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FREENESS CONDITIONS FOR 2-CROSSED MODULES AND
COMPLEXES.

A. MUTLU, T. PORTER
Transmitted by R. Brown

ABSTRACT. Using free simplicial groups, it is shown how to construct a free or
totally free 2-crossed module on suitable construction data. 2-crossed complexes are
introduced and similar freeness results for these are discussed.

Introduction

Crossed modules were introduced by Whitehead in [23] with a view to capturing the
relationship between π1 and π2 of a space. Homotopy systems (which would now be
called free crossed complexes [5] or totally free crossed chain complexes (cf. Baues [3, 4])
were introduced, again by Whitehead, to incorporate the action of π1 on the higher relative
homotopy groups of a CW-complex. They consist of a crossed module at the base and a
chain complex of modules over π1 further up.

Conduché [9] defined 2-crossed modules as a model of connected 3-types and showed
how to obtain a 2-crossed module from a simplicial group. A variant of 2-crossed modules
are the quadratic modules of Baues [3, 4] and he also defines a notion of quadratic complex
bearing a similar relationship to quadratic modules that crossed complexes have to crossed
modules. It is a logical step to introduce an intermediate concept, namely 2-crossed
complexes. These use a 2-crossed module plus a chain complex of modules and we will
show how to derive such a thing from a simplicial group or groupoid. This is not really
new as Baues derives quadratic complexes in a similar way from simplicial groups in
Appendix B to Chapter IV of [3]. His treatment is thorough, but much remains to be said
about the explicit structure of such objects and in particular about freeness conditions
for them. We have therefore included a purely algebraic treatment of 2-crossed complexes
giving explicit formulae for the structure involved in the passage from simplicial groups
to 2-crossed complexes and an explicit direct proof of a freeness result essentially due to
Baues in [3]. We also discuss the relationship between crossed complexes and 2-crossed
complexes, especially with regards to freeness.

There is an alternative way of storing the information from a 2-crossed complex,
namely as a ‘squared’ complex as introduced by Ellis [14]. Discussion of freeness in that
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context together with a comparison of the two approaches will be postponed to another
article.

There is increasing evidence that crossed homological or homotopical methods can play
a useful role in non-abelian homological algebra and hence potentially in such diverse fields
as non-abelian homology of groups and the algebraic K-theory of C∗-algebras, however
much of this crossed homotopical algebra is at present available only in forms that rely
heavily on the corresponding machinery of algebraic topology such as the van Kampen
theorem arguments used by Brown, Ellis, Higgins and Loday, or the algebraic homotopy
results of Baues. Such machinery will not be available away from the crossed homotopical
algebra of groups or groupoids and this paper is one of a series, which tries to lay down
an alternative more purely algebraic and combinatorial route to these results. Clearly
discussion of freeness in such a context is central to applications.

The choice as to whether to use groups or groupoids as a setting is difficult. Simplicial
groups model reduced CW-complexes and thus connected homotopy types. Simplicial
groupoids model all CW-complexes and thus one can remove the connectedness assump-
tion on the homotopy types. The extra generality of the groupoid case is however often
felt not to outweigh the fact that for many readers groupoids are less familiar than are
groups. There is a middle way and that is to use groups as the basic case except when
the extra generality of groupoids is needed. We try to follow this middle way and use
groups to start with but later we will go over to groupoids when the links with crossed
complexes (usually defined over groupoids) are discussed. The way in which the group
based results can be generalised to the wider context will be discussed in detail later.
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1. Preliminaries

In this section we will concentrate on the reduced case and hence on simplicial groups
rather than simplicial groupoids. This is for ease of exposition only and all the results do
go through for simplicially enriched groupoids.

Notation: If X is a set, F (X) will denote the free group on X. If Y is a subset of
F (X), < Y > will denote the normal subgroup generated by Y within F (X).

1.1. Truncated simplicial groups. Denoting the usual category of finite ordinals
by ∆, we obtain for each k ≥ 0, a subcategory ∆≤k determined by the objects [j] of ∆
with j ≤ k. A simplicial group is a functor from the opposite category ∆op to Grp; a
k-truncated simplicial group is a functor from ∆op

≤k to Grp. We will denote the category
of simplicial groups by SimpGrp and the category of k-truncated simplicial groups by
TrkSimpGrp. By a k-truncation of a simplicial group, we mean a k-truncated simplicial
group trkG obtained by forgetting dimensions of order > k in a simplicial group G. This
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gives a truncation functor trk : SimpGrp −→ TrkSimpGrp which admits a right adjoint
coskk : TrkSimpGrp −→ SimpGrp called the k-coskeleton functor, and a left adjoint
skk : TrkSimpGrp −→ SimpGrp, called the k-skeleton functor. For explicit constructions
of these see [11].

Recall that given a simplicial group G, the Moore complex (NG, ∂) of G is the normal
chain complex defined by

(NG)n =
n−1⋂
i=0

Kerdn
i

with ∂n : NGn → NGn−1 induced from dn
n by restriction. There is an alternative form of

Moore complex given by the convention of taking

n⋂
i=1

Kerdn
i

and using d0 instead of dn as the boundary. One convention is used by Curtis [10] (the
d0 convention) and the other by May [17] (the dn convention). They lead to equivalent
theories.

The nth homotopy group πn(G) of G is the nth homology of the Moore complex of G,
i.e.

πn(G) ∼= Hn(NG, ∂)

=
n⋂

i=0

Kerdn
i /d

n+1
n+1(

n⋂
i=0

Kerdn+1
i ).

We say that the Moore complex NG of a simplicial group is of length k if NGn = 1 for
all n ≥ k + 1, so that a Moore complex of length k is also of length l for l ≥ k.

1.2. Free Simplicial Groups. Recall from [10] and [15] the definitions of free simpli-
cial group and of a CW − basis for a free simplicial group.

