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THIN FILLERS IN THE CUBICAL NERVES OF
OMEGA-CATEGORIES

RICHARD STEINER

Abstract. It is shown that the cubical nerve of a strict omega-category is a sequence
of sets with cubical face operations and distinguished subclasses of thin elements satis-
fying certain thin filler conditions. It is also shown that a sequence of this type is the
cubical nerve of a strict omega-category unique up to isomorphism; the cubical nerve
functor is therefore an equivalence of categories. The sequences of sets involved are the
analogues of cubical T-complexes appropriate for strict omega-categories. Degeneracies
are not required in the definition of these sequences, but can in fact be constructed
as thin fillers. The proof of the thin filler conditions uses chain complexes and chain
homotopies.

1. Introduction

This paper is concerned with the cubical nerves of strict ω-categories. It has been shown
in [1] that these cubical nerves are sequences of sets together with face maps, degeneracies,
connections and compositions, subject to various identities, and that the functor taking
an ω-category to its cubical nerve is an equivalence of categories. In this paper we give
a more conceptual characterisation of cubical nerves: a cubical nerve is a sequence of
sets with cubical face operations and distinguished subclasses of thin elements such that
certain shells and boxes have unique thin fillers and such that one simple extra condition
is satisfied. Here a shell is a configuration like the boundary of a cube, and a box is a
configuration like the boundary of a cube with one face removed.

There are similar characterisations of the cubical and simplicial nerves of ω-groupoids
in terms of Dakin’s T-complexes [5] due to Ashley and Brown and Higgins ([2], [4], [3]), and
there is a similar characterisation of the simplicial nerves of ω-categories due to Verity [11]
(see also [10]). In the results for ω-groupoids every box or horn has a unique thin filler
(a horn is the simplicial analogue of a box) and there are degeneracy operations, but
there are no requirements on shells; the resulting structure is called a cubical or simplicial
T -complex. In Verity’s result also, certain horns have unique thin fillers and there are
degeneracies, but there are no requirements on shells. Our result is like Verity’s and is
different from the results on ω-groupoids because we do not require all boxes to have
unique thin fillers. Our result differs from all the previous results because we require thin
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fillers for shells instead of requiring degeneracies. We need thin fillers for shells in order to
construct connections (compare the work of Higgins in [6]), and it is more economical to
construct degeneracies from shells as well. This method may also be better for extensions
to weak ω-categories, where one expects thin fillers to exist but not necessarily to be
unique. Degeneracies correspond to identities, and in weak ω-categories one does not
necessarily want unique identities, so one may also not want unique degeneracies. Thin
fillers for shells could be a suitable alternative.

The main result of this paper, Theorem 2.14, is stated in Section 2. The cubical nerve
functor is described in Section 3, with some calculations postponed to Section 6, and the
reverse functor is described in Section 4. In Section 5 the functors are shown to be inverse
equivalences. The proof of the thin filler conditions in Sections 3 and 6 is along the same
lines as the proof for the simplicial case given by Street in [9], but it is simplified by the
use of chain complexes as in [7]. Section 7 gives an example showing how the nerve of an
ω-category can differ from the nerve of an ω-groupoid.

2. Statement of the main result

Our result concerns sequences of sets with cubical face operations, which we call precubical
sets. We define precubical sets in terms of the precubical category, which is an analogue
of the simplicial category but without degeneracies.

2.1. Definition. The precubical category is the category with objects [0], [1], . . . indexed
by the natural numbers and with a generating set of morphisms

∂̌−
1 , ∂̌+

1 , . . . , ∂̌−
n , ∂̌+

n : [n − 1] → [n]

subject to the relations
∂̌β

j ∂̌α
i = ∂̌α

i+1∂̌
β
j for i ≥ j.

A precubical set is a contravariant functor from the precubical category to sets; equiva-
lently, a precubical set X is a sequence of sets X0, X1, . . . together with face operations

∂−
1 , ∂+

1 , . . . , ∂−
n , ∂+

n : Xn → Xn−1

such that
∂α

i ∂β
j = ∂β

j ∂α
i+1 for i ≥ j.

If X is a precubical set then the members of Xn are called n-cubes. An operation from
n-cubes to m-cubes induced by a morphism in the precubical category is called a precubical
operation. A morphism of precubical sets from X to Y is a sequence of functions from Xn

to Yn commuting with the face operations.

The precubical operations from n-cubes to (n − 1)-cubes correspond to the 2n faces
of dimension (n − 1) in a standard geometrical n-cube, and the relations between them
correspond to pairwise intersections. More generally, it is well-known that the precu-
bical operations from n-cubes to m-cubes correspond to the m-dimensional faces of a
geometrical n-cube, as follows.
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2.2. Proposition. The precubical operations from n-cubes to m-cubes have unique stan-
dard decompositions

∂
α(1)
i(1) . . . ∂

α(n−m)
i(n−m)

with 1 ≤ i(1) < i(2) < . . . < i(n − m) ≤ n.

In order to handle thin n-cubes we introduce the following terminology.

2.3. Definition. A stratification on a precubical set X is a sequence of sets t1X, t2X, . . .
such that tnX is a subset of Xn. A precubical set X with a stratification tnX is called a
stratified precubical set, and the members of tnX are called thin n-cubes. A morphism
of stratified precubical sets is a morphism of precubical sets taking thin n-cubes to thin
n-cubes.

Note that 0-cubes are never thin.
The cubical analogue of a horn is a configuration of the kind got from the boundary of

an n-cube by removing one face, and it is called an n-box. We also need the configuration
corresponding to the complete boundary of an n-cube, which is called an n-shell. The
precise definitions are as follows.

2.4. Definition. Let X be a precubical set. Then an n-shell s in X is a collection of
(n − 1)-cubes sα

i , indexed by the 2n face operations ∂α
i on n-cubes, such that

∂α
i sβ

j = ∂β
j sα

i+1 for i ≥ j.

A filler for an n-shell s is an n-cube x such that ∂α
i x = sα

i for all ∂α
i .

2.5. Definition. Let X be a precubical set and let ∂γ
k be a face operation on n-cubes.

Then an n-box b in X opposite ∂γ
k is a collection of (n − 1)-cubes bα

i , indexed by the
(2n − 1) face operations ∂α

i on n-cubes other than ∂γ
k , such that

∂α
i bβ

j = ∂β
j bα

i+1 for i ≥ j.

A filler for an n-shell b is an n-cube x such that ∂α
i x = bα

i for ∂α
i �= ∂γ

k .

If s is an n-shell and

θ = ∂
α(1)
i(1) . . . ∂

α(p)
i(p)

is a non-identity precubical operation on n-cubes, not necessarily in standard form, then
there is a well-defined operation of θ on s given by

θs = ∂
α(1)
i(1) . . . ∂

α(p−1)
i(p−1) s

α(p)
i(p) ,

and if x is a filler for s then θx = θs. Similar remarks apply to an n-box b opposite ∂γ
k ,

except that the operation ∂γ
k is not defined on b.

In the cubical nerve of an ω-category we will require certain boxes and shells to have
unique thin fillers. We will now describe what happens in dimension 2. We regard a
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Figure 1: A 2-cube
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Figure 2: A 2-box opposite ∂−
1 with a unique thin filler

0-cube as an object of a category, and we regard a 1-cube e as a morphism from ∂−
1 e to

∂+
1 e. A 2-cube x can then be viewed as two composites

∂−
1 x ◦ ∂+

2 x, ∂−
2 x ◦ ∂+

1 x : ∂−
1 ∂−

2 x → ∂+
1 ∂+

2 x,

together with some kind of higher morphism or 2-morphism between the two composites;
see Figure 1. A 1-cube is thin if it is an identity morphism, and a 2-cube is thin if its
2-morphism is an identity 2-morphism. A 2-shell is like a 2-cube with the 2-morphism
omitted, and a 2-box is like a 2-shell with one of the edge morphisms omitted.

It is now clear that a 2-shell s has a unique thin filler if it is commutative, that is
s−1 ◦ s+

2 = s−2 ◦ s+
1 , and that it has no thin filler otherwise. A 2-box therefore has a unique

thin filler if it can be extended to a commutative 2-shell in a unique way. For example,
a 2-box b opposite ∂−

1 such that b+
2 is an identity has a unique thin filler x, given by

∂−
1 x = b−2 ◦ b+

1 ; see Figure 2.
In general a box b opposite ∂γ

k is to have a unique thin filler if certain of its faces
are thin, and we will now explain which faces are involved. We start by considering a
class of extreme precubical operations, where a precubical operation is called extreme if
its standard decomposition ∂

α(1)
i(1) . . . ∂

α(p)
i(p) is such that the signs (−)i(r)−rα(r) are constant.

