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MONADS AND INTERPOLADS IN BICATEGORIES

J�URGEN KOSLOWSKI
Transmitted by R. J. Wood

ABSTRACT. Given a bicategory, Y , with stable local coequalizers, we construct a
bicategory of monads Y -mnd by using lax functors from the generic 0-cell, 1-cell and
2-cell, respectively, into Y . Any lax functor into Y factors through Y -mnd and the
1-cells turn out to be the familiar bimodules. The locally ordered bicategory rel and its
bicategory of monads both fail to be Cauchy-complete, but have a well-known Cauchy-
completion in common. This prompts us to formulate a concept of Cauchy-completeness
for bicategories that are not locally ordered and suggests a weakening of the notion of
monad. For this purpose, we develop a calculus of general modules between unstruc-
tured endo-1-cells. These behave well with respect to composition, but in general fail
to have identities. To overcome this problem, we do not need to impose the full struc-
ture of a monad on endo-1-cells. We show that associative coequalizing multiplications
su�ce and call the resulting structures interpolads. Together with structure-preserving
i-modules these form a bicategory Y -int that is indeed Cauchy-complete, in our sense,
and contains the bicategory of monads as a not necessarily full sub-bicategory. Inter-
polads over rel are idempotent relations, over the suspension of set they correspond
to interpolative semi-groups, and over spn they lead to a notion of \category without
identities" also known as \taxonomy". If Y locally has equalizers, then modules in
general, and the bicategories Y -mnd and Y -int in particular, inherit the property
of being closed with respect to 1-cell composition.

Introduction

Part of the original motivation for this work was to better understand, why the bicategory
idl of pre-ordered sets, order-ideals, and inclusions inherits good properties from the
bicategory rel of sets, relations and inclusions. Of particular interest was closedness
with respect to 1-cell composition, also known as the existence of all right liftings and
right extensions.

The key observation is that pre-ordered sets can be viewed as monads in rel .
Benabou [1] explicitly designed what is now known as lax functors to subsume the notion
of monad, in this case as a lax functor from the terminal bicategory 1 to rel . To keep
the paper reasonably self-contained, in Section 1 we recall the relevant de�nitions and
establish our notation.

Order-ideals, i.e., relations compatible with the orders on domain and codomain,
do not correspond to the kind of morphisms that are usually considered between monads.
Since ordinary morphisms in a category correspond to functors with domain 2 , the
two-element chain or generic 1-cell, we introduce 1-cells between monads in terms of
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lax functors with 2 as domain and call them \m-modules". These later turn out to be
bimodules between monads as described in Section 4.1 of Carboni, Kasangian and Walters
[3] and also known to Street [9]. Since the inclusions in idl correspond to lax functors
from the generic 2-cell, we may interpret idl as \the bicategory of monads over rel ".

Rosebrugh and Wood [8] mention a basic defect of rel : idempotents need not
split. This also is true for idl . Hence they work with the Karoubian envelope, or
Cauchy-completion, kar of rel instead. It also has all right liftings and right extensions
and happens to be the Cauchy completion of (and hence to contain) idl as well.

How can this situation be generalized to other well-behaved bicategories besides
rel ? There are (at least) two aspects to this question. The objects of kar are sets
equipped with an idempotent relation. This need not be re
exive but has to be transitive
and to satisfy the so-called \interpolation property", which is just the converse of the
inclusion required for transitivity, cf. Example 3.07.(2). Hence one may think of it as
a \monad without unit", but with an extra condition on the multiplication that in the
general case has yet to be determined. We chose the name \interpolad" for such a struc-
ture. Of course, morphisms between interpolads ought to be suitably weakened versions
of m-modules or bimodules. In fact, no extra structure on endo-1-cells is necessary to
get a theory of general modules o� the ground. In Section 2 we describe this for a �xed
bicategory Y with local stable coequalizers. General modules already admit the type of
composition, by means of coequalizers, described for bimodules by Carboni et. al [3], and
known in various special cases. Unfortunately, endo-1-cells and general modules do not
form a bicategory for lack of identity modules.

This prompts us, in Section 3, to look for the minimal structure that needs to be
imposed on endo-1-cells and to be preserved by suitable modules in order to guarantee the
existence of identities. This leads to the o�cial introduction of interpolads: endo-1-cells
with an associative coequalizing multiplication. Together with structure-preserving \i-
modules" and the obvious 2-cells they form a bicategory Y -int . The extent to which the
notions of monad and m-module have been weakened can be made precise: the absolute
coequalizers implicit in those notions are replaced by coequalizers, the preservation of
which in certain cases we require explicitly. Hence we recover Y -mnd as a not necessarily
full sub-bicategory of Y -int .

Section 4 addresses the second aspect of our quest to generalize the relationship
between rel , idl and kar : we introduce the notion of Cauchy-completeness for ar-
bitrary bicategories. If the hom-categories are not just ordered, associativity becomes
an issue when reasoning about idempotency of 1-cells. Y -int turns out to be Cauchy-
complete in this sense, and hence to fully contain the Cauchy-completion of Y . The
latter will usually be too small to contain Y -mnd . Although for distributive Y all in-
terpolads arise when splitting idempotent m-modules in Y -int , the Cauchy-completion
of Y -mnd usually cannot be realized as a subcategory of Y -int , although there exists
an obvious \forgetful" functor.

In Section 5 we return to our original question and consider closedness with respect
to 1-cell composition in terms of right extensions and right liftings. Provided that Y

has hom-categories with equalizers, we show that the existence of all right extensions in
Y implies this property for general modules (no identities are needed for this), as well
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as for the bicategories Y -mnd and Y -int . In fact, right extensions in Y -mnd are
formed just as for general modules (this recovers parts of a result by Street [9]), while in
Y -int their construction requires an additional step, the pre- and post-composition with
the appropriate identity i-modules. Right liftings can be handled dually.

It is known that the bicategory of monads over spn , the bicategory of sets, spans or
matrices of sets, and span morphisms or matrices of functions, is essentially the bicategory
of small categories and profunctors, cf. Example 3.07.(4). The bicategory of interpolads
over spn seems to be the largest reasonable extension to a bicategory with objects that
resemble categories but may fail to have identities. We propose to call them \taxonomies",
even though this term has been introduced by Par�e and Wood for a weaker concept (no
further conditions on the associative multiplication).

The results of this paper seem to suggest that the unit condition for a binary
multiplication may be \less fundamental" than the associativity condition. Indeed, both
basic diagrammatic representations of bicategorical data, pasting diagrams and string
diagrams, can account for the unit isomorphisms more directly than for the associativity
isomorphisms. But this needs to be studied more closely in the future.

Early versions of this paper have been presented at CT95 in Halifax, and at the
Isle of Thorns Category Theory meeting, 1996.

1. Bicategories and lax functors

Bicategories and morphisms between them were introduced by Benabou [1]. Recently,
Borceux [2] has covered some of this material in a textbook. Roughly speaking, the notion
of bicategory arises by replacing the hom-sets of ordinary categories by hom-categories,
the composition functions by functors, and by then relaxing the categorical axioms for
morphisms to hold \up to coherent isomorphism". While the idea is straightforward, the
actual formulation of \coherent isomorphism" requires some e�ort. Hence we brie
y recall
the de�nitions of bicategory and of lax functor and introduce our preferred notation (cf.
Conventions 1.01. and 1.05. below).