1.3. Definition. A simplicial group F is called free if
(a) Fn is a free group with a given basis, for every integer n ≥ 0,
(b) The bases are stable under all degeneracy operators, i.e., for every pair of integers
(i, n) with 0 ≤ i ≤ n and every generator x ∈ Fn the element si(x) is a generator of Fn+1.

1.4. Definition. Let F be a free simplicial group (as above). A subset F ⊂ F will be
called a CW − basis of F if
(a) Fn = F ∩ Fn freely generates Fn for all n ≥ 0,
(b) F is closed under degeneracies, i.e. x ∈ Fn implies si(x) ∈ Fn+1 for all 0 ≤ i ≤ n,
(c) if x ∈ Fn is non-degenerate, then di(x) = en−1, the identity element of Fn, for all
0 ≤ i < n.

As explained earlier, we have restricted attention so far to simplicial groups and hence
to connected homotopy types. This is traditional but a bit unnatural as all the results and
definitions so far extend with little or no trouble to simplicial groupoids in the sense of
Dwyer and Kan [12] and hence to non-connected homotopy types. It should be noted that
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such simplicial groupoids have a fixed and constant simplicial set of objects and so are not
merely simplicial objects in the category of groupoids. In this context if G is a simplicial
groupoid with set of objects O, the natural form of the Moore complex NG is given by
the same formula as in the reduced case, interpreting Kerdn

i as being the subgroupoid of
elements in Gn whose ith face is an identity of Gn−1. Of course if n ≥ 1, the resulting
NGn is a disjoint union of groups, so NG is a disjoint union of the Moore complexes of
the vertex simplicial groups of G together with the groupoid G0 providing elements that
allow conjugation between (some of) these vertex complexes (cf. Ehlers and Porter [13]).

Crossed modules of, or over, groupoids are well known from the work of Brown and
Higgins. The only changes from the definition for groups (cf. [16]) is that one has to
handle the conjugation operation slightly more carefully:

A crossed module is a morphism of groupoids ∂ : M −→ N where N is a groupoid
with object set O say and M is a family of groups M = {M(a) : a ∈ O} together with
an action of N on M satisfying (i) if m ∈ M(a) and n ∈ N(a, b) for a, b,∈ O, the result
of n acting on m is nm ∈ M(b); (ii) ∂(nm) = n∂(m)n−1 and (iii) ∂(m)m′ = mm′m−1 for
all m,m′ ∈ M , n ∈ N.

The definition of a CW-basis likewise generalises with each F a subgraph of the cor-
responding free simplicial groupoid.

2. 2-Crossed modules of group(oid)s

Crossed modules were initially defined by Whitehead as models for 2-types. D. Conduché,
[9], in 1984 described the notion of 2-crossed module as a model for (homotopy) 3-types.

In this section, we give a definition of 2-crossed module and describe a free 2-crossed
module of groups by using the second dimensional Peiffer elements.

The following definition of 2-crossed modules is equivalent to that given by D.Conduché,
[9].

2.1. Definition. A 2-crossed module consists of a complex of groups

L ��∂2
M ��∂1

N

together with an action of N on L and M so that ∂2, ∂1 are morphisms of N -groups, where
the group N acts on itself by conjugation, and a N -equivariant function

{ , } : M ×M → L

called a Peiffer lifting, which satisfies the following axioms:

2CM1 : ∂2{m,m′} = ( ∂1mm′) (m(m′)−1(m)−1),
2CM2 : {∂2(l), ∂2(l

′)} = [l′, l],
2CM3 : (i) {mm′,m′′} = ∂1m{m′,m′′}{m,m′m′′(m′)−1},

(ii) {m,m′m′′} = {m,m′} mm′(m)−1{m,m′′},
2CM4 : {m, ∂2l}{∂2l,m} = ∂1ml(l)−1,
2CM5 n{m,m′} = { nm, nm′},
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for all l, l′ ∈ L, m,m′,m′′ ∈ M and n ∈ N.

Here we have used ml as a shorthand for {∂2l,m}l in the condition 2CM3(ii) where l
is {m,m′′} and m is mm′(m)−1. This gives a new action of M on L. Using this notation,
we can split 2CM4 into two pieces, the first of which is tautologous:

2CM4 : (a) {∂2(l),m} = m(l).l−1,
(b) {m, ∂2(l)} = (∂1ml)(m(l)−1).

The old action of M on L via the N−action on L is in general distinct from this second
action with {m, ∂2(l)} measuring the difference (by 2CM4(b)). An easy argument using
2CM2 and 2CM4(b) shows that with this action, ml, of M on L, (L,M, ∂2) becomes a
crossed module.

We denote such a 2-crossed module by {L, M, N, ∂2, ∂1}. A morphism of 2-crossed
modules is given by a diagram

L ��∂2

��
f2

M

��
f1

��∂1
N

��
f0

L′ ��
∂′
2

M ′ ��
∂′
1

N ′

where f0∂1 = ∂′
1f1, f1∂2 = ∂′

2f2,

f1(
nm1) = f0(n)f1(m1), f2(

nl) = f0(n)f2(l),

and

{ , }f1 × f1 = f2{ , },
for all l ∈ L, m1 ∈ M, n ∈ N. These compose in an obvious way.

The groupoid analogues of these definitions are left to the reader. We will concentrate
on the reduced case i.e. with groups rather than groupoids.

We thus can consider the category of 2-crossed modules denoting it as X2Mod. Con-
duché [9] proved that 2-crossed modules give algebraic models of connected homotopy
3-types.

The following theorems, in some sense, are well known. We do not give all details of
the proofs as analogous proofs can be found in the literature, [9, 16], but do need some
indication of the proofs for later use.

We denote the category of simplicial groups with Moore complex of length n by
SimpGrp≤n in the following.

