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ON PROPERTY-LIKE STRUCTURES

G. M. KELLY AND STEPHEN LACK
Transmitted by R. J. Wood

ABSTRACT. A category may bear manymonoidal structures, but (to within a unique
isomorphism) only one structure of \category with �nite products". To capture such
distinctions, we consider on a 2-category those 2-monads for which algebra structure
is essentially unique if it exists, giving a precise mathematical de�nition of \essentially
unique" and investigating its consequences. We call such 2-monads property-like. We
further consider the more restricted class of fully property-like 2-monads, consisting of
those property-like 2-monads for which all 2-cells between (even lax) algebra morphisms
are algebra 2-cells. The consideration of laxmorphisms leads us to a new characterization
of those monads, studied by Kock and Z�oberlein, for which \structure is adjoint to unit",
and which we now call lax-idempotent 2-monads: both these and their colax-idempotent
duals are fully property-like. We end by showing that (at least for �nitary 2-monads) the
classes of property-likes, fully property-likes, and lax-idempotents are each coreective
among all 2-monads.

1. Introduction

A monoidal category is an example of a \category with extra structure of an algebraic
kind", in that it is an algebra for a certain 2-monad T on the 2-category Cat, and is thus
given by its (underlying) category A together with an action a : TA ! A of T on A in
the usual strict sense; this action encodes the extra | that is, the monoidal | structure
given by the tensor product 
, the unit object I, and the various structure-isomorphisms,
subject to Mac Lane's coherence conditions. Of course, a given category A may admit
many such monoidal structures.

Another example of a category with \algebraic extra structure" is given by a category
with �nite coproducts. Here the action a : TA! A (for a di�erent 2-monad T ) encodes
the coproduct structure, including the coprojections and so on. This time, however, in
contrast to the �rst example, the structure is uniquely determined (when it exists) to
within appropriate isomorphisms | indeed, to within unique such isomorphisms; so that
to give an A with such a structure is just to give an A with a certain property | in this
case, the property of admitting �nite coproducts.

In fact the notion of \algebraic" extra structure on a category is somewhat wider than
that of \algebra for a 2-monad on Cat"; monoidal closed categories, for instance, are
the algebras for a 2-monad on the 2-category Catg of categories, functors, and natural
isomorphisms, but not for any 2-monad onCat| see [5, Section 6]. Again, the underlying

Both authors gratefully acknowledge the support of the Australian Research Council
Received by the editors 1997 June 24 and, in revised form, 1997 September 25.
Published on 1997 October 28
1991 Mathematics Subject Classi�cation : 18C10,18C15,18D05.
Key words and phrases: 2-category, monad, structure, property.
c G. M. Kelly and Stephen Lack 1997. Permission to copy for private use granted.

213



Theory and Applications of Categories, Vol. 3, No. 9 214

object may be not a single category but a family of categories, or even a diagram in Cat
| so that here T is to be a 2-monad on some power CatX or some functor 2-category
[A;Cat], or perhaps [A;Catg]. To capture such cases, we place ourselves in the general
context of a 2-monad T = (T;m; i) on a 2-category K (which at times we suppose to
have various completeness or cocompleteness properties). We mean (T;m; i) here to be
a 2-monad in the strict sense, given by a 2-functor T : K ! K together with 2-natural
transformations m : T 2 ! T and i : 1 ! T satisfying m:mT = m:Tm, m:iT = 1T ,
and m:T i = 1T . This generality su�ces because, on the one hand, it follows from the
analysis of [10], carried out more formally in [20], that the usual \algebraic" structures are
indeed algebras for such a strict T ; and, on the other, various coherence results allow us
to reduce the study of a \pseudo" monad to that of a strict one. As we said, our actions
a : TA ! A are also strict, in the sense that they satisfy a:mA = a:Ta and a:iA = 1A;
and a T -algebra (A; a) is an A 2 K along with such an action a.

As for more general structures that are not monadic at all, but may be models, say,
of a two-dimensional �nite-limit-theory | such as the extensive categories of [7] | these
must wait for later investigations: needing to begin somewhere, we have chosen to start
with the simple monadic (or \purely algebraic") case.

In an example so simple as that of �nite coproducts, we know precisely in what sense
the structure is \unique to within a unique isomorphism"; but it is not so obvious what
such uniqueness should mean in the case of a general 2-monad T on a 2-category K,
even in the case where K is just Cat. Our �rst goal is to provide a useful de�nition
in this general setting (comparing it with possible alternative or stronger forms) and to
deduce mathematical consequences of a 2-monad's having this \uniqueness of structure"
property, or variants thereof.

In doing so, we are led to consider not only the algebras, but also their morphisms.
Recall, for the cases both of monoidal categories and of categories with �nite coproducts,
that the morphisms of chief practical interest are not those which preserve the structure
\on the nose", but rather those which preserve it to within (suitably coherent) isomor-
phisms; it is these that we shall call T -morphisms, the detailed de�nition being given
below. We shall use the name strict T -morphism for those preserving the structure on
the nose; they retain a certain theoretical importance, as being the morphisms of the
\Eilenberg-Moore object". Various authors [11,2,26] have also pointed out the impor-
tance of lax morphisms, and these too will play a prominent role in our analysis; we
de�ne a lax T -morphism from a T -algebra (A; a) to a T -algebra (B; b) to be a pair (f; �f),
where f : A! B is a morphism in K, and �f is a 2-cell, not necessarily invertible, as in

TA

��
Tf

//a

____ +3�f
A

��
f

TB //
b

B ;
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which satis�es the following \coherence" conditions:

T 2A //mA

��
T 2f

TA //a

��
Tf ____ +3�f

A

��
f

T 2A //Ta

��
T 2f ____ +3T �f

TA //a

��
Tf ____ +3�f

A

��
f=

T 2B //
mB

TB //
b

B T 2B //
Tb

TB //
b

B

and

A //iA

��
f

TA //a

��
Tf ____ +3

�f

A

��
f

A //1A

��
f

A

��
f=

B //
iB

TB //
b

B B //
1B

B:

(Note that regions in which no 2-cell is written are always commutative, and are deemed
to contain the identity 2-cell.) Now we can de�ne the T -morphisms precisely, as being
those lax ones (f; �f) for which �f is invertible; while the strict T -morphisms are those
(f; �f) for which �f is an identity | or equivalently, just those arrows f : A! B for which
b:Tf = f:a. Of course there is also the dual notion of colax T -morphism, in which the
sense of the 2-cell �f is reversed. When it is clear which T is meant, we may write algebra
morphism for T -morphism.

Using this notion of T -morphism, we can now express more precisely what it might
mean to say that an action of T on A is \unique to within a unique isomorphism": we shall
mean that, given two actions a; a0 : TA! A, there is a unique isomorphism � : a0 ! a for
which (1A; �) : (A; a) ! (A; a0) is a T -morphism (and hence, by a simple argument, an
isomorphism of T -algebras). For such a T , we may say for short that T -algebra structure
is essentially unique.

The matter of T -morphisms reveals another di�erence between our �rst two examples.
In the case of a functor f : A! B between categories with �nite coproducts, there are the
canonical comparisons fx + fy ! f(x+ y) and 0B ! f(0A); and it turns out that there
is some algebra morphism (f; �f) : A ! B if and only if these canonical morphisms are
invertible | that is, if and only if f \preserves coproducts" in the usual sense; moreover
in this case the �f is unique. On the other hand, in the case of monoidal categories A and
B, to give �f amounts to giving isomorphisms ~f2 : fx
 fy �= f(x
 y) and ~f0 : IB �= f(IA)
satisfying naturality and coherence conditions; so that here an algebra morphism (f; �f)
involves an underlying functor f and extra structure in the form of �f , this extra structure
being by no means uniquely determined. We may say that T -morphism structure is unique
if, given T -algebras (A; a) and (B; b) and given f : A ! B in K, there is at most one �f
for which (f; �f) is a T -morphism.

We could consider a stronger version of the essential uniqueness of T -algebra structure,
imposing it not only for actions a : TA! A of T on an object A of K, but also for actions
x : TX ! X of T on a 2-functor X : C ! K of codomain K. Whether this stronger
version is in fact strictly stronger is unknown to us, but it is satis�ed for any C if it
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is satis�ed for C = 2, the \arrow" category, seen as a 2-category with only identity 2-
cells. Moreover, we shall see that this stronger version implies uniqueness of T -morphism
structure, and is equivalent to the weaker version augmented by this latter. Accordingly
we call T property-like when T -algebra structure is essentially unique in this stronger
sense; which is equally to say that T has both essential uniqueness of algebra structure (in
the original sense) and uniqueness of morphism structure.

Thus the 2-monad for categories with �nite coproducts is property-like; and so dually
is that for categories with �nite products. In fact the �rst of these has a still stronger
property, which the second lacks (although possessing its dual): namely, given algebras
(A; a) and (B; b) and any morphism f : A! B in K, there is a unique �f for which (f; �f)
is a lax morphism of algebras (A; a) ! (B; b). (In the case of �nite coproducts, �f is
induced by the canonical comparisons fx + fy ! f(x + y) and 0B ! f(0A); and it is
this (f; �f) which is a T -morphism when f preserves coproducts in the usual sense.) We
shall call a 2-monad T = (T;m; i) with this property lax-idempotent; and we shall see
in Section 6 below that such 2-monads are precisely those, associated with the names of
Kock and Z�oberlein (see [22] and [28]), for which \structure is adjoint to unit", in the
sense that there is, in the functor 2-category [K;K], an adjunction m a iT whose counit is
the identity 2-cell m:iT = 1T . The prime examples of structures given by lax-idempotent
2-monads are categories with colimits of some class (such as the categories with �nite
coproducts we have been considering). There is also the dual case where m is right
adjoint to iT , the prime examples of such structures being categories with limits of some
class; these 2-monads are called colax-idempotent, and they can equally be characterized
by the existence and uniqueness of colax T -morphism structure. We shall see that both
lax-idempotent 2-monads and colax-idempotent 2-monads are always property-like, while
so too are such 2-monads as that for distributive categories, which involves both colimit
structure and limit structure, but is itself neither lax-idempotent nor colax-idempotent.
Indeed this 2-monad may be formed as a quotient

T + S //q
D

in the 2-category 2-Mnd(Cat) of 2-monads on Cat, described in Section 2 below; here
T is the 2-monad for categories with �nite coproducts, S is the 2-monad for categories
with �nite products, T +S is the coproduct in 2-Mnd(Cat), and q is a certain coinverter
and hence is epimorphic and co-fully-faithful, this last meaning that it is representably
fully faithful when seen as an arrow of 2-Mnd(Cat)op. (In future, when q : X ! D is
epimorphic in some 2-category, we shall call D a quotient of X; and a co-fully-faithful
quotient if moreover q is co-fully-faithful.) Since we shall see in Remark 4.3 below that
the property-likes are closed in 2-Mnd(Cat) under colimits and under co-fully-faithful
quotients such as q, it follows that D is property-like.

Of course lax T -morphisms compose to form a category (with subcategories provided
by the T -morphisms and the strict T -morphisms). In fact (see [5]) the category of T -
algebras and lax T -morphisms becomes a 2-category T -Algl when we introduce as 2-
cells the T -transformations, where a T -transformation from (f; �f) : (A; a) ! (B; b) to



Theory and Applications of Categories, Vol. 3, No. 9 217

(g; �g) : (A; a) ! (B; b) is a 2-cell � : f ! g in K satisfying the single \coherence"
condition

TA //a

Tg

��

Tf

��

____ +3T� ____ +3�g

A

g

��

TA

��

Tf

//a

____ +3�f

A

g

��

f

��

____ +3�=

TB //
b

B TB //
b

B

expressing compatibility of � with �f and �g. We further write T -Alg for the locally-full
sub-2-category of T -Algl determined by the T -morphisms, and T -Algs for the locally-
full sub-2-category determined by the strict T -morphisms. Similarly there is a notion
of T -transformation between colax T -morphisms, and this gives a 2-category T -Algc
of T -algebras, colax T -morphisms, and T -transformations. There are evident forgetful
2-functors Ul : T -Algl ! K, U : T -Alg ! K, and Uc : T -Algc ! K (apart from the
Eilenberg-Moore 2-functor Us : T -Algs ! K).

This notion of T -transformation underlies yet another di�erence between the struc-
ture of a monoidal category and that of a category with �nite coproducts. In the case
where T is the 2-monad on Cat whose algebras are monoidal categories, the above
de�nition of T -transformation gives precisely the usual notion [11] of monoidal natural
transformation; on the other hand one does not speak of a \�nite-coproduct-compatible-
natural-transformation" because, when the structure involved is �nite coproducts, the
coherence condition for a T -transformation becomes vacuous: given a parallel pair of lax
T -morphisms (f; �f) and (g; �g), every 2-cell � : f ! g is a T -transformation. It is shown
in Proposition 5.2 below that this vacuousness does not hold for a general property-like
T ; we shall call a property-like T for which it does hold fully property-like. Among the
fully property-like 2-monads are the lax-idempotent ones, and hence by duality the colax-
idempotent ones | as well as co-fully-faithful quotients of colimits of these, since the
fully property-likes are again closed under (at least conical) colimits and co-fully-faithful
quotients in 2-Mnd(Cat).

