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DISTRIBUTIVE LAWS FOR PSEUDOMONADS

F. MARMOLEJO
Transmitted by Ross Street

ABSTRACT. We define distributive laws between pseudomonads in a Gray-category
A, as the classical two triangles and the two pentagons but commuting only up to
isomorphism. These isomorphisms must satisfy nine coherence conditions. We also
define the Gray-category PSM(A) of pseudomonads in A, and define a lifting to be a
pseudomonad in PSM(A). We define what is a pseudomonad with compatible structure
with respect to two given pseudomonads. We show how to obtain a pseudomonad with
compatible structure from a distributive law, how to get a lifting from a pseudomonad
with compatible structure, and how to obtain a distributive law from a lifting. We show
that one triangle suffices to define a distributive law in case that one of the pseudomonads
is a (co-)KZ-doctrine and the other a KZ-doctrine.

1. Introduction

Distributive laws for monads were introduced by J. Beck in [2]. As pointed out by
G. M. Kelly in [7], strict distributive laws for higher dimensional monads are rare. We
need then a study of pseudo-distributive laws. The first step in this direction is quite
easy: just replace the two commutative triangles, and the two commutative pentagons of
[2] by appropriate invertible cells. The problem is to determine what coherence conditions
to impose on these invertible cells. We should point out that, in [7], there is a step in this
direction, keeping commutativity on the nose on the triangles and one of the pentagons,
and asking for commutativity up to isomorphism in the remaining pentagon, plus five
coherence conditions. The structure obtained from such a distributive law between two
strict 2-monads is not, in general, a strict 2-monad, and since that article deals exclusively
with strict 2-monads, what is obtained is a reflection result.

In this paper, instead of working with 2-monads we work with the more general pseu-
domonads. We will see that the structure obtained from a distributive law between
pseudomonads is a pseudomonad. We define a distributive law between pseudomonads
as we said above, that is to say, asking for commutativity up to isomorphism of the two
triangles and the two pentagons. We propose nine coherence conditions for these isomor-
phisms. See section 4 below. We observe that the coherence conditions of [7] and the ones
proposed in this paper coincide if in our setting we ask for commutativity on the nose of
the two triangles and one of the pentagons. Thus, the examples of distributive laws given
there are examples here as well.

But why exactly these nine coherence conditions?
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A more conceptual approach to distributive laws for monads is given by R. Street in
[11]. It is shown that for a 2-category C, a distributive law is the same thing as a monad
in the 2-category MND(C), whose objects are monads in C. In this paper we introduce the
corresponding structure PSM(A), of pseudomonads for a corresponding three dimensional
structure A, see section 7.

In M. Barr and C. Wells’ book [1], exercise (DL) asks to prove that, for monads,
a distributive law, a lifting of one monad structure to the algebras of the other, and a
monad with compatible structure with the two given monads, are essentially the same
thing. For pseudomonads we have already mentioned distributive laws. We define a lifting
as a pseudomonad in PSM(A) in section 8. In section 6, we define what a pseudomonad
whose structure is compatible with two given pseudomonads is.

We show how to obtain a composite pseudomonad with compatible structure from
a distributive law between pseudomonads, how to obtain a lifting from a pseudomonad
with compatible structure, and, closing the cycle, how to obtain a distributive law from
a lifting.

We see then, that the nine coherence conditions can be shown to hold if we define a
distributive law from a lifting. In turn, these coherence conditions allow us to define a
lifting from a distributive law between pseudomonads.

The situation for distributive laws between KZ-doctrines and (co-)KZ-doctrines is
a lot simpler. We show that either one of the triangles commuting up to isomorphism
(satisfying coherence conditions) is enough to obtain a distributive law. One such example
is the following. It is well known that adding free (finite) coproducts to categories is a KZ-
doctrine over Cat, and adding free (finite) products is a co-KZ-doctrine. There is a more
or less obvious distributive law of the co-KZ-doctrine over the KZ-doctrine. Observe
however that even if we arrange for these KZ-doctrine and co-KZ-doctrine to produce
strict pseudomonads, the distributive law obtained is not strict.

This article is possible thanks to the definition of tricategories given in [6]. Tt is
simplified by the fact that a tricategory is triequivalent to a Gray-category, a fact proved
in the same paper. We thus work in the framework of Gray-categories, as in [6], continuing
the development of the formal theory of pseudomonads started in [9].