Thus the extreme precubical operations on 2-cubes are

id, ∂−
1 , ∂+

1 , ∂−
2 , ∂+

2 , ∂−
1 ∂−

2 , ∂+
1 ∂+

2 .
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The non-extreme precubical operations on 2-cubes are ∂−
1 ∂+

2 and ∂+
1 ∂−

2 , which are in a
sense between ∂−

1 ∂−
2 and ∂+

1 ∂+
2 (see Figure 1). We will say that an extreme precubical

operation is opposite ∂γ
k if its standard decomposition has a factor ∂−γ

k . The extreme
precubical operations opposite ∂γ

k are indexed by the subsets of {1, . . . , n} containing k;
for example the extreme precubical operations on 5-cubes opposite ∂−

3 are the composites
φ′∂+

3 φ′′ such that φ′ ∈ {id, ∂−
1 , ∂+

1 ∂+
2 , ∂+

2 } and φ′′ ∈ {id, ∂+
4 , ∂+

4 ∂+
5 , ∂−

5 }. By omitting
the factor ∂−γ

k from the standard decomposition for an extreme precubical operation θ
opposite ∂γ

k we get a precubical operation which in a sense joins θ to ∂γ
k . We say that an

operation of this type is complementary to ∂γ
k . The precubical operations complementary

to ∂γ
k are indexed by the subsets of {1, . . . , n} not containing k; for example the precubical

operations on 2-cubes complementary to ∂−
1 are ∂+

2 and id. It turns out that an n-box b
opposite ∂γ

k has a unique thin filler if θb is thin for every non-identity precubical operation
on n-cubes complementary to ∂γ

k . Boxes satisfying this condition will be called admissible;
they correspond to the admissible horns of [8]. For example, a 2-box b opposite ∂−

1 is
admissible if and only if b+

2 is thin, in which case b has a unique thin filler as in Figure 2.
We summarise these ideas concisely as follows.

2.6. Definition. Let ∂γ
k be a face operation on n-cubes and let θ be a precubical operation

on n-cubes. Then θ is complementary to ∂γ
k if the standard decomposition of θ has no

factor ∂−
k or ∂+

k and if the insertion of ∂−γ
k produces a standard decomposition

φ = ∂
α(1)
i(1) . . . ∂

α(p)
i(p)

such that the sign (−)i(r)−rα(r) is constant.

2.7. Definition. In a stratified precubical set a box opposite ∂γ
k is admissible if θb is thin

for every non-identity precubical operation θ complementary to ∂γ
k .

2.8. Remark. A face operation ∂δ
l is complementary to ∂γ

k if and only if k �= l and
(−)kγ = (−)lδ.

2.9. Example. Let b be an n-box opposite ∂γ
k such that θb is thin whenever the standard

decomposition of θ does not contain ∂γ
k−1, ∂−

k , ∂+
k or ∂γ

k+1. (In the case k = 1 we take it
to be automatically true that the standard decomposition does not have a factor ∂γ

k−1; in
the case k = n we take it to be automatically true that the standard decomposition does
not have a factor ∂γ

k+1.) Then the standard decomposition of an operation θ such that θb
is not thin must have a factor ∂γ

k−1, ∂−
k , ∂+

k or ∂γ
k+1, so it cannot be complementary to ∂γ

k .
Therefore b is admissible.

Next we consider thin fillers for shells. We have already observed that a commutative
2-shell has a unique thin filler, and a similar result holds in general (see Proposition 3.13).
In the characterisation, however, we require a shell to have a unique thin filler only when
we can prove it to be commutative by using admissible boxes. Shells of this kind will also
be called admissible. There are four types of admissible 2-shell s, as shown in Figure 3.
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Figure 3: Admissible 2-shells

In each case there are two equal faces, denoted x in the figure, which correspond to non-
complementary face operations, and omitting either of these faces produces an admissible
box. In general the definition is as follows.

2.10. Definition. In a stratified precubical set a shell s is admissible if there are distinct
non-complementary face operations ∂γ

k and ∂δ
l such that sγ

k = sδ
l and such the boxes formed

by removing sγ
k or sδ

l from s are both admissible.

2.11. Example. As in the first two cases of Figure 3, let s be a shell such that s−k = s+
k

for some k and such that θs is thin whenever the standard decomposition of θ does not
contain ∂−

k or ∂+
k . It follows from Example 2.9 that s is admissible. Shells of this type

will be used to construct degeneracies.

2.12. Example. As in the last two cases of Figure 3, let s be a shell such that sγ
k = sγ

k+1

for some k and γ and such that θs is thin whenever the standard decomposition of θ does
not contain ∂γ

k , ∂γ
k+1 or ∂−γ

k ∂−γ
k+1. Again it follows from Example 2.9 that s is admissible.

Shells of this type will be used to construct connections.

For the admissible 2-box b in Figure 2, note that the additional face b−2 ◦ b+
1 in the thin

filler is thin if all the 1-cubes bα
i are thin. An analogous result holds in general, and it

is the final condition characterising nerves of ω-categories. We end up with the following
structure.

2.13. Definition. A complete stratified precubical set is a stratified precubical set sat-
isfying the following conditions: every admissible box and every admissible shell has a
unique thin filler; if x is the thin filler of an admissible box b opposite ∂γ

k such that bα
i is

thin for all ∂α
i �= ∂γ

k , then the additional face ∂γ
kx is thin as well.

The main result is now as follows.

2.14. Theorem. The cubical nerve functor is an equivalence between strict ω-categories
and complete stratified precubical sets.

In the remainder of this paper we prove four results, Theorems 3.16, 4.12, 5.4 and 5.5,
whose conjunction is equivalent to Theorem 2.14.
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2.15. Remark. The only admissible boxes and shells used in the passage from stratified
precubical sets to the nerves of ω-categories are those of the types described in Examples
2.9, 2.11 and 2.12. It would therefore be sufficient to use these boxes and shells in the
definition of a complete stratified precubical set.

Simplicial nerves behave in the same way. Indeed Street [9] shows that the simplicial
nerve of an ω-category has a large class of admissible horns with unique thin fillers, and
Verity [11] shows that simplicial nerves are characterised by a smaller class of complicial
horns. Admissible boxes in general correspond to admissible horns, and the admissible
boxes of Example 2.9 correspond to complicial horns.

2.16. Remark. One of Dakin’s axioms for a cubical or simplicial T-complex ([2], [3], [5])
says that a thin n-cube or n-simplex with all but one of its (n − 1)-faces thin must have
its remaining (n − 1)-face thin as well. In a complete stratified precubical set we require
this condition only when the given thin faces form an admissible box. In the cubical nerve
of an ω-category, it is in fact possible for a thin n-cube x to have exactly one non-thin
face ∂α

i x; it is even possible for this to happen when x is the thin filler of an admissible
box, provided that this box is opposite an operation other than ∂α

i . An example is given
in Section 7. As before, one gets the same behaviour in simplicial nerves.

3. From ω-categories to complete stratified precubical sets

In this section we show that the cubical nerve of an ω-category is a complete stratified
precubical set. Recall from [1] that the cubical nerve of an ω-category C is the sequence
of sets

hom(νI0, C), hom(νI1, C), . . . ,

where νIn is an ω-category associated to the n-cube. We will establish the result by
studying the ω-categories νIn.

We begin by recalling the general theory of ω-categories [8]. An ω-category C is a
set with a sequence of compatible partially defined binary composition operations subject
to various axioms; in particular each composition operation makes C into the set of
morphisms for a category. We will use #0, #1, . . . to denote the composition operations,
and we will write d−

p x and d+
p x for the left and right identities of an element x under #p.

We will use the following properties.

3.1. Proposition. Let C be an ω-category. If x ∈ C and p < q then

dα
p dβ

q x = dβ
q dα

p x = dα
p x;

if x #q y is a composite and p �= q then

dα
p (x #q y) = dα

p x #q dα
p y;

the identities for #p form a sub-ω-category C(p) such that C(p) ⊂ C(p + 1).
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We will use a construction of νIn based on chain complexes ([7], Example 3.10). Recall
that if K and L are augmented chain complexes, then their tensor product augmented
chain complex K ⊗ L is given by

(K ⊗ L)q =
⊕

i+j=q

(Ki ⊗ Lj),

∂(x ⊗ y) = ∂x ⊗ y + (−1)ix ⊗ ∂y if x ∈ Ki,

ε(x ⊗ y) = (εx)(εy).