An ordinary category K may be seen as a locally-discrete 2-category | that is, one
whose only 2-cells are identities; and then any monad T on K may be seen as a 2-
monad. For such a T , of course, every lax T -morphism is a strict one. To say that this
2-monad T is lax-idempotent is of course to say that, for algebras (A; a) and (B; b), every
f : A! B in K is a (strict) T -morphism; this is in turn to say that T is an idempotent
monad, corresponding to the reection of K onto some full subcategory. It is interesting
to note that the ordinary monad T , seen as a 2-monad, may well be property-like without
being idempotent. For one easily veri�es that the ordinary monad T is property-like as a
2-monad precisely when the forgetful functor UT : T -Alg!K is injective on objects; yet
the monadic forgetful functor U :Mon! Sgrp from the category of monoids to that of
semigroups is injective on objects, but not fully faithful; so that the corresponding monad
on Sgrp is property-like without being idempotent.

The plan of the paper is as follows. In Section 2 we recall the Kan extension techniques
which, when K admits the appropriate limits, allow us to replace T -actions a : TA! A

by monad morphisms � : T ! hA;Ai and to replace T -morphisms (f; �f) : (A; a)! (B; b)
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by monad morphisms  : T ! ff; fg. In Section 3 we introduce a general framework
for discussing those properties of 2-monads concerned with existence or uniqueness of T -
morphism structure; among such properties are several of those introduced above. Using
these preliminaries, we examine property-like 2-monads in Section 4, fully property-like
ones in Section 5, and lax-idempotent ones in Section 6. After some comments in Section 7
on the particular case of a mere category K, we show in Section 8 that our various special
classes of 2-monads are closed in 2-Mnd(K) under colimits (and certain quotients); whence
we are led to investigate how far these classes are coreective in 2-Mnd(K).

2. Morphisms of monads and actions of monads

It is convenient to make some very general observations on actions; many of them are
well known, and may be considered as folklore. First, given a monoidal category M =
(M;
; I), by a monoid inM we mean an object T along with morphismsm : T 
T ! T

and i : I ! T satisfying the associativity and two-sided unit laws; these form a category
Mon(M) when we take a monoid morphism to be a morphism � : T ! S inM for which
n(�
 �) = �m and j = �i.

A general context in which one speaks of actions is the following. We begin with a
category A, a monoidal category M = (M;
; I), and an action of M on A: this last is
a functor � :M�A!A, along with natural isomorphisms (T 
S)�A �= T � (S �A) and
I �A �= A satisfying pentagonal and triangular coherence conditions resembling those of
Mac Lane for monoidal categories. Now, for a monoid T = (T;m; i) in M and an object
A of A, we have the notion of an action of T on A: namely, a morphism a : T � A! A

satisfying the usual associativity and unit laws. In our applications,M is always a strict
monoidal category and � a strict action ofM onA; that is, one for which the isomorphisms
above are equalities of functors, given on objects by (T
S)�A = T �(S�A) and I�A = A;
and in these circumstances we are led to replace T 
 S by the simpler TS, and T �A by
TA, with 1 for the unit I. Of course an A 2 A with such an action a : TA! A is called
a T -algebra, and we have the usual notion of (strict) morphism of T -algebras.

It may be that, for each A 2 A, the functor � �A :M! A sending T to TA has a
right adjoint hA;�i : A !M; then hA;Bi is of course the value on objects of a functor
h�;�i : Aop �A!M, and we have a natural isomorphism

�T;A;B : A(TA;B) �=M(T; hA;Bi):

Thus � gives a bijection between morphisms a : TA! B and morphisms � : T ! hA;Bi
in M; and a here is given explicitly in terms of � as the composite

TA //�A hA;BiA //�A;B
B ;

where �A;B denotes the counit of the adjunction �.
If we now take B = A, the morphism

hA;AihA;AiA //hA;Ai�A;A
hA;AiA //�A;A

A
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gives, on applying �, a \multiplication" n : hA;AihA;Ai ! hA;Ai, while the identity
morphism 1A! A gives, on applying �, a \unit" j : 1! hA;Ai. One easily veri�es, �rst,
that (hA;Ai; n; j) is a monoid in M; and next, that if T too is a monoid (T;m; i) in M,
then the morphism a : TA! A is an action of T on A precisely when � : T ! hA;Ai is
a monoid morphism.

In our applications below, A is in fact a 2-category, M is a monoidal 2-category, and
the action M � A ! A is a 2-functor. Here Mon(M) is a 2-category, since besides
the notion of a monoid morphism � : (T;m; i) ! (S; n; j) we have that of a monoid
transformation � : � ! � : (T;m; i) ! (S; n; j): namely a 2-cell � : � ! � in M for
which (still denoting 
 by concatenation) we have

TT

��
))

��

55
�� ��

���� SS //n
S = TT //m

T

�
&&

�

88
�� ��

�� � S

and

1

j
%%

j

99
�� ��

�� 1 S = 1 //i
T

�
((

�
66

�� ��
�� � S :

Note that our monoid morphisms � are still required to satisfy n:�� = �:m and j = �i on
the nose; this is appropriate because we are still interested in strict actions a : TA! A

and the corresponding T -algebras (A; a); between such algebras, however we are now in
a position to consider lax T -morphisms and so on.

It is further the case in our applications below that hA;�i is right adjoint to � � A
as a 2-functor, so that h�;�i is now not just a functor but a 2-functor, while �T;A;B :
A(TA;B) �= M(T; hA;Bi) is a 2-natural isomorphism of categories, taking a 2-cell � :
a1 ! a2 : TA ! B in A to a 2-cell � : �1 ! �2 : T ! hA;Bi in M. Now, in
the case B = A, if a1; a2 : TA ! A are actions of T on A, so that the corresponding
�1; �2 : T ! hA;Ai are monoid morphisms, one easily veri�es that the 2-cell � : �1 ! �2
is a monoid transformation if and only if the corresponding 2-cell � : a1 ! a2 makes
(1; �) : (A; a2)! (A; a1) into a lax T -morphism.

For our �rst application we take for A the 2-category K of our earlier considerations,
and take for M the 2-category [K;K] of endo-2-functors, 2-natural transformations, and
modi�cations, which becomes a monoidal 2-category when we take the tensor-product
2-functor [K;K]� [K;K]! [K;K] to be composition, given on objects by (T; S) 7! TS,
the identity object for which is the identity functor 1K. The monoids in [K;K] are of
course the 2-monads on K; the monoid morphisms � : T ! S, which are the 2-natural
transformations satisfying n:�� = �:m and j = �i, are here called the monad morphisms;
and the monoid transformations, which are the modi�cations � satisfying n:�� = �:m

and j = �i, are called the monad modi�cations | note that �� : �� ! �� : TT ! SS

here denotes the common value in

TT

T� ))

T�

55
�� ��

��T� TS

�S ))

�S

55
�� ��

���S SS = TT

�T ))

�T

55
�� ��

���T ST

S� **

S�
44

�� ��
��S�SS ;
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where for instance T� has components (T�)A = T�A and �S has components (�S)A =
�SA. The 2-category Mon[K;K] so constituted is also called the 2-category 2-Mnd(K)
of 2-monads on K; we have referred to it several times in the Introduction. The action
of M on A is here the evaluation 2-functor e : [K;K] � K ! K given on objects by
e(T;A) = TA; so that an action a : TA ! A of a 2-monad T on A 2 K has its usual
classical meaning as above.

Suppose now that the 2-category K admits the cotensor products BH where B 2 K
and H is a small category; since [18, Proposition 4.4] shows how to construct cotensor
products from products, inserters, and equi�ers, K surely admits the cotensor products
above when it admits all (weighted) limits of these kinds, and in particular when it admits
all exible limits in the sense of [4], and certainly therefore when it is complete (as a 2-
category). Then, for objects A;B 2 K, seen as 2-functors A;B : 1 ! K, we have the
(pointwise) right Kan extension hA;Bi : K ! K of B along A; for by [16, Section 4.1],
this is given on objects by hA;BiC = BK(A;C), its counit �A;B : hA;BiA ! B being the
evident morphism BK(A;A) ! B1 = B. These hA;Bi 2 K constitute the values on objects
of a 2-functor h�;�i : Kop � K ! [K;K] which, by a basic property of Kan extensions,
participates in a 2-natural isomorphism of categories

�T;A;B : K(TA;B)�= [K;K](T; hA;Bi);

exhibiting the 2-functor hA;�i : K ! [K;K] as a right adjoint of e(�; A) : [K;K] ! K.
Accordingly we can apply the general theory above to conclude that:

2.1. Lemma. When K admits cotensor products, for each A 2 K the right Kan exten-
sion hA;Ai of A along itself is a 2-monad on K; moreover, for every 2-monad T on K,
there is an isomorphism of categories whose object part is a bijection between the monad
morphisms � : T ! hA;Ai and the actions a : TA ! A, and whose morphism part is
a bijection between the monad modi�cations � : �1 ! �2 : T ! hA;Ai and those 2-cells
� : a1 ! a2 for which (1; �) : (A; a2)! (A; a1) is a lax T -morphism. It follows that � is
invertible, or is an identity, precisely when � is so.

The content of the lemma goes back at least to Dubuc's thesis [9], wherein hA;Ai is
called the codensity monad; other authors have called it the model-induced monad; we
may observe that it generalizes what in Lawvere's thesis [23] was called the structure of a
functor A with codomain Set. The further applications of the ideas above, to which we
now turn, go back to [14, Section 3]; we recall them because we need the details.

For the �rst of these we again take for M the monoidal category [K;K], but now we
take for A the 2-category Colax[2;K] of 2-functors 2 !K, colax transformations between
these, and modi�cations of the latter. Explicitly, an object of A is a morphism f : A! B

in K, a morphism f ! f 0 in A is a triple (a; �; b) giving a diagram

A //a

��
f ____ +3�

A0

��
f 0

B //
b

B0
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in K, and a 2-cell (a1; �1; b1)! (a2; �2; b2) : f ! f 0 inA is a pair (� : a1 ! a2, � : b1 ! b2)
of 2-cells in K for which

A

��

f

a2
((

a1

66� �� �
KS

� A0

��

f 0

A

a2
))

��

f

A0

��

f 0� �� �
KS

�1
=

� �� �
KS

�2

B 55
b1

B 0 B

b2 **

b1

44
� �� �

KS
� B0 :

Here the action M�A ! A, or [K;K] � Colax[2;K] ! Colax[2;K], sends the object
(T; f) to Tf : TA ! TB, and is thereafter most easily described by giving its partial
2-functors T (�) : Colax[2;K]! Colax[2;K] and (�)f : [K;K]! Colax[2;K]. The �rst of
these sends (a; �; b) : f ! f 0 to (Ta; T�; T b) : Tf ! Tf 0, and sends (�; �) : (a1; �1; b1)!
(a2; �2; b2) to (T�; T�) : (Ta1; T�1; T b1) ! (Ta2; T�2; T b2); the second sends � : T ! S

to (�A; 1�B:Tf; �B) : Tf ! Tf 0, and sends � : �! � to (�A;�B).
Now one easily veri�es that (a; �f; b) : Tf ! f is an action of the 2-monad T on

f : A ! B precisely when a : TA ! A is an action of T on A and b : TB ! B is an
action of T on B, while �f is a 2-cell b:Tf ! f:a such that (f; �f) is a lax T -morphism
(A; a)! (B; b). Moreover, if (a1; �f1; b1) and (a2; �f2; b2) are two actions of T on f , to give
a 2-cell � = (�; �) : (a1; �f1; b1)! (a2; �f2; b2) for which (1f ; �) is a lax T -morphism is clearly
to give 2-cells � : a1 ! a2 and � : b1 ! b2, satisfying

TA

��

Tf

a2
''

a1

77� �� �
KS

� A

��

f

TA

a2
))

��

Tf

A

��

f� �� �
KS

�f1
=

� �� �
KS

�f2

TB 66
b1

B TB

b2 ))

b1

55
� �� �

KS
� B ;

for which (1; �) : (A; a2)! (A; a1) and (1; �) : (B; b2)! (B; b1) are lax T -morphisms.
Suppose now that the 2-category K admits products, inserters, and equi�ers. Then

as above we have the 2-functor h�;�i participating in the 2-adjunction � : K(TA;B) �=
[K;K](T; hA;Bi). Given morphisms f : A! B and f 0 : A0 ! B0 in K, the existence in K
and hence in [K;K] of products and inserters allows us to form the comma object ff; f 0gl
in

hA;A0i

''
hA;f 0i

NNN
NNN

ff; f 0gl

88@0 qqqqqq

&&@1
MMM

MMM
� �� �

KS
� hA;B0i ;

hB;B0i

77

hf;B0i

pppppp

the subscript l (for lax) recalling that � is not required to be invertible. Now to give a
morphism  : T ! ff; f 0gl in [K;K] is equally to give morphisms � : T ! hA;A0i and
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� : T ! hB;B0i, along with a 2-cell  : hf;B0i� ! hA; f 0i�; whereupon we have � = @0,
� = @1, and  = �. Moreover, for 1; 2 : T ! ff; f 0gl, to give a 2-cell � : 1 ! 2 is
equally to give 2-cells � : �1 ! �2 and � : �1 ! �2 for which hA; f 0i�: 1 =  2:hf;B0i�;
whereupon � = @0� and � = @1�. To give � and �, however, is, as we saw, equally to
give a : TA! A0 and b : TB ! B0; whereupon to give  : hf;B0i� ! hA; f 0i� is equally
to give a 2-cell � : b:Tf ! f 0:a. Again, to give � and � is equally to give � : a1 ! a2 and
� : b1 ! b2, while hA; f 0i�: 1 =  2:hf;B0i� is equivalent to (f 0�)�1 = �2(�:Tf), which is
the condition for (�; �) to be a 2-cell (a1; �1; b1) ! (a2; �2; b2) in Colax[2;K]. Thus, for
the given f and f 0 and for any T , we have an isomorphism of categories

Colax[2;K](Tf; f 0) �= [K;K](T; ff; f 0gl):

This isomorphism being 2-natural in T by the corresponding 2-naturality of the earlier
isomorphism K(TA;B) �= [K;K](T; hA;Bi), there is a unique extension of the object-
values ff; f 0gl to a 2-functor f�;�gl : (Colax[2;K])op � Colax[2;K] ! [K;K] rendering
the present isomorphism 2-natural in each of the variables T , f , and f 0.