This paper is organized as follows:

In section 2 we provide a brief description of the framework that we use, namely that
of Gray-categories. For more details we refer the reader to [6, 5].

In section 3 we recall the definition and some properties of pseudomonads given in
[9], the definition uses the definition of pseudomonoid given in [3]. We also define the
change of base 2-functors, change of base strong transformations and the change of base
modifications that we will need in later sections. Change of base turns out to be a Gray-
natural transformation.

In section 4 we define distributive laws for pseudomonads by replacing commutativity
on the nose by commutativity up to isomorphism. We give here the nine coherence
conditions that these isomorphisms should satistfy.

The first step to obtain compatible structures is to define a composite pseudomonad
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from a distributive law. This is what we do in section 5.

In section 6 we define what a pseudomonad with compatible structure is with respect
to given pseudomonads. Furthermore, we exhibit the structure that makes compatible
the composite pseudomonad defined in the previous section.

We introduce the Gray-category PSM(A) in section 7, to define, in section 8, a lifting
as a pseudomonad in the Gray-category PSM(A).

In section 9 we show how to construct a pseudomonad in PSM(A), from given pseu-
domonads with compatible structure. In the following section, we go from a pseudomonad
in PSM(A) to a distributive law.

Section 11 deals with distributive laws of (co-)KZ-doctrines over KZ-doctrines. We
refer the reader to [9] for the definition and properties we use of KZ-doctrines, but see [8] as
well. We show that one triangle, plus coherence, is enough to produce a distributive law.
Compare with [10], where it is shown that one of the triangles suffices for a distributive
law between idempotent monads. The case of KZ-doctrines over KZ-doctrines is formally
very similar. In this latter case, we show that the composite pseudomonad is again a
KZ-doctrine.

I would like to thank the referee for helping improve the readability of this paper, and
for suggesting condition (12), after which all the conditions of section 6 were modeled.

2. Gray-categories

As in [9] we will work with a Gray-category A, where Gray is the symmetric monoidal
closed category whose underlying category is 2-Cat with tensor product as in [6]. A Gray-
category is a category enriched in the category Gray as in [4]. We will briefly spell out
what this means, and we refer the reader to [6] and [4] for more details.

A Gray-category A has objects A, B, C, .... For every pair of objects A, B of A, A
has a 2-category A(A,B). Given another object C in A, A has a 2-functor A(C,B) ®
A(A,B) — A(A,C). This 2-functor corresponds to a cubical functor M : A(B,C) x
A(A,B) — A(A,C). We will denote M by juxtaposition, M(G,F) = GF for F €
A(A,B) and G € A(B,C). Given f: F — F'in A(A,B) and g : G — G’ in A(B,C) we
will denote the invertible 2-cell M, ¢ by

ar 2 qr
Gfl Lo, lG’f
GF' —=G'F'.

What the definition of being cubical means for M is the following: Given ¢ : f — f':
F— F and f" : F/ - F"in A(A4,B),andy:9g —¢ : G — G, and ¢" : G — G
in A(B,C), we have that (_)F : A(B,C) — A(A,C) and G() : A(A,B) — A(A,C)
are 2-functors, (-)f : ()F — (0)F" and ¢(-) : G(-) — G'(-) are strong transformations,
D¢ : (O)f = (O)f and v() : g(0) — ¢ () are modifications, and the following three
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equations are satisfied

gF
GF_ W GF = GF
Gf’(&)Gf Z,F lG/f l ,ﬂGlf/\(f‘)c
gl
GF —7>G'F  GF__ W G'F,
\‘g/fF‘/Z'
GF L~ aF GF 2~ F
Gfl Y gy lG’ f
GF —> G'F' — GU"oN | Aaay |G (f7of)
g
Gf”l Vg lG’f” i
GF'— o G'F” GF" g GF
and
" ""0g)F
ar Y or o or = qr % g
Gfl ﬂgf lG’f ﬂg/f/ lG//f Gfl )ﬂ(gllog lG//f
GF, gF’ G/F/ g//F/ G,,F, GF/ ( 7 GWF/

and if either f or g is an identity, then gs is an identity 2-cell. Now, for every object A of
A there is a distinguished object 14. The triangle in the definition of enriched categories
means that the action of multiplying by 14 is trivial. Now, the pentagon means that for
another object D in A, and k : k — k' : K — K’ in A(C, D) the following equations hold:

(KG)F = K(GF),

(KG)f = K(Gf), (Kg)F=K(gF), (kG)F=k(GF),
(KG)p = K(Gyp), (K7)F=K(F), (kG)F=r(GF),
(Kg)y = K(gr), (kG)y=kgy, and (ky)F = kyr.

