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ABSTRACT� We take another look at the Chu construction and show how to simplify
it by looking at it as a module category in a trivial Chu category� This simpli
es the
construction substantially� especially in the case of a non�symmetric biclosed monoidal
category� We also show that if the original category is accessible� then for any of a large
class of �polynomial�like
 functors� the category of coalgebras has cofree objects�

�� Introduction

In a recent paper� I showed how the Chu construction� given originally in �Chu� �����
for symmetric monoidal closed categories� could be adapted to monoidal biclosed �but
not necessarily symmetric� categories� The construction� although well motivated by
the necessity of providing a doubly in	nite family of duals� was rather complicated with
many computations involving indices� Recently I have discovered that the � 
autonomous
structure of Chu categories can be put into the familiar context of bimodules over a
not necessarily commutative �algebra� object �really� it is a monoid object� but the dual
has always been called a coalgebra�� It is a familiar fact that over an ordinary ring or
algebra� the category of bimodules is a monoidal biclosed category� It was� in fact� the
motivating example that led Eilenberg and Kelly to include the non
symmetric case of
closed categories in their original paper in ��

�

We begin with a rational reconstruction of how the Chu construction might have been
discovered� This is very far from how it actually happened� of course� which we describe
brie�y at the end� We then extend this construction to the non
symmetric case� which
is rather easy� In fact� this whole idea of relating the Chu construction to bimodules
was discovered in the non
symmetric case� where the analogy with bimodules became
compelling� This turns out to be no analogy� just an instance� We then show how one
instance of this gives the non
symmetric Chu construction described in �Barr� ������

One of the interesting properties of the symmetric Chu construction is that if the
original category is locally presentable �that is� accessible and complete�� then the Chu
category has cofree cocommutative coalgebras� which means there is a � construction� This
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is interesting especially in light of the fact that the Chu category of a complete category
cannot be accessible unless the original category is a poset� In the non
symmetric case� the
notion of cocommutativity is not even de	nable� so that a � cannot be constructed that
way� Nonetheless� it is interesting to observe that for an interesting class of functors R�
the category of R coalgebras has a cofree cotriple� This class consists of the smallest class
of functors closed under product� sum and tensor product� Such functors are polymorphic
over the class of locally presentable monoidal categories� a crucial point in the proof� which
is by induction on the structural complexity�

�� A rational reconstruction

���� The symmetric case� For simplicity� we deal 	rst with the symmetric case� although
this works perfectly well in the non
symmetric case and was� in fact� 	rst discovered in
that context�

During the year I spent at the ETH in ����
�
� I was interested in self
dual categories�
Now it is very easy to 	nd self
dual categories� V �V op is self dual regardless of the nature
of V � So more speci	cally� I was interested in 	nding closed self
dual categories in which
the dual was given as the internal hom into some �dualizing object�� Suppose V is a
monoidal category� What about V � V op� If you make no particular requirements on
the tensor �except that it be a bifunctor�� you can simply de	ne �U�U �� � �V� V �� �
�U �V�U ��V ��� But if V is closed� V �V op is unlikely to be closed since the tensor will
commute with limits in the second coordinate� instead of colimits�

So let us suppose that the original category V is symmetric closed monoidal and try
to see what the corresponding autonomous structure on V � V op ought to be� Let us
suppose that we have �U�U �� � �V� V �� � �U � V�X� and we are trying to determine X�
Let us also suppose that the 	rst coordinate of �U�U �����V� V �� is the internalization of
Hom��U�U ��� �V� V ��� � Hom�U� V ��Hom�V �� U ��� This suggests that �U�U �����V� V �� �
��U �� V � � �V ���U ��� Y � where Y is to be determined� Finally� we observe that if the
duality on the category is determined by the internal hom into a dualizing object �� then
we must have

��U�U ��� �V� V ���� � �U�U ��� �V� V �����

� �U�U ������V� V ������

� �U�U �����V �� V � � ��U ��V ��� �V ��U ��� Y �

from which we conclude that

�U�U ��� �V� V �� � �U � V� �U ��V ��� �V ��U ���

Similarly�

�U�U �����V� V �� � ��U ��V �� �V �
��U ��� U � V ��



Theory and Applications of Categories� Vol� �� No� � ��

Does this work� It certainly does� A map

�U�U ��� �V � V �� �� �W�W ��

is equivalent to a pair of arrows U � V ��W and W � �� �U �� V ��� �V ��U ��� which is
equivalent to three arrows U �V ��W � W � �� U ��V � and W � �� V ��U �� Similarly� a
map �U�U �� �� �V� V �����W�W �� is a map �U�U �� �� ��V ��W �� �W ��� V ��� V �W ���
which corresponds to three maps U �� V ��W � U �� W ���V � and V � W � �� U ��
These two sets of arrows are clearly in one
one correspondence�

���� The non
symmetric case� With some care� this also extends to the case of a biclosed
monoidal category� We suppose that V is such a category with two internal homs �� and
�� that satisfy

Hom�U � V�W � �� Hom�V�U ��W � �� Hom�V�W ��U�

We note that there is some arbitrariness in which one to denote �� and which one is
��� The 	nal choice was suggested by the example of a group considered as a biclosed
monoidal category in which the elements of the group are the objects� the only maps are
identities and the group multiplication is the tensor� In that case� u�� v � u��v and
v ��u � vu��� while if the other choice were made� we would have to interchange the
elements� Incidentally� there is more to this analogy� For example� the internalizations of
those hom isomorphisms are

U � V ��W �� V ���U ��W � W ���U � V � �� �W ��V � ��U

However� there is one further isomorphism that turns out to be important�

���� Proposition�

�U ��W � ��V �� U ���W ��V �

Proof� We have� for any object T �

Hom�T� �U ��W � ��V � �� Hom�T � V�U ��W � �� Hom�U � T � V�W �

�� Hom�U � T�W ��V � �� Hom�T�U ���W ��V ��

This proof clearly depends on the associativity of the tensor and the proposition gives
a kind of associativity between the left and right internal homs� We will often write
U ��W ��V for either one� just as with the tensor�

We will now suppose that V is a biclosed monoidal category in this sense and also
that � � V �� V is a given isomorphism that preserves all the structure� The role of �
will be explained later� for the time being� you can take it to be the identity�
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We now de	ne structures on V � V op�

�U�U ��� �V� V �� � �U � V� �V ��U ��� �V �
�����U��

�U�U �����V� V �� � ��U ��V �� �U �
��V ��� V �

� ���U�

�V� V �� ���U�U �� � ��V ��U�� ��V �
���U ��� U � V ��

�U�U ��� � �U �� ���U�
��U�U �� � ��U �� U�

���

���� Theorem� The structures de�ned by ��� give a ��autonomous category�

Proof� First we show that it is a monoidal biclosed category� which means that for all
objects �U�U ��� �V� V �� and �W�W ��� we have

Hom��U�U ��� �V� V ��� �W�W �� �� Hom��V� V ��� �U�U �����W�W ���

�� Hom��U�U ��� �W�W �� ���V� V ���

For the 	rst isomorphism� we calculate that an arrow

�U�U ��� �V� V �� � �U � V� �V ��U ��� �V �
�����U�� �� �W�W ��

is given by three arrows

U � V �� W� W �
�� �V ��U ��� W �

�� �V �
�����U�

which transpose to

U � V ��W� V �W �
�� U �� W �

� ���U �� V �

An arrow

�V� V �� �� �U�U �����W�W �� � ��U ��W �� �U �
��W ���W �

� ���U�

is given by three arrows

V �� �U ��W �� V �� �U �
��W ��� W �

� ���U �� V �

which transpose to

V � U ��W �� V �W �
�� U �� W �

� ���U �� V �

which are the same data� For the second isomorphism� we 	nd that a map

�U�U �� �� �W�W �� ���V� V �� � ��W �� V �� ��W �
���V ��� V �W ��

is given by three arrows

U ��W ��V� U �� �W �
�� �V �� V �W �

�� U �
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which transpose to

U � V ��W� �W �
� U �� �V �� V �W �

�� U �

Since � is an isomorphism that preserves all structure� an arrow �W � � U �� �V � is the
same as an arrow W � � ���U �� V ��

This demonstrates the closed monoidal structure� For the rest of the �
autonomous
structure� we must show that for any object U of the Chu category� U� � U���� and
that the second dual map U �� ��U�� is an isomorphism� We see that �� � ������
which we will denote �� Then

�U�U ��������� � �U �� � � U �
������ ���U� �� �U �� ���U�

as required� For the second dual� we must show that the map U �� ����U����� gotten
by twice transposing the identity U��� �� U���� is an isomorphism�

We begin by working out what mapU �� V ��W corresponds to the second transpose
of a given map W �� U��V� Assuming U � �U�U �� and so on� the latter comes� as we
have seen� from three arrows�

W
f
��� U �� V� W

g
��� U �

��V �� V �
� ���U

h
��� W �

This corresponds to the map U �� V ��W�

U �� V ��W� U �� ��V �
���W ��� W � V �

�� U �

described as follows� The 	rst is the second transpose of f � the second is � applied to the
second transpose of h and the third is the transpose of g� Now we consider the special
case that V � ��W � U��� and we begin with the identity map� Then we begin with

p� � �U �� ��� �U �
���� �� U �� �

p� � �U �� ��� �U �
���� �� U �

���

id � �� ���U �� �� ���U

The corresponding maps U �� ����U���� are

U �� � ����U �� �� � �U �
����� � �

U �� ������� ����U�

�U �
������ �� U �

The 	rst map is the only map U �� �� the second is gotten by applying � to the second
transpose of id � �����U �� �����U � The coherence identities involving transposition
and � make this an isomorphism� The result is that the combined map

U �� �� ����U �� ��� �U �
�������

�
������� ����U�

�

is an isomorphism� The coherence identities also force the second transpose of id � U � ���

�� U � ��� to be an isomorphism� It follows from De	nition B of Section � of �Barr� �����
that V � V is� with the given structure� a �
autonomous category�
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���� Algebras and modules� The notion of algebra �associative� unitary� makes sense in
any tensored category� Let us work out what is required for �U�U �� to be an algebra in
V � V op� The tensor unit is ��� �� so a unit is a map ��� �� �� �U�U ��� which is nothing
but a map � �� U in V � A multiplication is a map

�U�U ��� �U�U �� � �U � U�U ��U �
� U �

�����U� �� �U�U ��

which corresponds to maps U � U �� U � U � �� U ��U � and U � �� U � �����U in V �
The 	rst of these� together with the unit� makes U into an algebra in V � The second
arrow de	nes a left U 
module structure on U � and the third de	nes a right ���U 
module
structure on U ��

Since � � ������ is obviously an algebra object in V�the initial algebra object�
in fact�and every object of V is a bimodule over �� it follows immediately that every
object of the form ����� is an algebra� regardless of the nature of �� These are the ones
that will be of interest to us later�

�� The biclosed monoidal structure

In this section� we describe how the category of bimodules for an algebra object in a
monoidal biclosed category is monoidal biclosed and �
autonomous when the original
category is� Let V be a monoidal biclosed category and suppose that K is an algebra
object� associative and unitary� The development parallels the familiar one for rings� We
will talk of right� left and two
sided modules� always meaning with respect to the algebra
K� These facts are essentially known� see �Street� ����� or �Koslowski� forthcoming�� Each
of these papers gives the proofs in a more general context� In Street�s paper� the algebra
has many objects and in Koslowski�s the category of left K� right L
bimodules is the hom
category in a bicategory whose objects are algebras� We give the constructions and omit
the proofs�

���� The basic de	nitions� Suppose K is an algebra object� M is a right K
module and
N a left K
module� Let the two actions be denoted ��M�K� � M � K �� M and
��K�N� � K �N �� N � De	ne M �K N so that

M �K �N

��M�K� �N
������������
������������

M � ��K�N�

M �N ��M �K N

is a coequalizer�

For the next construction� suppose that M and N are left K
modules� Then de	ne
M ����

K
N so that

M ����
K

N ��M ��N ��
�� �K �M���N
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is an equalizer� One of the two maps M ��N �� �K � M���N is just induced by
��K�M� � K �M ��M and the other is the transpose of the map

K �M � �M ��N� eval
����� K �N

��K�N�
�������� N

Thus this is the internalization of the set of arrows that preserve the K structure�

The third construction begins with right K
modules M and N and de	nes N ����
K

M

so that

N ����
K

M �� N ��M ��
�� N ���M �K�

is an equalizer� The two arrows are de	ned similarly to the preceding case�

There appears to be no way of de	ningM ����
K

N for two right modules or N ����
K

M

for two left modules� This is fortunate� since it means that when M and N are bimod

ules� the notations M ����

K
N and N ����

K
M are unambiguous� It is analogous to the

unambiguous nature of M �K N � using the right structure on M and the left one on
N � Another point to note is that� given that the given tensor is non
symmetric� there
appears to be no way of de	ning an opposite algebra Kop in such a way that right K

modules are left Kop
modules� Similarly� there is no notion� given two algebras K and
L� of K� L
bimodule� What there is is a notion of left K� right L
bimodule� to which we
now turn�

���� Bimodules� In this section� we are primarily interested in left and rightK
bimodules�
However we investigate the notion of left K� right L bimodule� not so much for the added
generality� but also it is less confusing and certainly no harder�

By a left K� right L bimodule� we mean an object M that is both a left K
module
and a right L
module such that the square