So we are now in a position to apply the general considerations above to the case of
the comma object

hA;Ai

&&
hA;fi
LL

LL
L

ff; fgl

88@0 rrrrr

&&@1
LLL

LL
� �� �

KS
� hA;Bi

hB;Bi

88

hf;Bi

rrrrr

where f = f 0, concluding that ff; fgl is a 2-monad on K and that monad morphisms
 : T ! ff; fgl correspond to actions (a; �f; b) : Tf ! f , with the corresponding result
for monad modi�cations. However there is one new point that arises now, in that such a
monad morphism  corresponds not only to the action (a; �f; b) but also to a third term:
namely (�; ; �), where � : T ! hA;Ai and � : T ! hB;Bi are the monad morphisms
corresponding to the actions a : TA! A and b : TB ! B, while  : hf;Bi� ! hA; fi�
corresponds to �f . However these are also given by � = @0, � = @1, and  = �. It
follows that @0 and @1 are monad morphisms whenever  is a monad morphism; so that,
taking  = 1, we conclude that @0 and @1 are themselves monad morphisms. Putting this
observation together with the general theory gives:

2.2. Lemma. When K admits products, inserters, and equi�ers, the comma object ff; fgl
above is a 2-monad on K, while @0 : ff; fgl ! hA;Ai and @1 : ff; fgl ! hB;Bi are
monad morphisms. Moreover, for every 2-monad T on K, there is an isomorphism of
categories whose object part is a bijection between the monad morphisms  : T ! ff; fgl
and the triples (a; �f; b) where a : TA ! A and b : TB ! B are actions of T for which
(f; �f) : (A; a)! (B; b) is a lax T -morphism; here the monad morphism � : T ! hA;Ai
corresponding in the sense of Lemma 2.1 to a : TA! A is @0, and similarly the � : T !
hB;Bi corresponding to b : TB ! B is @1. The morphism part of the isomorphism of
categories is a bijection between monad modi�cations � : 1 ! 2 : T ! ff; fgl and pairs
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(� : a1 ! a2; � : b1 ! b2) for which (1; �) : (A; a2)! (A; a1) and (1; �) : (B; b2)! (B; b1)
are lax T -morphisms satisfying (f; �f1)(1; �) = (1; �)(f; �f2). Moreover � is invertible or an
identity precisely when this is true of both � and �.

Recall from [18] that a 2-category K admitting inserters and equi�ers also admits
inverters. Given f : A! B and f 0 : A0 ! B0 therefore, and forming as above the comma
object ff; f 0gl, we may consider the composite

hA;A0i

&&
hA;f 0i

MM
MM

M

ff; f 0g //� ff; f 0gl

88@0 qqqqqq

&&@1
MMM

MMM
� �� �

KS
� hA;B0i

hB;B0i

88

hf;B0i

qqqqq

wherein � is the inverter of �, and write this composite as

hA;A0i

''
hA;f 0i

NNN
NNN

ff; f 0g

88@0
0 qqqqq

&&@0
1

MM
MM

M
� �� �

KS
� hA;B0i ;

hB;B0i

77

hf;B0i

pppppp

this diagram, of course, exhibits ff; f 0g as the iso-comma-object, and is universal among
such diagrams in which the 2-cell, like �, is invertible. Clearly we can imitate the proof
of Lemma 2.2 with � replacing �, so that:

2.3. Lemma. When K admits products, inserters, and equi�ers, the results of Lemma 2.2
continue to hold when we replace ff; fgl by ff; fg, replace @0 and @1 by @00 and @

0
1, and

| in the second sentence of that lemma but not the third | replace lax T -morphism by
T -morphism.

When f 0 = f , we have by this last lemma the 2-monad ff; fg, along with monad
morphisms @ 00 and @

0
1 corresponding to ff; fg-actions on A and on B, and � corresponding

to an enrichment of f to an ff; fg-morphism; whence it follows from Lemma 2.2 that
� : ff; fg ! ff; fgl is a monad morphism. It is immediate that:

2.4. Lemma. For a K admitting products, inserters, and equi�ers, the monad morphism
 : T ! ff; fgl corresponding by Lemma 2.2 to the lax T -morphism (f; �f) : (A; a) !
(B; b) factorizes through � if and only if �f is invertible.

2.5. Remark. As an inverter, � is monomorphic and fully faithful in the 2-category
[K;K]. When f 0 = f , so that � is a monad morphism, it is monomorphic in 2-Mnd(K) =
Mon[K;K] since it is so in [K;K]. In fact it is also fully faithful in 2-Mnd(K); but because
we make no explicit use of this below, we omit the proof, which uses the characterization
in Lemmas 2.2 and 2.3 of monad transformations.
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Our �nal example of an action again has the monoidal 2-category [K;K] for M, but
now has for A the 2-category Colax[D ;K], where D denotes the 2-category

0

u
%%

v

99
�� ��

�� 1

containing a single free 2-cell. So an object of A is a 2-cell � : f ! g : A ! B in K, a
morphism �! �0 is a quartet (a; �;  ; b) with

A //a

g

��

f

��

____ +3� ____ +3 

A0

g0

��

A

��

f

//a

____ +3�

A0

g0

��

f 0

��

____ +3�0=

B //
b

B0 B //
b

B0 ;

and a 2-cell (a; �;  ; b) ! (�a; ��; � ;�b) consists of 2-cells � : a ! �a and � : b ! �b satis-
fying the obvious condition. The monoidal 2-category [K;K] acts in an evident way on
Colax[D ;K], the 2-functor [K;K]� Colax[D ;K] ! Colax[D ;K] sending the object (T; �)
to T� : Tf ! Tg : TA! TB. To give an action (a; �f; �g; b) : T�! � of T on � is clearly
to give actions a : TA ! A and b : TB ! B, along with lax T -morphisms (f; �f) and
(g; �g) from (A; a) to (B; b), for which � is a T -transformation.

IfK is to admit products, inserters, and equi�ers as before, and also to admit pullbacks,
it must be complete: for it admits all conical limits and also cotensor products. When
this is so, we can form for each � : f ! g : A! B in K the pullback

[�; �0]l //�0

��
�1

ff; f 0gl

��
ff;�0gl

fg; g0gl //
f�;g0gl

ff; g0gl ;

which participates in a 2-natural isomorphism

Colax[D ;K](T�; �0) �= [K;K](T; [�; �0]l):

Applying the general theory when �0 = � again gives an isomorphism of categories, con-
necting actions T� ! � with monad morphisms T ! [�; �]l; in fact we only use the
object-part of this isomorphism.

In our applications, we wish to consider given T -algebras (A; a) and (B; b), and given
lax T -morphisms (f; �f); (g; �g) : (A; a) ! (B; b); and then to consider what further con-
ditions T must satisfy if � is to be a T -transformation. Note that, since we have now
supposed the 2-category K to be complete, the functor 2-category [K;K] admits all small
limits, computed pointwise; whereupon, by a classical argument, the 2-category 2-Mnd(K)
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of monoids in [K;K] admits all small limits, formed as in [K;K]. Given f; g : A ! B,
therefore, we can form in 2-Mnd(K) the diagram

ff; fgl //@0

!!

@1

CC
CC

CC
CC

CC
CC

C
hA;Ai

(f jg)l

77�0 oooooo

''�1
OOO

OOO

fg; ggl //@1

==

@0

|||||||||||||

hB;Bi ;

where
�
(f jg)l; �0; �1

�
is universal with the property that @0�0 = @0�1 and @1�0 = @1�1; in

other words it is the equalizer of the evident pair of morphisms ff; fgl�fg; ggl ! hA;Ai�
hB;Bi. Note that, when we take �0 = � in the pullback diagram above, we certainly have
@0�0 = @0�1 and @1�0 = @1�1; thus we have a unique monad morphism � : [�; �]l ! (f jg)l
for which �0 = �0� and �1 = �1�; and moreover � is a strong monomorphim in 2-Mnd(K),
since �0 and �1 constitute a jointly regular-monomorphic pair.

To give T -actions a on A and b on B, along with 2-cells �f and �g for which (f; �f)
and (g; �g) are lax T -morphisms from (A; a) to (B; b), is by Lemma 2.2 to give monad
morphisms 0 : T ! ff; fgl and 1 : T ! fg; ggl with @00 = @01 and @10 = @11;
or equivalently to give a monad morphism � : T ! (f jg)l. It is now clear from the
considerations above that:

2.6. Lemma. When K is complete, the object [�; �]l is a 2-monad, and we have a strongly-
monomorphic monad morphism � : [�; �]l ! (f jg)l. For any 2-monad T , if lax T -
morphisms (f; �f) and (g; �g) from (A; a) to (B; b) correspond as in Lemma 2.2 to monad
morphisms 0 : T ! ff; fgl and 1 : T ! fg; ggl, and hence to a single monad morphism
� : T ! (f jg)l, then � : f ! g is a T -transformation if and only if the monad morphism
� factorizes (necessarily uniquely) through �.

2.7. Remark. We can similarly de�ne [�; �0] as the pullback of ff; �0g : ff; f 0g ! ff; g0g
and f�; g0g : fg; g0g ! ff; g0g, and de�ne (f jg) by replacing ff; fgl by ff; fg and fg; ggl
by fg; gg in the limit-diagram de�ning (f jg)l; clearly we have in 2-Mnd(K) a pullback

[�; �] //�0

��

(f jg)

��
[�; �]l //

� (f jg)l ;

and we have an analogue of Lemma 2.6 with �0 in place of �.

There are various further such actions relevant to this paper, but we have chosen not
to treat them in this general framework; we shall merely mention two here as further
examples. In the �rst we once more take for M the monoidal 2-category [K;K], but
now we take for A the functor 2-category [C;K], where C is an arbitrary 2-category; thus
encompassing the \generalized algebras" borne by 2-functors C ! K. For the second
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we take for M the monoidal 2-category Fin[K;K] of �nitary endo-2-functors, 2-natural
transformations, and modi�cations, with composition once more as its tensor product |
see [5] | which acts on K by evaluation. A monoid in this M is just a �nitary 2-monad
on K, and an action of such a monoid on an object of K is just an algebra structure for
the 2-monad.

3. A general framework for the property-like and related conditions

For a 2-monad T = (T;m; i) on a 2-category K, we have met in the Introduction several
conditions which �t into the following pattern. We suppose given T -algebras (A; a) and
(B; b), and a morphism f : A! B in K; and we impose upon T either the existence-and-
uniqueness (E), or just the uniqueness (U), of a 2-cell �f for which (f; �f) : (A; a)! (B; b)
is either a lax T -morphism (L), a T -morphism (M), or a colax T -morphism (C); this
condition being imposed for all T -algebras (A; a) and (B; b), and either (A) for all f :
A! B, or else (I) for all invertible f : A! B. All told, we have here twelve conditions
(XYZ), where X is A or I, where Y is E or U, and where Z is L, M, or C.

We can of course express the four conditions (XYL) in terms of the forgetful 2-functor
Ul : T -Algl ! K of the Introduction: write (T -Algl)0 and K0 for the ordinary categories
underlying these 2-categories, and write (Ul)0 : (T -Algl)0 ! K0 for the ordinary functor
underlying the 2-functor Ul; then (AUL) is the assertion that (Ul)0 is faithful, and (AEL)
the assertion that it is fully faithful; while (IUL) may be expressed by saying that (Ul)0 is
faithful on isomorphisms, and (IEL) by saying that (Ul)0 is fully faithful on isomorphisms.
Similarly the conditions (XYM) and (XYC) can be expressed in terms of the forgetful
functors U0 : T -Alg0 ! K0 and (Uc)0 : (T -Algc)0 ! K0.