It is convenient to identify cubes with their chain complexes, as follows.

3.2. Definition. The standard interval is the free augmented chain complex I concen-
trated in degrees 0 and 1 such that I1 has basis u1, such that I0 has basis ∂−u1, ∂

+u1, such
that ∂u1 = ∂+u1 − ∂−u1, and such that ε∂−u1 = ε∂+u1 = 1. The standard n-cube In is
the n-fold tensor product I ⊗ . . . ⊗ I. The n-chain u1 ⊗ . . . ⊗ u1 in In is denoted un.

Thus the chain complex In is a free chain complex on a basis got by taking n-fold
tensor products of the basis elements u1, ∂

−u1, ∂
+u1 for I; in particular I0 is free on a

single zero-dimensional basis element u0. The elements of the tensor product basis for In

are called standard basis elements. They correspond to the faces of a geometrical n-cube,
or, equivalently, they correspond to the precubical operations. In fact there is an obvious
embedding of the precubical category in the category of chain complexes as follows.

3.3. Proposition. There is a functor from the precubical category to the category of
chain complexes given on objects by [n] 
→ In and on morphisms by

∂̌α
i (x ⊗ y) = x ⊗ ∂αu1 ⊗ y for x ∈ I i−1 and y ∈ In−i.

The morphisms in the image of this functor are augmentation-preserving and take stan-
dard basis elements to standard basis elements.

We will also need subcomplexes corresponding to shells and boxes, as follows.

3.4. Definition. The standard n-shell Sn is the subcomplex of In generated by the stan-
dard basis elements other than un. If σ is an (n − 1)-dimensional basis element for In,
then the standard n-box B(σ) opposite σ is the subcomplex of In generated by the standard
basis elements other than un and σ.

We give partial orderings to the chain groups in the standard chain complexes by the
rule that x ≥ y if and only if x−y is a sum of standard basis elements. We then associate
ω-categories to these complexes as follows.

3.5. Definition. Let K be a standard cube, shell or box. The associated ω-category νK
is the set of double sequences

x = (x−
0 , x+

0 | x−
1 , x+

1 | . . . ),
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where x−
i and x+

i are i-chains in K such that

x−
i ≥ 0,

x+
i ≥ 0,

εx−
0 = εx+

0 = 1,

x+
i − x−

i = ∂x−
i+1 = ∂x+

i+1.

The left identity d−
p x and right identity d+

p x of the double sequence

x = (x−
0 , x+

0 | x−
1 , x+

1 | . . . )

are given by
dα

p x = (x−
0 , x+

0 | . . . | x−
p−1, x

+
p−1 | xα

p , xα
p | 0, 0 | . . . ).

If d+
p x = d−

p y = w, say, then the composite x #p y is given by

x #p y = x − w + y,

where the addition and subtraction are performed termwise.

For example, in νI2 there are elements

a = (∂̌−
2 ∂̌−

1 u0, ∂̌
+
2 ∂̌−

1 u0 | ∂̌−
1 u1, ∂̌

−
1 u1 | 0, 0 | . . . )

and
b = (∂̌+

2 ∂̌−
1 u0, ∂̌

+
2 ∂̌+

1 u0 | ∂̌+
2 u1, ∂̌

+
2 u1 | 0, 0 | . . . )

such that
d+

0 a = d−
0 b = (∂̌+

2 ∂̌−
1 u0, ∂̌

+
2 ∂̌−

1 u0 | 0, 0 | . . . )

and
a #0 b = (∂̌−

2 ∂̌−
1 u0, ∂̌

+
2 ∂̌+

1 u0 | ∂̌−
1 u1 + ∂̌+

2 u1, ∂̌
−
1 u1 + ∂̌+

2 u1 | 0, 0 | . . . ).

The elements a, b and a #0 b correspond to the morphisms ∂−
1 x, ∂+

2 x and ∂−
1 x ◦ ∂+

2 x in
Figure 1.

Given a chain x of positive degree we will write ∂−x and ∂+x for the negative and
positive parts of ∂x; thus ∂−x and ∂+x are the linear combinations of disjoint families of
basis elements with positive integer coefficients such that ∂x = ∂+x−∂−x. This notation
is of course consistent with the earlier use of ∂−u1 and ∂+u1. We can now construct some
specific double sequences of chains in In, which turn out to be members of νIn, as follows.

3.6. Definition. Let σ be a p-dimensional basis element for In. Then the associated
atom 〈σ〉 is the double sequence given by

〈σ〉αq = (∂α)p−qσ for q ≤ p,

〈σ〉αq = 0 for q > p.
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For example

〈u3〉−0 = ∂̌−
3 ∂̌−

2 ∂̌−
1 u0,

〈u3〉+0 = ∂̌+
3 ∂̌+

2 ∂̌+
1 u0,

〈u3〉−1 = ∂̌−
2 ∂̌−

1 u1 + ∂̌+
3 ∂̌−

1 u1 + ∂̌+
3 ∂̌+

2 u1,

〈u3〉+1 = ∂̌−
3 ∂̌−

2 u1 + ∂̌−
3 ∂̌+

1 u1 + ∂̌+
2 ∂̌+

1 u1,

〈u3〉−2 = ∂̌−
1 u2 + ∂̌+

2 u2 + ∂̌−
3 u2,

〈u3〉+2 = ∂̌+
3 u2 + ∂̌−

2 u2 + ∂̌+
1 u2,

〈u3〉−3 = 〈u3〉+3 = u3;

thus the terms of the chains 〈u3〉αi correspond to the precubical operations on 3-cubes

with standard decompositions ∂
α(1)
i(1) . . . ∂

α(p)
i(p) such that the signs (−)i(r)−rα(r) are constant.

These are the precubical operations which were called extreme in Section 2, and one can
draw a 3-cube with the chains of 〈u3〉 on its extremities; see Figure 4.

Figure 4 also illustrates complementary operations. For example, the operations com-
plementary to ∂−

1 are id, ∂+
2 , ∂−

3 , ∂+
2 ∂+

3 . In Figure 4 the face corresponding to id (the
3-cube itself) joins ∂̌−

1 u2 to 〈u3〉+2 ; the faces corresponding to ∂+
2 and ∂−

3 join ∂̌−
1 u2 to 〈u3〉+1 ;

the face corresponding to ∂+
2 ∂+

3 (the terminal edge in 〈u3〉−1 ) joins ∂̌−
1 u2 to 〈u3〉+0 .

The formulae for the chains 〈u3〉αi extend to all dimensions. For atoms in general,
using the definition of the boundary in a tensor product of chain complexes, we get the
following formulae.

3.7. Proposition. The atoms in νI are given by

〈u1〉α0 = ∂αu1,

〈u1〉α1 = u1,

〈u1〉αq = 0 for q > 1,

〈∂βu1〉α0 = ∂βu1,

〈∂βu1〉αq = 0 for q > 0.

The atoms in νIn are given by

〈σ1 ⊗ . . . ⊗ σn〉αq =
∑

i(1)+...+i(n)=q

〈σ1〉αi(1) ⊗ 〈σ2〉(−)i(1)α
i(2) ⊗ . . . ⊗ 〈σn〉(−)i(1)+...+i(n−1)α

i(n) .

From Proposition 3.7, if σ is a basis element in In then ε〈σ〉α0 = 1, and it follows that
the atoms belong to νIn. In fact they generate νIn, and the standard ω-categories have
presentations in terms of these generators as follows ([7], Theorem 6.1).

3.8. Theorem. Let K be a standard cube, shell or box. Then νK is freely generated by
the atoms corresponding to the basis elements of K subject to the following relations: if
〈σ〉 is an atom corresponding to a p-dimensional basis element σ, then

d−
p 〈σ〉 = d+

p 〈σ〉 = 〈σ〉;
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Figure 4: The chains 〈u3〉αi
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if 〈σ〉 is an atom corresponding to a p-dimensional basis element σ with p > 0, then
d−

p−1〈σ〉 = w− and d+
p−1〈σ〉 = w+, where w− and w+ are suitable composites of lower-

dimensional atoms.