K �M M�
��K�M�

K �M � L M � L�K � ��M�L�

�

��K�M� � L

�

��M�L�

commutes� For convenience� we will use the notation KML to indicate that M is a left K�
right L
bimodule� If KML and KNL� I will write HomK�M�N�L to denote the set of left
K� right L morphisms� If K or L is the tensor unit� it can be omitted from the notation�

���� Proposition� Suppose that J � K and L are algebras and that JMK and KNL� Then
M �K N gets the structure of a left J � right L�bimodule�

As mentioned above� we omit the proof� but give the construction� Since � is a left
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adjoint� it preserves coequalizers so that the top line of the diagram

J �M �K �N � I J �M �N � I
�� J �M �K N � I�

M �K �N M �N
�� M �K N�

�

��J�M� �K � ��N� I�

�

��J�M� � ��N� I�

is a coequalizer� The diagram serially commutes and thus induces an arrow J�M�KN�I
��M �K N � which gives the structure�

���� Proposition� Suppose J � K and L are algebras� Suppose KMJ and KNL� Then
M ����

K
N has the structure of a left J � right L bimodule�

Here is the construction� The composite

M � J � �M ��N�� L ��M � �M ��N� � L �� N � L �� N

has as exponential transpose an arrow J � �M ��N� � L �� M ��N � Similarly� the
composite

K �M � J � ��K �M���N�� L �� K �M � ��K �M���N� � L �� N � L �� N

has as exponential transpose an arrow J� ��K�M���N��L �� �K�M���N � These
are the vertical arrows in the diagram

J � �M ����
K

N�� L � J � �M ��N� � L J � ��K �M���N� � L��

�M ����
K

N� � �M ��N� ��K �M���N���
� �

The diagram is serially commutative and the bottom row is an equalizer� so there is
induced an arrow J � �M ����

K
N� � L �� M ����

K
N which is the induced structure

giving the left J � right L structure on the internal homset�
By interchanging left and right� we also have�

���� Proposition� Suppose J � K and L are algebras� Suppose LMK and JNK� Then
N ����

K
M has the structure of a left J � right L bimodule�

These structures are related by the following theorem� Although it is stated in terms
of objects� these are actually instances of natural equivalences� natural in M � N and P �

��
� Theorem� Suppose J � K and L are algebra objects and JMK � KNL and JPL� Then

HomJ�M �K N�P �L �� HomK�N�M ����
J

P �L �� HomJ�M�P ����
L

N�K

There are also isomorphisms of the internal homs that look similar to the above� They
are not really internalizations of the above because they concern homs of only left or right
structure� not the bimodule structure�
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���� Theorem�

�� In the situation JMK� KNI � JPL� we have

M �K N ����
J

P �� N ����
K

�M ����
J

P �

as left I� right L�modules�

�� In the situation JMK� KNI � LPI � we have

P ����
I

M �K N �� �P ����
I

N� ����
K

M

as left L� right J�bimodules�

Proof� We prove the 	rst� the second is similar� Let Q be any left I� right L
bimodule�
Then

HomI�Q�M �K N ����
J

P �L �� HomJ�M �K N �I Q�P �L

�� HomK�N �I Q�M ����
J

P �L

�� HomI�Q�N ����
K

�M ����
J

P ��L

Since these isomorphisms are evidently natural inQ� the conclusion follows from Yoneda�

It follows from the above that when M is a right K
module� M� � M ���� is a left
K
module and similarly when M is a left K
module� M� is a right K
module and when
M is a two
sided K
module� so is M�� In the same way� so is �M � Thus when C is �

autonomous� so is the category of two
sided K
modules�

Street proved these results under somewhat stronger hypotheses� but he allowed his
�algebras� to have many objects� Our hypotheses of equalizers and coequalizers su�ce
for this case�

What Koslowski actually proves is that if you begin with a biclosed monoidal category
there is a biclosed monoidal bicategory whose objects are the algebra objects in the original
category and for which the hom category between the algebra objects K and L has as
objects left K� right L bimodules and morphisms thereof� The monoidal structure and
the biclosed structure is exactly as described above and Koslowski shows that this all
works as advertised�

���� The symmetric case� Suppose that the tensor product in V is symmetric� This
means that there are natural isomorphisms c � c�U� V � � U �V �� V �U that satisfy the
usual coherence isomorphisms� including that c�V�U� 	 c�U� V � � id� In that case� we
can consider the case that K is a commutative algebra object and then de	ne a module
to be symmetric when the left and right actions coincide in the sense that

K � V V �K�c�K�V �

V

��K�V �
�
�
�
��R

��V�K�
�

�
�

���
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commutes� The subcategory of symmetric modules can be shown to be closed under
tensor and right and left internal hom and the last two are also isomorphic�

���� Example� In Section ��� we saw that no matter what object � of V we take� there
is a natural bimodule structure on K � ������ Here I want to describe the category of
bimodules for this algebra�

A left K
module �V� V �� has structure given by

������ �V� V �� � ��� V����V �
�������V � �� �V� V ��

which corresonds to three arrows� ��V �� V � V �� ���V �� and V � �� ������V � The
	rst two of these are forced by the unitary identity to be the standard isomorphisms� The
third transpose to an arrow V � � ���V �� �� This third arrow is equivalent to an arrow
�V � � V �� �� which is sometimes more convenient� The triviality of the algebra means
that associativity imposes no further conditions� Thus a left K
module is a pair �V� V ��
equipped with an arrow �V � � V �� �� One easily checks that if �U�U �� is another such
left K
module� then an arrow �f� f �� � �U�U �� �� �V� V �� preserves the module structure
if and only if the diagram

�V � � V ��

�U � � V �U � � U��U � � f

�

�f � � V

�

commutes�
In a similar way� we can see that a right K
module is given by a pair �V� V �� equipped

with an arrow V � V � �� � and arrow between two such is one for which the diagram

V � V � ��

U � V � U � U ��U � f �

�

f � V �

�

commutes� A K
bimodule has both structures and no additional coherence is imposed
in this case� This gives non
symmetric Chu construction as the category of K
bimodules
and it will be a non
symmetric � 
autonomous category�

�� The original non�symmetric Chu construction

In this section� we will show how the original non
symmetric Chu construction of �Barr�
����� 	ts in as special case of what we have done� We start with a brief exposition of the
construction given in that paper� Let V be a monoidal biclosed category and W be the
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category of Z
graded V objects� That is� an object of W is a doubly in	nite sequence
V � �� � � � V��� V�� V�� � � �� of objects of V � equipped with arrows Vn � Vn�� �� � for
all n 
 Z� If U � �� � � � U��� U�� U�� � � �� is another such object� then an arrow U �� V

is given by a sequence of arrows f � �� � � � f��� f�� f�� � � �� of arrows such that fn � Un

�� Vn when n is even and fn � Vn �� Un when n is even� subject to the conditions that
the two diagrams following commute for all n 
 Z�

V�n � V�n�� ��

U�n � V�n�� U�n � U�n���U�n � f�n��

�

f�n � V�n��

�

V�n�� � V�n ��

V�n�� � U�n U�n�� � U�n�f�n�� � U�n

�

V�n�� � f�n

�

For more details� in particular� the full description of the � 
autonomous structure� see
the cited paper� The formulas are complicated and it is not at all clear where they came
from�

The descriptions of this paper allow a completely di�erent construction of an equivalent
category� one that is described easily� Let V be a not necessarily symmetric autonomous
category and let Gr�V � denote the category of Z
graded objects of V � The objects
are the same as those of W above� but it is not the same category� In Gr�V �� all the
structure is computed component
wise� so that for objects U � �� � � � U��� U�� U�� � � ��
and V � �� � � � V��� V�� V�� � � �� of Gr�V �� we have Hom�U�V� �

Q
i�ZHomV �Ui� Vi��

U � V � �Ui � Vi�� U��V � �Ui��Vi� and V ��U � �Vi ��Ui�� We let � � Gr�V �
�� Gr�V � be the map that increments by � the index on each object� Thus ���V��i � Vi���

Let � be an object of V � We also use it to denote the constant object of Gr�V �� An
object of Chu�Gr�V ���� then consists of a pair we will� for convenience� denote �V��V���
along with arrows V� � V�� �� � and ��V��� � V� �� �� The 	rst of these is given by
arrows V �

i � V ��
i �� � and the second by V ��

i�� � V �
i �� �� for all i 
 Z� If we now

de	ne V�i � V �
i and V�i�� � V ��

i� then this is summarized by saying that a Chu structure
is given by a doubly in	nite sequence �Vi�� i 
 Z and arrows Vi�Vi�� �� � for all i 
 Z�
It is clear that the arrows in the category will alternate directions and it is not hard to
verify that this construction proves the following�

���� Theorem� For any autonomous category V � the category Chu�Gr�V �� as just de�
scribed is equivalent to the Chu category described in �Barr� ����	�

The proof is not hard� but there are a lot of details to verify�
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�� Cofree coalgebras