We will use these properties freely, without further mention.

3. Pseudomonads

For the convenience of the reader we will recall here the definition of a pseudomonad in
a Gray-category A, for more details we refer the reader to [9]. We adopt the definition of
pseudomonoid given in [3].
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3.1. DEFINITION. A pseudomonad D on an object K of a Gray-category A is a pseu-

domonoid in the Gray monoid A(KC, K).

We give now, in elementary terms, what this means. A pseudomonad D as above
consists of an object D in A(K,K), and 1-cells d : 1x — D, and m : DD — D and

invertible 2-cells

D2 pp&i p DDD 22~ DD
2| N
Idp ml Idp le A lm

such that the following two equations are satisfied:

DDm DDm

DDDD ——=DDD DDDD ——=DDD
DmD p, m Dm
mDD \ — \ mDD m=1 |mD
DDD D DD B <= . DD
DDD uD u DDDD—> DD <—
mD mD e
DD———=D DD—7—D,
5 DD Db DDD 5
DdD \ /Dﬁ \ m
DD——DDD D = DD DD D.
D
mD S Dc%n /n:D
DD DD

It is shown in [9] that the following three equations hold for any pseudomonad D:

D
Id 7 1dp B ﬁh\ d/4 \jD

e % D g 47* | DD™=D,

P, / xD/Dd

dDD

pp-2 ppD
pp—"5%ppp-"~ppD .
D m i Dm
op D———=DD
DD—y;7— D B
= |m
Idp
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DD

N
DDd

Dn DD—"—=D
= DDdl P lan (5)
le é lm <~
DDD ——>DD——D.
DD—7— D

We recall as well the 2-categories of algebras for a pseudomonad D. Let A be another
object in A. An object in the 2-category D-Alg, consists of an object X in A(X,K),
together with a 1-cell x : DX — X and invertible 2-cells

X px DDX 25~ DX

2y
N N
X DX T>X,

such that the following two equations are satisfied

DDDX 22X . ppXx DDDX22EDDX
DmX py Dz Dz
mDX \ — \ mDX ol |mXx
DDX———=DX P . DX ©)
DDX pX i DDX—— DX <=
o | =0 |
mX mX p—
DX —— X DX ——X,
DX . DDX
DdX / \ /D@Z%U«\ x
DX22ppx x| X = DX DX-Z-X. (7)
mX /; DAX nXiL/m{X
DX DDX

It is shown in [9] that for every object (¢, x) in D-Alg,, the following equality holds:

DX%DDX%DX = px-2L£ppx (8)
I R S 70
DX —— X X —*-px
Yy
Id N
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A 1-cell (h,p) : (¥, x) — (¥, x) in D-Alg, consists of a 1-cell h: X — X’ in A(X,K),
together with an invertible 2-cell

DX -2 pxr

l /, l

/
X—=X

that satisfies the following two equations:

x-%px-px = x—“%px (9)
v
o wlm Z , lx/ hl 2, th
X—X X' px’
Ly |,
1d lx
X/
ppx PP ~ppx’ pDXx "Pppx
Dz Dp Dz’ Dz’
mX| \DX<: , mX‘/ mgl [mX’ ,
on DX = o PX (10)
DX <X: P ’ DX TDX’ = /
\ : < * pNE r
x x <
X h ! X T)X,'

A 2-cell £: (h,p) — (W, p): (¥, x) — (¥, X) is a 2-cell £ : h — R/ such that the following
condition is satisfied:

Dh
DX v DX’ = DX -2 DX’ (11)
s

ﬂp, / /K /
X——F—X X_lex.