1.00. Definition. A bicategory X consists of

� a class X of objects or 0-cells

� for all 0-cells A , B a small category hA;BiX ; its objects (denoted by single
arrows) are called 1-cells, and its morphisms (denoted by double arrows) are called
2-cells; we refer to the composition of 2-cells in hA;BiX as serial or vertical
composition, and write f +3� ; �

h for the composite of f +3�
g and g +3�

h ; 1

� for all 0-cells A , B , and C a functor hA;BiX � hB;CiX //hA;B;Cic hA;CiX ,
referred to as parallel or horizontal composition; we concatenate the arguments, e.g.,
' instead of h'; i (hA;B;Cic) ; notationally, this binds stronger than \ ; ";

1 Readers unhappy with the order of composition can obtain a version of this paper in backwards
notation from http://www.iti.cs.tu-bs.de/TI-INFO/koslowj/koslowski.html or from the author.
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� for all composable 1-cells A //f B //g C //h D a natural associativity isomor-

phism f(gh) +3hf;g;hia
(fg)h ;

� for each 0-cell A a distinguished identity 1-cell in hA;AiX , usually identi�ed with
the object A , or, if necessary, notationally disambiguated as 1A ;

� for each 1-cell A //f B natural unit isomorphisms Af +3fu� f and fB +3fu�
f

subject to the following coherence axioms:

(B0) for all composable 1-cells A //f B //g C //h D //k E we have

f((gh)k)

f(g(hk))

(fg)(hk)

((fg)h)k

(f(gh))k
��

f((hg;h;kia)) ))
))
))

))
))
))

+3
hf;gh;kia

FN

((hf;g;hia))k

������

������

7?hf;g;hkiavvv vvv �'
hfg;h;kiaHHHHHH

For later reference we call this property of the composition functors and the asso-
ciativity isomorphisms the essential associativity of horizontal composition.

(B1) for all composable 1-cells A //f B //g C we have

(fB)gf(Bg)

fg

+3hf;B;gia

{� (fu�)g��
��
�

��
��
�

�#f(gu�)
??

???
??

???

If there is no danger of confusion, we may drop the arguments to a , u� , and u� . If all
these structural 2-cells are identities, we call X a 2-category.

dual notions: In the bicategories X op and X
co , the 1-cells and the 2-cells are

reversed, respectively. I.e., hA;BiX op = hB;AiX , and hA;BiX co = (hA;BiX )op .

1.01. Convention. We usually denote 0-cells by upper case letters, 1-cells with lower
case letters, and 2-cells with lower case Greek letters. Exceptions are the structural
associativity and unit isomorphisms, which we distinguish from \ordinary" 2-cells by
means of bold Fraktur letters. The identity 2-cell of A //r B is usually identi�ed with
r , or, if necessary, notationally disambiguated as id r . Diamonds � as subscripts and
superscripts always indicate left and right actions, respectively.

1.02. Remark. The coherence axioms guarantee, among other things, that

(0) for every object A the unit isomorphisms AA +3Au� A and AA +3Au�
A agree;

this justi�es dropping the diamond, i.e., we de�ne Au := Au� = Au� ;



Theory and Applications of Categories, Vol. 3, No. 8 186

(1) for any two composable 1-cells A //f B //g C we have

(Af)gA(fg)

fg

+3hA;f;gia

{� (fu�)g��
��
�

��
��
�

�#(fg)u�
??

??
?

??
??

? and
(fg)Cf(gC)

fg

+3hf;g;Cia

{� (fg)u���
��
�

��
��
�

�#f(gu�)
??

??
?

??
??

? (1-00)

1.03. Examples. (0) Every \ordinary" category can be viewed as a bicategory with
discrete hom-categories. Since it will always be clear from the context, which
interpretation is intended, we will use the same name, e.g., set , in both cases.

(1) One of the simplest bicategories is rel with sets as objects, binary relations as
1-cells and inclusions as 2-cells. 1-cell composition is the usual relation product.
Since the hom-categories are partially ordered, this is in fact a 2-category.

(2) A very important bicategory, bim , has unitary rings as objects. A 1-cell from A
to B is an hA;Bi-bimodule, i.e., an abelian group R equipped with the structures
of a left-A-module and a right-B -module subject to the compatibility condition

a(rb) = (ar)b

for all a 2 A , r 2 R and b 2 B , cf. Examples 3.07.(0) and (1). 2-cells between
hA;Bi-bimodules are group homomorphisms that are A-linear on the left and B -
linear on the right. Bimodules are composed by means of their tensor product. For
a commutative unitary ring R , the hom-category hR;Ribim contains the familiar
category of R -modules as a full subcategory. Hence bim is a true bicategory that
is not a 2-category. Much of the terminology derives from this particular example.

(3) For any object A of a bicategory X the hom-category hA;AiX carries the struc-
ture of a monoidal category, the tensor product being the composition of 1-cells. In
fact, every monoidal category M may be viewed as the hom-category of a bicat-
egory with one object f�g . The Australian school has coined the term suspension
of M for the resulting bicategory M� that satis�es h�; �i (M�) =M .

1.04. Definition. For bicategories X and Y , a lax functor X //F Y consists of

� an object-function or carrier X //F Y ;

� a family of functors hA;BiX //hA;BiF hAF;BF iY , where A and B are X -
objects; we usually write fF instead of fhA;BiF ;

� a family of natural 2-cells (fF ) (gF ) +3hf;giq (fg)F , where A //f B //g C are
composable 1-cells in X ;

� a family of natural 2-cells AF +3Ad
AF , where A is an X -object

subject to the following coherence axioms:
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(L0) for all composable 1-cells A //f B //g C //h D in X we have

(fF )
�
(gF ) (hF )

�
+3(fF)(hg;hiq)

��
hfF ;gF ;hFia

(fF ) ((gh)F ) +3hf;ghiq �
f(gh)

�
F

��
(hf;g;hia)F

�
(fF ) (gF )

�
(hF ) +3

(hf;giq)(hF)
((fg)F ) (hF ) +3

hfg;hiq

�
(fg)h

�
F

(L1) for each 1-cell A //f B in X we have

(AF ) (fF ) +3(fF)u�

��
(Ad)(fF)

fF

(AF ) (fF ) +3
hA;fiq

(Af)F

KS

(fu�)F and

(fF ) (BF ) +3(fF )u�

��
(fF)(Bd)

fF

(fF ) (BF ) +3
hf;Biq

(fB)F

KS

(fu�)F

A lax functor X //F Y is called normalized or unitary, if all 2-cells of the form Ad are
invertible, and a bifunctor, if is normalized and all 2-cells of the form hf; giq are invertible
as well. Normalized lax functors and bifunctors are called strict, if the respective structural
2-cells required to be invertible are in fact identities.

dual notion: For an oplax functor X //F Y the structural 2-cells are reversed:

(fg)F +3hf;gip (fF ) (gF ) instead of (fF ) (gF ) +3hf;giq (fg)F

and
AF +3Ab

AF instead of AF +3Ad
AF

have to satisfy the duals of axioms (L0) and (L1), respectively.

1.05. Convention. Again, we use boldface Fraktur letters for the structural 2-cells. The
price we have to pay for abbreviating fhA;BiF to fF is that we need to notationally
distinguish the action of F on 0-cells from that of F on identity 1-cells. This can either
be done by distinguishing 0-cells and identity 1-cells (e.g., A vs. 1A , respectively), or
by using di�erent symbols for the functor action (F and F , respectively), depending on
the nature of the argument. Here we have opted for the second solution.

We close this section with a few remarks about the presentation of bicategorical data.
Instead of the familiar pasting diagrams, we prefer string diagrams. Joyal and Street
[10] attribute the �rst use of this technique for the manipulation of tensors to Penrose in
1971. For the author the experience of converting proofs from pasting diagrams to string
diagrams was illuminating. The clear directional division of the two types of composition
available in a bicategory { horizontally from left to right, and vertically from bottom to
top { subjectively made the comprehension of string diagrams easier. We hope the reader
will agree.
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The basic entities of a bicategory are its 2-cells; they are to be thought of as labeled
points. Here we have chosen to \blow up" the points to rectangular boxes with a label
inside. 1-cells correspond to labeled essentially vertical lines (no horizontal tangent lines
allowed), while 0-cells or objects correspond to labeled regions. Concretely, the vertical
composition of two 2-cells f +3�

g , and g +3�
h inside a hom-category hA;BiX and

the horizontal composition of 2-cells f +3'
g in hA;BiX and h +3 

k in hB;CiX can
be depicted by either one of the �rst two or one of the last three diagrams, respectively:

A B

f

h

�

�

g =

A B

f

h

� ; � and

A

B

C

f h

g k

'  = A

B

B

C

f h

g k

' =

A C

fh

gk

' 

Notice how easily string diagrams can be combined horizontally and vertically, provided
the appropriate domains and codomains match. Also, since ' and  are independent,
we may change their respective heights, which leads to ' = f ; 'k = 'h ; g .