For example, the presentation of νI2 is essentially as illustrated in Figure 1. There
are generators 〈∂̌β

2 ∂̌α
1 u0〉 subject to relations dγ

0〈∂̌β
2 ∂̌α

1 u0〉 = 〈∂̌β
2 ∂̌α

1 u0〉; there are generators
〈∂̌α

1 u1〉 and 〈∂̌α
2 u1〉 subject to relations

dγ
1〈∂̌α

i u1〉 = 〈∂̌α
i u1〉, dγ

0〈∂̌α
1 u1〉 = 〈∂̌γ

2 ∂̌α
1 u0〉, dγ

0〈∂̌α
2 u1〉 = 〈∂̌α

2 ∂̌γ
1 u0〉;

there is a generator 〈u2〉 subject to relations

dγ
2〈u2〉 = 〈u2〉, d−

1 〈u2〉 = 〈∂̌−
1 u1〉#0〈∂̌+

2 u1〉, d+
1 〈u2〉 = 〈∂̌−

2 u1〉#0〈∂̌+
1 u1〉.

A more detailed description of the way in which the atoms generate νIn is as follows
([7], Proposition 5.4).

3.9. Theorem. Let
x = (x−

0 , x+
0 | x−

1 , x+
1 | . . . )

be an element of νIn. Then x is an identity for #p if and only if x−
q = x+

q = 0 for q > p.
If x is an identity for #p, then

x−
p = x+

p = σ1 + . . . + σk

for some p-dimensional basis elements σi, and x is a composite of the atoms 〈σi〉 together
with atoms of lower dimension.

3.10. Example. In νI3 the element

d−
2 〈u3〉 = (〈u3〉−0 , 〈u3〉+0 | 〈u3〉−1 , 〈u3〉+1 | 〈u3〉−2 , 〈u3〉−2 | 0, 0 | . . . ),

is an identity for #2 with 2-chain component

〈u3〉−2 = ∂̌−
1 u2 + ∂̌+

2 u2 + ∂̌−
3 u2

and with decomposition

(〈∂̌−
1 u2〉#0〈∂̌+

3 ∂̌+
2 u1〉) #1(〈∂̌−

3 ∂̌−
1 u1〉#0〈∂̌+

2 u2〉) #1(〈∂̌−
3 u2〉#0〈∂̌+

2 ∂̌+
1 u1〉).

There is a corresponding decomposition of the top half of Figure 4, which is shown in
Figure 5. Similarly, there is a decomposition of d+

2 〈u3〉 given by

(〈∂̌−
2 ∂̌−

1 u1〉#0〈∂̌+
3 u2〉) #1(〈∂̌−

2 u2〉#0〈∂̌+
3 ∂̌+

1 u1〉) #1(〈∂̌−
3 ∂̌−

2 u1〉#0〈∂̌+
1 u2〉).

Recall the functor from the precubical category to the category of chain complexes
given in Proposition 3.3. Since the morphisms in the image are augmentation-preserving
and take standard basis elements to standard basis elements, they induce morphisms
between the ω-categories νIn; thus there is a functor [n] 
→ νIn from the precubical
category to the category of ω-categories. The functors hom(νIn,−) therefore produce a
functor from ω-categories to precubical sets. In fact we get a functor from ω-categories
to stratified precubical sets, as follows.
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Figure 5: The decomposition of d−
2 〈u3〉

3.11. Definition. The cubical nerve of an ω-category C is the stratified precubical set X
given by

Xn = hom(νIn, C),

where an n-cube x : νIn → C with n > 0 is thin if x〈un〉 is an identity for #n−1.

From the structure of the ω-categories associated to the standard complexes (The-
orem 3.8), one sees that νSn is generated by 2n copies of νIn−1 corresponding to the
(n − 1)-dimensional faces of an n-cube, subject to relations corresponding to their pair-
wise intersections, and similarly for boxes. This gives the following result.

3.12. Proposition. Let C be an ω-category. Then the n-shells in the cubical nerve of C
correspond to the morphisms νSn → C, and the n-boxes opposite ∂γ

k correspond to the
morphisms νB(∂̌γ

kun−1) → C. A filler for an n-shell s is an n-cube x such that x|νSn = s,
and similarly for boxes.

It remains to show that the cubical nerve of an ω-category has thin fillers satisfying
the conditions for a complete stratification. For n > 0 it follows from Theorem 3.8 that
νIn is got from νSn by adjoining a single extra generator 〈un〉 subject to relations on the
dα

n〈un〉 and the dα
n−1〈un〉. This gives us the following result on thin fillers for shells.

3.13. Proposition. Let s be an n-shell with n > 0 in the cubical nerve of an ω-category.
Then s has a thin filler if and only if s(d−

n−1〈un〉) = s(d+
n−1〈un〉). If s does have a thin

filler, then this thin filler is unique.
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Proof. From Theorem 3.8, the fillers x of s correspond to elements x〈un〉 such that

d−
n x〈un〉 = d+

n x〈un〉 = x〈un〉,
d−

n−1x〈un〉 = s(d−
n−1〈un〉),

d+
n−1x〈un〉 = s(d+

n−1〈un〉).
The filler x is thin if and only if x〈un〉 is an identity for #n−1; thus x is thin if and only
if it satisfies the additional relations

d−
n−1x〈un〉 = d+

n−1x〈un〉 = x〈un〉.
These additional relations actually imply that d−

n x〈un〉 = d+
n x〈un〉 = x〈un〉, because

dα
ndα

n−1 = dα
n−1 (see Proposition 3.1), so the defining relations for thin fillers reduce to

x〈un〉 = s(d−
n−1〈un〉) = s(d+

n−1〈un〉).
It follows that s has a unique thin filler if s(d−

n−1un) = s(d+
n−1un), and that s has no thin

filler otherwise. This completes the proof.

In Section 6 we will prove the following result.

3.14. Theorem. Let ∂γ
k be a face operation on n-cubes. Then there is a factorisation

d
(−)k−1γ
n−1 〈un〉
= A−

n−1 #n−2(A
−
n−2 #n−3 . . . (A−

1 #0〈∂̌γ
kun−1〉#0 A+

1 ) . . . #n−3 A+
n−2) #n−2 A+

n−1

in νIn such that the Aα
q are in νB(∂̌γ

kun−1) and such that b(A−
q ) and b(A+

q ) are identities
for #q−1 whenever b is an admissible n-box opposite ∂γ

k .

For example, consider the operation ∂+
2 on 3-cubes. From Example 3.10 we get

d−
2 〈u3〉 = A−

2 #1(A
−
1 #0〈∂̌+

2 u2〉#0 A+
1 ) #1 A+

2 ,

where

A−
2 = 〈∂̌−

1 u2〉#0〈∂̌+
3 ∂̌+

2 u1〉,
A+

2 = 〈∂̌−
3 u2〉#0〈∂̌+

2 ∂̌+
1 u1〉,

A−
1 = 〈∂̌−

3 ∂̌−
1 u1〉,

and A+
1 is an identity for #0. We see that the atomic factors of Aα

q have dimension at
most q; we also see that the q-dimensional factors of the Aα

q correspond to the precubical
operations ∂−

1 , ∂−
3 and ∂−

1 ∂−
3 , which are the non-identity precubical operations comple-

mentary to ∂+
2 . If b is an admissible 3-box opposite ∂+

2 , then ∂−
1 b, ∂−

3 b and ∂−
1 ∂−

3 b are
thin, so b〈τ〉 is an identity for #q−1 whenever 〈τ〉 is an atomic factor in Aα

q , and it follows
from Proposition 3.1 that b(Aα

q ) is an identity for #q−1 as claimed.
Assuming Theorem 3.14 we get the following result on admissible boxes.
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3.15. Theorem. Let b be an admissible n-box opposite ∂γ
k . If s is an n-shell extending b

then

s〈∂̌γ
kun−1〉 = s(d

(−)k−1γ
n−1 〈un〉).

If n ≥ 2 then

b(dα
n−2〈∂̌γ

kun−1〉) = dα
n−2b(d

(−)kγ
n−1 〈un〉).

(Note here that b(d
(−)kγ
n−1 〈un〉) exists because, by Proposition 3.7, ∂̌γ

kun−1 is not a term

in 〈un〉(−)kγ
n−1 .)

Proof. Let s be an n-shell extending b and apply s to the factorisation in Theorem 3.14.
Since s(Aβ

q ) = b(Aβ
q ) is an identity for #q−1, the factorisation collapses to the equality

s〈∂̌γ
kun−1〉 = s(d

(−)k−1γ
n−1 〈un〉).

Now suppose that n ≥ 2. By Proposition 3.1 and a collapse like that in the previous
paragraph,

b(dα
n−2〈∂̌γ

kun−1〉) = b(dα
n−2d

(−)k−1γ
n−1 〈un〉).