2.2. Theorem. ([9, 16].) The category of crossed modules is equivalent to the category
of simplicial groups with Moore complex of length 1.
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Proof. (Sketch) Let G be a simplicial group with Moore complex of length 1. Put

M = NG1, N = NG0 and ∂1 = d1 (restricted to M).

Then NG0 acts on NG1 by conjugation via s0. Since the Moore complex is of length 1,
we have

[Kerd1,Kerd0] = ∂2NG2 = 1

and the elements of the form [x−1s0d1x, y] with x, y ∈ NG1 generate this normal subgroup
(see [18]). It then follows that for all m,m′ ∈ M,

∂1(m)m′ = s0d1(m)(m′)s0d1m
−1 by the action,

= mm′(m)−1 since ∂2NG2 = 1.

Thus ∂1 : M → N is a crossed module. This yields a functor

F1 : SimpGrp≤1
�� XMod.

Conversely, let ∂1 : M → N be a crossed module. By using the action of N on M, one
forms the semidirect product M � N together with homomorphisms

d0(m,n) = n, d1(m,n) = ∂1(m)n, s0(n) = (1, n).

Define

H0 = N, H1 = M � N,

then we have a 1-truncated simplicial group H = {H0, H1}. Applying the right adjoint
to 1-truncation gives us a simplicial group which will again be denoted H. A calculation
due to Conduché [9] shows that this has Moore complex

Ker∂1 → M
∂1→ N.

We set H′ = sk1H and note NH ′
p = Dp∩NHp, where Dp is the subgroup of Hp generated

by the degenerate elements, and so NH ′
p is trivial if p > 2. We claim NH ′

2 = 1 and clearly
NH′ is then the given crossed module (M,N, ∂1). Now ∂2(D2 ∩NH2) is [Kerd0, Kerd1]
by the Brown-Loday lemma and a direct calculation using the descriptions of d0 and d1

above shows that [Kerd0, Kerd1] = 1, however ∂H
2 is a monomorphism so D2 ∩NH2 = 1

as required.

Remark. In general we will use Dn as above to denote the subgroup or subgroupoid
generated by degenerate elements in dimension n. The context will determine in which
group or groupoid it lives.

We recall from [20] the following result.
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2.3. Proposition. Let G be a simplicial group with Moore complex NG. Then the
complex of groups

NG2/∂3(NG3 ∩D3) ��∂2
NG1

��∂1
NG0

is a 2-crossed module of groups, where the Peiffer map is defined as follows:

{ , } : NG1 ×NG1 −→ NG2/∂3(NG3 ∩D3)

(x0, x1) �−→ s0x0s1x1s0(x0)
−1s1x0s1(x1)

−1s1(x0)
−1.

(Here the overbar on the right hand side denotes a coset in NG2/∂3(NG3∩D3) represented
by the corresponding element in NG2.)

The two actions of NG1 on NG2/∂3(NG3 ∩D3) are given by
(i) ∂1ml corresponds to the action s0(m)ls0(m)−1 via s0 and conjugation;
(ii) ml corresponds to the action s1(m)ls1(m)−1 via s1 and conjugation.

This proposition leads to the generalisation of Theorem 2.2 as follows. The methods
we use for proving the next result are based on ideas of Conduché [9]. A slightly different
proof of this result is given in [9].

2.4. Theorem. [9] The category of 2-crossed modules is equivalent to the category of
simplicial groups with Moore complex of length 2.

Proof. (Sketch) Let G be a simplicial group with Moore complex of length 2. In the
previous proposition, a 2-crossed module

NG2
��∂2
NG1

��∂1
NG0

has already been constructed. This defines a functor

F2 : SimpGrp≤2
�� X2Mod.

Conversely suppose given a 2-crossed module

L
∂2−→ M

∂1−→ N.

Define H0 = N . We construct the semidirect product H1 = M � N by using the action
of N on M with homomorphisms

d0(m,n) = n, d1(m,n) = ∂1(m)n, s0(n) = (1, n).

There is an action ml of m ∈ M on l ∈ L given as above by ml = {∂2l,m}l. Using
this action we form the semidirect product L � M. An action of (m,n) ∈ M � N on
(l,m′) ∈ L � M is given by

(1,n)(l,m′) = (nl, nm′),
(m,1)(l,m′) = (∂ml{m,m′},mm′m−1).
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Using this action we get the semidirect product

H2 = (L � M) � (M � N).

We have homomorphisms

d0(l,m,m′, n) = (m′, n), s0(m
′, n) = (1, 1,m′, n),

d1(l,m,m′, n) = (m m′, n), s1(m
′, n) = (1,m′, 1, n),

d2(l,m,m′, n) = (∂2lm, ∂1m
′n).

We thus have a 2-truncated simplicial group H = {H0, H1, H2}. Again the right adjoint
to a truncation (at level 2 this time) extends this H and the resullt has Moore complex

Ker∂2 → L → M → N.

We set H′ = sk2H and claim NH ′
3 = 1. The argument follows the same plan as above. By

the extension of the Brown-Loday lemma to dimension 3 (given as Theorem B in [20]), we
have that ∂3(NH3∩D3) is the product of [Kerd0, Kerd1∩Kerd2], [Kerd1, Kerd0∩Kerd2]
and [Kerd2, Kerd0 ∩ Kerd1]. A direct calculation using the descriptions of the actions
and the face maps above shows that these are all trivial, so ∂3(NH3 ∩D3) = 1, but again
∂3 is a monomorphism so NH ′

3 = 1 as required.

2.5. Free 2-Crossed Modules. The definition of a free 2-crossed module is similar
in some ways to the corresponding definition of a free crossed module. However, the
construction of a free 2-crossed module is a bit more complicated and will be given by
means of the 2-skeleton of a free simplicial group with given CW-basis.

It will be helpful to have the notion of a pre-crossed module: this is just a homomor-
phism ∂ : M −→ N with an action satisfying ∂(nm) = n∂(m)n−1 for m ∈ M, n ∈ N.

