:

• The weak equivalences are the weak S-homotopy equivalences, i.e. the morphisms
of flows f : X −→ Y such that f 0 : X0 −→ Y 0 is a bijection and such that
Pf : PX −→ PY is a weak homotopy equivalence.

• The fibrations are the morphisms of flows f : X −→ Y such that Pf : PX −→ PY
is a Serre fibration.

This model structure is cofibrantly generated. The set of generating cofibrations is the
set Igl

+ = Igl ∪ {R,C} with

Igl = {Glob(Sn−1) ⊂ Glob(Dn), n ≥ 0}

where Dn is the n-dimensional disk, where Sn−1 is the (n−1)-dimensional sphere, where R
and C are the set maps R : {0, 1} −→ {0} and C : ∅ −→ {0} and where for any topolog-
ical space Z, the flow Glob(Z) is the flow defined by Glob(Z)0 = {0̂, 1̂}, PGlob(Z) = Z,
s = 0̂ and t = 1̂, and a trivial composition law. The set of generating trivial cofibrations
is

Jgl = {Glob(Dn × {0}) ⊂ Glob(Dn × [0, 1]), n ≥ 0}.
3that is a continuous map having the RLP with respect to the inclusion Dn × 0 ⊂ Dn × [0, 1] for all

n ≥ 0 where Dn is the n-dimensional disk.
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The weak S-homotopy model structure of Flow has some similarity with the model
structure on the category of small simplicial categories (with identities !) constructed
in [5]. The weak equivalences (resp. the fibrations) of the latter look like the weak
equivalences (resp. the fibrations) of the model structure of Flow with an additional
condition. The weak S-homotopy model structure of Flow has also some similarity with
the model structure on the category of small simplicial categories (with identities again !)
on a fixed set of objects O constructed in [8]. For the latter, the set maps R : {0, 1} −→ {0}
and C : ∅ −→ {0} are not used since the set of objects is fixed.

4.1. Definition. A flow X is loopless if for any α ∈ X0, the space Pα,αX is empty.

Recall that a flow is a small category without identities morphisms enriched over a
category of topological spaces. So the preceding definition is meaningful.

A poset (P,≤) can be identified with a loopless flow having P as set of states and such
that there exists a non-constant execution path from x to y if and only if x < y. The
corresponding flow is still denoted by P . This defines a functor from the full subcategory
of posets whose morphisms are the strictly increasing maps to the full subcategory of
loopless flows. The category of finite bounded posets is essentially small. Let us choose a
small subcategory of representatives.

4.2. Definition. [15] Let T be the set of cofibrations Q(f) : Q(P1) −→ Q(P2) such that
f : P1 −→ P2 is a morphism of posets satisfying the following conditions:

1. The posets P1 and P2 are finite and bounded.

2. The morphism of posets f : P1 −→ P2 is one-to-one; in particular, if x and y are
two elements of P1 with x < y, then f(x) < f(y).

3. One has f(min P1) = min P2 = 0̂ and f(max P1) = max P2 = 1̂.

4. The posets P1 and P2 are objects of the chosen small subcategory of representatives
of the category of finite bounded posets.

The set T is called the set of generating T-homotopy equivalences.

The set T is introduced in [15] for modelling T-homotopy as a refinement of observa-
tion. By now, this is the best known definition of T-homotopy.

4.3. Definition. A flow X is homotopy continuous if the unique morphism of flows
fX : X −→ 1 belongs to inj(Jgl ∪ T ).

Notice that inj(Jgl∪T ) = inj(T ) because all flows are fibrant for the weak S-homotopy
model structure of Flow.
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Let X be a homotopy continuous flow. Then, for instance, consider the unique mor-
phism Q(f) : Q({0̂ < 1̂}) −→ Q({0̂ < A < 1̂)} of T . For any commutative square

Q({0̂ < 1̂}) φ ��

��

X

Q({0̂ < A < 1̂})

k



�
�

�
�

�
�

�
�

�
�

�

there exists k : Q({0̂ < A < 1̂}) −→ X making the triangle commutative. Therefore,
the existence of k ensures that any directed segment of X can always be divided up to
S-homotopy. Roughly speaking, a flow X is homotopy continuous if it is indefinitely
divisible up to S-homotopy.

4.4. Proposition. The pair (cof(Jgl ∪ T ), inj(Jgl ∪ T )) is a cofibrantly generated weak
factorization system. Moreover, it satisfies the conditions of Section 1, that is:

cof(Jgl) ⊂ cof(Jgl ∪ T ) ⊂ cof(Igl
+ ).

Proof. For every g ∈ Jgl ∪T , the continuous map Pg is a closed inclusion of topological
spaces. Therefore by [11] Proposition 11.5 and by [20] Theorem 2.1.14, the small object
argument applies.

4.5. Notation.

ST = Scof(Jgl∪T ),

RT = Rcof(Jgl∪T ),

∼T =∼cof(Jgl∪T ),

Flowf,T
cof = Flow

f,cof(Jgl∪T )
cof .

We can now apply Theorem 3.27 to obtain the theorem:

4.6. Theorem. The inclusion functors Flowf,T
cof ⊂ Flowcof ⊂ Flow induce the equiva-

lences of categories

Flowf,T
cof /∼T � Flowcof [(S ∪ cof(Jgl ∪ T ))−1] � Flow[S−1

T ].

It remains to check the invariance of the underlying homotopy type and of the branch-
ing and merging homology theories:

4.7. Theorem. A morphism of ST preserves the underlying homotopy type and the
branching and merging homology theories.
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Proof. It has been already noticed above that up to weak S-homotopy and up to the
2-out-of-3 axiom, a morphism of ST is a morphism of S ∪ cof(Jgl ∪ T ) between cofibrant
flows. Formally, let f : A −→ B be an element of ST . Then consider the commutative
diagram:

Q(A)

Q(f)

��

� �� A

f

��
Q(B) � �� B

The morphism Q(f) is an isomorphism of Flowcof [(S ∪ cof(Jgl ∪ T ))−1]. Therefore it
preserves the underlying homotopy type and the branching and merging homology theories
because any morphism of S preserves these invariants by [12] Proposition VII.2.5 and by
[14] Corollary 6.5 and Corollary A.11, and because any morphism of cof(Jgl∪T ) preserves
these invariants by [15] Theorem 5.2. The morphisms Q(A) −→ A and Q(B) −→ B are
weak S-homotopy equivalences. So both preserve the underlying homotopy type [12]
Proposition VII.2.5 and the branching and merging homology theories [14] Corollary 6.5
and Corollary A.11. Hence the result.
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[1] J. Adámek, H. Herrlich, J. Rosický, and W. Tholen. On a generalized small-object
argument for the injective subcategory problem. Cah. Topol. Géom. Différ. Catég.,
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