By a further application of Proposition 3.1,

b(dα
n−2d

(−)k−1γ
n−1 〈un〉) = b(dα

n−2d
(−)kγ
n−1 〈un〉) = dα

n−2b(d
(−)kγ
n−1 〈un〉);

therefore b(dα
n−2〈∂̌γ

kun−1〉) = dα
n−2b(d

(−)kγ
n−1 〈un〉) as required. This completes the proof.

We now get the main theorem of this section as follows.

3.16. Theorem. The cubical nerve of a strict ω-category is a complete stratified precubical
set.

Proof. We will verify the conditions of Definition 2.13.
Let s be an admissible n-shell; we must show that s has a unique thin filler. By

the definition of an admissible shell there are distinct non-complementary face operations
∂γ

k and ∂δ
l such that sγ

k = sδ
l and such that the boxes formed by removing sγ

k or sδ
l

are admissible. Since ∂γ
k and ∂δ

l are not complementary we have (−)kγ �= (−)lδ (see
Remark 2.8). Of the expressions s(d−

n−1〈un〉) and s(d+
n−1〈un〉) it follows from Theorem 3.15

that one is equal to s〈∂̌γ
kun−1〉 and the other is equal to s〈∂̌δ

l un−1〉; in other words, one of
them is sγ

k〈un−1〉 and the other is sδ
l 〈un−1〉. But sγ

k = sδ
l , so s(d−

n−1〈un〉) = s(d+
n−1〈un〉).

By Proposition 3.13, s has a unique thin filler.
Now let b be an admissible n-box opposite ∂γ

k ; we must show that b has a unique thin
filler. Because of Proposition 3.13, the thin fillers of b correspond to n-shells s extending b
such that

s(d−
n−1〈un〉) = s(d+

n−1〈un〉).
Equivalently, by Theorem 3.15, these are the n-shells s extending b such that

s〈∂̌γ
kun−1〉 = b(d

(−)kγ
n−1 〈un〉).
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Now it follows from Theorem 3.8 that νSn is got from νB(∂̌γ
kun−1) by adjoining 〈∂̌γ

kun−1〉
and imposing certain relations. An n-shell s extending b is therefore uniquely determined
by the value of s〈∂̌γ

kun−1〉, and the possible values for s〈∂̌γ
kun−1〉 are given by the following

conditions: in all cases, we require

d−
n−1s〈∂̌γ

kun−1〉 = d+
n−1s〈∂̌γ

kun−1〉 = s〈∂̌γ
kun−1〉;

if n ≥ 2 then we also require

dα
n−2s〈∂̌γ

kun−1〉 = b(dα
n−2〈∂̌γ

kun−1〉).

Using Theorem 3.15 in the case n ≥ 2, we see that these conditions are satisfied when

s〈∂̌γ
kun−1〉 = b(d

(−)kγ
n−1 〈un〉). Therefore b has a unique thin filler.

Finally let b be an admissible n-box opposite ∂γ
k such that all the (n− 1)-cubes bα

i are
thin, and let x be the thin filler of b; we must show that ∂γ

kx is thin. Since x is thin we
have

x(d−
n−1〈un〉) = d−

n−1x〈un〉 = x〈un〉 = d+
n−1x〈un〉 = x(d+

n−1〈un〉),
and it then follows from Theorem 3.15 that

(∂γ
kx)〈un−1〉 = x(∂̌γ

k 〈un−1〉) = x(d
(−)k−1γ
n−1 〈un〉) = x(d

(−)kγ
n−1 〈un〉) = b(d

(−)kγ
n−1 〈un〉).

Since the bα
i are thin, b〈τ〉 is an identity for #n−2 whenever 〈τ〉 is an atom in νB(∂̌γ

kun−1).

By Theorem 3.8, these atoms generate νB(∂̌γ
kun−1), so b(d

(−)kγ
n−1 〈un〉) is an identity for #n−2

by Proposition 3.1. Therefore (∂γ
kx)〈un−1〉 is an identity for #n−2, which means that ∂γ

kx
is thin.

This completes the proof.

4. From complete stratified precubical sets to ω-categories

Throughout this section, let X be a complete stratified precubical set. We will show that
X is the cubical nerve of an ω-category by constructing degeneracies, connections and
compositions with the properties of [1].

The degeneracies are to be operations

ε1, . . . , εn : Xn−1 → Xn,

and we will define εkx for x ∈ Xn−1 as the unique thin filler of an admissible n-shell;
in other words, εkx is a thin n-cube with prescribed values for the faces ∂α

i εkx. The
process is inductive: we define degeneracies on n-cubes in terms of degeneracies on lower-
dimensional cubes.
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ε1∂+
1 x

=
x

ε1x ε2xx

ε1∂−
1 x

=

x ε1∂−
1 x =

x

ε1∂+
1 x=

Figure 6: The degeneracies of a 1-cube

4.1. Definition. The degeneracies are the elements εkx, defined for k = 1, 2, . . . , n and
x ∈ Xn−1, such that εkx is a thin member of Xn and

∂α
i εkx = εk−1∂

α
i x for i < k,

∂α
k εkx = x,

∂α
i εkx = εk∂

α
i−1x for i > k.

The two degeneracies of a 1-cube x are shown in Figure 6, with the thin edges labelled
by equality signs. Compare the first two shells in Figure 3.

To justify Definition 4.1, we must show that the prescribed values sα
i for ∂α

i εkx form an
admissible n-shell s. We will in fact show that s is of the type described in Example 2.11,
using induction on n. Suppose that there are degeneracies with the required properties on
m-cubes for m < n − 1. Then we get ∂α

i sβ
j = ∂β

j sα
i+1 for i ≥ j as follows: if j ≤ i < k − 1

then

∂α
i sβ

j = ∂α
i εk−1∂

β
j x = εk−2∂

α
i ∂β

j x = εk−2∂
β
j ∂α

i+1x = ∂β
j εk−1∂

α
i+1x = ∂β

j sα
i+1,

if j ≤ i = k − 1 then
∂α

i sβ
j = ∂α

i εk−1∂
β
j x = ∂β

j x = ∂β
j sα

i+1,

etc. Therefore s is a shell. We also have s−k = s+
k . If θ is a non-identity precubical

operation on n-cubes whose standard decomposition does not contain ∂−
k or ∂+

k , say

θ = (∂
α(1)
i(1) . . . ∂

α(p)
i(p) )(∂

β(1)
j(1) . . . ∂

β(q)
j(q) )

with p + q > 0 and with

i(1) < . . . < i(p) < k < j(1) < . . . < j(q),

then
θs = εk−p(∂

α(1)
i(1) . . . ∂

α(p)
i(p) )(∂

β(1)
j(1)−1 . . . ∂

β(q)
j(q)−1)x,

so θs is thin. It follows from Example 2.11 that s is an admissible shell, as required.
Connections are defined by a similar inductive process, with a similar inductive justi-

fication using Example 2.12.
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ε1∂+
1 x

=
x

Γ−
1 x Γ+

1 xx

x

ε1∂+
1 x= ε1∂−

1 x =

ε1∂−
1 x

=

x

Figure 7: The connections of a 1-cube

4.2. Definition. The connections are the elements Γ−
k x and Γ+

k x, defined for k = 1, 2,
. . . , n and x ∈ Xn, such that Γγ

kx is a thin member of Xn+1 and

∂α
i Γγ

kx = Γγ
k−1∂

α
i x for i < k,

∂γ
kΓγ

kx = ∂γ
k+1Γ

γ
kx = x,

∂−γ
k Γγ

kx = ∂−γ
k+1Γ

γ
kx = εk∂

−γ
k x,

∂α
i Γγ

kx = Γγ
k∂

α
i−1x for i > k + 1.

The two connections of a 1-cube x are shown in Figure 7; compare the last two shells
in Figure 3.

We will get composites x ◦k y as the additional faces ∂−
k Gk(x, y) of thin fillers of

admissible boxes opposite ∂−
k . These thin fillers are called composers, and are again

defined inductively. The definitions are as follows.

4.3. Definition. The composers are the elements Gk(x, y), defined for k = 1, 2, . . . , n
and x, y ∈ Xn with ∂+

k x = ∂−
k y, such that Gk(x, y) is a thin member of Xn+1 and

∂α
i Gk(x, y) = Gk−1(∂

α
i x, ∂α

i y) for i < k,

∂+
k Gk(x, y) = y,

∂−
k+1Gk(x, y) = x,

∂+
k+1Gk(x, y) = εk∂

+
k y,

∂α
i Gk(x, y) = Gk(∂

α
i−1x, ∂α

i−1y) for i > k + 1.