Given another object Z of A, and K € A(Z,X), we can define a change of base
2-functor K : D-Alg, — D-Algs. If € : (h,p) — (B, 0)) : (¥,x) — (', %) is in D-Alg,,
then its image under K is K : (hK,pK) - (WK, p'K) : (WK, xK) — (Y'K,X'K). If
k : K — K’ then we define the strong transformation k: K — K’ such that E(vﬁ,x) =
(Xk,z;;") and /l%(h,p) =h' Ifrk:k—k:K— K in A(Z,X), then Ry, = Xr defines
a modification 7% : k — k’. We have actually defined a Gray-functor D-Alg : A? — Gray.

For every object Z, we have an obvious forgetful 2-functor D-Alg, — A(Z,K). These
2-functors define a forgetful Gray-natural transformation ® : D-Alg — A(_, K).
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4. Distributive laws

Let D = (D, d, m, Bp, np, up) and U = (U, u, n, By, nu, pu) be pseudomonads on the same
object K of the Gray-category A. A distributive law of U over I consists of a 1-cell
r:UD — DU in A(K, K), together with invertible 2-cells

UD UD
D N N
K/wl ﬂwZ
D o DU U i DU

vup-“~upu -"Y~DUU  UD ’ DU
nDl Y ws an UmT N\ 4 TmU
UD - DU  UDD-—5>DUD—> DDU
subject to the following coherence conditions:
(coh 1)
| ——>U—">UD = U_
ﬁ av ‘%lr 1 ” U>UD )
T d\D/uD:l DU.

(coh 2)

UD 2 UUD——~UDU = UD-"2UUD

o U (ML’“ ur

p . DUy . UDU

14/7‘;1 rU

=" putpiu

UD DU 1/%1 .

DU.
(coh 3)

= vv-"™™uup
| g
v—"~UD UDU

U
ﬂwg ﬂwg l
rU
.\ DUU
an
DU.
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(coh 4)
vvuD¥UUDU = UUUDUUTUUDU
UrU
UDuu WUD nDU UDUU
/ Dn
UDU
l UUD->UDU DUUU UDU
Vs rU
puD Tnl rU
D nD DUU \ DM
”“’?P”l DUU  DUU
UD——— DU & NIyl
UD Y DU.
(coh 5)
UD = DD ubD UDD
R 2 lUm
Yy, r DDu D ——>UD
ymu w1 l'r‘
Du
——— DU DDU — DU.
(coh 6)
vuDDEUUD = UUDD UUD
UrD
nDD
nDD UDD UDUD ur
UDr
%D \ I?Uw
UDD z—>UD | < DUUD 1 UDDUY,=UDU

o
d
o
?
&/
%8
o
Q‘
E
-

Dr DDUU DUU
An ﬂm" A
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(coh 7)
Id
m
UD—"*—~UDD—————>UDU = id,.
dUD ﬂszer
r DUD r
ﬂdr lDr ﬂw‘l
DU ——==—= DDU —— DU
W
Id
(coh 8)
Id
/m
UD——2*—~UDD ———UD = id,,
rl ﬂr—l er
d
(coh 9)
UDDD 22"~ UDD — UDpDD-Y2" -~ UDD
rDD s m rDD 2| v Dm\
DUDD UDD——>UD DUDD ——> DUD UD
DrD DrD
DDUD  Zup | DDUD o
bbr mUD " DDr ”DM\ z.,, r
DDDU DUD DDDU ——> DDU
mU
DDU —— DU DDU DU.

mU

Observe that if the pseudomonads are strict (3, n and p are identities), and wy, wsy

and ws are identities, then we obtain the coherence conditions of the “mild” extensions
of the classical distributive laws given in [7].
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5. The composite pseudomonad given by a distributive law
Assume we have a distributive law of U over D as in section 4. The first question is how

to produce a composite pseudomonad from U, D, and the distributive law. This is what
we do in this section.