3.1. Lemma. For each of the six conditions of the form (IYZ), it su�ces to impose the
condition not for all invertible f : A! B but only for the the special case where B = A

and f is the identity 1A.

Proof. The point is that, for an invertible f and T -actions a : TA! A and b : TB ! B,
there is another T -action a0 : TA! A given by a0 = f�1:b:T f ; and now f is an invertible
strict T -morphism (A; a0) ! (B; b). Accordingly there is a bijection between, say, lax
T -morphisms (1A; �) : (A; a) ! (A; a0) and lax T -morphisms (f; �f) : (A; a) ! (B; b),
given by composition with f ; whence the result is immediate.

This lemma shows in particular that (IEM) is equivalent to what in the Introduction
was called \essential uniqueness of T -algebra structure" (on an object of K). The condi-
tion (AUM) is what was called \uniqueness of T -morphism structure"; and we took the
conjunction (IEM) ^ (AUM) as our de�nition of \property-like", promising to prove it
equivalent in Theorem 4.2 to \essential uniqueness of T -algebra structure on 2-functors
of codomain K". Further, the lax-idempotent 2-monads are by de�nition those satisfying
(AEL), while the colax-idempotent 2-monads are those satisfying (AEC). Accordingly,
with the goal of better understanding these conditions and related ones, we spend some
time systematically analyzing the twelve conditions (XYZ) and their interconnections.
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First we examine in this section a number of straightforward implications between them,
which in later sections will be augmented by deeper connections needing some complete-
ness properties of K.

There are evident implications

(XEZ) =) (XUZ)

for all X and Z, and

(AYZ) =) (IYZ)

for all Y and Z, as well as

(XUL) =) (XUM)(= (XUC)

for all X.

Clearly the conjunction (IEM)^(IUL) implies (IEL): for the \existence part" of (IEM)
implies the \existence part" of (IEL), and (IUL) is precisely the \uniqueness part" of
(IEL). In fact the converse is also true:

3.2. Proposition. Condition (IEL) is equivalent to the conjunction (IEM)^(IUL); and
dually with L replaced by C.

Proof. We have only to show that (IEL) implies (IEM) ^ (IUL); but trivially (IEL)
implies (IUL), so that we need only prove that (IEL) implies (IEM). For the \uniqueness
part" of (IEM) there is no problem, so it will su�ce to show that every lax T -morphism
(f; �f) : (A; a) ! (B; b) with f invertible has �f invertible. With g = f�1, (IEL) gives
us a lax T -morphism (g; �g) : (B; b) ! (A; a). The composite lax T -morphism (h; �h) =
(g; �g)(f; �f) : (A; a) ! (A; a) has h = gf = 1A, so that �h is an identity by (IEL), and
(g; �g)(f; �f) is an identity in T -Algl; similarly (f; �f)(g; �g) is an identity, and so (f; �f) is
invertible in T -Algl. But clearly a lax T -morphism (f; �f) is invertible if and only if both
f and �f are invertible, so that (f; �f) is indeed a T -morphism.

Now for any 2-monad T on K, a lax T -morphism (f; �f) : (A; a) ! (B; b) with f

invertible determines a canonical colax T -morphism (f�1; ~f) : (B; b) ! (A; a) where ~f
is the 2-cell f�1: �f:Tf�1 : f�1:b = f�1:b:T f:Tf�1 ! f�1:f:a:Tf�1 = a:Tf�1. Likewise
a colax T -morphism structure on f determines a canonical lax T -morphism structure on
f�1, and these processes are mutually inverse, giving the equivalences:

(IUL)() (IUC)

(IEL)() (IEC):
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To sum up, then, we have a diagram of implications

(AEL)

 (JJ
JJ

JJ
JJ

J

JJ
JJ

JJ
JJ

J

��

(AEM)

!)KK
KK

KK
KK

K

KK
KK

KK
KK

K

��

(AEC)

!)JJ
JJ

JJ
JJ

J

JJ
JJ

JJ
JJ

J

��

(AUL) +3

��

(AUM)

��

(AUC)ks

��

(IEL) +3

 (JJ
JJ

JJ
JJ

J

JJ
JJ

JJ
JJ

J
(IEM)

!)KK
KK

KK
KK

K

KK
KK

KK
KK

K
(IEC)ks

!)JJ
JJ

JJ
JJ

J

JJ
JJ

JJ
JJ

J

(IUL) +3 (IUM) (IUC)ks

wherein moreover the bottom squares are \pullbacks" by Proposition 3.2, and the condi-
tions (IYL) and (IYC) are equivalent.

In our de�nition of the conditions (XYZ), the T -algebras (A; a) and (B; b) were given
by actions a : TA ! A and b : TB ! B on objects A;B 2 K. As we have already
remarked, however, one can equally consider \generalized T -algebras" (A; a), where A is
a 2-functor A : C ! K and a : TA ! A is a 2-natural transformation. Then a lax T -
morphism (f; �f) : (A; a)! (B; b) is given by a 2-natural transformation f : A! B and a
modi�cation �f satisfying the usual axioms as in the Introduction, while a T -transformation
� : (f; �f)! (g; �g) is given by a modi�cation � : f ! g satisfying the usual axiom. Let us
use (XYZ)0 for the condition like (XYZ), but imposed now for all generalized T -algebras
as above. Of course

(XYZ)0 =) (XYZ);

since (XYZ) is just the case C = 1 of (XYZ)0. Let us consider how far the converse of
this is true. Given (A; a), (B; b) and f : A ! B as above, A and B being 2-functors
C ! K, we have for each C 2 C the T -algebras (AC; aC) and (BC; bC); and to give �f as
above satisfying the axioms of the Introduction is to give for each C a lax T -morphism
(fC; �fC) : (AC; aC) ! (BC; bC), where these �fC satisfy the modi�cation condition,
which requires for each k : C ! D in C an equality

TAC //aC

��
TfC ����

@H�fC

AC

��
fC

TAC //aC

��
TAk

AC

��
Ak

TBC //
bC

��
TBk

BC

��
Bk

= TAD //aD

��
TfD 





AI�fD

AD

��
fD

TBD //
bD

BD TBD //
bD

BD :

3.3. Lemma. (XYZ)0 coincides with (XYZ) when Y=U, and when X=A.

Proof. When Y=U, we are concerned only with uniqueness, and the uniqueness of �f
follows from that of the �fC. When Y=E we need existence as well; but we have the
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existence of the �fC, and so need only the equality displayed in the diagram above. This,
however, when X=A, follows from the uniqueness of �g in (g; �g) : (AC; aC)! (BD; bD),
where g = Bk:fC = fD:Ak. (When X=I this argument fails, since this g is not invertible
in general.)

So the only \primed" cases we need consider are three: (IEL)0, (IEM)0, and (IEC)0.
Since the only obstruction to the truth of (IEZ)0, given (IEZ), is the equality in the
diagram above, which deals with a single arrow k : C ! D, it is clear that (IEZ)0 holds
for a general C if it does so for the two special cases C = 1 (giving (IEZ)) and C = 2,
where this 2 is the arrow category (0 ! 1), seen as a 2-category whose only 2-cells are
identities. However we easily see , on taking A and B to be constant functors, that (IEZ)0

for the case C = 2 contains (IEZ), so that:

3.4. Lemma. T satis�es (IEZ)0 for a general 2-category C if it does so in the special
case C = 2.

It is clear that Lemma 3.1 applies equally to the case (IYZ)0 of generalized T -algebras.
Combining that with the last lemma gives:

3.5. Lemma. (IEL)0 is equivalent to the following condition, which we might call \ (IEL)
with naturality": (IEL) holds; and if a1 and a2 are T -actions on A and b1 and b2 are T -
actions on B, and if f : A! B is both a strict T -morphism (A; a1)! (B; b1) and a strict
T -morphism (A; a2) ! (B; b2), then we have f:� = �:Tf in K, where � : a2 ! a1 and
� : b2 ! b1 are the unique 2-cells, guaranteed by (IEL), for which (1; �) : (A; a1)! (B; b1)
and (1; �) : (A; a2) ! (B; b2) are lax T -morphisms; in other words, we have the equality
(f; 1fa2)(1A; �) = (1B; �)(f; 1fa1) of lax T -morphisms. Similarly for (IEM)0 and (IEC)0.

3.6. Remark. Of course, when T satis�es (IEL)0, we have the property (f; 1)(1; �) =
(1; �)(f; 1) of Lemma 3.5 even when the ai and bi are actions (in the more general sense)
on 2-functors A;B : C ! K; for this is just (IEL)0 with C replaced by 2 � C. Similarly
for (IEM)0 and (IEC)0.

4. Property-like 2-monads

We asserted in the Introduction that (IEM)0 is equivalent to the conjunction (IEM) ^
(AUM), and agreed to call a 2-monad T on K property-like if it satis�ed the latter: that is,
if T -algebra structure on an object of K is essentially unique, and T -morphism structure
on a morphism of K is unique. In this section we establish the equivalence above, in fact
giving many further conditions equivalent to being property-like.

In Section 2 we described various connections between actions and monad morphisms,
mediated by Kan extensions and other limits in K. We now also need the following
connection, of a more general nature, �rst sketched in [21, Sections 3.5{3.6]; it su�ces
to state it precisely (in somewhat more detail than we in fact use), leaving the easy
veri�cation to the reader.
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4.1. Lemma. If T = (T;m; i) and S = (S; n; j) are 2-monads on K, then the category
2-Mnd(K)(T; S) of monad morphisms and monad modi�cations is isomorphic to the fol-
lowing category Sact(T; S) of \S-compatible actions of T on S": an object of Sact(T; S)
is an action u : TS ! S, of T on the 2-functor S, for which n : S2 ! S is a strict
T -morphism (S2; uS)! (S; u); and a morphism � : u! v of Sact(T; S) is a modi�cation
� : u! v for which (1S ; �) is a lax T -morphism (S; v)! (S; u) rendering commutative

(S2; vS) //
(1S2 ;�S)

��
(n;1n:vS)

(S2; uS)

��
(n;1n:uS)

(S; v) //
(1S;�)

(S; u) :

The isomorphism Z : 2-Mnd(K)(T; S)! Sact(T; S) sends f : T ! S to the composite

TS //fS
SS //n

S

and similarly sends � : f ! g : T ! S to n:f�; its inverse sends u : TS ! S to the
composite u:T j : T ! S and similarly sends � : u! v to �:T j : u:T j! v:T j.

Following [6], we call a functor U : A! C pseudomonic if it is faithful and if, moreover,
it is full on isomorphisms: the latter means that any invertible h : UA ! UA0 in C is
Ug for some (necessarily unique) g : A ! A0 in A, which by an easy argument must
itself be invertible. This notion is representable, in the sense that a functor U : A ! C is
pseudomonic if and only if [B; U ] : [B;A]! [B; C] is so for every category B; accordingly
we de�ne an arrow U : A ! C in a 2-category K to be pseudomonic if the functor
K(B;U) : K(B;A)! K(B;C) is so for each B 2 K; and we then say that U is pseudoepic
in K if it is pseudomonic in Kop.

We shall write 1 for the identity 2-monad on K; it is initial in the 2-category 2-Mnd(K),
since the \unit law" forces any monad morphism 1! T = (T;m; i) to be i, and any monad
modi�cation i! i : 1! T to be the identity.

Recall that we have used 2 above for the free category on the graph (u : 0 ! 1),
sometimes seen as a 2-category. Inverting u here gives the quotient I= (v : 0 ! 1),
which some call \the free-living isomorphism"; besides the identities of 0 and 1, it has
two morphisms v and v�1. Finally let 2 denote the set f0; 1g, seen as a discrete category;
note that we have inclusion functors � : 2! Iand � : 2! 2.

4.2. Theorem. For a 2-monad T on a 2-category K admitting products, inserters, and
equi�ers, the following conditions | of which (viii) is property-likeness | are equivalent:

(i) (IEL)0;

(ii) (IEM)0;

(iii) (IEC)0;
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(iv) (IEL) with naturality, in the sense of Lemma 3.5;

(v) (IEM) with naturality;

(vi) (IEC) with naturality;

(vii) (IEL) ^ (AUL);

(viii) (IEM) ^ (AUM);

(ix) (IEC) ^ (AUC);

(x) (IEM) ^ (AUL);

(xi) (IEM) ^ (AUC);

(xii) for any 2-monad S = (S; n; j) on K, and any monad morphisms f : T ! S and
g : T ! S, there is exactly one invertible monad modi�cation � : f ! g;

(xiii) for any 2-monad S = (S;m; j) on K, and any monad morphisms f : T ! S and
g : T ! S, there is exactly one monad modi�cation � : f ! g;

(xiv) i : 1! T is pseudoepic in 2-Mnd(K).

If moreover the 2-category 2-Mnd(K) admits the tensor products c � T when c is 2, 2, or
Ias above, then the following conditions are also equivalent to those appearing above:

(xv) the monad morphism � � T : 2 � T ! I� T is invertible;

(xvi) the monad morphism � � T : 2 � T ! 2 � T is invertible.