The composites are the elements

x ◦k y = ∂−
k Gk(x, y) ∈ Xn,

defined for k = 1, 2, . . . , n and x, y ∈ Xn with ∂+
k x = ∂−

k y.

The case k = n = 1 is shown in Figure 8; compare Figure 2. Note that ∂−
k Gk(x, y) is

not specified in the definition of Gk(x, y), because we are dealing with a box b opposite ∂−
k .

The justification of this definition is as before; in particular θb is thin if θ is a non-identity
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ε1∂+
1 y

=

G1(x, y)x◦1y

x

y

Figure 8: The composer of two 1-cubes

precubical operation whose standard decomposition has no factors ∂−
k , ∂+

k or ∂−
k+1, so b is

admissible by Example 2.9.
It remains to verify that X satisfies the axioms for a cubical nerve as given in [1]. We

begin with the following observation.

4.4. Proposition. If x◦k y is a composite such that x and y are thin, then x◦k y is thin.

Proof. If x and y are thin n-cubes then all the n-cubes in the admissible box defining
Gk(x, y) are thin, so the additional face x ◦k y = ∂−

k Gk(x, y) is also thin.

4.5. Proposition. The degeneracies have the property that

εkεlx = εl+1εkx for k ≤ l.

Proof. The proof is by induction on n, where x is an n-cube. Using the inductive
hypothesis, we find that ∂α

i εkεlx = ∂α
i εl+1εkx for all ∂α

i . This means that εkεlx and εl+1εkx
are fillers for the same shell s, and in fact they are thin fillers for s. But s is admissible
(it is the admissible shell used to define εkεlx), so it has a unique thin filler. Therefore
εkεlx = εl+1εkx.

4.6. Proposition. The connections have the following properties:

Γγ
kεlx = εl+1Γ

γ
kx for k < l,

Γγ
kεkx = εk+1εkx,

Γγ
kεlx = εlΓ

γ
k−1x for k > l,

Γγ
kΓ

δ
l x = Γδ

l+1Γ
γ
kx for k < l,

Γγ
kΓ

γ
kx = Γγ

k+1Γ
γ
kx.

Proof. Similar.

4.7. Proposition. If x ◦k y is defined, then

∂α
i (x ◦k y) = ∂α

i x ◦k−1 ∂α
i y for i < k,

∂−
k (x ◦k y) = ∂−

k x,

∂+
k (x ◦k y) = ∂+

k y,

∂α
i (x ◦k y) = ∂α

i x ◦k ∂α
i y for i > k.
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Proof. This follows straightforwardly from the definition: if i < k then ∂α
i (x ◦k y) =

∂α
i x ◦k−1 ∂α

i y because

∂α
i ∂−

k Gk(x, y) = ∂−
k−1∂

α
i Gk(x, y) = ∂−

k−1Gk−1(∂
α
i x, ∂α

i y),

etc.

4.8. Proposition. The composites have the properties

εk∂
−
k x ◦k x = x = x ◦k εk∂

+
k x,

Γ+
k x ◦k Γ−

k x = εk+1x,

Γ+
k x ◦k+1 Γ−

k x = εkx.

Proof. There are composers Gk(εk∂
−
k x, x) and Gk(x, εk∂

+
k x) because

∂+
k εk∂

−
k x = ∂−

k x, ∂+
k x = ∂−

k εk∂
+
k x.

An inductive argument shows that ∂α
i Gk(εk∂

−
k x, x) = ∂α

i εkx for ∂α
i �= ∂−

k , so that εkx is
a thin filler for the admissible box whose unique thin filler is Gk(εk∂

−
k x, x). Therefore

Gk(εk∂
−
k x, x) = εkx (compare Figures 6 and 8). By a similar argument, Gk(x, εk∂

+
k x) =

Γ−
k x (compare Figures 7 and 8). Applying ∂−

k now gives εk∂
−
k x◦kx = x and x◦kεk∂

+
k x = x.

It is clear that Γ+
k x ◦k Γ−

k x exists. From Proposition 4.4 it is thin, and an inductive
argument shows that it is a filler for the shell whose unique thin filler is εk+1x. Therefore
Γ+

k x ◦k Γ−
k x = εk+1x. Similarly Γ+

k x ◦k+1 Γ−
k x = εkx.

4.9. Proposition. If x ◦k y is defined then

εj(x ◦k y) = εjx ◦k+1 εjy for j ≤ k,

εj(x ◦k y) = εjx ◦k εjy for j > k,

Γβ
j (x ◦k y) = Γβ

j x ◦k+1 Γβ
j y for j < k,

Γ−
k (x ◦k y) = (Γ−

k x ◦k εk+1y) ◦k+1 Γ−
k y = (Γ−

k x ◦k+1 εky) ◦k Γ−
k y,

Γ+
k (x ◦k y) = Γ+

k x ◦k (εkx ◦k+1 Γ+
k y) = Γ+

k x ◦k+1 (εk+1x ◦k Γ+
k y),

Γβ
j (x ◦k y) = Γβ

j x ◦k Γβ
j y for j > k.

Proof. In each equality the first expression is defined as the unique thin filler of some
shell and the other expressions are well-defined and thin. It therefore suffices to show
that the other expressions are also fillers for the appropriate shells, and this is done by
inductive arguments.

4.10. Proposition. If k �= l, then

(x ◦k y) ◦l (z ◦k w) = (x ◦l z) ◦k (y ◦l w)

whenever both sides are defined.
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ε1∂+
1 z

G1(x ◦1 y, z)(x◦1y)◦1z

x◦1y

z

ε1∂+
1 z ε1∂+

1 z

G1(x, y ◦1 z) G1(y, z)x◦1(y◦1z)

x

y◦1z

y

z

Figure 9: The equality G1(x ◦1 y, z) = G1(x, y) ◦1 G1(x, y ◦1 z)

Proof. For definiteness, suppose that k > l. By an inductive argument one shows that

Gk(x, y) ◦l Gk(z, w) = Gk(x ◦l z, y ◦l w);

indeed the composite on the left exists and is a thin filler for the box opposite ∂−
k whose

unique thin filler is the expression on the right. The result then follows by applying ∂−
k

to both sides.

4.11. Proposition. If x, y, z ∈ Xn are such that ∂+
k x = ∂−

k y and ∂+
k y = ∂−

k z, then

(x ◦k y) ◦k z = x ◦k (y ◦k z).

Proof. We first show that

Gk(x ◦k y, z) = Gk(x, y ◦k z) ◦k Gk(y, z)

by the usual inductive argument: the expression on the right exists and is a thin filler
for the admissible box opposite ∂−

k whose unique thin filler is the expression on the left.
The case k = n = 1 is shown in Figure 9. We then get ∂−

k Gk(x ◦k y, z) = ∂−
k Gk(x, y ◦k z),

which means that (x ◦k y) ◦k z = x ◦k (y ◦k z) as required.

We have now verified all the axioms of [1], so we have proved the following result.

4.12. Theorem. If X is a complete stratified precubical set then the induced degeneracies,
connections and compositions make X into the cubical nerve of an ω-category.
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5. The equivalence

We have shown that an ω-category nerve structure on a precubical set induces a complete
stratification (Theorem 3.16) and that a complete stratification induces an ω-category
nerve structure (Theorem 4.12). In this section we complete the proof of Theorem 2.14
by showing that the two processes are mutually inverse.

We begin by recalling some properties of nerves from [1].

5.1. Proposition. Let X be the cubical nerve of an ω-category C, so that X has de-
generacies, connections and compositions and an induced complete stratification. Then
degeneracies and connections are thin, and composites of thin elements are thin.

Proof. Let C(n) be the sub-ω-category of C consisting of the elements which are iden-
tities for #n (see Proposition 3.1), and let X(n) be the nerve of C(n); then X(n) is a
sub-precubical set of X closed under degeneracies, connections and compositions. We have
Xn = X(n)n, and the thin elements of Xn are precisely the members of X(n − 1)n. If an
n-cube x is a degeneracy or connection of an (n−1)-cube y, then y ∈ Xn−1 = X(n−1)n−1,
so x ∈ X(n − 1)n and x is therefore thin. If an n-cube x is a composite of thin n-cubes,
then x is thin because X(n− 1) is closed under composition. This completes the proof.