Let (M,N, ∂) be a pre-crossed module, let S be a set and let ν : S −→ M be a function,
then (M,N, ∂) is said to be a free pre-crossed N -module on the function ∂ν : S −→ N if
for any pre-crossed N -module (L′, N, ∂′) and function ν ′ : S −→ L′ such that ∂′ν ′ = ∂ν,
there is a unique morphism

Φ : (M,N, ∂) −→ (L′, N, ∂′)

such that φν = ν ′.
The pre-crossed module (M,N, ∂) is totally free if N is a free group.

2.6. Definition. Let {L,M,N, ∂2, ∂1} be a 2-crossed module, let Y2 be a set and ϑ :
Y2 → L be a function then {L,M,N, ∂2, ∂1} is said to be a free 2-crossed module on
the function ∂2ϑ : Y2 → M if for a 2-crossed module {L′,M ,N , δ, ∂1} and function,
ϑ′ : Y2 → L′ such that ∂2ϑ = δϑ′, there is a unique morphism

Φ : L −→ L′

such that δΦ = ∂2.
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The free 2-crossed module {L,M,N, ∂2, ∂1} is totally free if ∂1 : M → N is a totally
free pre-crossed module.

We shall give an explicit description of the construction of a totally free 2-crossed
module. For this, we will need to recall the 2-skeleton of a free simplicial group which is

F
(2) : F (s1s0(X0) ∪ s0(Y1) ∪ s1(Y1) ∪ Y2)

����
��d0,d1,d2

F (s0(X0) ∪ (Y1))����
s1,s0

����
d1,d0

F (X0)��
s0

with the simplicial structure defined as in Section 3 of [21], thus we will assume that
X0 and Y1 are parts of a CW -basis F with X0 = F0, Y1 = F1 \ s0(X0), Y2 = F2 \
(s0(F1) ∪ s1(F1)). Analysis of this 2-dimensional construction data shows that it consists
of some 1-dimensional data: namely the function ϕ : Y1 −→ F (X0) that is used to induce
d1 : F (s0(X0)∪Y1) −→ F (X0), together with strictly 2-dimensional data consisting of the
function ψ : Y2 −→< Y1 > where < Y1 > is the normal closure of Y1 in F (s0(X0) ∪ Y1).
This function induces d2 : F (s1s0(X0)∪ s0(Y1)∪ s1(Y1)∪ Y2) −→ F (s0(X0)∪ Y1). We will
denote this 2-dimensional construction data by (Y2, Y1, ψ, ϕ, F (X0)).

2.7. Theorem. Let (Y2, Y1, F (X0), ψ, φ} be 2-dimensional construction data as defined
above, then there is a totally free 2-crossed module {L,M,F (X0), ∂2, ∂1} defined by the
data.

Proof. Given the construction data we construct a 2-truncated simplicial group as above.
Set M =< Y1 > . With the obvious action of F (X0) on M , the function ϕ induces a free
pre-crossed module M = (M,F (X0), ∂1).

Now set Z = {s1(y)−1s0(y) : y ∈ Y1} and take D =< s1(Y1) ∪ Y2) > ∩ < Z ∪ Y2 >,
in F (s1s0(X0) ∪ s0(Y1) ∪ s1(Y1) ∪ Y2) so that M acts on D by conjugation via s1. The
function ϕ induces a morphism

θ : D −→< Y1 >,

given by θ(y) = ψ(y) for y ∈ Y2, (of course D = NF
(2)
2 , part of the Moore complex of the

2-skeleton of the free simplicial group on the data).

Recall from [21] the second dimension Peiffer normal subgroup P2 in D. This is the

normal subgroup of NF
(2)
2 that is of D, generated by the elements of the form:

[s0x
−1s1s0d1x, y1],

[s1x
−1s0x, s1d2(y1)y1

−1],
[xs1d2x

−1s0d2x, s1y1],
[y1

−1s1d2y1, y2],
[y1s1d2y1

−1s0d2y1, y2],
[y1s1d2y1

−1s0d2y1, s1d2(y2)y2
−1].
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It is easily checked that θ(P2) = 1 as all generator elements of P2 are in Kerd2. Taking
the factor module L = D/P2, we get a morphism ∂2 : L → M such that the diagram,

D ��θ

��
q ��

��
��

� M

L

��

∂2

��������

commutes, where q is the quotient morphism.
We will show that {L,M,F (X0), ∂2, ∂1}, i.e. the complex

D/P2
∂2−→< Y1 >

∂1−→ F (X0)

is the required free 2-crossed module on (Y2, Y1, F (X0);ψ, ∂1). The Peiffer lifting map

{ , } :< Y1 > × < Y1 >−→ D/P2

is induced by the map

ω :< Y1 > × < Y1 >−→< s1(Y1) ∪ Y2 > ∩ < Z ∪ Y2 >

given by
ω(bi, bj) = s0bis1bjs0(bi)

−1s1(bibj
−1bi

−1) with bi, bj ∈< Y1 > .

Thus we can define the Peiffer lifting map by

{bi, bj} = ω(bi × bj) = s0bis1bjs0(bi)
−1s1(bibj

−1bi)
−1.

That {L,M,F (X0), ∂2, ∂1}, is a 2-crossed module is now easy to check.
Let {L′,M, F (X0), δ, ∂1} be any 2-crossed module on the precrossed module M, and

let ϕ′ : Y2 → L′ be such that δθ′ = ψ . This function θ′ : Y2 −→ L′ uniquely extends
to an M -equivariant homomorphism D −→ L′ sending conjugation via s1 or s0 to the
corresponding actions. This extension sends elements of P2 to the trivial element of L′, so
induces a morphism Φ : L −→ L′ satisfying the conditions to make (Φ, Id, Id) a morphism
of 2-crossed modules. Uniqueness is easily verified.