Proof. We may omit consideration of conditions (iii), (vi), (ix), and (xi), since they are
the duals of (i), (iv), (vii), and (x) respectively, while (ii), (v), (viii), (xii), (xiii), and
(xiv) are self-dual as regards the sense of 2-cells.

First we prove the equivalence of (i), (iv), (vii), (x), (xii), and (xiii).
(i) ) (xiii). The monad morphisms f and g give rise as in Lemma 4.1 to actions

u : TS ! S and v : TS ! S such that n : S2 ! S is both a strict T -morphism
(S2; uS) ! (S; u) and a strict T -morphism (S2; vS) ! (S; v). Now (IEL)0 with C = K
gives a unique modi�cation � : u ! v for which (1S ; �) : (S; v) ! (S; u) is a lax T -
morphism; whence also (1S2 ; �S) : (S

2; vS)! (S2; uS) is a lax T -morphism. Moreover, by
Remark 3.6, (IEL)0 further ensures that (n; 1)(1; �S) = (1; �)(n; 1) : (S2; vS)! (S; uS);
and so we conclude from Lemma 4.1 that there is a unique monad modi�cation � : f ! g,
namely �:T j.

(xiii)) (xii). Immediate.
(xii) ) (x). Taking S in (xii) to be hA;Ai and applying Lemma 2.1 gives (IEM).

As for (AUL), to show that there is at most one �f for which (f; �f) : (A; a) ! (B; b) is
a lax T -morphism is by Lemma 2.2 to show that there is at most one monad morphism
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 : T ! ff; fgl with @0 = � and @1 = �. If 0 and 1 are two such, then (xii) with
S = ff; fgl gives a unique invertible monad modi�cation � : 0 ! 1. Now @0� is an
invertible monad modi�cation from � to �, and so by (xii) must be the identity; in the
same way @1� is the identity. Now the \morphism part" of Lemma 2.2 ensures that � is
an identity, whence 0 = 1 as required.

(x)) (vii). Immediate from Proposition 3.2.
(vii) ) (iv). In the notation of Lemma 3.5, (f; 1)(1; �) and (1; �)(f; 1) are both lax

T -morphisms from (A; a1)! (B; b2), with the same underlying morphism f : A! B; so
they coincide by (AUL).

(iv)) (i). Part of Lemma 3.5.
This completes the proof of the equivalence of (i), (iv), (vii), (x), (xii), and (xiii).

Next we prove the equivalence of (ii), (v), (viii), (x), and (xii).
(ii)) (xii). One repeats the proof of (i)) (xiii), while noting that �:T j is invertible

if � is so.
(xii)) (x). Proved above.
(x)) (viii). Immediate since (AUL) implies (AUM).
(viii)) (v). Proved just like (vii)) (iv).
(v)) (ii). Part of Lemma 3.5.
Finally (xiv) is equivalent to (xiii) because 1 is initial in 2-Mnd(K), while (xv) and

(xvi) are restatements of (xii) and (xiii) in the presence of the given tensor products.

4.3. Remark.

(a) Conditions (vii), (viii), and (ix) say precisely that the forgetful functors (Ul)0, U0,
and (Uc)0 are pseudomonic.

(b) We could have added further equivalent conditions (IEL) ^ (AUM), (IEC) ^ (AUM),
(IEL)^(AUC), (IEC)^(AUL), so that property-likeness is equivalent to any condition
of the form (IEZ) ^ (AUW). The equivalence of all these further conditions is a
straightforward consequence of the theorem and the results of Section 3.

(c) Condition (xiii) implies that the property-likes are closed in 2-Mnd(K) under arbi-
trary colimits (including weighted ones). Moreover it follows from (xiv) that S is
property-like when T is so if q : T ! S is pseudo-epimorphic in 2-Mnd(K); so that in
particular the property-likes are closed in 2-Mnd(K) under co-fully-faithful quotients
in the sense of the Introduction.

Before leaving this section, we record the following consequence of Theorem 4.2:

4.4. Corollary. Under the hypotheses of Theorem 4.2, there are implications (AEM))
(AEL) and (AEM)) (AEC).

Proof. In Section 3 we saw that (AEM) implied (IEM) and (AUM), which is to say
that (AEM) implies property-likeness. So from the theorem above it follows that (AEM)
implies (AUL). Now the \existence part" of (AEL) is already implied by the \existence
part" of (AEM), while the \uniqueness part" of (AEL) is just (AUL). Thus (AEM) implies
(AEL); and similarly (AEM) implies (AEC).
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5. Fully property-like 2-monads

As we saw in the Introduction, a 2-monad T on K may or may not enjoy the property
that every 2-cell between lax T -morphisms is a T -transformation; which is equally to say
that the 2-functor Ul : T -Algl ! K is full on 2-cells, or locally full (in the sense that
each functor T -Algl((A; a); (B; b)) ! K(A;B) is full); we now name this property (2L).
Similarly we may say that T satis�es (2M) when U : T -Alg! K is locally full, and that
T satis�es (2C) when Uc : T -Algc ! K is locally full. Trivially we have

(2L) =) (2M)(= (2C).

The following proposition uses a transport of structure argument similar to that in
Lemma 3.1.

5.1. Proposition. Condition (AUL) is equivalent to the condition that Ul : T -Algl !K
be full on invertible 2-cells; similarly (AUM) and (AUC) are just the conditions that U
and Uc be full on invertible 2-cells. Thus (2Z) implies (AUZ), for Z=L, M, or C.

Proof. We prove that Ul : T -Algl !K is full on invertible 2-cells if and only if T satis�es
(AUL); the other results are similar. If Ul : T -Algl ! K is full on invertible 2-cells, and
if (f; �f1) : (A; a) ! (B; b) and (f; �f2) : (A; a) ! (B; b) are lax T -morphisms, then by
assumption the invertible 2-cell 1f : f ! f must be a T -transformation (f; �f1)! (f; �f2),
which means precisely that �f1 = �f2, giving (AUL). Conversely, if T satis�es (AUL), let
(f; �f) : (A; a)! (B; b) and (g; �g) : (A; a)! (B; b) be lax T -morphisms and let � : f ! g

be an invertible 2-cell; then de�ning �f to be the composite

TA //a

Tg

��
Tf

��

____ +3T� ____ +3�g

A

f

��

g

��

____ +3��1

TB //
b

B

gives a lax T -morphism (f; �f) : (A; a)! (B; b), so that by (AUL) we have �f = �f ; thus �
is a T -transformation.

It was noted in the Introduction that the 2-monad on Cat whose algebras are cate-
gories with �nite coproducts satis�es condition (2L); however:

5.2. Proposition. Even a property-like 2-monad may fail to satisfy (2M); a fortiori it
may fail to satisfy (2L).

Proof. Write Cart for the 2-category of (small) categories with pullbacks, pullback-
preserving functors, and cartesian natural transformations; by this last we mean those
natural transformations for which the naturality squares are pullbacks. Write 2-Cat for
the 2-category of (small) 2-categories, 2-functors, and 2-natural transformations. We shall
describe a 2-functor

Cart //(�)0

2-Cat:
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If A is a category with pullbacks, then A0 is the 2-category whose underlying category is
A, and in which a 2-cell � : f ! g : A! B is a subobject of A on which f and g coincide.
Vertical composition of 2-cells is given by intersection of subobjects, while for � as above
and 1-cells h : B ! C and k : D ! A, the composite h� is the same subobject of A as �,
while the composite �k is the pullback k��. If now C is another category with pullbacks,
and F : A ! C preserves pullbacks, then F 0 is de�ned as the 2-functor with underlying
functor F , which acts on 2-cells as F acts on the corresponding subobjects; of course F
preserves monics since it preserves pullbacks. Finally the components �A : FA! GA of a
cartesian natural transformation between pullback-preserving functors F and G constitute
the components �0A of a 2-natural transformation �0 : F 0 ! G0. It is easy to verify that
these constructions do indeed give a 2-functor fromCart to 2-Cat, and as such take each
monad (T;m; i) in Cart to a monad (T 0;m0; i0) in 2-Cat. A T 0-algebra is just a T -algebra
and a T 0-morphism is just a T -morphism | all T 0-morphisms are strict, since A0 has no
non-identity invertible 2-cells. A T 0-transformation between T 0-morphisms f and g from
(A; a) to (B; b) is a subobject j : J ! A for which there is a pullback

TJ //Tj

��

TA

��
a

J //
j

A:

Now take A to be the category Sgrp of semigroups, and T = (T;m; i) to be the monad on
Sgrp whose algebras are the monoids, as in the penultimate paragraph of the Introduc-
tion. Since Sgrp has pullbacks preserved by T , while m and i are cartesian natural trans-
formations (as was observed in [19, Section 5]), we have as above the 2-monad (T 0;m0; i0)
on Sgrp0. This is property-like in the strong sense that T 0-algebra structure on a given
object is actually unique, as is T 0-morphism structure. On the other hand, not all 2-cells
are T 0-transformations; for if A is any monoid, we have the 2-cell � : 1A ! 1A : A ! A

given by the subsemigroup j : J ! A, where j is the inclusion of the empty semigroup J ;
and this is not a T -transformation since there is no morphism from TJ(= 1) to J(= 0).
Thus this T 0 is property-like without satisfying (2M).

5.3. Definition. We shall say that a 2-monad is fully property-like if it is property-like
and moreover satis�es (2L) and (2C), and so also (2M).

5.4. Remark. As foreshadowed in the Introduction, we shall prove in Section 6 below
that the lax-idempotent 2-monads are fully property-like. We give no special name to the
property-like 2-monads satisfying only (2M), since we know of no such that fails to satisfy
(2L).

5.5. Remark. When K is complete, it follows from Lemma 2.6 that T satis�es (2L) if
and only if, for each � : f ! g : A ! B in K, every monad morphism � : T ! (f jg)l
factorizes through the strong monomorphism � = �� : [�; �]l ! (f jg)l of 2-Mnd(K). We
conclude that, if (�i : Ti ! S) is a jointly-epimorphic family in 2-Mnd(K) with each Ti
satisfying (2L), then S satis�es (2L); in particular, the 2-monads satisfying (2L) are closed
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in 2-Mnd(K) under (conical) colimits and (merely epimorphic) quotients. Similarly, by
duality, for the 2-monads satisfying (2C); and also, by Remark 2.7, for those satisfying
(2M). Using Remark 4.3(c), we conclude that, for a complete K, the fully property-like
2-monads are closed in 2-Mnd(K) under (conical) colimits and co-fully-faithful quotients.

The following result, although an immediate consequence of Proposition 5.1, is worth
stating because many important structures (see [5]) are monadic not over Cat but only
over Catg, the full sub-2-category of Cat with the same objects and arrows, but in which
all non-invertible 2-cells have been discarded.

5.6. Proposition. If K is a 2-category in which every 2-cell is invertible, then for
2-monads on K, the following conditions are equivalent: (AUL), (AUM), (AUC), (2L),
(2M), (2C); thus in particular every property-like 2-monad on such a K is fully property-
like.

6. Lax-idempotent 2-monads

We establish in this section various properties of those 2-monads T on K that satisfy
the condition (AEL); as we said in the Introduction, such a 2-monad will be said to be
lax-idempotent, while a 2-monad satisfying (AEC) will be said to be colax-idempotent.

First recall from Section 3 that (AEL) ) (AUL)) (AUM) and that (using Proposi-
tion 3.2) (AEL)) (IEL)) (IEM); that is to say:

6.1. Proposition. Every lax-idempotent 2-monad (and dually every colax-idempotent
2-monad) is property-like.

Recall that, in any 2-category K, we can speak of an adjunction �; � : f a u : A! B;
here u : A ! B and f : B ! A are morphisms in K, while the unit � : 1 ! uf

and the counit � : fu ! 1 are 2-cells satisfying the \triangular equations" u�:�u = 1 and
�f:f� = 1; for the elementary theory of such adjunctions, see for instance [21]. We shall be
concerned below with the special case of an adjunction in K with identity counit, obtained
by requiring � above to be an identity. To give such an adjunction �; 1 : f a u : A! B is
to give morphisms u : A! B and f : B ! A with fu = 1, along with a 2-cell � : 1! uf

satisfying �u = 1u and f� = 1f . Note that, given f and u with fu = 1, such an � is unique
if it exists: for if we also have � : 1! uf with �u = 1 and f� = 1, the commutativity of

1 //�

��
�

uf

��
uf�

uf //
�uf

ufuf

gives � = � since uf� and �uf , like f� and �u, are identities.

6.2. Theorem. For a 2-monad T = (T;m; i) on K, the following are equivalent:

(i) T is lax-idempotent | that is, T satis�es (AEL);
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(ii) T satis�es (AEL)0;

(iii) in the 2-category [K;K], there is a modi�cation � : 1 ! iT:m : T 2 ! T 2 giving an
adjunction with identity counit �; 1 : m a iT : T ! T 2;

(iv) in the 2-category [K;K], there is a modi�cation � : T i ! iT : T ! T 2 satisfying
�i = 1 and m� = 1;

(v) for each T -algebra (A; a) there is a 2-cell �(A;a) : 1! iA:a : TA! TA in K giving
in K an adjunction with identity counit �(A;a); 1 : a a iA : A! TA.