5.2. Proposition. Let X be the cubical nerve of an ω-category. Then there are operations

ψ1, . . . , ψn−1 : Xn → Xn

such that

ψkx = Γ+
k ∂−

k+1x ◦k+1 x ◦k+1 Γ−
k ∂+

k+1x,

∂α
k+1ψkx = εk∂

α
k ∂α

k+1x,

∂α
i ψkx = ψk∂

α
i x for i > k + 1,

ψkεk+1x = εkx,

x = (εk∂
−
k x ◦k+1 Γ+

k ∂+
k+1x) ◦k ψkx ◦k (Γ−

k ∂−
k+1x ◦k+1 εk∂

+
k x).

Proof. We know from [1] that X is a precubical set with operations satisfying the
conditions of Definitions 4.1–4.3, Propositions 4.7–4.8 and Propositions 4.10–4.11. Using
these conditions, it is easy to check that the composite on the right side of the first equality
exists, and one can therefore use this equality to define ψkx. It is then straightforward to
verify the next three equalities. As to the last equality, we have

x = x ◦k+1 εk+1∂
+
k+1x

= (εk∂
−
k x ◦k x) ◦k+1 (Γ+

k ∂+
k+1x ◦k Γ−

k ∂+
k+1x)

= (εk∂
−
k x ◦k+1 Γ+

k ∂+
k+1x) ◦k (x ◦k+1 Γ−

k ∂+
k+1x)
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and

x ◦k+1 Γ−
k ∂+

k+1x = εk+1∂
−
k+1x ◦k+1 (x ◦k+1 Γ−

k ∂+
k+1x)

= (Γ+
k ∂−

k+1x ◦k Γ−
k ∂−

k+1x) ◦k+1 [(x ◦k+1 Γ−
k ∂+

k+1x) ◦k εk∂
+
k x]

= [Γ+
k ∂−

k+1x ◦k+1 (x ◦k+1 Γ−
k ∂+

k+1x)] ◦k (Γ−
k ∂−

k+1x ◦k+1 εk∂
+
k x)

= ψkx ◦k (Γ−
k ∂−

k+1x ◦k+1 εk∂
+
k x),

from which the result follows.

5.3. Proposition. Let x be an n-cube in the cubical nerve of an ω-category with n > 0.
Then there is an n-cube Ψx such that Ψx can be obtained by composing x with connections,
such that x can be obtained by composing Ψx with degeneracies and connections, and such
that

∂α
i Ψx = ε1∂

α
i−1∂

+
1 Ψx for i > 1.

Proof. Let
Ψx = ψ1ψ2 . . . ψn−1x,

where the ψk are as in Proposition 5.2. From the first equality in Proposition 5.2, Ψx
is a composite of x with connections; from the last equality in Proposition 5.2, x is a
composite of Ψx with degeneracies and connections. For i > 1, the middle equalities in
Proposition 5.2 give

∂α
i Ψx = ∂α

i (ψ1 . . . ψi−2)ψi−1(ψi . . . ψn−1)x

= (ψ1 . . . ψi−2)∂
α
i ψi−1(ψi . . . ψn−1)x

= (ψ1 . . . ψi−2)εi−1∂
α
i−1∂

α
i (ψi . . . ψn−1)x

= ε1∂
α
i−1∂

α
i (ψi . . . ψn−1)x

= ε1y,

say, we then get
y = ∂+

1 ε1y = ∂+
1 ∂α

i Ψx = ∂α
i−1∂

+
1 Ψx,

and we deduce that ∂α
i Ψx = ε1y = ε1∂

α
i−1∂

+
1 Ψx. This completes the proof.

We now give the two results showing that the functors are mutually inverse.

5.4. Theorem. Let X be a complete stratified precubical set. Then the stratification on X
obtained from its structure as the cubical nerve of an ω-category is the same as the original
stratification.

Proof. We use the method of Higgins [6]. Let x be an n-cube in X with n > 0, and
let Ψx be as in Proposition 5.3. From Propositions 5.1 and 5.3 we see that in the ω-
category stratification x is thin if and only if Ψx is thin. But Proposition 5.1 is also
true in the original stratification: degeneracies and connections are thin by construction,
and composites of thin elements are thin by Proposition 4.4. Hence, in the original
stratification, it also follows from Proposition 5.3 that x is thin if and only if Ψx is thin.
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It therefore suffices to show that Ψx is thin in the ω-category stratification if and only if
it is thin in the original stratification.

From Proposition 5.3 we see that ∂α
i Ψx = ∂α

i ε1∂
+
1 Ψx for i > 1, and we also have

∂+
1 Ψx = ∂+

1 ε1∂
+
1 Ψx, so Ψx and ε1∂

+
1 Ψx are fillers for the same n-box b opposite ∂−

1 . In each
of the stratifications degeneracies are thin, so b is admissible as in Example 2.9 (see the
justification of Definition 4.1), and b therefore has a unique thin filler. Since degeneracies
are thin in each stratification, the unique thin filler of b in each stratification is given by
ε1∂

+
1 Ψx. In each stratification, it follows that Ψx is thin if and only if Ψx = ε1∂

+
1 Ψx.

Therefore Ψx is thin in the ω-category stratification if and only if it is thin in the original
stratification. This completes the proof.

5.5. Theorem. Let X be the cubical nerve of an ω-category. Then the cubical nerve
structure obtained from the induced stratification is the same as the original cubical nerve
structure.

Proof. We must show that the degeneracies, connections and compositions constructed
from the stratification are the same as the original degeneracies, connections and com-
positions. Now the original degeneracies are thin by Proposition 5.1, so they satisfy the
conditions of Definition 4.1, and it follows that they are the same as the degeneracies
constructed from the stratification. The same argument applies to connections. As to
compositions, let x and y be n-cubes such that ∂+

k x = ∂−
k y for some k. In the original

structure one can check that there is a composite Γ−
k x ◦k+1 εky, and this composite is

thin by Proposition 5.1. By an inductive argument one finds that this composite satisfies
the conditions for Gk(x, y) in Definition 4.3; see Figure 10 for the case n = k = 1. One
therefore gets

Gk(x, y) = Γ−
k x ◦k+1 εky,

where the left side is the composer constructed from the stratification and the right side
is the composite in the original structure. Applying ∂−

k to both sides now shows that the
composite x ◦k y constructed form the stratification is the same as the original composite
∂−

k Γ−
k x ◦k ∂−

k εky = x ◦k y. This completes the proof.

6. Proof of Theorem 3.14

Let ∂γ
k be a face operation on n-cubes; we must construct a factorisation of d

(−)k−1γ
n−1 〈un〉

in νIn with certain properties. We will write

σ = ∂̌γ
kun−1 = uk−1 ⊗ ∂γu1 ⊗ un−k,

so that an n-box opposite ∂γ
k is a morphism on B(σ).

Consider the self-map of a geometric n-cube got by projection onto the face corre-
sponding to σ. It is a cellular map cellularly homotopic to the identity, so it induces a
chain endomorphism of In chain homotopic to the identity. To be explicit, we get the
following two results.
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ε1∂+
1 y ε1∂+

1 y

ε1y

G1(x, y)

y

ε1∂+
1 x=ε1∂−

1 y

y

Γ−
1 x

x◦1y

x

y

x

x

ε1∂+
1 x=ε1∂−

1 y

Figure 10: The equality G1(x, y) = Γ−
1 x ◦2 ε1y

6.1. Proposition. There is a chain map f : In → In given for x a chain in Ik−1 and for
y a chain in In−k by

f(x ⊗ u1 ⊗ y) = 0,

f(x ⊗ ∂γu1 ⊗ y) = f(x ⊗ ∂−γu1 ⊗ y) = x ⊗ ∂γu1 ⊗ y,

such that
f〈un〉αi = 〈σ〉αi .

Proof. It is straightforward to check that there is a chain map f as given, and it follows
from Proposition 3.7 that f〈un〉αi = 〈σ〉αi .

6.2. Proposition. There are abelian group homomorphisms D : In → In of degree 1,
given for x an i-chain in Ik−1 and for y a chain in In−k by

D(x ⊗ u1 ⊗ y) = 0,

D(x ⊗ ∂γu1 ⊗ y) = 0,

D(x ⊗ ∂−γu1 ⊗ y) = −(−)iγ(x ⊗ u1 ⊗ y),

such that
∂D + D∂ = id−f.

Proof. This is a straightforward computation.

The chain homotopy D is related to the precubical operations complementary to ∂γ
k

as follows.