Define V. = (V) v, p, By, nv, py) as follows: V = DU € A(K,K); v is defined as the

composite

e —>U 2% DU;
p is the composite

DDn mU

DUDU 2™~ DDUU DDU DU;

By is defined to be the pasting

DUDU

dUDU DrU
a1

UDU v b DDUU

DuDU
DDul UDDﬂU

uDU DDU

mU
dDU | BoU

DU 7 DU;

7y as the pasting

\\\\U&y//////z \\\\\\\\\\\

DUU UD DDU

%\

DUAU U/Dw U1 DDUU

DU;

DrU

DUDU
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and py as the pasting

puDpUDU 22V puppuu 2222 puppu 2V~ pupU
DrUDU A Drit DrDUU Drpt DrDU
DDUUDUWDDUDUUWDDUDU DrU
DDrUU  {/ppy-t DDrU ) Du,U
DDnDU DDDUUU i DDDUU T DDUU
V/ DDwsU DDDnU  {/DDDuy DDDn {/ Dm,, DDn
DDUDU DD DDDUU ——5 55— DDDU Dl DDU
mUDU v m mDUU ) mpt mDU ¥ U mU
DUDU Dl DDUU DDn DDU 7 DU.

5.1. THEOREM. V = (V u,p, By, v, v), as defined above, is a pseudomonad on the
object K.

Proof. Observe that the pasting of puy and nyV ! is

o \%f U ri Urs
Daupy VDDT,;l Y DuwyU
\ﬂ> ¥ DDwsU ¥ DDDuy ¥ Dm.,
e 4oz o ¥ v

We must show that this pasting equals p o V 3y. Substitute the pasting of Dd,py and
DnyDU™! by the pasting of Ddy;. ,;; and DDnyDU. Then use (coh 2). With the help of
(2) show that

\Dml DD Dy l lDDrU
4

lDDDn

Y
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and make the substitution. Make the substitution

wzléfDU l l - ﬂUc%)’Ud\
DrfUl DTB; rU Dn

Kl v v ¢ J {

WﬁWUWl

followed by the substitutions

l UuD Dl@ulU l% %
Wl l

R Y
K lé/mrU ﬂmDn ﬂTU

DdUDU

and

and

Use (coh 7), and finish with the substitution

\\%@l ﬂDUdTUl N /lf%UD%
) |
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In regards to the other condition, observe that the pasting of V vy, uyV and py is:

Dl% DUmD\hA Dm

-1 -1
Dr | Dry J/
l DDl l DwyU
DDwsU l DDDpuy \L Dm., l
md | mph | mvU |

Where we have only put the name of the corresponding 2-cell in each parallelogram. To
show that this pasting is equal to the pasting of p,, uv and py we do the following. First
make the substitution

e N e
l e l )/bDrrl}l l/bDrD}Ll e
\ YDr=! Ypri! \D%Dm% -

Then make the substitutions

S oo S

myy

l DDyt l DDDnglDDDD'uU l\,ﬁ/Al
A A 3 D

MDn

] e ] S
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DUDNDDM
2 Y

l zrDlUl ﬂDrDanl

l ﬂDDrr_l} l ;Drgil

l DﬂerTU l D)é‘B]ian lh\
l DDr;t, l DDry 1. l% l \
2 v DDy Drpo.
N\D DUr, J v l \%A l
DD&BL

and

—_—
DDDUND% l
A A :

Now use (coh 4). Proceed with the following substitutions

l WUDN L DDDry, j \
» A DDDrit
l K { DDDr;;t L [DDDDrnl l \KU\ {
A v DDDDp
DDDD - . 7
DDDDpy L WDN ‘
ﬂ U

9

followed by

e = _—
\@\Umjl\ \
_—
DDDwsUU 1 DDDnj}
J l DDDr;} l J

- —> DDDw3U

l
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l \Dmmm%

<

;;z} l

Zii l

—1
Mpry l

me" l\
upDU

followed by the substitution

l \);D[m
mph pu DDDw\gL'\DDDM
4 A v

l s l /LBID"l

l ZB%JTU l ZBlan lm\lUA

DDngﬂ\DDﬂ l

Use (coh 9) to show that

—_—
\DUM Dr;lU \
/™ /A

Dwy DU
%DumU
Dm.,.yy DwsU
ﬂ DwsU -
N ﬂ /éDDmn D
MpDn mMn
—_——
ﬂ Dmn mmU ¢
up DU A Vi upU
Y v
\ upU \ m
/A /2N
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and make the substitution. Next the substitution

WDNDTN DralD'rU DTE'lDDn
Drt ﬂ ﬂ ﬂ 14/ Dr}

rD

/

U DU
\)fx Drik L Drpl. \
4 4
DDryyy | DDryp, DDngl, | DDngl,
DpDwuDUY Y 4 4 4 DDws DU