Remarks. 1) A slight modification of the above will allow the construction of a free
2-crossed module on a function f : Y2 −→ M where ∂ : M −→ N is a given pre-crossed
module and ∂f = 1. One forms a truncated simplicial group from (M,N, ∂) as above,
then taking its skeleton one attaches new elements in dimension 2 corresponding to the
elements of Y2 using the given function to get d2.

2) In [3, 4] Baues introduces a notion of quadratic module and a related quadratic
complex. A quadratic module is a 2-crossed module with additional ‘nilpotency’ condi-
tions, similarly for quadratic complexes. Baues gives a construction of a quadratic module
from a simplicial group in Appendix B to Chapter IV of [3] and discusses free and totally
free quadratic modules and complexes.
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The data needed by his construction can also be used to give a totally free 2-crossed
module, which is not surprising given the close relationship between the two concepts. It
thus can also be used to produce a simplicial group having that (totally) free 2-crossed
module associated to it.

3) Using simple techniques from combinatorial group theory one can obtain more
explicit expressions for the intersection

< s1(Y1) ∪ Y2 > ∩ < Z ∪ Y2 >

that allow for the manipulation and interpretation of the quotient by P2. We believe
this could be of particular significance when G is a simplicial resolution of a group, say,
constructed by a step-by-step method as we outlined in [21] (based on ideas of M. André,
see references in [21]). This method not only provides a resolution but, if needed, comes
with a CW -basis already chosen. Here we will not explore this in depth as it would take
us too far away from our main aims, however some related ideas are explored briefly in
the next section.

3. The n-Type of the k-Skeleton

The key invariant in [7] was the module of identities amongst the relations of a presentation
(X : R) of a group. Given a way of ‘presenting’ a group G as a quotient F (X)/N where
N =< R >, there are often non-trivial identities amongst the elements of N as although
free as a group N is not free on the specified relators and their conjugates.

The data (X : R) allows a 1-skeleton of a free simplicial resolution of G to be con-
structed and the free crossed module used in [7] is isomorphic to that constructed from
that 1-skeleton. The various stages of the construction of a resolution, i.e. the k-skeleta,
can be observed as they change with k by looking at the way the invariants of the n-type
of these k-skeleta change with increasing k. We examine a slightly more general situation
namely that of a free simplicial group homotopy equivalent to a given simplicial group.
The case of a resolution corresponds to the given simplicial group being a K(G, 0), i.e.
constant with value K(G, 0)n = G and all faces and degeneracies the identity isomor-
phism. In the lowest dimension cases, this corresponds to going from a ‘presentation’ to
finding a description of the identities between the given ‘relations’ and then on being given
generators for this module of identities, observing the change in the various invariants that
results from adding these into dimension 2.

Recall from [17] that a morphism f : G → H of simplicial groups is called an n-
equivalence if

πi(f) : πi(G) −→ πi(H),

is an isomorphism for all i, 0 ≤ i ≤ n. Two simplicial groups G and H are said to have
the same n-type if there is a chain of n-equivalences linking them. A simplicial group H
is called an n-type if

πi(H) = 1 for i > n.
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Any reduced connected simplicial set X yields a free simplicial group, G(X) via the Kan
loop-group construction and the algebraic n-type of G(X) is the same as the topological
(n + 1)-type of X. Any simplicial group is n-equivalent to an n-type, in fact, to a free
n-type.

Suppose given a simplicial group G and n ≥ 1, then we can use the ‘step-by-step’
construction (see [21]) to produce a free simplicial group F and an epimorphism

ψ : F −→ G

which is an n-equivalence. The construction goes like this:

Take a free group F (X0) and an epimorphism

ψ : F (X0) −→ G0;

set F(0) = K(F (X0), 0), the constant simplicial group with value F (X0). We have a
morphism

ψ(0) : F(0) −→ G.

Now take a free F (X0)-group on construction data to enable the kernel of ψ(0) to be killed
and G1 to be ‘covered’

F (s1(X0) ∪ Y1)

�� ��

��ψ1
G1

�� ��
F (X0)

��

��ψ0
G0,

��

to make π0(ψ
(1)) an isomorphism. Here ψ(1) is the extension of the morphism of 1-

truncated simplicial groups given by left adjointness so ψ(1) : F(1) → G. The construction
then follows the obvious routine, mirroring the construction of a resolution. You add
new generators in dimension k + 1 to adjust the kernel at level k and to produce an
epimorphism onto Gk+1. If one is looking only for the invariants of the n-type one need only
continue until F(n+1) has been reached although it is at this stage that interesting things
happen! We can therefore represent any n-type of a simplicial group by an n-equivalent
free simplicial group constructed using construction data a ‘step-by-step’ construction of
skeleta,

F(0) ↪→ F(1) ↪→ . . .F(n) ↪→ F(n+1) = F.

Moreover as an n-type does not retain homotopy information in dimensions greater than
n, we have that any n-type can be represented by a simplicial group having NFk = 1
if k > n + 1, and such that each Fk is free, for instance by taking coskn+1F

(n+1) above.
The transition from the n-type of the (n + 1)-skeleton to the (n + 1)-type outlines the
‘lack of fit’ of the approximation so far, for example, the non-trivial homotopy groups
πn+1(F

(n+1)), when constructing a resolution.