In this section� we will suppose that V is a locally presentable� that is accessible and
complete� category� See �Makkai and Par�e� ����� as well as �Gabriel and Ulmer� ������
In the symmetric case� this implies that there are cofree objects in the category of co

commutative� coassociative� counitary coalgebras� which gives a natural model for the �
construction of linear logic� �Barr� ������ In the non
symmetric case� cocommutativity
cannot be de	ned and we cannot model � in this way� Nonetheless� it could be useful to
know that cofree coalgebras exist� We will actually show here that cofree coalgebras of
the form C �� RC exist for a large class of functors R� Among other things� this implies
that 	nal R
coalgebras �the cofree generated by the terminal object� exist�

���� Theorem� Suppose V is a locally presentable category and � is an object of V �
Let R denote the least class of functors that is closed under arbitrary products and sums
and under �nite 
including empty� tensor products� Then for any R 
 R� the category of
R�coalgebras in Chu�V ��� has cofree coalgebras�

The proof will occupy the rest of this section� Note that the class R makes sense
in any bicomplete monoidal category� This is why we did not include all the constants�
although it includes the initial and terminal objects as well as the tensor unit as constant
functors and the identity functor as a unary sum �or product or tensor��

We begin with the fact that the functors in R are accessible on V � Since V is an
accessible category �which Chu�V ��� is not�� this shows that for any R 
 R� there are
cofree R
coalgebras in V �

���� Proposition� The functors in R are accessible on V �

Proof� It is standard that the sum and product of accessible functors is accessible� so
we need worry only about tensor products� But the tensor with a 	xed object has a right
adjoint� hence commutes with arbitrary colimits� We require the following� whose proof
is left to the reader�

���� Lemma� Suppose � is an in�nite cardinal and I is an ���ltered category� Then the
diagonal � � I �� I �I is co�nal�

Now if D � I �� V is an is an �
	ltered diagram and R�� R� � V �� V are �

accessible� then

colimi�I �R� �R��Di �� colimi�I �R�Di�R�Di� �� colimi�I colimj�I �R�Di�R�Dj�

�� colimi�I �R�Di�R��colimj�IDj��

�� R��colimi�IDi��R��colimj�IDj�

It follows from �Makkai� Par�e� ����� that for any R 
 R� the underlying functor from the
category of R
coalgebras in V to V has a right adjoint� We will denote this functor by
GR� It is the functor part of a cotriple GR � �GR� �R� �R� on V for which the category of
coalgebras is just the category of R
coalgebras and homomorphisms�
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���� Proposition� The functor R on Chu�V ��� has the form

R�V� V �� � �RV� eR�V� V ���

where eR � V op � V �� V is a functor�

Proof� Since
Q
�Vi� V �

i � � �
Q
Vi�
P

V �
i � and

P
�Vi� V �

i � � �
P

Vi�
Q
V �
i � the assertion

follows by structural induction for sums and products of such functions� As for tensor
products� the conclusion follows from

�U�U ��� �V� V �� � �U � V� �V ��U ���V ��������U �V
�
�����U��

in which the 	rst coordinate is just the tensor product of the 	rst coordinates and the
second is functorial in both� contravariant in the 	rst and covariant in the second� Thus
if R � R� �R�� then

eR�V� V �� � R��V ��� eR��V� V
�� �R��V ���������R��V �

eR��V� V
�� �����R��V �

���� Proposition� Let V be a monoidal biclosed accessible category� For a �xed object
U of V � the functors U ��� and ���U are accessible�

Proof� It is clearly su�cient to do either one� say U ���� Let  be a set of generators
for V and let � be the sup of the presentation rank of all objects of the form W and
U �W � where W 
  � Now let V � colimVi� the colimit taken over an � 	ltered diagram�
Then for any W 
  � we have

Hom�W�U ��V � �� Hom�U �W�V � �� colimHom�U �W�Vi�

�� colimHom�W�U ��Vi� �� Hom�W� colim�U �� Vi��

Since W ranges over a generating set� it follows that the induced map colim�U �� Vi�
�� U ��V is an isomorphism�

��
� Proposition� For a �xed object V of V and R 
 R� the corresponding functor eR
is accessible as a functor V �� V �

Proof� If R �
Q
Ri and eRi is the functor corresponding to Ri� then

R�V� V �� � �
Y

Ri�V ��
X eRi�V� V

���

so that eR�V� V �� �
P eRi�V� V �� and the sum of accessible functors is accessible� A similar

argument� since the product of accessible functors is accessible� allows us to draw the
same consequence for sums� Finally� we have to deal with the tensor product� Suppose
that R � R� � R�� R� � �R�� eR�� and R� � �R�� eR�� and we know that eR� and eR� are
accessible in their second variable� Then