\ﬂx DDDnt|  DDDnp} mE}JTU m{]}wn
mé;DU v : 141
Mpyry ™MDy DR -1 K/
/ / Py

followed by the substitution

?
/N

Y% % \
Drpty DDUwsU

\lLl \\l

Substitute the pasting of DDUm,,, DDw,U, DDTEL and DDDr;! by the pasting of
DDwsUU, DDr;;' and DDmys,. Then observe that the pasting of DDmy,, DDm,, and
DDDDpuy equals the pasting of DDDuy, DDm,y and DDm,,. Use (coh 6). To finish
the proof, make the substitution

l’% DDwsU lmZ:nU l
L S
N N =S
NN S

[
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6. Compatible pseudomonad structures

We consider now the question of when can a pseudomonad be considered as the composite
of two pseudomonads.

Let D, U be pseudomonads on the same object K of the Gray-category A. Given
another pseudomonad V = (V,v,p, By, nv, py) on the same object I, we say that V is
compatible with the pseudomonads D and U if V' = DU and there are invertible 2-cells:

U DUDU DUDU
% XU DUdU X\ DuDU X
0.7 ) bs
lx ——DU,  DUU o DU, DDU — DU,

subject to coherence conditions. To describe the coherence conditions introduce the fol-
lowing pastings:

6, = DUDUU Dﬁﬁwl DUDU
Dm\ %7
DUDUDU
pU pDU| P
ﬂp;[} DUDU ﬂ v

U% U92x
Dn

DU DU,
and
0s = DDUDU mﬁw' —> DUDU
03DU—
papiBr P
DUDUDU
Dp DUpl/ P
bow prpy et
%DU7 U 03 x

DDU DU.

mU

The coherence conditions are:

(12)

DU

DUv

DUu );/DUGI1 = DUU;

DUU
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DUU
WZJ
but {Dugyy py
05"
Aj} ”9\\
DU =% DDU —— DU
Ymu—
Id
DDU

DuDU
| dupu

WU/ UDU ——=DUDU "

dUDU =1
{e1DU ’
/D:] ﬂ\
DU—— "%  CpU
Id
DDUU mﬁ’ : DUU
63U~
DUDUU
DDn ﬂDan J(DUDn ﬂDU@Zl Dn
DUDU
% U/ 03 x
DDU — DU
DUUU lﬁU 1 DUU
0.U—
%\ %
DUDUU
DUn ¥ bud, lDUDn ¢ oopt | Dn
DUDU
A
DUU — DU
DDDU D$;4 DDU
iy . 3/Dp7
DDUDU
mDU Vmzd \LmUDU ¢ oozt |mU
DUDU
DupUu | 63 P
DDU — DU

DﬁU)

ﬁ]D)Ua

D,u[[j1

ppU

Some other equations we will need later are contained in the following:

(14)

(15)

(17)
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6.1. PROPOSITION. Assume we have invertible 2-cells 01, 0o, and 03, satisfying the co-

herence conditions. Then

(Dn7'94) : (BVUv MVU) - (ﬁVnU/V)

is a 1-cell in V-Algc, and the following are 2-cells in V-Algy:

5% MV 5% MV)

{ Do
(DUu,py ! (Dn,04)

(BvU, uwU)

(DUn,p;1 (ﬂVU’ /‘LVU) (Dn,04)
\

(ﬁVUU7 MVUU) U’ Dy - (ﬁVa ,UV)a
OUTTY (3,17, gy 7) P

We also have that
(p,05") : (BoUDU, upUDU) — (5o, iU

15 a 1-cell in D-Algy, and the following are 2-cells in D-Algy:
(DUp,mallo) (ﬂDUD[L M]D)UDU> (p,egl)
/

\

<5DUDUDU7 /“LDUDUDU> U’ mv (6]D)U7 M]D)U)u
/
(»DU.05 DU (BpUDU, uipU DU) 65 1)

(BoU DU, pipUDU)

(DUAUmp (P05 ")
02 ﬂ

(BoUU, ppUU) (BoU, ppU),

(Dn,mpt)
(DUDn.mih,) ) (BoU DU, MDUDUM{)

(ﬁDUDUUv M]DUDUU) U’ 04 I (ﬁDUa II’DU)a

(P00 T (BpUU, ppUU) (Prima’)