We look at this transition in more detail for low values of n.
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3.1. From 0-Type to 1-Type. Here we only match π0(F) with π0(G), so assume given
(X0 : R), a presentation of G0 and then take Y1 to kill the kernel N of F (X0) → π0(G);
Y1 can be chosen to be a disjoint union of R and a set of generators for NG1. We will
assume that φ : Y1 → F (X0) is given φ(yi) = bi ∈ F (X0) say. This gives a free simplicial
group

F(1) : ... F (s1s0(X0) ∪ s0(Y1) ∪ s1(Y1))
����
��d0,d1,d2

F (s0(X0) ∪ Y1)����
s1,s0

����
d1,d0

F (X0)��
s0

with
d1

0(y) = 1, d1
1(y) = b, s0(x) = x ∈ F (X0), y ∈ Y1,

and so that we get a set of degenerate generators in a CW-basis in each dimension greater
than 1. There is an isomorphism π0(F

(1)) ∼= F
(1)
0 /d1

1(Kerd1
0) and considering the morphism

d1
1 : Kerd1

0 −→ F (X0), one readily obtains Imd1
1 = N and F

(1)
0 = F (X0). Thus

π0(F
(1)) ∼= F (X0)/N ∼= π0(G)

as planned.
The corresponding 1-type is given by the free crossed module,

∂1 :< Y1 > /P1 −→ F (X0)

where P1 is the Peiffer subgroup as introduced in [7]. There are the following isomorphisms

π0(F
(1))) ∼= F (X0)/N,

π1(F
(1)) ∼= Ker∂1

which is the module of identities of the presentation (X : Y1) of π0(G), and finally

πi(F
(1)) ∼= 1 for i > 1.

The 1-type of the 1-skeleton is thus represented by a free crossed module but note this only
corresponds to a simplicial group 0-equivalent to G as here Ker∂1 must be free abelian
whilst π1(G) has no such restriction..

3.2. From 1-Type to 2-Type. Suppose now given the 2-skeleton F(2) of a free sim-
plicial group approximating G

F(2) : ... F (s1s0(X0) ∪ s0(Y1) ∪ s1(Y1) ∪ Y2)
����
��d0,d1,d2

F (s0(X0) ∪ (Y1))����
s1,s0

����
d1,d0

F (X0).��
s0

As above, one gets the same π for this F(2):

π0(F
(2)) ∼= F (X0)/N,
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but

π1(F
(2)) ∼= Ker(< F (s1(Y1)) > /∂2NF

(2)
2 −→ F (X0)),

where ∂2NF
(2)
2 is generated by P1 and the image d2(Y2), thus π1(F

(2)) ∼= π1(G). There is
an isomorphism

π2(F
(2)) ∼= Ker(NF

(2)
2 /∂3(NF

(2)
3 ) −→ F

(2)
1 ).

Since NF
(2)
2 =< s1(Y1)∪Y2 > ∩ < Z∪Y2 >, the second homotopy group of the 2-skeleton

looks like

π2(F
(2)) ∼= Ker((< s1(Y1) ∪ Y2 > ∩ < Z ∪ Y2 >)/P2 −→ F (s0(X0) ∪ Y1))

where P2 is the second dimension Peiffer normal subgroup as above. This homotopy group
is a module over π0(G) and is a measure of the identities among the level 1 elements of
the construction data for the homotopy type of G.

Note that free 2-crossed modules correspond to the 2-type of the 2-skeleta of free
simplicial groups, and conversely.

There is a neat alternative description of these free 2-crossed modules and, in partic-
ular their top terms NF2/P2. As this description depends on the corresponding freeness
property for free crossed squares, we postpone detailed discussion to a later paper, how-
ever the top term of the corresponding crossed square is also NF2/P2 and so is isomorphic
via an algebraic version of Ellis’ results [14] to the coproduct of a tensor product M ⊗ M̄
of two related free pre-crossed modules with a free crossed module C on Y2. In particular
if F is a simplicial group model for ΣK(π, 1), for instance the model proposed by Wu [24]
and used by us in [19], one gets NF2/P2 is related to π ⊗ π, NF1 similarly related to π
and NF0 is trivial, with ∂ : NF2/P2 → NF1 being the commutator map, thus with a little
extra work retrieving the Brown-Loday description of π3(ΣK(π, 1)) as Ker(π ⊗ π → π),
but without use of the generalised van Kampen theorem.

4. 2-crossed complexes and simplicial groupoids.

Any simplicial group, G, yields a normal chain complex of groups, namely its Moore
complex, (NG, ∂). Carrasco and Cegarra [8] examined the extra structure inherent in a
Moore complex that allows the reconstruction of G from NG. They gave the name hyper-
crossed complex to the resulting structure. Crossed complexes themselves, (cf. Brown
and Higgins, [5]) correspond to a class of hypercrossed complexes in which nearly all of
the extra structure is trivial, so the only non-abelian groups occur in dimensions 0 and
1 and are linked by a crossed module structure. The other terms are all modules over
NG0/∂NG1. Thus a crossed complex looks like a crossed module with a tail that is a
chain complex of π0(G)-modules. If the original simplicial group is the Kan loop group
of a reduced simplicial set, K, it is well known that the corresponding complex has free
π0(G)-modules analogous to the chains on the universal cover in dimensions greater than
1 and a free crossed module in the bottom two dimensions. (This is implicit in much
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of the work of Baues on crossed (chain) complexes [2, 3, 4] and was explicitly proved by
Ehlers and the second author [13].)

Crossed modules model algebraic 1-types ( and hence topological 2-types) and we have
recalled from Conduché’s work [9] that 2-crossed modules model algebraic 2-types (and
hence topological 3-types). It is thus natural to give these latter models also a ‘tail’ and
to consider ‘2-crossed complexes’. Such gadgets are related to the quadratic complexes of
Baues [3, 4] in an obvious way.

4.1. Definition. A 2-crossed complex of group(oid)s is a sequence of group(oid)s

C : . . . → Cn
∂n→ Cn−1 → . . . C2

∂2→ C1
∂1→ C0

in which
(i) Cn is abelian for n ≥ 3;
(ii) C0 acts on Cn, n ≥ 1, the action of ∂C1 being trivial on Cn for n ≥ 3;
(iii) each ∂n is a C0-group(oid) homomorphism and ∂i∂i+1 = 1 for all i ≥ 1;
and
(iv) C2

∂2→ C1
∂1→ C0 is a 2-crossed module.