6.3. Proposition. The chains D〈un〉+q−1 and −D〈un〉−q−1 are sums of basis elements

∂̌
α(n−q)
i(n−q) . . . ∂̌

α(1)
i(1) uq

corresponding to precubical operations ∂
α(1)
i(1) . . . ∂

α(n−q)
i(n−q) complementary to ∂γ

k .
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Proof. This follows from Proposition 3.7, according to which 〈un〉αq−1 is the sum of the
basis elements

∂̌
α(n−q+1)
i(n−q+1) . . . ∂̌

α(1)
i(1) uq

such that i(1) < i(2) < . . . < i(n − q + 1) and such that (−)i(r)−rα(r) = α for all r.
Applying D picks out the terms involving ∂̌−γ

k , omits the factor ∂̌−γ
k , and multiplies

by α. This makes D〈un〉+q−1 and −D〈un〉−q−1 into sums of basis elements corresponding to
precubical operations complementary to ∂γ

k , as required.

The factors Aβ
q of d

(−)k−1γ
n−1 〈un〉 are defined as follows.

6.4. Proposition. There are elements A−
q and A+

q of νIn for 1 ≤ q ≤ n − 1 given as
double sequences by the formulae

(Aβ
q )α

i = 〈un〉αi for i < q − 1,

(Aβ
q )β

q−1 = 〈un〉βq−1,

(Aβ
q )−β

q−1 = (id−∂D)〈un〉βq−1,

(Aβ
q )α

q = βD〈un〉βq−1,

(Aβ
q )α

i = 0 for i > q.

Proof. We must verify the conditions of Definition 3.5. Note that (Aβ
q )−β

q−1 can be written
in the form

(f + D∂)〈un〉βq−1 = 〈σ〉βq−1 + D〈un〉+q−2 − D〈un〉−q−2

(interpret 〈un〉α−1 as zero in the case q = 1). Using Proposition 6.3 where necessary, we
see that (Aβ

q )α
i is a sum of i-dimensional basis elements in In. From the expressions in the

statement of the proposition, it is easy to check that ε(Aβ
q )α

0 = 1 and (Aβ
q )+

i − (Aβ
q )−i =

∂(Aβ
q )α

i+1. This completes the proof.

We must now show that the elements Aβ
q have the properties stated in Theorem 3.14.

We begin with the following observation.

6.5. Proposition. The elements Aβ
q are members of νB(σ) such that b(Aβ

q ) is an identity
for #q−1 whenever b is an admissible n-box opposite ∂γ

k .

Proof. The Aβ
q are members of νB(σ) because the basis element σ is never a term

in (Aβ
q )α

n−1 and because un is never a term in (Aβ
q )α

n.
Now let b be an admissible n-box opposite ∂γ

k . By Proposition 6.3 and the definition

of admissible box, b〈τ〉 is an identity for #q−1 whenever τ is a term in βD〈un〉βq−1. But
(Aβ

q )α
i = 0 for i > q and

(Aβ
q )−q = (Aβ

q )+
q = βD〈un〉βq−1;

hence, by Theorem 3.9, Aβ
q is a composite of atoms 〈τ〉 such that τ is a term in βD〈un〉βq−1

or τ has dimension less than q. It follows that b(Aβ
q ) is a composite of identities for #q−1.

By Proposition 3.1, b(Aβ
q ) itself is an identity for #q−1.

This completes the proof.
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Next we show how to compose the elements Aβ
q .

6.6. Proposition. There are elements Aq in νIn for 0 ≤ q ≤ n− 1 given inductively by
A0 = 〈σ〉 and by

Aq = A−
q #q−1 Aq−1 # A+

q for 1 ≤ q ≤ n − 1

such that

(Aq)
α
i = 〈un〉αi for i < q,

(Aq)
α
q = (id−∂D)〈un〉αq ,

(Aq)
α
i = 〈σ〉αi for i > q.

Proof. The proof is by induction. To begin, let A0 = 〈σ〉; then A0 is certainly a member
of νIn such that the (A0)

α
i are as described, since

(id−∂D)〈un〉α0 = (f + D∂)〈un〉α0 = f〈un〉α0 = 〈σ〉α0 .

For the inductive step, suppose that there is a member Aq−1 of νIn as described. Then
one finds that d+

q−1A
−
q = d−

q−1Aq−1 and d+
q−1Aq−1 = d−

q−1A
+
q , so one can define Aq in νIn

as the composite

Aq = A−
q #q−1 Aq−1 # A+

q = A−
q − d−

q−1Aq−1 + Aq−1 − d+
q−1Aq−1 + A+

q .

It now follows from the inductive hypothesis that the (Aq)
α
i are as required; for the case

i = q note that

−D〈un〉−q−1 + 〈σ〉αq + D〈un〉+q−1 = (f + D∂)〈un〉αq = (id−∂D)〈un〉αq .

This completes the proof.

Finally, we complete the proof of Theorem 3.14 by proving the following result.

6.7. Proposition. There is an equality

An−1 = d
(−)k−1γ
n−1 〈un〉.

Proof. We have (An−1)
α
i = 〈un〉αi for i < n − 1 and (An−1)

α
i = 〈σ〉αi = 0 for i > n − 1,

from which it follows that

(An−1)
+
n−1 − (An−1)

−
n−1 = ∂(An−1)

−
n = 0.

It therefore suffices to show that (An−1)
(−)k−1γ
n−1 = 〈un〉(−)k−1γ

n−1 . But

(An−1)
(−)k−1γ
n−1 = (id−∂D)〈un〉(−)k−1γ

n−1 = 〈un〉(−)k−1γ
n−1

because uk−1 ⊗ ∂−γu1 ⊗ un−k is not a term in 〈un〉(−)k−1γ
n−1 . This completes the proof.
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7. A thin filler with a single non-thin face

In this section we exhibit a thin 3-cube x in the nerve of an ω-category such that x has
exactly one non-thin 2-face; moreover, x is the thin filler of an admissible box. It complies
with the final condition of Definition 2.13, because the non-thin face is ∂−

1 x and the box
is opposite a different operation ∂−

2 , but it shows that this condition in Definition 2.13
cannot be weakened.

We need an ω-category containing elements with certain properties.

7.1. Proposition. There is an ω-category with elements A and b such that A is an
identity for #2 but not for #1, such that b is an identity for #1, and such that A #0 b
exists and is an identity for #1.

Proof. We take the ω-category to be the 2-category of small categories; thus the identities
for #0 are the categories, the identities for #1 are the functors, the identities for #2 are the
natural transformations, and every element is an identity for #3. Let A be a non-identity
natural transformation and b be a functor such that A #0 b exists and is an identity natural
transformation. Then A and b have the required properties.

7.2. Theorem. There is an ω-category with a 3-cube x in its cubical nerve such that x is
the thin filler of an admissible box opposite ∂−

2 , such that ∂−
1 x is not thin, and such that

∂α
i x is thin for ∂α

i �= ∂−
1 .

Proof. By Proposition 3.13, to construct the thin 3-cube x it suffices to construct a
3-shell s such that s(d−

2 〈u3〉) = s(d+
2 〈u3〉). By Proposition 3.8, to construct the shell s, it

suffices to assign ω-category elements to the atoms of dimension less than 3 in I3 such that
the restriction to each 2-face is as shown in Figure 1. Take an ω-category with elements
A and b as in Proposition 7.1, let a− = d−

1 A, and let a+ = d+
1 A. One can then check that

there is a shell s as shown in Figure 11, where the equality signs denote identities for #0

and where the 2-faces are positioned as in Figure 4; that is,

x〈∂̌−
1 u2〉 = A, x〈∂̌+

2 u2〉 = b, x〈∂̌−
3 u2〉 = a+,

x〈∂̌+
3 u2〉 = a− #0 b, x〈∂̌−

2 u2〉 = A #0 b, x〈∂̌+
1 u2〉 = a+ #0 b.

From the formulae for d−
2 〈u3〉 and d+

2 〈u3〉 in Example 3.10, we see that s(d−
2 〈u3〉) and

s(d+
2 〈u3〉) are both equal to A #0 b, so s has a thin filler x. Since a−, a+, b and A #0 b are

identities for #1 and since A is not an identity for #1, it follows that ∂−
1 x is the unique

non-thin 2-face of x. In particular ∂+
1 x and ∂+

3 x are thin; so also is ∂+
1 ∂+

3 x, which is given
by the common edge of ∂+

1 x and ∂+
3 x. This means that x restricts to an admissible box

opposite ∂−
2 , so x is the thin filler of an admissible box opposite ∂−

2 . This completes the
proof.
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Figure 11: The shell s in the proof of Theorem 7.2
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