2. The general calculus of modules in a bicategory

The following crucial example was one of the reasons for Benabou [1] to introduce what
we now call lax functors instead of the more restrictive concept of bifunctors.

2.00. Example. Monads may be viewed as lax functors with domain 1 , the singleton
bicategory with a single element 0 that serves triple duty as a 0-cell, an identity 1-cell,
and an identity 2-cell. Indeed, let 1 //F Y be a lax functor with 0F = A and write a
for the endo-1-cell 0F on A . By axiom (L0) the multiplication � := h0; 0iq from aa to
a is associative, i.e.,

A

A A

A

a a a

a

�

�

a =

A

A A

A

a a a

a

�

�

a (2-00)
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And by axiom (L1) the 2-cell �0 := 0d from A to a serves as two-sided unit:

A

A

A

A a

a

�0

�

a =

A

A

A

A a

a

au� and

A

A

A

a A

a

�0

�

a =

A

A

A

a A

a

au� (2-01)

For a lax functor X //F Y each 0-cell XF in Y carries a monad structure,
namely hXF ; hX;Xiq;Xdi . We wish to construct a \bicategory of monads" over Y ,
through which F factors. Which 1-cells and 2-cells are appropriate? Recall that the
morphisms of an ordinary category correspond to functors with domain 2 .

2.01. Definition. (0) By a morphism of monads, or m-module for short, we mean a
lax functor with domain the generic 1-cell 2 ,

0 //k
1

(1) By an m-module homomorphism, or modism for short, we mean a lax functor with
domain the generic 2-cell two

0

m
((

n

66
�� ��

��  1

Before giving a more explicit description of these concepts, let us explore a simpler notion
than that of m-module, and study the composition of such entities.

2.02. Convention. From now on let Y be a �xed bicategory. To simplify the notation,
we write [A;B] for the hom-category hA;BiY . If A0 //f A and B //g B 0 are 1-cells,

the functor [A;B] //[f;g] [A0; B 0] pre-composes with f and post-composes with g .

2.03. Definition. Let A //a A and B //b B be endo-1-cells. Amodule R = h��; r; ��i

from a to b consists of a 1-cell A //r B , the carrier, equipped with a left action ar +3�� r

and a right action rb +3��
r subject to the following stacking condition

A

A B

B

a r b

r

��

��

r =

A

A B

B

a r b

r

��

��

r (2-02)
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We write aR and Rb for the modules ha��; ar; a��i and h��b; rb; ��bi , respectively. If
U = h��; u; �

�i is another module from a to b , by a modism R +3 
U we mean a 2-cell

r +3 
u compatible with actions in the following sense

A

A

B

a r

u

��

 

r =

A

A

B

a r

u

 

��

u and

A

B

B

r b

u

��

 

r =

A

B

B

r b

u

 

��

u (2-03)

The category of modules from a to b with modisms as arrows is denoted by ha; bimod .

2.04. Proposition. If a , b and c are endo-1-cells on objects A , B and C , re-
spectively, the composition [A;B]� [B;C] //hA;B;Cic [A;C] restricts to a functor from
ha; bimod � hb; cimod to ha; cimod that maps R = h��; r; �

�i and S = h��; s; �
�i

to RS := h��s; rs; r��i . The 2-cells rbs +3��s
rs and rbs +3r�� rs are modisms from

RbS = (Rb)S = R(bS) to RS that constitute the hR;Si-components of two natural
transformations with codomain hA;B;Cic .

Proof. The stacking condition for RS is trivial, since �� and �� are independent:

A

A B

B

C

C

a r s c

r s

��s

r��

r s =

A

A B

B

C

C

a r s c

r s

�� �� =

A

A

B

B C

C

a r s c

r s

r��

��s

r s

Establishing that modisms R +3�
R
0
and S +3�

S
0
yield a modism RS +3��

R0S0 is
similarly straightforward.

The stacking conditions for R and S , and the independence of �� and �� as well
as �� and �� imply that ��s and r�� are modisms from RbS to RS . Naturality turns
out to be a direct consequence of the modism axioms.

The composition operations for modules de�ned in Proposition 2.04., although
clearly associative, are not very interesting, since they ignore the right action of the
�rst factor and the left action of the second factor. How to de�ne a more meaningful
composition operation for modules R = h��; r; ��i and S = h��; s; ��i is indicated by the
second part of this proposition: form the coequalizer of ��s and r�� in ha; bimod . Of
course, this approach requires the existence of the appropriate coequalizers.
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2.05. Definition. We say that Y has stable local colimits of a given type, provided
these colimits exist in every hom-category, and 1-cell composition from either side pre-
serves them. If Y has stable local small colimits, Carboni et. al. [3] call Y distributive.

2.06. Assumption. Y has stable local coequalizers.

For technical reasons we assume a certain choice of these coequalizers has been
made. Hence we can refer to the coequalizer of a parallel pair. Although such a choice
need not be canonical in any sense, we still may assume that 1-cell composition from
either side preserves the chosen coequalizers.

2.07. Proposition. For endo-1-cells a and b the category ha; bimod has coequalizers.

Proof. For modules R = h��; r; ��i and U = h��; u; ��i from a to b consider modisms
 and � from R to U . Let ' be the coequalizer of  and � in [A;B] . Since
composition from either side preserved coequalizers, the modism axioms for  and �
allow us to obtain actions aw +3!� w and wb +3!�

w via the following diagram

rb
+3 b

+3
�b

��
��

ub +3'b

��
��

wb

��
!�

r +3 

+3
�

u +3'
w

ar +3a 

+3
a�

KS
��

au +3
a'

KS

��

aw

KS

!�

Since a'b is a coequalizer, and hence epi, we can derive the stacking condition for !�
and !� directly from the stacking condition for �� and �� .

2.08. Definition. For modules R = h��; r; ��i from a to b and S = h��; s; ��i from
b to c let h';R �Si be the coequalizer in ha; bimod of ��s and r�� . We denote the
carrier of R �S by r � s , and the left and right actions by �� � s and r ��� , respectively.

2.09. Proposition. The operation � on modules extends to a family of functors

ha; bimod � hb; cimod //� ha; cimod

that is essentially associative as speci�ed by Axiom (B0).

Proof. To establish the functoriality of module composition, let R +3� �R and S +3� �S

be modisms, where a //R b and b //S c . If ' and �' are the coequalizers used to
construct R �S and �R � �S , respectively, the universal property of ' induces � � � via

RbS
+3��s

+3
r��

��
�b�

RS +3'

��
��

R �S

��
� � �

�Rb �S
+3��� �S
+3

�R���

�R �S +3
�'

�R � �S
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where the rectangles on the left commute because of naturality, cf. Proposition 2.04..
For another module U = h��; u; ��i from c to d and the coequalizers ' , � ,  

and � used in the construction of R�S , S �U , (R�S)�U and R� (S �U) , respectively,
consider the diagram

Rb(S �U)
%-

��(s �u)
SSSS

S
SSSS

S

%-
r(�� �u)

SSSS
S

SSSS
S

RbSU

%-
��su

SSSS
SSSS

S

SSSS
SSSS

S

%-r��u SSSS
SSSS

S

SSSS
SSSS

S

19rb� kkkkkkk
kkkkkkk

R(S �U) +3�
R � (S �U)

��

hR;S;Ui _aRbScU

%-
��scu

SSSS
SSSS

SSSS
SSSS

%-r��cu
SSSS

SSSS
SSSS

SSSS

19
rb��u kkkkkkkk

kkkkkkkk
19

rbs��

kkkkkkkk
kkkkkkkk

RSU

%-
'u
SSSS

SSS
SSSS

SSS

19
r�

kkkkkkk
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Both 'u ;  and r� ; � turn out to be multi-coequalizers of the four 2-cells ����u ,
��s�� , r���� , and r��cu ; r��u = rb��u ; r��u from RbScU to RSU , which induces
the iso hR;S;Ui _a from (R �S) �U to R � (S �U) . The universal property of colimits
also allows us to establish the coherence axiom (B0) in a lengthy but straightforward
diagram chase.