Proof. (i)) (ii). By Lemma 3.3.
(ii) ) (iii). We have the T -algebras of domain K given by (T;m) and (T 2;mT ),

and we have the 2-natural iT : T ! T 2. By (AEL)0 there is a unique modi�cation
� : mT:T iT ! iT:m such that (iT; �) : (T;m)! (T 2;mT ) is a lax T -morphism. However
mT:T iT , likem:T i, is an identity; so that � has the form 1! iT:m. Of the two coherence
conditions of the Introduction satis�ed by the lax T -morphism (iT; �), the �rst (or unit)
condition is the assertion �:iT = 1. Finally, the composite of the lax T -morphism (iT; �) :
(T;m)! (T 2;mT ) and the strict T -morphism (m; 1) : (T 2;mT )! (T;m) has the form
(m:iT;m�). Sincem:iT = 1, the uniqueness assertion of (AEL)0 givesm� = 1, completing
the proof that we have an adjuntion �; 1 : m a iT : T ! T 2.

(iii)) (iv). Given �; 1 : m a iT : T ! T 2, composing � : 1 ! iT:m : T 2 ! T 2 with
T i : T ! T 2 gives a modi�cation � = �:T i : T i! iT:m:T i= iT . Moreover m� = 1 since
m� = 1; while T i:i = iT:i by the naturality of i, whence �i = �:T i:i = �:iT:i, which is 1
since �:iT = 1.

(iv) ) (v). Given a T -algebra (A; a), de�ne a 2-cell �(A;a) : 1 ! iA:a : TA ! TA

to be the composite of Ta : T 2A ! TA with �A : T iA ! iTA : TA ! T 2A; since
Ta:T iA = 1 because a:iA = 1, and since Ta:iTA = iA:a by the naturality of i, the
2-cell �(A;a) = Ta:�A is indeed of the form 1 ! iA:a. Moreover �(A;a):iA = Ta:�A:iA is
the identity 1 since �i = 1; while a�(A;a) = a:Ta:�A = a:mA:�A is the identity 1 since
m:�A = 1.

(v) ) (i). For convenience, let us abbreviate the unit �(A;a) of the adjunction in (v)
to �a. Consider T -algebras (A; a) and (B; b), together with a morphism f : A ! B in
K. To give a 2-cell �f : b:Tf ! f:a is, in view of the adjunction �a; 1 : a a iA, equally
to give a 2-cell � : b:Tf:iA! f , these being connected by the equations � = �f:iA and
�f = (�a)(b:Tf:�a). Since naturality of i gives b:Tf:iA = b:iB:f = f , the 2-cell � has
the form f ! f . If (f; �f) is to be a lax T -morphism from (A; a) to (B; b), the \unit"
coherence condition requires �f :iA = 1; so we are forced to take � = 1, with �f = b:Tf:�a
as the only possibility. It remains to show that this choice does give a lax T -morphism
(f; �f) : (A; a)! (B; b); that is, we are to verify the remaining coherence condition

T 2A //Ta

��
T 2f ____ +3T �f

TA //a

��
Tf ____ +3�f

A

��
f

T 2A //mA

��
T 2f

TA //a

��
Tf ____ +3�f

A

��
f=

T 2B //
Tb

TB //
b

B T 2B //
mB

TB //
b

B
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Since a:mA = a:Ta and b:mB = b:T b, this is a matter of proving equal the pair of
2-cells �; � : b:T b:T 2f ! f:a:Ta, where � is the pasting composite on the left above and
� that on the right.

However these correspond, under the adjunction T�a; 1 : Ta a T iA : TA ! T 2A, to
2-cells ��; �� : b:T b:T 2f:T iA! f:a, where �� = �:T iA and �� = �:T iA; so that it su�ces to
prove that �� = ��. Since Ta:T iA = 1 and T �f:T iA = T ( �f:iA) = T1f = 1Tf , the 2-cell ��
reduces to �f : b:Tf ! f:a; and since mA:T iA= 1, the 2-cell �� reduces to the same. This
completes the proof.

From the equivalence of (i) and (v) in this theorem, along with the proof above of
(v)) (i), we record for later reference the following:

6.3. Corollary. If (A; a) is a T -algebra where T is lax-idempotent, we have in K an
adjunction �a; 1 : a a iA; and if (B; b) is another T -algebra, the unique lax T -morphism
(f; �f) : (A; a)! (B; b) has �f = b:Tf:�a.

We can now prove:

6.4. Proposition. (AEL) =) (2L)

Proof. Let (A; a) and (B; b) be T -algebras where T satis�es (AEL), let (f; �f); (g; �g) :
(A; a) ! (B; b) be lax T -morphisms, and let � : f ! g be any 2-cell in K. Since
�f = b:Tf:�a and �g = b:T g:�a, the condition for � to be a T -transformation reduces to the
equality

TA //1

��
a

55
55

55
55

TA

Tf
**

Tg

44
�� ��

��T� TB

��

b

55
55

55
55

= TA //1

��
a

55
55

55
55

TA //Tf
TB

��

b

88
88

88
88

�� ��
�� �a

�� ��
�� �a

A

DD

iA

								
//

g B

DD

iB

								
//

1 B A

DD

iA

								 f
((

g

66
�� ��

�� � B

DD

iB

								
//

1
B ;

which holds by 2-naturality of i : 1! T .

Thus (AEL) implies (2L), and so for a lax-idempotent 2-monad we have not just that
(Ul)0 : (T -Algl)0 ! K0 is fully faithful, but that Ul : T -Algl ! K is fully faithful as a
2-functor. Of course since (2L) implies (2M), so (AEL) implies (2M); on the other hand,
to see that (AEL) implies (2C) we need �rst a result about the colax morphisms for a
2-monad satisfying (AEL).

6.5. Lemma. If T is a lax-idempotent 2-monad and (f; ~f) : (A; a) ! (B; b) is a colax
T -morphism, then ~f is invertible, and so (f; ~f�1) is in fact a T -morphism.

Proof. We show that ~f is inverse to the �f of Corollary 6.3. The composite �f :iA is an
identity because (f; �f) is a lax T -morphism, while ~f :iA is an identity because (f; ~f) is a
colax T -morphism; so that ( �f ~f):iA is an identity. Because of the adjunction �a; 1 : a a iA,
however, composition with iA provides a bijection between 2-cells � : f:a! f:a and 2-cells
�:iA : f ! f ; so that �f ~f = 1 because ( �f ~f ):iA = 1 = 1:iA
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It remains to show that ~f �f : b:Tf ! b:Tf is an identity. However b:Tf : (TA;mA)!
(B; b) is a strict T -morphism, so that ~f �f is a T -transformation by Proposition 6.4. By
the 2-dimensional aspect of the free-algebra property of TA, such a T -transformation is
determined by its composite with iA; thus since ( ~f �f):iA is an identity as above, so too is
~f �f .

6.6. Corollary. (AEL) =) (2C)

It now follows, using Corollary 4.4, that any of the conditions (AEZ) will imply each
of (2L), (2M), and (2C). In particular, combining part of this with Proposition 6.1, we
have:

6.7. Proposition. Lax-idempotent 2-monads and colax-idempotent 2-monads are all
fully property-like.

6.8. Remark. In this section we have given a characterization of those 2-monads for
which \structure is adjoint to unit" in terms of lax morphisms between strict algebras.
Another characterization is obtained if we replace T -Algl by the 2-category Ps-T -Algl
of pseudo-T -algebras, lax morphisms, and T -transformations, and ask that the forgetful
functor to K be fully faithful.

Various authors have considered less strict notions of monad, and contemplated ap-
propriate conditions involving an adjunction between structure and unit as here. In [22],
Kock considered a 2-functor T : K ! K and 2-natural transformations m : T 2 ! T

and i : 1 ! T satisfying the unit conditions strictly, but with m being associative only
up to coherent isomorphism; in [27], Street considered the general bicategorical notion of
\monad" on a bicategory, calling them \doctrines"; in [25], Marmolejo considered (the for-
mal theory of) pseudo-monads. All three authors had notions of a \monad with structure
adjoint to unit" in a suitable sense, and in all three cases the monads in question could
equally well have been characterized in terms of existence and uniqueness of lax-morphism
structure.

The equivalence of (iii), (iv), and (v) in Theorem 6.2 has been proved in the less strict
contexts mentioned above, as has Proposition 6.4. The equivalence of (i) and (ii) with
the other conditions in Theorem 6.2 seems to be new, as do Lemma 6.5 and Corollary 6.6.

In Corollary 4.4 we saw that (AEM) implies (AEL) and (AEC), and thus their con-
junction (AEL) ^ (AEC). We shall now show the converse.

6.9. Proposition. For a 2-monad T = (T;m; i), the following are equivalent:

(i) T satis�es (AEM) (in which case one might call T pseudo-idempotent);

(ii) there is an isomorphism � : iT:m �= 1 giving an adjoint equivalence (�; 1 : m a iT ) :
T ' T 2;

(iii) (AEL) ^ (AEC).
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Proof. One sees that (ii) follows from (i) by observing that if T satis�es not just (AEL)
but (AEM) then the � of Theorem 6.2(iii) is invertible. That (ii) implies (iii) follows
from Theorem 6.2. Thus it remains only to show that (iii) implies (i). But by Lemma 6.5,
if T satis�es (AEL) then any colax T -morphism is in fact a T -morphism, and the result
follows.

We are now ready to form an expanded version of the diagram of implications given
at the end of Section 3, assuming now that the 2-category K has products, inserters, and
equi�ers. We include in it the conditions (2Z) involving T -transformations, and also those
\primed" conditions which do not coincide with their \unprimed" counterparts:

(AEL)

 (JJ
JJ

JJ
JJ

J

JJ
JJ

JJ
JJ

J

��

(AEM)

!)KK
KK

KK
KK

K

KK
KK

KK
KK

K
ks +3

��

(AEC)

!)JJ
JJ

JJ
JJ

J

JJ
JJ

JJ
JJ

J

��

(2L) +3

��

(2M)

��

(2C)ks

��

(IEL)0

 (JJ
JJ

JJ
JJ

JJ
JJ

JJ
JJ

��

ks +3 (IEM)0

!)KK
KK

KK
KK

K

KK
KK

KK
KK

K

��

ks +3 (IEC)0

 (JJ
JJ

JJ
JJ

J

JJ
JJ

JJ
JJ

J

��

(AUL) +3

��

(AUM)

��

(AUC)ks

��

(IEL) +3

 (JJ
JJ

JJ
JJ

J

JJ
JJ

JJ
JJ

J
(IEM)

!)KK
KK

KK
KK

K

KK
KK

KK
KK

K
(IEC)ks

!)JJ
JJ

JJ
JJ

J

JJ
JJ

JJ
JJ

J

(IUL) +3 (IUM) (IUC)ks

Also proved, but not appearing in the diagram, are the equivalences:

(IYL)() (IYC)

(IEM) ^ (IUZ)() (IEZ)

(IEZ) ^ (AUW)() (IEV)0

(AEL) ^ (AEC)() (AEM).

6.10. Remark. In the case of a 2-category K with no non-invertible 2-cells, we have
(AUM) () (2M) by Proposition 5.6, and these conditions reduce to only �ve: (AEM),
(IEM)0, (AUM), (IEM), and (IUM).

7. The case of ordinary monads

Among the 2-categories are those for which the only 2-cells are identities; such 2-categories
are called locally discrete, and one usually identi�es these locally-discrete 2-categories with
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mere categories. To give a 2-monad on a locally-discrete 2-category is just to give a monad
on the corresponding category; and thus all that has gone before can be applied to ordinary
monads by considering the case where K is locally discrete. For the rest of this section,
therefore, K will be an ordinary category, viewed as a locally-discrete 2-category.

Because there are no non-identity 2-cells in K, the 2-categories of algebras T -Algl,
T -Alg, and T -Algc for a monad T all coincide with T -Algs, which is just the Eilenberg-
Moore category KT for the monad T . It follows that, for each X and Y, the conditions
(XYL), (XYM), and (XYC) are equivalent. Because the forgetful functor U : T -Alg!K
is faithful, the conditions (XUZ) are all vacuous; of course the conditions (2Z) are vacuous,
and so we are left with only two distinct conditions, (IEM) and (AEM), which we now
investigate.

The condition that an ordinary monad be property-like is just (IEM), since (AUM)
is vacuous; interpreting Lemma 3.1 in the current context of a locally-discrete K, we see
that the ordinary monad T is property-like if and only if there is at most one T -action
a : TA ! A on any given object A of K. To interpret Theorem 4.2 we �rst note that a
locally-discrete 2-category is exibly complete if and only if the corresponding category
is complete.

7.1. Theorem. For a monad T on a complete category K, the following conditions are
equivalent:

(i) T is property-like;

(ii) U : T -Alg! K is injective on objects;

(iii) U : T -Alg! K is pseudomonic;

(iv) i : 1! T is an epimorphism in Mnd(K) ;

(v) the identities 1 : T ! T and 1 : T ! T exhibit T as the coproduct T+T in Mnd(K);

(vi) if S is any monad on K, then there is at most one monad morphism from T to S;

(vii) if A : C ! K is a functor with arbitrary domain, then there is at most one T -action
on A.