R�V� V �� � �RV� �R�V �� eR��V� V
����R�V ������R�V � eR��V� V

�� �� �R��V ���
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The objects R��V � and R��V � are 	xed� Thus by the preceding proposition� it follows

that eR is accessible in the second variable�

We introduce some temporary notation in order to reduce the notational complication
of the rest of the argument� If V is an object of V � let V � � V ��� �������V � This
is not exactly a dual� but it is the case that there is a one
one correspondence between
arrows W �� V � and ���V ��W �� although we will not use that fact� What we will use
are the obvious facts that a Chu structure on �V� V �� is given by an arrow V � �� V � and
that �f� f �� � �V� V �� �� �W�W �� is a pair of arrows for which the square

W � V ��
f�

W � V ��f �

� �

commutes�
We now 	x an R 
 R� Since R is accessible� there is a cofree R
coalgebra cotriple

on V that we will denote G � �G� �� ��� If �V� V �� is an object of Chu�V ��� there is a
natural Chu structure on �GV� V ��� namely

GV � V � �V � �
������� V � V �

�� �

�V �
�GV

� � �V
������� �V �

� V �� �

We denote the R
coalgebra structure on GV by � � �V � GV �� RGV � If �C�C ��
is an R
coalgebra and �f� f �� � �C�C �� �� �V� V �� is an arrow in Chu�V ���� then C is
an R
coalgebra in V and f � C �� V is an arrow� Thus f factors as f � �V 	 !f
where !f � C �� GV is a coalgebra morphism� It is immediate that �f� f �� factors as
�f� f �� � ��V� �� 	 � !f � f ��� We claim that each of these maps is in Chu�V ���� These
follow from the commutativity of

�GV �� C��
� !f��

V � C ��f �

�

V �

�

�
��V �� V � �GV ���

��V ��

V � V ��id

� �f�
Q
Q
Q
QQs

In the left diagram� the upper trapezoid commutes because �C�C �� �� �V� V �� is an arrow
in Chu�V ���� while the lower triangle commutes from the application of the contravariant
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functor ��� to the identity �V 	 !f � f � The right hand square commutes by the de	nition
of the Chu structure on �GV� V ���

Now de	ne an object V � of V so that

�GV �� C��
� !f��

V � C ��
ef

� �

is a pullback�

���� Proposition� Let V � be constructed as above� Then

�� �GV� V �� is an object of Chu�V ����

�� � !f� f �� � �C�C �� �� �GV� V �� factors through �GV� V ���

�� �GV� V � is an R� coalgebra�

�� the �rst factor of this factorization is by an R�coalgebra morphism�

Proof� We give it the structure of a Chu object by using the pullback diagram

�GV �� C��
� !f��

V � C ��

� �

�ef

f �

HHHHHHHHHj

V �

g
�
�
�
��R

A
A
A
A
A
A
A
A
A
AAU

to de	ne g� The other 	gure commutes because � !f� f �� is a Chu morphism� This gives
the structure of a Chu object� The commutativity of the left hand triangle shows that
the arrow �id� g� is in Chu�V ���� The commutativity of the square shows that � !f � ef�
is in Chu�V ���� while the commutativity of the upper triangle gives the factorization

� !f� f �� � �id� g� 	 � !f� ef��
A coalgebra structure on an object �C�C �� is determined by arrows c � C �� RC and
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c� � eR�C�C �� �� C � such that the diagram

�RC�� C��
c�

eR C ��c�

� �

commutes� Consider the diagram

�RGV �� �RC���

eRG�V� V �� eR�C�C ���

� �

�
�

�
���

�
�
�
���

�
�

�
��I

�GV �� C��

V � C ��

� �

The outer square commutes because it just expresses the fact that there is a morphism
�C�C �� �� �V� V �� is a morphism and hence so is R�C�C �� �� R�V� V ��� The right
hand trapezoid commutes because �C�C �� is an R
coalgebra and the bottom trapezoid
commutes since C �� GV is an R
coalgebra morphism in V � It readily follows since the
inner square is a pullback that there is induced a map eR�GV� V �� �� V � that makes the
other two trapezoids commute� The commutation of the left one implies that �GV� V ��
is an R
coalgebra and of the top and bottom one together that �C�C �� �� �GV� V �� is a
morphism of R
coalgebras�

This proposition shows that the class of coalgebras of the form �GV�U� constitute a
co	nal class among all those mapping to �V� V ��� It is understood� of course� that the
R
coalgebra structure restricts to � � GV �� RGV on the 	rst coordinate� We have not
yet cut that class down to a set because the second component is still unrestricted�

A coalgebra of the form �GV�U� can be described as a map U �� �GV �� and a mapeR�GV�U� �� U such that the square