From now on we will no longer explicitly mention the associativity isos. In some
sense it is taken care of by the geometry of the diagrams, this applies to pasting diagrams
as well as to string diagrams. More formally, we utilize the fact that every bicategory is
biequivalent to a 2-category, e.g., Theorem 1.4 in [4].

3. Interpolads and monads

In general, endo-1-cells, modules and modisms do not form a bicategory, since identity
modules may not exist. Identity modules must at least be idempotent under module
composition. The only reasonable candidate for an identity module on A //a A is a ,
equipped with suitable left and right actions. Of course, modules now have to be com-
patible with the extra structure.

3.00. Definition. Let A //a A be a 1-cell in Y . We refer to any 2-cell aa +3�
a as a

multiplication, and we call � interpolative, and the pair A = ha; �i an interpolad, if � is
a coequalizer of �a and a� (and hence in particular associative). If A and B = hb; �i
are interpolads, an i-module R = h��; r; ��i from A to B , denoted by A //R B , is a
module from a to b that satis�es

(I0) �� is a coequalizer of �r and a�� (not necessarily the chosen one);

(I1) �� is a coequalizer of ��b and r� (not necessarily the chosen one).

Modisms between i-modules are ordinary modisms.
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It is clear that interpolads can be interpreted as their own identity i-modules, with
the multiplication serving double duty as left and right action; the two i-module axioms
together with the stacking condition (2-02) guarantee the properties of a left and right
unit, respectively.

3.01. Remarks. (0) Considering idempotent modules h��; a; ��i instead of interpo-
lads leads to no further generality. In this case for an i-module R = h��; r; ��i
from h��; a; ��i to h��; b; ��i the left action �� ought to be a coequalizer of ��r
and a�� , and the right action �� ought to be a coequalizer of ��b and r�� . For
h��; a; ��i to be an endo-i-module on itself, both �� and �� have to be coequalizers
of ��a and a�� .

(1) Another way to arrive at the notions of interpolad and i-module is to relax the
notions of lax functor with domain 1 , respectively 2 , just enough as to keep the
coequalizers previously guaranteed by implicit split coequalizers. [more precisely...]

(2) Each Y -object A trivially is structured as an interpolad: with the identity 1-cell
A as carrier and the multiplication Au (cf. Remark 1.02.(0)). A 1-cell A //r B

can be viewed as a trivial i-module between trivial interpolads, by taking Ar +3ru� r

and rB +3ru�
r as actions. Naturality and coherence (use Remark 1.02.(1) here)

guarantee that the diagram (2-02) commutes, and also the coequalizer conditions.
Clearly, 2-cells of Y turn into modisms between such trivial i-modules.

(3) The terms \interpolative" and \interpolad" are inspired by the interpolation prop-
erty for binary relations that is of some interest in domain theory. A relation
a � A� A has the interpolation property, if it satis�es a � aa , i.e., the converse
of the transitivity requirement. The latter, in general, corresponds to the associa-
tivity of the multiplication, while the interpolation property may be viewed as a
couniversal property of the associativity diagram. We propose the slogan:

associative + interpolation property = interpolative

3.02. Theorem. Interpolads in Y , i-modules and modisms form a bicategory Y -int
that contains Y as a full sub-bicategory.

Proof. I-modules between two interpolads and their modisms clearly form a category. A
simple coequalizer argument shows that i-modules are closed under module composition.

For an i-module A //R B let ar +3'
a � r be the coequalizer of �r and a�� . Since

�� is a coequalizer of this pair as well, we obtain an iso A�R +3R _u� R . Similarly, we

get an iso R � B +3R _u�
R . These isos together with the associativity isos _a de�ned in

the proof of Proposition 2.09. clearly satisfy coherence axiom (B1). This establishes the
bicategory Y -int .
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Naturality of u� and (I0) for an i-module h��; r; ��i from hA;Aui to hB;Bui
imply

A

A A
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A A r

r

��

ru�

r =
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A B
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A A r

r

Au

��

A =

A

A A

B

A A r

r

��

��

r

Since A�� is epi, we get �� = ru� . A similar argument shows �� = ru� . Hence we can
identify modules from Au to Bu with 1-cells from A to B . Coherence condition (B1)
implies that composition of trivial i-modules reduces to 1-cell composition in Y .

3.03. Proposition. If A and B are interpolads with carriers a and b , respectively,
and if a //R b is any module, then A�R �B is an i-module from A to B .

Proof. Let R = h��; r; �
�i be a module from a to b , and consider the following diagram,

where ' is the chosen coequalizer of �r and a�� used in the construction of a � r :

aa(a � r)
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Since 1-cell composition preserves coequalizers, and since � is a coequalizer of �a and
a� , it follows immediately that the left action � � r of A�R is a coequalizer of �(a � r)
and a(� � r) and hence satis�es condition (I0). Similarly, we see that the left action
� � r � b of A�R �B satis�es (I0), and that the right action a � r � � of this module
satis�es (I1), i.e., A�R �B is an i-module from A to B .

Clearly, an interpolative multiplication is the minimal structure necessary to sup-
port identity modules, and hence yield a bicategory. Adding more structure will lead to
sub-bicategories of Y -int that in general will not be full, if the modules have to preserve
this additional structure. The modisms will be the same in all cases.

The obvious extra structure to add is a two-sided unit for the multiplication. Then
we obtain monads instead of interpolads. The interpolation property for the multiplication
then follows from the unit axioms, hence only associativity has to be required.
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3.04. Proposition. Let A = ha; �; �0i and B = hb; �; � 0i be monads with units �0 and
�0 , respectively. For a module R = h��; r; �

�i from a to b the following are equivalent:

(a) R is an m-module;

(b) R is a module that is compatible with the multiplication

A

A B

B

a a r

r

�

��
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A

A A

B

a a r

r

��

��

r ;
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b =

A

B B

B

r b b
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(3-00)
and with the units
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r B
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ru� (3-01)

(c) R is an i-module, and both actions are split epi.

Proof. (b) , (a) Let F be a lax functor from 2 to Y . Besides two monads A
and B (based on 0F and 1F , respectibely) F also speci�es a module R based
on kF subject to �ve compatibility conditions: the stacking condition (2-02) as
well as the commutativity of the diagrams speci�ed by (I0) and (I1), and the two
equalities in (3-01).

(b) ) (c) By (3-01) the actions are split epi, which togther with (3-00) implies (I0)
and (I1).
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(c) ) (b) Let r +3�
ar be a left inverse for �� . Then we have
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where the second step uses (I0), the third one uses (2-01), and the fourth one uses
the naturality of u� . The other condition follows by symmetry.

3.05. Remarks. (0) Condition (b) of Proposition 3.04. directly translates the notion
of bimodule familiar from algebra, cf. Examples 1.03.(2), 3.07.(1) as well as [7] and
[3]. We have dropped the pre�x \bi", because of it's di�erent connotation in \bi-
category". The terms \distributor" and \profunctor" also appear in the literature.

(1) Remark 3.01.(2) carries over to the monad setting.

3.06. Theorem. Monads in Y , m-modules and modisms form a bicategory Y -mnd
that contains Y as a full sub-bicategory. Moreover, there is a forgetful lax functor
Y -mnd //Y Y with the property that every lax functor X //F Y factors through Y

by means of a normalized lax functor.

Proof. A simple calculation shows that m-modules are closed under module composi-
tion. Thus we obtain a bicategory Y -mnd . The lax functor Y maps monads to their
underlying objects, m-modules to their underlying 1-cells, and modisms to their under-
lying 2-cells. The structural 2-cells for composits are given by the coequalizers used to
de�ne the m-module composition, and by the units of the monads. Hence by construction
any lax functor X //F Y factors through Y in the speci�ed fashion.

In general, a lax functor X //F Y will not factor through Y by means of a
bifunctor. The price for upgrading a lax functor to a normalized lax functor is that 1-cell
composition in Y -mnd usually is more complicated than in Y .