Note that for any 2-crossed module,

L
∂2→ M

∂1→ N,

K = Ker∂2 is abelian, since L
∂2→ M is a crossed module, but more is true. The action

of M on L via N restricts to one on K, but by axiom 2CM4, the action is trivial. This
implies that the action of N itself on K factors through one of N/∂1M . Thus in any
2-crossed complex,

. . . → C4 → C3 → ker ∂2

is a chain complex of C0/∂1C1-modules and a 2-crossed complex is just a 2-crossed module
with a chain complex as tail added on.

Given a simplicial group or groupoid, G, define

Cn =




NGn for n = 0, 1
NG2/d3(NG3 ∩D3) for n = 2
NGn/(NGn ∩Dn)dn+1(NGn+1 ∩Dn+1) for n ≥ 3

with ∂n induced by the differential of NG. Note that the bottom three terms (n =
0, 1, and 2) form the 2-crossed module already considered in section 2 and that for
n ≥ 3, the groups are all π0(G)-modules, since in these dimensions Cn is the same as the
corresponding crossed complex term (cf. Ehlers and Porter [13] for instance or use the
hypercrossed complex theory of Carrasco and Cegarra [8]).

4.2. Proposition. With the above structure (Cn, ∂n) is a 2-crossed complex.

Proof. The only thing remaining is to check that ∂2∂3 is trivial which is straightforward.
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If the simplicial group(oid) G is the loop group(oid) of a simplicial set, K, then for
n ≥ 3, the corresponding 2-crossed complex term Cn is the n+1st module of the chains on
the universal cover of K since that is the description of the corresponding (and isomorphic)
crossed complex term.

The notion of a morphism for 2-crossed complexes should be clear. Such a morphism
will be a morphism of graded group(oid)s restricting to a morphism of 2-crossed modules
on the bottom three terms and compatible with the action. This gives the category,
X2Comp of 2-crossed complexes and morphisms between them. We denote by X1Comp

the category of crossed complexes together with their morphisms. It is easily seen that
the construction C is functorial.

A 2-crossed complex C will be said to be free if for n ≥ 3, the C0/∂C1-modules, Cn

are free and the 2-crossed module at the base is a free 2-crossed module. It will be totally
free if in addition the base 2-crossed module is totally free.

Before turning to a detailed examination of freeness in 2-crossed complexes, we will
consider the relation between crossed complexes and 2-crossed complexes.

Suppose

C : C2
∂2→ C1

∂1→ C0

is a 2-truncated crossed complex, then (C1, C0, ∂1) is a crossed module, C2 is a module
over C0 on which ∂1C1 acts trivially, and ∂1∂2 = 0.

4.3. Lemma. The 2-truncated crossed complex yields a 2-crossed module by taking
{c, c′} = 1 ∈ C2 for all c, c

′ ∈ C1 and in which the actions of C1 on C2 are both trivial.

The proof is easy.
As a consequence such truncated crossed complexes form a full subcategory of the

category of 2-crossed modules, as the two definitions of morphism clearly coincide on this
subclass of 2-crossed modules. Passing to the ‘complex’ version of this one clearly gets:

4.4. Proposition. There is a full embedding E of the category, X1Comp, of crossed
complexes into that X2Comp, of 2-crossed complexes.

We will think of X1Comp as a full subcategory of X2Comp via this embedding.

4.5. Theorem. The full subcategory of crossed complexes is a reflexive subcategory of
X2Comp.

Proof. We have to show that the inclusion functor E has a left adjoint, L. We first look
at a slightly simpler situation.

Suppose that D is a 2-truncated crossed complex as above, and

C : C2 → C1 → C0,

with morphisms, ∂2, ∂1 and Peiffer lifting, { , }, is a 2-crossed module. If we are given
a morphism, f = (f2, f1, f0) of 2-crossed modules, f : C → E(D), then if m1,m2 ∈ C1,
f2{m1,m2} = 1 since within E(D) the Peiffer lifting is trivial. This in turn implies that
f1 < m1,m2 >= 1, where < m1,m2 >= (∂m1m2)(m1m

−1
2 m−1

1 ) is the Peiffer commutator
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of m1 and m2. Thus any morphism f from C to E(D) has a kernel that contains the sub-
groupoid {C1, C1} generated by the Peiffer lifts in dimension 2, and the Peiffer subgroup,
P1 of the precrossed module ∂1 : C1 → C0 in dimension 1.

We form L(C) as follows:

L(C)0 = C0

L(C)1 = C1/P1

L(C)2 = C2/{C1, C1},

with the induced morphisms and actions. The previous discussion makes it clear that L(C)
is a 2-truncated crossed complex, and L is clearly functorial. Of course f : C → E(D)
yields L(f) : L(C) → LE(D) ∼= D, so L is the required reflection, at least on this
subcategory of truncated objects.

Extending L to all crossed complexes is then simple as we take L(C)n = Cn if n ≥ 3
with L(∂)n = ∂n if n > 3 and

L(∂)3 : C3 → C2/{C1, C1} = L(C)2

given by the composite of ∂3 and the quotient from C2 to L(C)2. The details are easy so
will be omitted.

We thus have functors from the category of simplicial group(oid)s to both X1Comp

and X2Comp and a relationship between these two categories given by the last result. The
first two functors will for greater precision be denoted C(1) and C(2), respectively. The
functor C(1) is studied for instance in Ehlers-Porter [13] and Mutlu-Porter [21] whilst C(2)

was introduced in 4.1. above. We first note that the three functors have the ‘right’ sort
of interrelationship.

4.6. Proposition.

LC(2) ∼= C(1)

Proof. The key is to identify {C1, C1}, when C = C(2)(G) for G a simplicial group(oid),
but by the results of [19] and [21] this is NG2 ∩ D2 or rather its image in the quotient
C(2)(G)2. The result then follows since

C(1)(G)2 =
NG2

(NG2 ∩D2)d3(NG3 ∩D3)
.

