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PULLBACK AND FINITE COPRODUCT PRESERVING FUNCTORS
BETWEEN CATEGORIES OF PERMUTATION

REPRESENTATIONS: CORRIGENDUM AND ADDENDUM

ELANGO PANCHADCHARAM AND ROSS STREET

Abstract. Francisco Marmolejo pointed out a mistake in the statement of Proposition
4.4 in our paper [PS]. The mistaken version is used later in that paper. Our purpose
here is to correct the error by providing an explicit description of the finite coproduct
completion of the dual of the category of connected G-sets. The description uses the
distinguished morphisms of a factorization system on the category of G-sets.

1. Introduction

We are grateful to Francisco Marmolejo for pointing out a few minor errors in our pa-
per [PS] but, more importantly, he pointed out a serious error which the present paper
corrects by addending new material. First we attend to the minor corrections.

On page 771 we say that Lindner [Li] characterizes Mackey functors as coproduct
preserving functors. In fact, he characterizes them in terms of finite product preserving
functors. We should have made it clear that, in our case, the functors go between additive
categories so that finite products are finite coproducts and there is no contradiction.

In the proof of Theorem 2.1 in the middle of page 774, the object K should not be
the equalizer of all endomorphisms of P , rather only of those endomorphisms e for which
T (e)(p) = p.

At the bottom of page 775, in the description of Fam(C op), the family f = (fi)i∈I

should consist of morphisms fi : Dξ(i)
// Ci; the C and D were interchanged.

The serious error starts innocently enough as an apparent typographical mistake in
Proposition 4.4 where Fam(C op

G ) should be Fam(CG). The Proof following Proposition
4.4 is a correct proof of the equivalence G-setfin ' Fam(CG). However, to obtain Corollary
4.5, the mistaken version of Proposition 4.4 is used. Strangely, many months earlier while
writing our direct calculations on the Bouc Theorem and before preparing the “slick”
version, we knew that this Corollary 4.5 could not be true.
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To correct the error, we require a nice description of the finite coproduct completion
Fam(C op

G ) of the dual of the category of connected G-sets. This nice category will replace
G-setfin in Corollary 4.5 and have repercussions for Corollary 4.7, Theorem 5.1 and The-
orem 5.3. To describe the category, we will use the morphisms of a factorization system
on G-set. We are grateful to Alexei Davydov for valuable discussions on this material.

2. A factorization for G-morphisms

For any G-set X, we have the set X/G = {C ⊆ X : C is an orbit of X} of connected
sub-G-sets of X. We have the function orb : X // X/G taking each element x ∈ X to
its orbit orb(x) = {gx : g ∈ G}. Each G-morphism f : X // Y induces a direct image
function f/G : X/G // Y/G defined by (f/G)(C) = f∗(C).

A G-morphism f : X // Y is said to be slash inverted when f/G : X/G // Y/G is
a bijection.

2.1. Proposition. A G-morphism f : X // Y is slash inverted if and only if it is
surjective and f(x1) = f(x2) implies orb(x1) = orb(x2).

Proof. Suppose f is slash inverted. For each y ∈ Y there exists x ∈ X with f∗(orb(x)) =
orb(y). So f(x) = gy for some g ∈ G. It follows that y = f(g−1x), so f is surjective.
If f(x1) = f(x2) then (f/G)(orb(x1)) = (f/G)(orb(x2)); so orb(x1) = orb(x2). For the
converse, take orb(y) ∈ Y/G. Then y = f(x) for some x ∈ X and so orb(f(x)) = orb(y).
Also, if orb(f(x1) = orb(f(x2)), then f(x1) = gf(x2) = f(gx2) for some g ∈ G. So
orb(x1) = orb(gx2) = orb(x2).

A G-morphism f : X // Y is said to be orbit injective when orb(x1) = orb(x2) and
f(x1) = f(x2) imply x1 = x2. Orbit injective morphisms were considered by Bouc [Bo].

2.2. Proposition. The slash inverted and orbit injective G-morphisms form a factoriza-
tion system (in the sense of [FK]) on the category of G-sets.

Proof. To factor a G-morphism f : X // Y , construct the G-set S =
∑

C∈X/G

f∗(C) and

define G-morphisms u : X // S and v : S // Y by

u(x) = f(x) ∈ f∗(orb(x)) and v(y ∈ f∗(C)) = y.