3.07. Examples. (0) Let X be the suspension of set (or of any elementary topos),
i.e., X has a single 0-cell � , sets as (endo-) 1-cells with cartesian product as
horizontal composition, and functions as 2-cells. Here we use capital letters for sets,
and small letters for elements. A module R from A to B is a set R equipped
with left and right actions A�R +3�� R and R �B +3��

R that satisfy

(ar)b = a(rb) (3-02)
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for a 2 A , r 2 R , and b 2 B , where we have used concatenation for both actions.
Composing R with a module S from B to C results in the module R �S based
on the set (R� S)=! , where ! is the smallest equivalence relation on R� S
that contains all pairs hhrb; si; hr; bsii , for r 2 R , b 2 B , and s 2 S . Modisms
are simply functions that commute with the actions.

Interpolads now are interpolative semi-groups, i.e., semi-groups hA; �i with surjec-
tive multiplication such that the kernel pair of � coincides with the equivalence
relation generated by h��A;A��i (this automatically implies associativity). The
actions of an i-module from hA; �i to an interpolative semi-group hB; �i besides
(3-02) have to satisfy

(a0 � a)r = a0(ar) and (rb)b0 = r(b � b0) (3-03)

Moreover, they have to be surjective, and their kernel pairs have to agree with the
equivalence relations generated by h��R;A���i and h���B;R��i , respectively.

Semi-groups with identity, i.e., monoids, automatically are interpolative and corre-
spond to monads. The actions of an m-module from a monoid hA; �; ei to a monoid
hB; �; ii besides satisfying (3-02) and (3-03) have to preserve the identities, i.e.,

er = r and ri = r (3-04)

which again implies the interpolation properties.

If h��; R; ��i is an m-module from hA; �; ei to hB; �; ii , then invertible elements
x 2 A and y 2 B give rise to i-modules between these monoids that need not be m-
modules: just de�ned new left and right actions A�R +3��� R and R�B +3���

R
by ha; ri��� := (x � a)r and hr; bi��� := r(b � y) . I-modules arising in this fashion
might be called a�ne.

For interpolative semi-groups the multiplication is a left and a right action and
induces an idempotent endo-module, the identity module. For ordinary semi-groups
this can fail. In case of the positive natural numbers N+ under addition we obtain
N+ �N+

�= N>1 , on which N+ acts from both sides.

Just as monoids are categories with one object, m-modules between monoids can
be interpreted as special categories with two objects, cf. part (4) below.

(1) Replacing set above with ab , the category of abelian groups, yields unitary rings
as monads. Bimodules and their homomorphisms serve as m-modules and modisms.
The composition of bimodules is their tensor product, cf. Example 1.03.(2).

For the suspension of ab , interpolads will be \rngs", i.e., \rings not necessarily
with unit", that satisfy the interpolation property. Since regular epis in ab are
cokernels and hence surjective, the same description as in (0) applies.

(2) For Y = rel , the bicategory of sets, relations and inclusions, an endo-1-cell on
A is just a binary relation a � A � A . A module from a to b � B � B is a
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relation r � A � B that satis�es ar � r � rb . Since coequalizers in rel are
trivial, modules compose like ordinary relations. Modisms are just inclusions.

The interpolads in rel turn out to be Steve Vickers' information systems [12], i.e.,
sets equipped with an idempotent (= transitive and interpolative) relation. An i-
module from hA;<i to hB;@i now is a relation r � A�B that satis�es ( < r) =
r = (r @ ) . Since the relation < on 2 is transitive but not idempotent, we see
again that identity modules may fail to exist in the absence of the interpolation
property. The resulting bicategory, which we call kar , also has been studied by
Rosebrugh and Wood [8]. However, their motivation was not a weakening of the
notion of monad, but rather the issue of Cauchy-completeness. We return to this
subject in Section 4.

A monad in rel is simply a pre-ordered set i.e., a set equipped with a re
exive and
transitive relation (sometimes called graph). M-modules from hA;�i to hB;vi
are those relations r � A�B that satisfy ( � r) � r � (r v ) (by re
exivity the
other inclusions hold automatically) or, equivalently, for which the characteristic
function preserves order from hA;�iop � hB;vi to 2 . Such relations are known
as order-ideals. Pre-ordered sets, order-ideals and inclusions form a sub-bicategory
idl of kar . Since kar is locally ordered, this inclusions happens to be full.

(3) Every ord -enriched category Y may be viewed as a bicategory { the hom-
categories are ordered sets and the composition preserves order. Coequalizers in
the hom-categories are identities (or isos, if we do not insist on antisymmetry) and
hence are trivially preserved. Endo-1-cells on A are elements of the poset [A;A] ,
and a module from a 2 [A;A] to b 2 [B;B] is an element r 2 [A;B] that satis�es
ar � r � rb . In this situation we need not distinguish between i-modules and
m-modules: the actions simply have to be identities, i.e., we have ar = r = rb .
For Y = ord interpolads correspond to idempotent endo-functions, while monads
correspond to closure operators. Another special case is the bicategory rel , cf. part
(2). It is even enriched in the category cslat of complete lattices with additive
or sup-preserving (= left adjoint) functions, since relations from A to B bijec-
tively correspond to left-adjoint functions from AP to BP . Categories enriched
in cslat are also known as quantaloids, cf. Example 5.11.(2).

(4) Just as a relation between sets A and B can be viewed as a 2-valued A�B matrix,
a span A � ,2r B , i.e., a function R //r A�B , can be viewed as a set -valued
A�B matrix, assigning to each pair hx; yi 2 A�B a set of formal arrows. The
composition with B � ,2s C now is just the matrix product with cartesian product
� and disjoint union + instead of boolean meet ^ and join _ , i.e., hx; zi(rs)
is given by

P
y2B hx; yir � hy; zis . The identity matrices for this operation have

singletons in the diagonal, and the empty set everywhere else. Span-morphisms
between spans from A to B are A � B matrices of functions. Their vertical
composition as well as the formation of (co-)limits is performed component-wise.
The resulting bicategory is called spn .
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An endo-span a on A can be interpreted as a directed multigraph with vertex
set A . If b is another such with vertex set B , a module a +3R

b speci�es sets of
formal arrows from A-vertices to B -vertices that compose associatively with the
a-arrows and the b-arrows. If b //S c is another module, the composite RS at
each B -vertex simply links incoming and outgoing arrows, while R �S takes the
possible 1-step transfers within the directed multigraph b into account, and factors
by the appropriate equivalence relation.

Two pairs of arrows hf; �hi 2 hx; uir � hu; zis and h �f ; hi 2 hx; vir � hv; zis have
a common pre-image wrt. ��s and r�� iff hf; �hi \diagonalizes" over h �f ; hi , i.e.,
iff �f = f ; g and �h = g ; h for some g 2 hu; vib , or vice versa. Hence hf; �hi
and h �f ; hi are equivalent iff they can be linked by a �nite \zig-zag" of diagonals.
The corresponding relation !hx;zi is de�ned on

P
y2B hx; yir�hy; zis , the hx; zi-

component of rs . Just as span-morphisms are matrices of functions, here we have
a matrix ! of relations, a span-relation on rs .

A span morphism aa +3�
a equips a directed multigraph a with a composition op-

eration, i.e., a family of functions
P

y2A hx; yia� hy; zia //hx;zi� hx; zia . Clearly,
associativity of � is equivalent to the associativity of the composition operation. If
two vertices are connected by two di�erent directed paths, we may ask if one path
can be \deformed" into the other, using the composition operation. Geometrically
speaking, this is possible iff the \region" between the paths can be completely \tri-
angulated". Thus we obtain a notion of homotopy equivalence between paths. The
pair ha; �i now is an interpolad provided that for paths of length 2 with common
domain and codomain the homotopy equivalence (the same as ! above) is the
kernel of the composition operation.

It is now obvious that a monad ha; �; �0i in spn on A turns out to be a small
category. The hx; xi-component 1 // hx; xia of �0 selects the identity morphism
on x 2 A . M-modules from A to another monad B correspond to profunctors, i.e.,
functors Aop � B // set . Small categories, profunctors and appropriate natural
transformations form a bicategory prof . In fact, an m-module from A to B may
be viewed as a special category on the disjoint union A+B that contains A and
B as full subcategories and has no arrows from B -objects to A-objects.