�RGV �� �GV ���
��GV ��

eR�GV�U� U�

� �
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commutes� Here the arrow eR�GV�U� �� �RGV �� is the one that results from the Chu
structure on R�GV�U�� Another way of saying this is to say that U and �RGV �� are

objects of the slice category V ��GV �� and that eR induces a functor on that category as
indicated�

Therefore� let U denote the category V ��GV �� and let S � U �� U be the functor
de	ned by

S�U �� �GV ��� � eR�GV�U� �� �RGV �� �� �GV ��

Then an S
coalgebra inU is exactly the same thing as an R
coalgebra of the form �GV�U��
whose 	rst component is �� Since colimits in U are created by the forgetful functor U
�� V � it follows from Proposition ��
 that S is an accessible category and hence that there
is a small solution set for the existence of cofree S
coalgebras� In particular there is a
small co	nal set for V �� �GV ��� which implies that there is a cofree coalgebra generated
by �V� V ��� This completes the proof of Theorem ����

�� The true history of Chu categories

Here is� insofar as I am aware� the true history of Chu categories� As I was preparing the
preliminary work on �
autonomous categories� for example� �Barr� ���
�� I read a number
of books on topological vector spaces� for example� �Schae�er� ������ One thing these
books always mentioned and usually developed in some detail was the theory of pairs of
spaces� A pair �E�E�� consisted of two topological vector spaces and a bilinear pairing
E�E� �� K �K is the ground 	eld� either the real or complex numbers�� Mostly� but not
always� it was assumed that the pairing was separated and extensional� This construction
was 	rst given by Mackey� published in ������� based on his ���� doctoral dissertation�
It is interesting to note that Mackey wrote in ���� that the use of dual pairs� �makes it
possible to regard a normable topological linear space as a linear space together with a
distinguished family of linear functionals� rather than as a linear space with a topology��
which is exactly the point I have been making in �Barr� ����� and �Barr� to appear��

Grothendieck ������� a book based on a notes from a ���� course� develops the idea
further� dropping the extensional hypothesis that Mackey and Schae�er assumed� The
theory was developed for these objects� but� although it was evident what maps had to
be� they were not made into a category� Still less� was any closed or monoidal structure
considered� Nonetheless� this is an instance of Chu�V �K� and appears to have been the
	rst� As far as I have been able to determine �based on not very extensive searching� no
author actually discussed the notion of a morphism between pairs except in the separated
case� where it is a subset of the set of linear maps between the 	rst components consisting
of those that induce maps on the second�

So I wrote down the obvious de	nition of morphism� It then occurred to me to wonder
if the resultant category was closed or monoidal and quickly discovered that it was both�
modulo the checking of a morass of details� Since Chu needed a topic for his master�s
degree� I set him this task and the appendix to �Barr� ����� was the result� But the story
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does not end there� Or rather� it would have ended there since neither I nor anyone else
found any interest in this rather formal construction� But the year ���� saw a renewed
interest in �
autonomous categories as models of Girard�s linear logic and then Vaughan
Pratt and his student Vineet Gupta rediscovered the Chu construction and began to study
it in earnest�

Pratt describes this as follows�

Vineet and I had developed the category PDLat of partial distributive lattices
as an extension of event structures for modeling concurrent processes� discov

ering along the way that it was concretely equivalent to Chu�Set� �� �Pratt�
����� Gupta� ������ We already knew that PDLat�s were in a certain sense
universal for Stone duality� and my result that the category of k
ary relation

al structures embeds concretely in Chu�Set� �k� led me to advance the thesis
that Chu spaces were universal for concrete mathematics �Pratt� ������ If we
regard pure 	rst order logic as the logic just of sets as relational structures
with the empty sort� and interpret linear logic propositions as Chu spaces� the
implication of this thesis is that linear logic� thus far understood as a logic of
resources� is better understood as the logic of the rest of concrete mathematics�

This interest eventually convinced me to look at the Chu construction again as a
suitable vehicle in which to express virtually all duality theories� One of the results of
this was the paper �Barr� to appear� in which much of the work of �Barr� ����� is redone
in this new light�

Probably the main conclusion to draw from this history is that� as with most math

ematical discoveries� it is a mistake to attribute it any one person� It was born out of
need� with a number of midwives� but no real discoverer�

There is one more historical note that may be of interest� The construction described
in Section � came 	rst� In the process of trying to understand it� it seemed to me that
there were many analogies between that construction and bimodules� It occurred to me
wonder if it really was a category of bimodules and of course it is� In working out the
details of where the automorphism � was to appear in the formulas� I referred repeatedly
to the explicit original construction� Thus� although this rational reconstruction sounds
convincing� it may be that the original messy construction had to be done 	rst before the
one given here could be properly understood�
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