Then f = v ◦ u while u is slash inverted and v is orbit injective.
The only other non-obvious thing remaining to prove is the diagonal fill-in property.

For this, suppose k ◦ u = v ◦ h where u is slash inverted and v is orbit injective.
If u(x1) = u(x2) then orb(x1) = orb(x2), so orb(h(x1)) = orb(h(x2)). Yet we also have

v(h(x1)) = k(u(x1)) = k(u(x2)) = v(h(x2)). Since v is orbit injective, we deduce that
h(x1) = h(x2).

Since u is surjective, for each s ∈ S there is an x ∈ X with u(x) = s. By the last
paragraph, the value h(x) is independent of the choice of x. So we obtain a function r by
defining r(s) = h(x). Clearly r is a G-morphism with r ◦ u = h and v ◦ r = k; and r is
unique since u is surjective.
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This factorization system has a special property.

2.3. Proposition. The pullback of a slash inverted G-morphism along an orbit injective
G-morphism is slash inverted.

Proof. Suppose the G-morphisms u : X // S and v : Y // S are slash inverted and
orbit injective, respectively. Let P be the pullback of u and v with projections p : P // X
and q : P // Y . We claim that q is slash inverted. It is clearly surjective so suppose that
q(x1, y1) = q(x2, y2) where u(x1) = v(y1) and u(x2) = v(y2). So y1 = y2 and u(x1) = u(x2).
Since u is slash inverted, orb(x1) = orb(x2); so there exists g ∈ G with x2 = gx1. Since
y1 and gy1 are in the same orbit, the calculation

v(gy1) = gv(y1) = gu(x1) = u(gx1) = u(x2) = v(y2) = v(y1)

implies that gy1 = y1 = y2. So g(x1, y1) = (x2, y2), which implies that (x1, y1) and (x2, y2)
are in the same orbit.

3. A new category of G-sets

For a finite group G, we write G-setfin for the category of finite G-sets and G-morphisms.
We write CG for (a skeleton of) the category of connected finite G-sets and all G-
morphisms between them. There is also the category Spn(G-setfin) whose objects are
finite G-sets and whose morphisms are isomorphism classes of spans between finite G-sets.
All these categories are important for the study of Mackey functors.

However, we now wish to introduce another category BG whose objects are all the
finite G-sets. In fact, BG is the subcategory of Spn(G-setfin) whose morphisms are
the isomorphism classes of those spans (u, S, v) : X // Y in which u : S // X is slash
inverted and v : S // Y is orbit injective. It follows from Proposition 2.2 and Proposition
2.3 that these particular spans are closed under span composition.

3.1. Proposition. The subcategory BG of Spn(G-setfin) is closed under finite coprod-
ucts.

Proof. The coproduct in Spn(G-setfin) is that of G-setfin, namely, disjoint union. For
G-sets X and Y , the coprojections X + Y in Spn(G-setfin) are the spans

(1X , X, copr1) : X // X + Y and (1Y , Y, copr2) : Y // X + Y

which clearly yield morphisms in BG. Moreover, if (u, S, v) : X // Z and (h, T, k) :
Y // Z are spans with u and h slash inverted and with v and k orbit injective then
u + h : S + T // X + Y is slash inverted and [v, k] : S + T // Z orbit injective. So the
induced span (u + h, S + T, [v, k]) : X + Y // Z yields a morphism in BG.
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3.2. Remark. While the coproduct in Spn(G-setfin) is also the product (since Spn(G-setfin)
is self dual), this is no longer true in BG.

There is a functor C op
G

// BG taking each connected G-set to itself and each G-
morphism f : C // D between connected G-sets to the isomorphism class of the span
(f, C, 1C) : D // C; clearly f must be slash inverted since C and D each have one
orbit. Using the universal property of Fam(C op

G ) and Proposition 3.1, we obtain a finite
coproduct preserving functor Σ : Fam(C op

G ) // BG extending C op
G

// BG.