Par�e and Wood brie
y considered the notion of \category without identities" in
an attempt to generalize idempotent relations. For their so-called taxonomies they
just dropped the requirement for identities. But without interpolative composi-
tion, identity modules, i.e., generalized hom-functors, need not exist. Hence we
propose interpolads in spn as more useful taxonomies. The following graphs on
fw; x; y; zg illustrate the di�erence. In the �rst one the interpolation property fails
since both triangles commute, but there is no \zig-zag" linking y and w . The
central trapezoid of the second graph does not commute, hence the interpolation
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property is satis�ed.
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Hayashi [5] introduced the notion of semi-functor between categories by dropping
the requirement for functors that identities have to be preserved, cf. also [6]. Any
semi-functor between (small) categories that is not a functor induces a module
between monads in spn that is an i-module, but not an m-module.

(5) The construction in (4) works for any complete and cocomplete monoidal category
V . The bicategory V -spn has sets as objects and matrices of V -objects as
1-cells. Monads in V -spn then correspond to small V -categories.

Already Benabou [1] introduced a \multi-object" version of the notion of monad in Y ,
which he termed \polyad". Later this was interpreted as a \category enriched in Y ",
cf., e.g., [9] and the historical remarks therein. It is straightforward to give a similar gen-
eralization of interpolads, resulting in the notion of \taxonomy enriched in a bicategory".
Instead of coequalizers, more complicated colimits are needed. This also applies to the
corresponding notion of i-module. We leave it to the reader to spell out the details.

4. Splitting idempotents

Recall that an idempotent morphism f in a category is said to split, if it can be factored
as a split epi e followed by a split mono m such that m ; e is an identity. A category
is called Cauchy-complete, if all idempotents split. A Cauchy-completion of a category
C can, e.g., be realized within C=C by taking all idempotent morphisms as objects
and only those morphisms, where both components coincide. These notions immediately
carry over to locally ordered bicategories. The failure of rel to be Cauchy-complete in
this sense prompted Rosebrugh and Wood [8] to work with kar instead, which happens
to be the Cauchy-completion of rel , cf. Example 3.07.(2).

In a general bicategory already the notion of idempotent 1-cell becomes more subtle.
Requiring aa = a for a 1-cell A //a A certainly is too strong, we rather should specify an

iso aa +3�
a . But in order to be able to replace any power an , n > 0 , by a , which seems

to capture the spirit of idempotency, we must ask � to induce only one iso from each
such power to a , i.e., to be associative. As an iso, � then automatically is a coequalizer
of a� and �a , i.e., we are looking at special interpolads.

4.00. Definition. (0) An idempolad ha; �i on A 2 Y consists of a 1-cell A //a A

and an iso aa +3�
a that satis�es a� = �a .

(1) A bicategory Y is called Cauchy-complete, if all idempolads in Y split.
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(2) The Cauchy-completion Y -chy of a bicategory Y is the smallest Cauchy-com-
plete bicategory that contains Y as a full sub-bicategory.

4.01. Examples. (0) The interpretation of Y -objects as trivial interpolads does in
fact yield idempolads.

(1) If Y is the suspension of a cartesian category C , then for every idempolad hX;xi
in C� the object X is sub-terminal in C : consider C -arrows f; g 2 hC;XiC ;
since the bijections X �x and x�X coincide, the projections from X �X to X
agree on hf; f; fi ; (X � x) and hf; g; fi ; (x�X) . Therefore hf; f; fi = hf; g; fi ,
and hence f = g .

In particular, for C = set we see that although every in�nite set X is isomorphic
to its square, no isomorphism from X � X to X can be associative. Hence the
only idempolads in the suspension of set are singletons, which trivially split.

4.02. Proposition. Y -int is Cauchy-complete.

Proof. Consider an endo-i-module R = h��; r; ��i on an interpolad ha; �i and an as-
sociative isomorphism R �R +3�

R . Let ' , '0 , and '00 be the coequalizers used in the
construction of R �R , (R �R) �R , and R � (R �R) , respectively, cf. De�nition 2.08..
Since both 'R ; '0 and R' ; '00 are multi-coequalizers of the four 2-cells ����r , ��r�� ,
r���� and r��ar ; r��r = ra��r ; r��r from RaRaR to RRR , (cf. the proof of Proposi-
tion 2.09., and in particular Diagram (2-04)), we now have
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PPP

PPP
PPP

PPP

3;� �R nnnnnn
nnnnnn

R

R(R �R)

#+R�
PPP

PPP
PPP

PPP

3;

'00

nnnnn
nnnnn

R �R

3;

�

nnnnnnnn
nnnnnnnn

RR

3;
'

nnnnnnn
nnnnnnn

(4-00)

Therefore (' ; �)R ; ' = R(' ; �) ; ' has the same multiple coequalizer property, and it
follows immediately that ' , and hence also ' ; � is in fact a coequalizer of (' ; �)R and
R(' ; �) . Hence hr; ' ; �i is an interpolad in Y .

To see that U := h��; r; ' ; �i and V := h' ; �; r; ��i are i-modules from ha; �i
to hr; ' ; �i and back, observe that in both cases the stacking condition follows directly
from ' ; � being modism. Axioms (I0) and (I1) are satis�ed, since R is an i-module and
since hr; ' ; �i is an interpolad. Finally, it is easy to see that U � V = R �R �= R , while
V � U essentially is the identity module on hr; ' ; �i .

We expect the full sub-bicategory Y -idm of Y -int , spanned by the idempolads,
to be the Cauchy-completion of Y . Since the notion of idempolad is self-dual, in case



Theory and Applications of Categories, Vol. 3, No. 8 202

that Y locally has stable equalizers as well, we would also expect to recover the Cauchy-
completion of Y as a full sub-bicategory inside the bicategory of co-interpolads. Hence
i-modules between idempolads ought to be i-comodules and their composition must be
independent of the local (co-)completeness properties of Y .

4.03. Proposition. I-modules between idempolads have isomorphisms as actions and
bijectively correspond to i-comodules. Moreover, if B = hb; �i is an idempolad, then any
i-modules A //R B //S C satisfy R �S = RS .

Proof. Set R = h��; r; ��i . Since �� is a coequalizer of ��b and r� , stability implies
that ��b is a coequalizer of ��bb and r�b = rb� . In particular ��bb ; ��b = rb� ; ��b =
��bb ; r� . But ��bb is epi, so we obtain ��b = r� and therefore �� is an isomor-
phism. If A is an idempolad as well, we see that �� is also an isomorphism, and clearly
h(��)�1; r; (��)�1i is an i-comodule.

For the second i-module S = h��; s; ��i we get �s = b�� , and therefore ��bs =
rb�� . Now ��bs ; r�� = rb�� ; ��s implies r�� = ��s . Hence the coequalizer ' used in
the construction of r � s is an isomorphism.

4.04. Proposition. For every bicategory X the bicategory X -idm of idempolads,
i-modules and modisms is a Cauchy-completion of Y .

Proof. As we just saw in Proposition 4.03., the composition of i-modules between idem-
polads is well-de�ned for any bicategory. This establishes the bicategory X -idm . Its
Cauchy-completeness follows just as that of Y -int in Proposition 4.02. and the mini-
mality is obvious.

What about the Cauchy-completion of Y -mnd ? Under mild hypotheses on the
hom-categories every interpolad in Y occurs by splitting an idempolad in Y -mnd .

4.05. Proposition. If Y is distributive, for an interpolad ha; �i the 1-cell A //a+A A

carries a monad structure with multiplication [�; au�; au
�] +Au and unit A +3A�

a+A .
Moreover, h�; a; �i is an idempotent m-module on this monad, which in Y -int splits
through ha; �i .

Proof. By distributivity, (a + A)(a+ A) is isomorphic to aa+ aA+ Aa+ AA . Now
the 2-cells

aa +3�
a , Aa +3au� a , aA +3au�

a and AA +3Au
A

induce a 2-cell � := [�; au�; au�] + Au from (a + A)(a + A) to a + A that is easily
seen to be associative. The coprojection A +3A�

a+A serves as a 2-sided unit. Hence
ha+A;�;A�i is a monad.