We now turn to the monads which satisfy (AEM), equivalent to (AEL) and (AEC).
As the only adjunctions in an ordinary category are isomorphisms, it follows from Theo-
rem 6.2 that a lax-idempotent 2-monad on a locally-discrete 2-category is just an idem-
potent monad on the corresponding ordinary category.
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7.2. Proposition. The following conditions on a monad (T;m; i) are equivalent:

(i) T is idempotent, meaning that m is invertible;

(ii) iT is invertible;

(iii) T i is invertible;

(iv) m and iT are mutually inverse;

(v) m and T i are mutually inverse;

(vi) T i = iT ;

(vii) a : TA! A is a T -action precisely when it is inverse to iA;

(viii) U : T -Alg! K is full;

(ix) U : T -Alg! K is fully faithful;

(x) for all natural transformations f : A ! B : C ! K and all T -actions a : TA! A

and b : TB! B, the transformation f is a T -morphism from (A; a) to (B; b).

Proof. Most of these equivalences are immediate consequences of Theorem 6.2; but in
any case they are well known, except perhaps for (i), (x) | which is just the fact that
(AEM), (AEM)0.

7.3. Remark. Observe that the natural analogue in the \lax situation" of each of the
conditions (iv), (vi), (ix), and (x) is a condition on a 2-monad equivalent to its being
lax-idempotent, and appearing in Theorem 6.2; thus (iv) above corresponds to (iii) in
Theorem 6.2, while (vi), (ix), and (x) above correspond, respectively, to (iv), (i), and (ii)
in Theorem 6.2. Condition (vii) above corresponds to a slight modi�cation of condition
(v) of Theorem 6.2, involving pseudo T -algebras rather than strict ones.

7.4. Remark. As pointed out in the Introduction, every idempotent monad is of course
property-like, but the converse is false, U :Mon! Sgrp providing a counter-example.

When K = Set however, the two conditions are equivalent.

7.5. Proposition. If the monad (T;m; i) on Set is property-like then it is idempotent.

Proof. Let A and B be sets bearing T -actions and f : A! B a function. We shall show
that f is a T -morphism. We may suppose A to be non-empty, for otherwise the result is
trivial.

First suppose that f is a monomorphism (which of course we can think of as being
a subset inclusion) and that the complement of A in B is not a single point. Then f

is an equalizer in Set of the identity 1B and some bijection k : B ! B. Now as T is
property-like, U : T -Alg ! K is pseudomonic, and so both 1B and k are T -morphisms,
and so f too is a T -morphism, since U creates equalizers.
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If f is a monomorphism, and the complement of the non-empty A is a single point, we
may factorize f as

�
f

f

�
: A! B�B followed by a projection � : B�B ! B. Now B�B

bears the product T -action, and � is a T -morphism; whence f will be a T -morphism if
and only if

�
f

f

�
is one. But now

�
f

f

�
is monic, and the image has complement not equal to

1; and so we can apply the argument given above.
Finally suppose f is an arbitrary function A! B. Factorize f as the monomorphism�

1A
f

�
: A! A� B followed by the projection �B : A�B ! B. Once again A�B bears

the product T -action and �B is a T -morphism, while
�
1A
f

�
, being monic, is a T -morphism

by the previous two paragraphs; so f is itself a T -morphism.
Thus U is full, and so T is idempotent.

In fact the idempotent monads on Set are of limited interest, insofar as (to within
isomorphism) they are only three: the identity monad, the constant monad at 1, and the
monad whose algebras are 0 and 1.

8. On the coreectiveness of certain classes of monads and 2-monads

Let F be a family of morphisms in a category A, which we suppose for simplicity to
be �nitely complete. An object X of A is said to be coorthogonal to F if A(X; f) :
A(X;Mf ) ! A(X;Nf ) is invertible for each f : Mf ! Nf in F ; and we shall further
say that X is weakly coorthogonal to F if each A(X; f) is monomorphic. Clearly the
full subcategory F? of A given by the objects coorthogonal to F is closed in A under
any colimits that exist in A, while the full subcategory F [ given by the objects weakly
coorthogonal to F is closed in A not only under colimits but \under all jointly-epimorphic
families": by which we mean that, if the family G = (g : Xg ! Y ) is jointly epimorphic
with each Xg 2 F [, then Y 2 F [. Equally clearly, the full subcategory F? is itself closed
under jointly-epimorphic families if each f 2 F is a strong monomorphism; while if each
f 2 F is merely monomorphic, F? is closed under those families (g : Xg ! Y ) that are
jointly strongly-epimorphic: a notion equivalent, in the presence of �nite limits, to being
jointly extremal-epimorphic in the sense that there is no proper subobject of Y through
which every g factorizes.

Although the following results are so well known as to be essentially folklore, it is not
easy to point to these precise statements in print:

8.1. Lemma. Let A be a category with �nite limits. (a) If A admits all intersections |
even large ones, if need be | of strong subobjects, then a full subcategory B is coreective
with each counit �A : PA ! A a strong monomorphism if and only if it is closed under
jointly-epimorphic families. (b) If A admits arbitrary intersections of subobjects, then a
full subcategory B is coreective with each counit �A : PA! A a monomorphism if and
only if it is closed under jointly strongly-epimorphic families.

Proof. We can largely consider the two cases together. For the \only if" part, consider
a family G = (g : Xg ! Y ) with each Xg 2 B; then g is uniquely of the form �Y:hg,
where hg : Xg ! PY . If G is jointly epimorphic [resp. jointly strongly-epimorphic], then
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�Y is epimorphic [resp. strongly-epimorphic], and hence is invertible, since it is strongly
monomorphic [resp. monomorphic]; thus Y 2 B. As for the \if" part, consider for any
given A 2 A the family G = (g : Bg ! A) of all morphisms g with codomain A and with
domain Bg lying in B. Let �A : PA! A be the intersection of all the strong subobjects
[resp. subobjects] of A through which each g 2 G factorizes, say as g = iA:hg. Then the
family H = (hg)g2G is jointly epimorphic; for if x; y : PA ! C satisfy xhg = yhg for all
g 2 G, then every hg factorizes through the equalizer z : D ! PA of x and y, which by
the de�nition of PA must be invertible, giving x = y. Moreover, in case (b), the family
H is jointly strongly-epimorphic, since it factorizes through no proper subobject of PA.
In both cases, therefore, we have PA 2 B, and clearly �A : PA! A is the coreection.

When the category A in the considerations above is replaced by a 2-category, we are
concerned with the coreectiveness of B not merely as a category but as a 2-category:
for B 2 B we want �A to induce an isomorphism B(B;PA) �= A(B;A) of categories,
and not just an isomorphism B0(B;PA) �= A0(B;A) of sets. In fact one can give a 2-
categorical version of everything above, wherein coorthogonality now requires an isomor-
phism A(X; f) : A(X;Mf )!A(X;Nf ) of categories, the meaning of \jointly-epimorphic
family" is extended to include a 2-cell clause, and the concept of strong monomorphism
is understood in a 2-categorical sense. It is not, however, worth our while here to de-
velop these 2-categorical extensions in the abstract: for in our applications it is sim-
ple to give an ad hoc argument justifying the isomorphism B(B;PA) �= A(B;A), after
having established (by Lemma 8.1 or otherwise) the simpler merely-categorical bijection
B0(B;PA) �= A0(B;A).

There is one point, however, that is worth making here. A morphism f : A! B in a
2-category A should be called \monomorphic in A" if each A(C; f) : A(C;A)! A(C;B)
is a monomorphism of categories; that is, if composition with f is injective both for
morphisms and for 2-cells. This certainly implies that f is monomorphic in the underlying
category A0, but in general it is stronger. Since, however, A(C; f) is monomorphic inCat
if and only if Cat0(2;A(C; f)) is monomorphic in Set, and since this is A0(2 �C; f) if the
tensor product 2 � C exists, it follows that the two senses of \monomorphism" coincide if
A admits the tensor products 2 � C. They also coincide | and this is the case we need
below | when the 2-category A admits pullbacks; for f is monomorphic in A [resp. in
A0] if and only if the square

A //1

��
1

A

��
f

A //
f
B

is a pullback in A [resp. in A0], and these last statements coincide if pullbacks in A exist.
We intend to apply the results above when A is the ordinary category (2-Mnd(K))0

for a 2-category K. Observe �rst that the 2-category [K;K] admits all limits | includ-
ing weighted ones | that exist in K, these being formed pointwise. We shall suppose
henceforth that K admits all �nite limits (in the sense of [17]); recall that it therefore

admits inserters and equi�ers, as well as the cotensor product A2 for A 2 K. So [K;K]
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too is �nitely complete in this sense; and in particular f : T ! S is monomorphic in
[K;K] | the meaning of \monomorphic" now being unambiguous | if and only if each
fA : TA! SA is monomorphic in K. Next, it is easy to see that the forgetful 2-functor
V : 2-Mnd(K) = Mon[K;K] ! [K;K] creates whatever limits exist in [K;K] | again
including weighted ones. So 2-Mnd(K) is �nitely complete, and in particular V preserves
and reects monomorphisms. Since, however, there is no simple description of the strong
monomorphisms in (2-Mnd(K))0, we shall suppose in our applications of Lemma 8.1 that
K admits all intersections of subobjects; so that (2-Mnd(K))0 does so too by the above,
and a fortiori admits all intersections of strong subobjects.

Let us begin with the simple case of ordinary monads T on an ordinary category K,
where we have the following results involving direct applications of Lemma 8.1. In this
case, of course, 2-Mnd(K) reduces to the mere category Mnd(K) of monads and monad
morphisms | there being no 2-cells but identities.

8.2. Theorem. Let the category K be complete and admit all intersections of subobjects.
Then the full subcategory of property-like monads is coreective in Mnd(K), as is the full
subcategory of idempotent monads. In each case, the counit of the coreection is a strong
monomorphism.

Proof. We saw in Theorem 7.1 that T is property-like precisely when i : 1 ! T is
epimorphic inMnd(K); since such T are clearly closed in Mnd(K) under jointly-epimorphic
families, the �rst result follows from either (a) or (b) of Lemma 8.1 | but using (a) gives
the result on the counit. As for idempotent monads, we have since K is complete the
existence of hA;Ai, and the iso-comma object ff; fg here reduces to a pullback

hA;Ai

&&
hA;fi

NN
NN

N

ff; fg

99@0
0 rrrrr

%%@0
1

LL
LLL

hA;Bi :

hB;Bi

88

hf;Bi

qqqqqq

Clearly T is idempotent if and only if it is, for each f : A! B in K, coorthogonal to the
strong monomorphism �f : ff; fg ! hA;Ai � hB;Bi having for its components @00 and
@01. Since such T are closed in Mnd(K) under jointly-epimorphic families, the result again
follows by Lemma 8.1(a).

8.3. Remark. That the idempotent monads here are coreective is well known, having
�rst been proved by Fakir [12]. Although the argument above needs completeness of K
to construct the hA;Ai, another proof may be given using the results of Day [8], which
needs only �nite completeness along with all intersections of strong monomorphisms.

We return now to our more general situation of 2-monads on a 2-category K, and
suppose now that K is complete. In the notation of Section 2, to say that T satis�es
(AEL) is to say that, for each morphism f : A! B of K, the 2-monad T is coorthogonal
in (2-Mnd(K))0 to the morphism �f : ff; fgl ! hA;Ai�hB;Bi whose components are @0
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and @1. Similarly, to say that T satis�es (IEL) is to say that it is coorthogonal to �f for
each invertible f ; to say that T satis�es (AUL) is to say that it is weakly coorthogonal to
each �f ; and to say that T satis�es (IUL) is to say that it is weakly coorthogonal to those
�f with f invertible. There are precisely analogous results wherein L is replaced by M and
ff; fgl by ff; fg; and still others with L replaced by C. Moreover, we saw in Remark 5.5
that T satis�es (2L) if and only if it is coorthogonal to the strong monomorphism �� for
each � : f ! g : A ! B in K, with similar results for (2M) and (2C). It follows that
the 2-monads T satisfying any one or more of our twelve conditions (XYZ) and our three
conditions (2Z) are closed in (2-Mnd(K))0 under colimits; while those T satisfying one or
more of the six conditions (XUZ) and the three conditions (2Z) are moreover closed in
(2-Mnd(K))0 under jointly-epimorphic families.