3.3. Theorem. The functor Σ : Fam(C op
G ) // BG is an equivalence of categories.

Proof. Each object of BG is a coproduct of connected G-sets so Σ is certainly essentially
surjective on objects. To prove Σ fully faithful we need to use the description of Fam(C op

G )
from the bottom of page 775 of [PS] as corrected above. The objects are finite families
(Ci)i∈I of connected G-sets and a morphism (ξ, f) : (Ci)i∈I

// (Dj)j∈J consists of a

function ξ : I // J and a family f = (fi)i∈I of morphisms fi : Dξ(i)
// Ci. The functor

Σ takes the morphism (ξ, f) : (Ci)i∈I
// (Dj)j∈J to the isomorphism class of the span

(u, S, v) : X // Y where X =
∑

i∈I Ci, Y =
∑

j∈J Dj, S =
∑

i∈I Dξ(i),

u ◦ copri = copri ◦ fi and v ◦ copri = coprξ(i).

Notice that u induces a bijection S/G // X/G and that both of these sets are isomorphic
to I. It is then clear that u is slash inverted and v is orbit injective. Yet this process can
be inverted as follows. Given any span (u, S, v) : X // Y for the same X and Y , with u
slash inverted and v orbit injective, the direct image v∗u

∗(Ci) of the inverse image u∗(Ci)
of Ci must be an orbit Dξ(i) of Y . This defines a function ξ while fi is the composite
of the restriction of u to u∗(Ci) with the inverse of the isomorphism u∗(Ci) ∼= v∗u

∗(Ci)
induced by v.

The correct version of Corollary 4.5 of [PS] is

3.4. Corollary. There is an equivalence

BG ' CopPb(G-setfin, setfin)

taking the left G-set C to the functor∑
w∈C/G

G-setfin(Cw,−)

where Cw is the orbit w as a sub-G-set of C.

The correct version of Corollary 4.7 is

3.5. Corollary. There is an equivalence

BGop ' CopPb(G-setfin, setfin), A � // A ◦G −,

which on morphisms, takes a span (u, S, v) from A to B with u slash inverting and v
orbit injective, to the natural transformation whose component at X is the function A ◦G

X // B ◦G X taking [a, x] to [v(s), x] where u(s) = a.
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4. The bicategory of finite groups

The definition of the bicategory Bouc in Section 5 of [PS] must be modified in the light
of the above corrections to Corollaries 4.5 and 4.7.

For any finite monoid H and any category X with finite coproducts, there is a monad
H· on X whose underlying endofunctor is defined by H ·X =

∑
H X (the coproduct of

H copies of X); the unit and multiplication are induced in the obvious way by the unit
and multiplication of H. The category X H· of Eilenberg-Moore algebras for the monad
is none other than the functor category [H, X ] where H is regarded as a category with
one object and with morphisms the elements of H. We are interested in the particular
case where H is a finite group and X = BGop .

Define Bouc(G, H) to be the category obtained as the pullback of the inclusion of BGop

in Spn(Gop-setfin) along the forgetful functor Spn(Gop ×H-setfin) // Spn(Gop-setfin).
That is, Bouc(G, H) is the subcategory of Spn(Gop×H-setfin) consisting of all the objects
yet, as morphisms, only the isomorphism classes of spans (u, S, v) in Gop × H-setfin for
which u is slash inverted and v is orbit injective as G-morphisms.

There is an isomorphism of categories Γ : Bouc(G, H) // [H, BGop ] defined as follows.
For each Gop × H-set A, the left action by H provides injective right G-morphisms h :
A // A for all h ∈ H; so the isomorphism class of the span (1A, A, h) : A // A is a
morphism in BGop . So the right G-set underlying A becomes a left H-object ΓA in BGop .
Conversely, each left H-object X in BGop has, for each h ∈ H, an invertible morphism
[uh, Mh, vh] : X // X in BGop ; it follows that uh and vh are invertible and so [uh, Mh, vh]=
[1X , X,wh] where the wh : X // X define a left H-action on X making it a Gop ×H-set
A with ΓA = X. That Γ is fully faithful should now be obvious.

The correct form of Theorem 5.1 of [PS] is:

4.1. Theorem. There is an equivalence of categories

Bouc(G, H) ' CopPb(G-setfin, H-setfin), A � // A ◦G −.

The correct form of the first sentence of Theorem 5.3 of [PS] is:

4.2. Theorem. There is a bicategory Bouc whose objects are finite groups, whose hom-
categories are the categories

Bouc(G, H)

and whose composition functors are

Bouc(G, H)×Bouc(K, G) // Bouc(K, H), (A, B) � // A ◦G B.
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