On a we now de�ne a left action (a+A)a +3�� a via � and au� , and a right

action a(a+A) +3��
a via � and au� . A straightforward calculation establishes the

m-module axioms, and the fact that this m-module in Y -int splits through the original
interpolad ha; �i .
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The Cauchy-completion of Y -mnd has idempotent m-modules as objects. These
may be viewed as pairs consisting of a monad together with a compatible interpolad. The
bifunctor to Y -int that forgets the monad is unlikely to be full, unless each interpolad
can only occur with essentially one monad. This does happen in the locally ordered case,
e.g., for rel : an idempotent relation on a set A can be an idempotent m-module only for
the preorder obtaind by forming the union with the diagonal on A . In case of spn this
fails, since forming disjoint unions with identity modules is not an idempotent operation.
Hence in general we cannot realize the Cauchy-completion of Y -mnd within Y -int .

5. The inheritance of closedness

The familiar notion of closedness for a symmetricmonoidal category splits into two notions
in the absence of symmetry: left-closedness and right-closedness. Their usefulness in
connection with m-modules was already observed by Lawvere [7]. These notions make
perfect sense in any bicategory. Street and Walters [11] have formalized the corresponding
generalizations in terms of the existence of all right extensions respectively all right liftings:

5.00. Definition. For 1-cells A //r B and A //t C , a right extension along r of t

consists of a 1-cell B //r.t C and a 2-cell r(r . t) +3ev
t such that for every s 2 [B;C]

pasting at r.t of ev is bijective from hs; r . ti[B;C] to hrs; ti[A;C] , indicated by dashed
2-cells in the following diagrams:

A

B

C

r s

t

'

_ _�
�

�
�

_ _

ev

r.t =

A

B

C

r s

t

 

_ _�
�

�
�

_ _

dual notion: Right liftings (morally: left extensions) in Y are right extensions
in Y

op ; they are denoted by (t / s)s +3ve
s .

There is an unfortunate name-mismatch between the terms \left-closed" and \right-
closed" on one side, and the terms \right extension" and \right lifting" on the other side.

In analogy to the monoidal case, we talk about (exponential) transposition and
currying when referring to the operation of pasting at a right extension or a right lifting
and its inverse. These are frequently expressed by means of a notation borrowed from
natural deduction:

s +3 r . t

rs +3 t

r +3 t / s
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The existence of all right extensions, resp. all right liftings can be expressed equivalently
as follows: for any Y -objects A , B , and C , there exist adjunctions

[B;C]
r.�

ss

[r;C]
33> [A;C] resp. [A;B]

�/s
ss

[A;s]
33> [A;C] (5-00)

Consequently, 1-cell composition from the left resp. from the right is left-adjoint and
hence preserves colimits, in particular coequalizers. We always write ev for the counit of
the �rst adjunction (reminding us of \evaluation"), and ve for the counit of the second
adjunction, regardless of which 2-cells r and s , respectively, are involved. This, we hope,
will keep the notation manageable. In particular, r(r . t) +3ev

t is a transpose of id r.t ,

and (t / s)s +3ve
t is a transpose of id t/s . Because of the obvious duality, we will restrict

our attention to the construction of right extensions. In addition to the existence of stable
local coequalizers in Y (cf. Assumption 2.06.), for the rest of this section we require

5.01. Assumption. Y has all right extensions.

Just as r.t can be formed whenever r and t have the same domain, the expression
' . � for 2-cells ' and � is meaningful whenever the horizontal domains agree. This
generality will greatly simplify computation with right extensions.

5.02. Definition. For 2-cells q +3'
r and tu +3�

v with A //q;r B , A //t C //u D

and A //v D , we de�ne the 2-cell ' .u � by means of:

_ _ _ _ _ _ _�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�_ _ _ _ _ _ _

A

B C

D

q r.t u

v

'

ev

�

r

t

=

_ _ _ _ _ _ _�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�_ _ _ _ _ _ _

A

B C

D

q r.t u

v

'.u�

_ _ _�
�

�
�

_ _ _

ev

q.v (5-01)

If u happens to be an identity 1-cell, we drop the subscript.

If all right liftings exist, '.u� decomposes as (' . �/)u ; ve , where �/ is a curried
form of � . But the following arguments do not need right liftings.

5.03. Proposition. For a module T = h��; t; � �i from a to c let � .� from t to a . t
be the curried form of �� . The 1-cell a //a.t c together with the transpose of a . � .� as
left action and a .c �

� as right action constitutes a module a . T from a to c .
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Proof. The stacking condition for the speci�ed actions follows from

A

A A C

C

a a a.t c

t

a.�.
�

ev

a.c�
�

ev

a.(a.t)

a.t

a.t

=

A

A A C

C

a a a.t c

t

ev

��

��

t

t

=

A

A A C

C

a a a.t c

t

ev

��

��

t

t

=

A

A A C

C

a a a.t c

t

a.c�
�

a.�.
�

ev

ev

a.t

a.(a.t)

a.t

since the right branches under a(a . t) +3ev
t in the outer diagrams have to agree.

5.04. Proposition. If a , b and c are endo-1-cells on objects A , B and C , respec-
tively, the functor [A;B]op � [A;C] //. [B;C] restricts to a functor from (ha; bimod )op�
ha; cimod to hb; cimod that maps R = h��; r; ��i and T = h��; t; � �i to the module
R . T with carrier r . t , left action the transpose of �� . t , and right action r .c �

� .
Furthermore, if � .� denotes the curried version of �� , the 2-cells r . t +3��.t ar . t and

r . t +3r.�.� r . (a . t) = ar . t are modisms from R . T to aR . T = R . (a . T ) that
constitute the hR;T i-components of two natural transformations with domain . .

Proof. The stacking condition for b(�� . t);ev and r . � .� follows from

A

B B C

C

r b r.t c

t

��.t

ev

r.c�
�

ev

b.(r.t)

r.t

r.t

=

A

B B C

C

r b r.t c

t

��

ev

��

t

t

=

A

B B C

C

r b r.t c

t

r.c�
�

��.r

ev

ev

r.t

b.(r.t)

r.t

since the right branches under r(t . t) +3ev
t in the outer diagrams have to agree.
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The stacking conditions for R and T , and the independence of �� and � � as well
as �� and �� imply that ��s and r�� are modisms from R . T to aR . T . Again,
naturality turns out to be a direct consequence of the modism axioms.

Just as in Section 2 coequalizers were necessary to de�ne a meaningful composition
of modules, we now expect equalizers to play the same role for right extensions of modules.

5.05. Assumption. Y locally has equalizers.

Again, for technical reasons we assume that a not necessarily canonical choice of
equalizers has been made.

5.06. Proposition. Let b and c be endo-1-cells on B and C , respectively.

(0) The category hb; cimod has equalizers.

(1) If B and C are monads with carriers b and c respectively, then hB; Ci (Y -mnd )
is closed under equalizers in hb; cimod .

Proof. (0) For modules S = h��; s; ��i and V = h��; v; ��i from b to c consider
modisms  and � from S to V . Let hp; �i be the equalizer of  and � in
[B;C] . This induces actions bp +3�� p and pc +3��

p via

pc +3�c

��
��

sc +3 c

+3
�c

��
��

vc

��
��

p +3�
s +3 

+3
�

v

bp +3
b�

KS

��

bs
+3b 

+3
b�

KS

��

bv

KS

��

Since � is mono, we can derive the stacking condition for �� and �� directly from
the stacking condition for �� and �� . Hence P = h��; p; ��i together with � is
the equalizer of  and � in hb; cimod .

(1) The fact that � is mono implies h��; p; ��i is compatible with the monad structures
of A and B as speci�ed in Proposition 3.04.(b).

5.07. Definition. For modules R = h��; r; ��i from a to b and T = h��; t; � �i from a
to c de�ne hr m t; �i to be the equalizer of �� . t and r . � .� in hb; cimod . We denote
the carrier of the module R m T by r m t , and the left and right actions by �� m t and
r m � � , respectively.

5.08. Theorem. All right extensions exist for modules between endo-1-cells in Y , and
they are constructed by means of m .