It is in fact the case that any 2-monad T satisfying one of our �fteen conditions \does
so in a 2-categorical sense". We illustrate by the case (IEL), leaving the other cases
to the reader. Let T then have the property that, for each isomorphism f : A ! B

in K, each monad morphism � : T ! hA;Ai � hB;Bi factorizes uniquely through �f :
ff; fgl ! hA;Ai � hB;Bi; that is, there is a unique  : T ! ff; fgl with @0 = � and
@1 = �, where � and � are the componenets of �. Consider now a monad modi�cation
� : �1 ! �2; it corresponds by Lemma 2.1 to 2-cells � : a1 ! a2 and � : b1 ! b2 for which
(1; �) : (A; a2) ! (A; a1) and (1; �) : (B; b2) ! (B; b1) are lax T -morphisms. A monad
modi�cation � : 1 ! 2, however, corresponds by Lemma 2.2 to such a pair �; � satisfying
the further condition (f; �f1)(1; �) = (1; �)(f; �f2). But this condition is automatically
satis�ed, since T satis�es (IEL); for each of f1 and 1f is the isomorphism f . In other
words, if T is such that 2-Mnd(K)(T; �f) : 2-Mnd(K)(T; ff; fgl)! 2-Mnd(K)(T; hA;Ai�
hB;Bi) is a bijection on objects for each invertible f , then in fact 2-Mnd(K)(T; �f) is an
isomorphism of categories. Similarly, when it is injective on objects, as in the case of
(IUL), it is in fact a monomorphism of categories; and so on.

If 2-Mnd(K) admitted the tensor product 2 �T , this last observation would assert that
the 2-monads satisfying (IEL) are closed under the operation 2 � ( ); and similarly for each
of the other fourteen conditions. In the cases (XUZ) and (2Z), where the closedness under
jointly-epimorphic families leads by Lemma 8.1, when K is complete, to coreectiveness in
(2-Mnd(K))0, we could then appeal to Theorem 4.85 of [16] to deduce the coreectiveness
of such T in 2-Mnd(K). This approach fails as it stands, since we know nothing about
the existence in 2-Mnd(K) of 2 �T for a general T ; but in the following proof we overcome
this di�culty by \imagining a proof using 2 � T" and then eliminating the occurrences of
2 � T by using 2-cells � : g ! h : T ! S in place of morphisms f : 2 � T ! S.

8.4. Proposition. Let K be complete and admit all intersections of subobjects, and let
B be the full sub-2-category of 2-Mnd(K) given by those T satisfying some subset of the
nine conditions given by the (AUZ) and the (2Z). Then B is coreective in 2-Mnd(K),
with the counit a strong monomorphism.

Proof. B consists either of the objects B coorthogonal to a family (j : Xj ! Yj) of
strong monomorphisms, or else of the objects weakly coorthogonal to an unrestricted
family (j : Xj ! Yj). In either case one easily sees | using the observation above
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whereby B 2 B \satis�es the condition in the 2-categorical sense" | that, given a family
(�i : gi ! hi : Bi ! C) of 2-cells in 2-Mnd(K) with each Bi 2 B, which is \jointly
epimorphic" in the sense that there is no strong subobject z : D ! C of C through which
each �i : gi ! hi factorizes as z�0i : zg

0
i ! zh0i, we must have C 2 B. That being so,

we construct the coreection PA of A by considering the family of all 2-cells of the form
� : g ! h : B ! A with B 2 B, and taking for � : PA! A the smallest strong subobject
of A through which each � : g ! h factorizes.

We have been unable to go further without more restrictive conditions on the 2-
category K. We shall henceforth suppose it to be locally �nitely presentable as a 2-
category, in the sense of Kelly [17]; this covers such important 2-categories as Cat, Catg,
[A;Cat], and [A;Catg], for a small category A, as well as the 2-category Lex[T ;Cat]
of models for a \2-limit theory" T . Even for such a K, we cannot establish the coreec-
tiveness in 2-Mnd(K) of the property-like 2-monads, or of the fully property-like ones, or
of the lax-idempotent ones: one problem is that little is known of colimits colimiTi (see
Section 29 of [15]) in 2-Mnd(K), except in the case where each Ti has some rank. We
do have positive results, however, when we replace 2-Mnd(K) by its full sub-2-category
2-Mnd�(K) given by the 2-monads of rank � | the most important case of which is the
full sub-2-category 2-Mndfin(K) given by the �nitary 2-monads. Recall here that, for a
regular cardinal �, an endo-2-functor T (or a 2-monad (T;m; i)) is said to have rank �
(or, in a more modern terminology, to be �-accessible) when T preserves �-�ltered col-
imits; and to be �nitary when it has rank !, the �rst in�nite cardinal | that is, when
it preserves �ltered colimits. In fact we shall set out our arguments below just for this
important case of �nitary 2-monads, leaving to the reader the straightforward extension
to 2-monads of some given rank �.

Recall from [17] that an object c of K is said to be �nitely presentable when K(c;�) :
K ! Cat is �nitary. The full sub-2-category Kf of K given by the �nitely-presentable
objects is small and �nitely cocomplete, and we recoverK as Lex[Kop

f ;Cat], the full sub-2-
category of [Kop

f ;Cat] given by those presheaves that preserve \�nite 2-categorical limits"
in the sense of [17, Section 4]. For such a 2-category K, it was shown in [17] that the
underlying ordinary category K0 is locally �nitely presentable in the classical sense, with
(K0)f = (Kf )0, and with equivalences K0 ' [Kop

0f ;Set] ' [Kop
f ;Cat]0.

Central to our considerations below are the following results of [17, Prop. 7.6]. Write
Fin[K;K] for the full sub-2-category of [K;K] given by the �nitary endo-2-functors. An
endo-2-functor T of K is �nitary precisely when it is the left Kan extension (in the 2-
categorical sense) of its restriction to Kf ; indeed restriction along the inclusion J : Kf !K
induces an equivalence of 2-categories Fin[K;K] ! [Kf ;K], an inverse of which sends
P : Kf ! K to its left Kan extension LanJP . Since Kf is small and K is locally �nitely
presentable, the 2-category [Kf ;K] is itself locally �nitely presentable by [17, Example 3.4];
accordingly the equivalent 2-category Fin[K;K] is locally �nitely presentable (and thus
much better behaved than [K;K], which is not even locally small).

Since the �nitary endo-2-functors of K are closed under composition, the 2-category
Fin[K;K] has a monoidal structure with the composition as its tensor product. Under the
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equivalence above, this induces a monoidal structure ([Kf ;K]; �; J) on [Kf ;K]. Writing
M for the 2-category 2-Mndfin(K) = MonFin[K;K] of �nitary 2-monads on K, we have
an equivalence M ' Mon[Kf ;K] of monoidal 2-categories. The �rst step towards our
further results is given by:

8.5. Proposition. When K is locally �nitely presentable, the full sub-2-category M =
2-Mndfin(K) of 2-Mnd(K) consisting of the �nitary 2-monads is coreective in 2-Mnd(K).
Moreover M is itself a locally �nitely presentable 2-category.

Proof. The inclusion LanJ : [Kf ;K]! [K;K] preserves to within isomorphism the \tensor
products", by the very de�nition of the tensor product � on [Kf ;K]. It follows easily
that the right adjoint ( )J : [K;K] ! [Kf ;K] has the structure of a monoidal functor,
with a canonical comparison TJ � SJ ! TSJ . In these circumstances the adjunction
LanJ a ( )J : [K;K] ! [Kf ;K] passes to the monoids to give an adjunction L a R :
Mon[K;K] ! Mon[Kf ;K]; and the L here, modulo the equivalence M ' Mon[Kf ;K],
is the inclusion of M in 2-Mnd(K); so that M is indeed coreective. Now consider the
forgetful 2-functor V : Mon[Kf ;K] ! [Kf ;K]. This is easily seen to create all limits

(including weighted ones), and so in particular to create the cotensor products T2. By
[16, Thm 4.85], therefore, V will have a left adjoint if its underlying ordinary functor V0
does so | that is, if free monoids exist in the ordinary sense; and in fact they do exist, by
[15, Thm 23.3]. It then follows easily that V is monadic, using the Beck criterion (which
works perfectly well in the context of enriched categories); the details of this argument
for the monadicity of V (actually of V0) are given in [20, Section 4]. In that same section
of [20] it is shown that V is �nitary; thus the 2-monad M = V G, where G is the left
adjoint of V , is �nitary. We conclude that M ' Mon[Kf ;K] is further equivalent to the
Eilenberg-Moore 2-category [Kf ;K]M for a �nitary 2-monad M . However AM is locally
�nitely presentable when A is so if the 2-monad M has some rank: for the argument in
the ordinary-category case, given in [13, Satz 10.3], applies unchanged in the enriched
context.

8.6. Remark. We shall need the following observation: given locally �nitely presentable
categories M and N , along with left-adjoint functors P;Q : M ! N and a 2-cell � :
P ! Q, consider the inverter in CAT of �, namely the full subcategory P of M given
by those objects M 2 M for which �M is invertible. Then P is coreective in M, and is
itself locally presentable (although not necessarily locally �nitely presentable). Although
�rst proved as Proposition 3.14 of Bird's thesis [3], which remains unpublished, this result
can also be seen as a special case of [24, Thm 5.16], or of [1, Thm 2.77].

8.7. Theorem. Let K be a locally �nitely presentable 2-category, and letM again denote
the sub-2-category 2-Mndfin(K) of 2-Mnd(K) given by the �nitary 2-monads on K. De�ne
full sub-2-categories L � F � P �M as follows: P consists of the �nitary 2-monads on
K that are property-like, F consists of those that are fully property-like, and L of those
that are lax-idempotent. Then each of L, F , and P is coreective in M and hence (by
Proposition 8.5) coreective in 2-Mnd(K); and moreover P is itself locally presentable.
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Proof. We �rst consider P. By Theorem 4.2, a 2-monad T inM lies in P if and only if,
for any monad morphisms f; g : T ! S, there is a unique monad modi�cation � : f ! g.
Write jS : S0 ! S for the coreection of 2-Mnd(K) inM given by Proposition 8.5. Then
to give f; g : T ! S is just to give f 0; g0 : T ! S0 with f = jf 0 and g = jg0; while to give
� : f ! g is just to give �0 : f 0 ! g0 with � = j�0. It follows that T 2 M lies in P if and
only if, for each S 2 M, we have the property that each pair f; g : T ! S in M admits
a unique � : f ! g in M. Since M is locally �nitely presentable by Proposition 8.5
and hence cocomplete as a 2-category, it admits the tensor products 2 � T and 2 � T ; so
that the truth of the condition for each S 2 M becomes, as in (xvi) of Theorem 4.2, the
invertibility of � �T : 2 �T ! 2 �T . That is to say, P is the inverter of � � ( ) : 2 � ( )! 2 � ( );
and now Remark 8.6 gives the coreectiveness of P0 in M0. The assertion about 2-cells
that would enrich this to the coreectiveness of P inM is in fact trivial, precisely because
each P(T; S)(f; g) with T 2 P is a singleton; so it is indeed the case that P is coreective
in M and hence in 2-Mnd(K).

When we turn to F and to L, it is again the case | since these are contained in P|
that the 2-dimensional aspect of the coreection is trivial; so that it su�ces to establish
the coreectiveness in P0 of F0 and of L0. Now F0 consists of those objects T of P0

that satisfy (2L) and (2C): which by Remark 5.5 are those T in P0 that are coorthogonal
in (2-Mnd(K))0 to the strong monomorphisms �� (for (2L)) along with further strong
monomorphisms ��� (for (2C)). Equally, therefore, F0 consists of those T in P0 that are
coorthogonal in P0 to the coreections in P0 of the �� and the ���; but these coreections
| let us call them ��� and ���� | are strong monomorphisms in P0, since right adjoints
preserve strong monomorphisms. Since the locally presentable category P0 is complete
and well-powered, it certainly admits all intersections of subobjects; so that we may use
Lemma 8.1 to conclude that F0 is coreective in P0.

It remains to show that L0 is coreective in P0. Since the lax-idempotent 2-monads
are those satisfying (AEL), L0 consists by our remarks above of those T in P0 that are
coorthogonal in (2-Mnd(K))0 to each � : ff; fgl ! hA;Ai � hB;Bi. So L0 is equally
the full subcategory of P0 given by the objects coorthogonal to the ��f , where �

�
f is the

coreection into P0 of the arrow �f of 2-Mnd(K). The desired coreectiveness of L0 in
P0 now follows by Lemma 8.1, if we show that each ��f is monomorphic. Equivalently, we
must show for a property-like T that every monad morphism � : T ! hA;Ai � hB;Bi
(say with components � and �) is of the form �f for at most one monad morphism
 : T ! ff; fgl. This, in turn, is the statement that, for given T -actions a : TA! A and
b : TB ! B, and a given f : A ! B, there is at most one 2-cell �f for which (f; �f) is a
lax T -morphism (A; a)! (B; b); or equivalently the statement (AUL), which is true of a
property-like T by Theorem 4.2. This �nally completes the proof.

8.8. Remark. As we observed earlier there is, for each regular cardinal �, an analogue
of Theorem 8.7 with 2-Mndfin(K) replaced by the 2-category 2-Mnd�(K) whose objects
are the endo-2-functors of rank �. This raises various questions to which we have so
far found no answer, such as: does the coreection of 2-Mnd�(K) into the property-likes
carry �nitary 2-monads into �nitary ones? Perhaps the simplest questions of this kind
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concern the coreections of Theorem 8.2: does the coreection of an ordinary monad into
the property-likes, or into the idempotents, preserve �nitariness?
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