The functor L preserves freeness.

4.7. Proposition. If C is a (totally) free 2-crossed complex, then L(C) is a (totally)
free crossed complex.
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Proof. Above dimension 2, L does nothing and as

C0/∂C1
∼= L(C)0/∂L(C)1,

the freeness of the modules L(C)n, n ≥ 3 is not in doubt. In the base 2-crossed module
we have merely to check that L(C)2 is a free L(C)0/∂L(C)1-module, as the behaviour of
L on (C1, C0, ∂) is just that of the quotienting operation that turns a pre-crossed module
into a crossed module and this preserves freeness, [7].

Suppose therefore that C2 → C1 → C0 is a free 2-crossed module with basis θ : Y1 →
C2. Suppose also given a module M over G = C0/∂C1 and a function φ : Y1 → M . We
need to show that φ extends over L(C)2. To do this we construct a 2-crossed complex D
as follows:
The base is the precrossed module (C1, C0, ∂). To complete this we put Ker∂1 × M in
dimension 2 with as ∂2 the inclusion on Ker∂1 and the trivial map on M ,

D := {D : Ker∂1 ×M → C1 → C0}.

The Peiffer lifting is just the Peiffer commutator map from C1 × C1 to Ker∂1 and the
axioms are easy to check. Now define φ̄ from our given free 2-crossed module to this one
D by defining φ̄(y) = (∂θy, φy) for y ∈ Y2. Compose φ̄ with the obvious projection from
D to the crossed complex

M → 1 → G,

where as before, G = C0/∂C1. The composed map factors through L(C) giving a mor-
phism L(C)2 → M extending φ. This is the unique extension of φ since at each stage
uniqueness was a consequence of the conditions.

The functor C(2) has a right adjoint just as does C(1). Given a 2-crossed complex,
C, one first constructs the simplicial group (or groupoid) corresponding to the 2-crossed
module at the base using Conduché’s theorem. We also form the simplicial group from
the chain complex given by all Ci, i ≥ 2. The fact that C2 may be non-abelian does not
cause problems but does force semidirect products to be used rather than products. The
two parts are then put together via a semidirect product much as in Ehlers and Porter,
[13], Proposition 2.4.

Remark. An alternative but equivalent approach to this result follows a route via hyper-
crossed complexes (cf. Carrasco and Cegarra, [8]), and their extension of the Dold-Kan
theorem.

We can also adapt the methods used in Ashley, [1]. In this case NG is a crossed
complex if and only if NGn∩Dn is always trivial. (In fact then NG ∼= C(1)G since C(1)G
is obtained by dividing NGn by (NGn ∩Dn)dn+1(NGn+1 ∩Dn+1) in dimension n, and of
course this is assumed to be trivial for all n ≥ 2.) A similar argument applies if NGn∩Dn

is trivial for n ≥ 3. Then C(2) ∼= NG, so the Moore complex is a 2-crossed complex.
Similar structures have been studied by Duskin, Glenn and Nan Tie under the name

of ‘n-hypergroupoids’ (here n = 2). The simplicial groupoids that give rise to 2-crossed
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complexes seem to be 2-hypergroupoids internal to the category of groupoids or a slight
variant of such things. We have not investigated this connection in any depth.

The category X2Comp is clearly equivalent to a reflexive subcategory of the category of
hypercrossed complexes of Carrasco and Cegarra [8] and this completes the chain of linked
structures, since this implies once again that X2Comp is equivalent to a reflexive subcate-
gory (in fact a variety) in the category of simplicial groupoids. (Each of these statements
is the result of direct verification using the constructions and structures outlined above.)

Given the linkages between the various categories above, one would expect the follow-
ing:

4.8. Theorem. If F is a free simplicial group (or groupoid), then C(2)F is a totally free
2-crossed complex. If F is a CW -basis for F, then F gives construction data for C(2)F.

Proof. We have already seen that the base 2-crossed module of C(2)F is totally free on
construction data derived from the CW -basis. It remains to show that the C0/∂C1-
modules in higher dimension are free on the corresponding data, but here we can use the
case of crossed complexes, and that was proved in [21].

Remarks. There are various things to note:

(i) The proof given in [21] that if F is a simplicial resolution of G then C(1)F is a free
crossed resolution of G does not immediately extend to ‘2-crossed resolutions’. The notion
of 2-crossed resolution clearly would make sense and seems to be needed for handling
certain problems in group extension theory, however we have not given a construction of
a tensor product of a pair of 2-crossed complexes and the result for crossed resolutions
used π(1)⊗ where π(1) is the free crossed complex on one generator in dimension 1, and
thus is also π(∆[1]) the crossed complex of the 1-simplex, and ⊗ is the tensor product
of crossed complexes defined by Brown and Higgins in [6]. This construction could be
avoided by using enriched tensors K⊗ in the simplicially enriched category of 2-crossed
complexes and then taking ∆[1]⊗ , which should give the same result, but as we have not
yet investigated colimits of 2-crossed complexes that construction must also be put off for
a future date. It should be pointed out that Baues has in [3] defined a tensor product of
totally free quadratic complexes using a natural construction, so it seems unlikely that
the conjectured constructions are technically difficult.

(ii) Although C(2)F is totally free for F a free simplicial group, it seems almost certain
that not all totally free 2-crossed complexes arise in this way. The difference is that in a
CW -basis, any new generators in dimension n influence πnF or πn−1F either as generators
or relations. In a 2-crossed complex, the new generators at each level influence the relative
homotopy groups, πn(F(n),F(n−1)). The differences here are subtle. This is of course more
or less equivalent to the realisation problem of Whitehead discussed at length by Baues
[3] but occurring here in a purely algebraic context. Clearly this algebraic realisation
problem is important for the analysis of the difference in the homotopical information
that can be gleaned from crossed or 2-crossed as against simplicial methods.
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