Theory and Applications of Categories, Vol. 3, No. 8 207

Proof. Consider modules a //R b and a //T c . Recall that R � (R m T ) is de�ned

in terms of the coequalizer r(r m t) +3#
r � (r m t) of the 2-cells ��(r m t) and r(�� m t)

from rb(r m t) to r(r m t) . By de�nition of �� . t and �� m t we now have

A

B B

C

r b rmt

t

��

�

ev

r

r.t

=

A

B B

C

r b rmt

t

�

��.t

ev

r.t

r.t

=

A

B B

C

r b rmt

t

��mt

�

ev

rmt

r.t

Hence the transpose of r m t +3�
r . t , i.e., the restriction of ev by � , coequalizes

��(r m t) and r(�� m t) . Consequently, there exists a unique 2-cell r � (r m t) +3EV
t

that satis�es

A

B

C

r rmt

t

�

ev

r.t =

A

B

C

r rmt

t

#

EV

r � (rmt) (5-02)

We wish to show that EV is a modism from R � (Rm T ) to T . Since a# is epi, EV
commutes with the left actions:

A

A B

C

a r rmt

t

��

#

EV

r � (rmt)

t

=

A

A B

C

a r rmt

t

�

ev

��

r.t

t

=

A

A B

C

a r rmt

t

�

ev

�.
�

ev

r.t

t

a.t

=

A

A B

C

a r rmt

t

�

r.�.
�

ev

ev

r.t

r.(a.t)

a.t

=
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=

A

A B

C

a r rmt

t

�

��.t

ev

ev

r.t

(ar).t

a.t

=

A

A B

C

a r rmt

t

�

��

ev

r

r.t =

A

A B

C

a r rmt

t

��

#

EV

r

r � (rmt)

=

A

A B

C

a r rmt

t

#

�� � (rmt)

EV

r � (rmt)

r � (rmt)

And since #c is epi, EV commutes with the right actions as well:

A

B C

C

r rmt c

t

#

EV

��

r � (rmt)

t

=

A

B C

C

r rmt c

t

�

ev

��

r.t

t

=

A

B C

C

r rmt c

t

�

r.v�
�

ev

r.t

r.t

=

=

A

B C

C

r rmt c

t

rm��

�

ev

rmt

r.t

=

A

B C

C

r rmt c

t

rm��

#

EV

rmt

r � (rmt)

=

A

B C

C

r rmt c

t

#

r � (rm��)

EV

r � (rmt)

r � (rmt)

Pasting of modisms at Rm T of EV corresponds to pasting of 2-cells at rm t of
r� ; ev in Y , cf. Diagram (5-02), and hence is injective. To establish the surjectivity,
consider a modism R �S +3


T . Recall that R �S is de�ned in terms of the coequalizer
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' of the modisms ��s and r�� from RbS to RS . Let s +3 
r . t be the transpose of

' ; 
 . It su�ces to show that  equalizes �� . t and r . � .� in [B;C] . This follows from

A

A B

C

a r s

t

 

��.t

ev

r.t

(ar).t

=

A

A B

C

a r s

t

��

 

ev

r

r.t

=

A

A B

C

a r s

t

��

'




r

r � s

=

A

A B

C

a r s

t

'

�� � s




r � s

r � s

=

=

A

A B

C

a r s

t

'




��

r � s

r � s

=

A

A B

C

a r s

t

 

ev

��

r.t

t

=

A

A B

C

a r s

t

 

r.c�
.
�

ev

r.t

(ar).t

since the right branches of ar(ar . t) +3ev
t in the outer diagrams agree.

5.09. Remark. If one drops the requirement of a tensor unit from the de�nition of a
(not necessarily symmetric) left- (and right-) closed monoidal category, one arrives at the
notion of a Lambek calculus. What we have here is a 2-dimensional analogue: if the base
Y has all right extensions (and right liftings), the endo-1-cells, modules, and modisms
nearly form a bicategory with the same property, except for the missing identity modules.

5.10. Theorem. The bicategories Y -mnd and Y -int have all right extensions. In
Y -mnd they are formed via m , just as for general modules, while in Y -int pre- and
post-composition with the appropriate identitiy i-modules is additionally required.

Proof. For Y -mnd this is an immediate consequence of Proposition 5.06.(1).
If, on the other hand, A //R B and T //T C are i-modules between interpolads,

the actions ��mt and rm� � of RmT may fail to have the coequalizer property required
in axioms (I0) and (I1), although the corresponding diagrams (cf. (3-00)) are guaranteed
to commute, since � is mono.
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Let b(r m t) +3'
b � (r m t) be the chosen coequalizer of �(t m t) and b(�� m t) .

There exists a unique modism b � (r m t) +3�
r m t that satis�es ' ; � = ��mt . Similarly,

for the coequalizer (r m t)c +3 
(r m t) � c of (rm� �)c and (rmt)� we �nd a uniqe modism

(r m t) � c +3�
r m t with  ; � = rm� � . These clearly satisfy (b � �) ; � = (� � c) ; � . Let

� be the resulting modism from the i-module B � (R m T )� C to Rm T , cf., Proposition
3.03.. We see that B � (Rm T ) � C together with (r � �) ; EV constitutes the desired
right extension in Y -int .

5.11. Examples. (0) Consider modules R = h��; R; ��i from A to B and T =
h��; T; � �i from A to C in the suspension of set (cf. Example 3.07.(0)). The
set R m T � R . T = TR consists of left-homomorphisms, i.e., functions R //f T
that satisfy �� ; f = (A� f) ; �� . The left action �� m T maps hb; fi 2 R �
(Rm T ) to the left-homomorphism R //fb T de�ned by rfb = (rb)f , and the right

action R m � � maps hf; ci 2 (R m T ) � C to the left-homomorphism R //fc T
de�ned by rf c = ((rf)) c . The restriction of the ordinary evaluation function
R� (R . T ) //ev T to R � (R m T ) coequalizes �� � (R m t) and R � (�� m T ) ,

which induces the function R � (R mT ) +3EV
T .

(1) Since for Y = rel local equalizers are trivial, the operators . and m agree. Given
modules a //r b and a //t c , their right extension is given by

r . t = f hy; zi 2 B �C j 8x 2 A: hx; yi 2 r ) hx; zi 2 t g (5-03)

and the 2-cell ev is the inclusion r(r . t) � t . Observe that (rb) � r implies
b(r . t) � r . t , and that tc � t implies (r . t)c � r . t . If r and t are i-modules
between idempotent relations, r m t may fail to be idempotent. Then the relation
product b(r m t)c together with the inclusion rb(r . t)c = r(r . t)c � r(r . t) � t
serves as the right extension, cf., Rosebrugh and Wood [8].

(2) As we indicated in Example 3.07.(3), the case of rel is subsumed by that of quan-
taloids, i.e., categories enriched in cslat . Given modules a //r b and a //t c ,
(the underlying 1-cell of) their right extension according to the �rst adjunction ind
(5-00) is given by

r . t = supf s 2 [B;C] : rs � t g (5-04)

and this coincides with r m t . Equation (5-03) above expresses the same fact at
the level of elements of the sets B and C . The description of the right extension
of i-modules is as in part (1) above.

If we view cslat as self-enriched, interpolads in this context are additive idempo-
tent endo-functions, while monads correspond to additive closure operators.

(3) In the bicategory spn (cf. Example 3.07.(4)) the right extension along A � ,2r B of

A � ,2t C consists of the matrix r . t with hy; zi-component
Q

x2Ahx; yir . hx; zit
and the evaluationX

y2B

�
hx; yir �

Y
u2A

hu; yir . hu; zit
�

//ev hx; zit
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that feeds h 2 hx; yir into the x-component of an A-tuple of functions. The
hy; zi-component of the right extension along a module A � ,2R B of A � ,2T C is
the equalizer of the two canonical functions from

Q
x2A hx; yir . hx; zit to

Y
x2A

�X
u2A

hx; uia� hu; yir
�
. hx; zit �=

Y
u2A

hu; yir .
�Y
x2A

hx; uia . hx; zit
�

Concretely this means that the formal arrows B 3 y //s z 2 C are A-indexed

families of functions hx; yir //sx hx; zit that satisfy the following compatibility
condition: if in the following diagram of formal arrows the left triangle commutes,
so does the right one:

x

""
hsx
EE

EE
||
h

yy
yy

��

fy z

u

bb
g

EEEE
<<

gsu

yyyy

This also describes right extensions in prof , while in tax = spn -int we still need
to pre- and post-compose with the appropriate identity i-modules.
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