Furthermore, if we define o1 as,

dUDU
uDU ‘91DU\*
ﬂ DUDU )
&%

DU,

(18)

(19)

(20)

(21)

(22)

(23)

(24)
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o9 as
UUDU R UDUDU —"—~UDU
%\ Zy idUDUDUﬂ 0! ldUDU
nDU DUUDU 2PV pu pu 222~ DU DU
¥ dupu %Dﬂ@i lpDU v oy lp
UDU —— DUDU ——5— DU,
v as
UuU vau UDU
o ﬁ/dalw ldUDU
n puU 2% pupU
M lp
iy
U — DU.

then (01, 09) is an object in U-Algy, and (dU,~) : (By, pu) — (01, 02) is a 1-cell in U-Algy.

Proof. We show first that (Dn,0,) is a 1-cell in V-Alg,.. To show that (Dn, 6,) satisfies
(9), start on the left hand side and make the substitutions:

= Y

ByU . W
Pau UDUdU
= Y
Wj " o 5/’
- . -

and

UDn-

_—
l UDUdU l

0o ——— DUO;!
_

To show that (Dn,0,) satisfies (10), start on the left hand side, cancel DU, and its
inverse, make the substitution

- >

l<}> | ] S

_—
p -1
aUu Py
_— _ .
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Then use (1), and conclude with
m

—1 —1 —1
l pDUdUl Pp l l Ppn l
—_—

Next we show that Dny in (19) is a 2-cell in V-Alg,.. To show that satisfies (11), start
on the left hand side of (11). Use (12) to substitute the pasting of DU Dny and DU6;,*
for the pasting of DUBy and DUDU#;*. Then make the substitution

m\
el e
N4
Now use (5), and then use (12) once again.

Next we show that Dpuy in (20) is a 2-cell of V-algebras. Start on the right hand side
of (11). Use (16) to substitute the pasting of f and Dpuy, by the pasting of DU, DU6,
and 6,U. Make the substitution

l:l\ ) l<$

Y

Since we already know that (Dn,6,) is a V-algebra morphism, we can substitute the
pasting of py, p,_j}l, and 64, by the pasting of DU#,, 6, and uy. By the definition of 6,,
we can substitute the pasting of uyU, py,; and 6,U by the pasting of DUO,U and 6,U.
Finally, use (16).

That (p, 05 ) is a morphism of D-algebras, and that py, 6y, and 6, are 2-cells of
D-algebras are similar and left to the reader.

Now we show that (o1, 09) is an object in U-Algy.. Paste ny DU~ onto the left hand
side of (7), and make a substitution on it to obtain

—1 -1
W\DU\T‘iUDU \L d—l l
Up

(25)
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Also paste nyDU~! on what turns out to be the right hand side of (7), and make the
following two substitutions:

y \ d[;,[ll’D W \
b DU DU -
dUDU DU By

SN, e ]

Compare the pasting we arrive at with (25), and use equation (12).
Now, the left hand side of (6) in this case, is the following pasting:

Udynpu UHQN \
\ dUzliUDU l UP l
le o l

| ] | l o

uy DU

Make the following sequence of substitutions:

—_—
v / dEDUP \
I — — -1
1 dupDU Up
dUp DU py
—_— —_— )
_— _—
DU py / p,?l \
- - vDUTH Ty
125% \\ wy /

> —_
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- > - >
l\Ua\ l dUcllUUDUl \
nDU
g IR - > i
UnDU e UDnDU
UdUDU DUanU
- >
- >

_ >

—_—
U6, DU -1
dUDUdUDU
S —

duppU N U6, DU
dupnDU

Y

a1 a1
Udyaupu Udl—]; UUdU DU UUp
dﬁiUUDU = !
_1 ] UdUDU
dypvavpU UDUp Udgly oo pUdy!
p

On the other hand, the right hand side of (6) in this case is the pasting

—1 —1
/ \ o l dUp l
0. DU
—1 122
"p dnpU
—1 N
1 dUp 123

"qu DU

a1
/ vavny 02 DU

On this pasting make the following substitutions:

I TS T B N

dnpU dnupDU
-1 —1 Dn it Dnjt
dyavpu dyp l dUDbU P l
Y
—1 -1
\ U% DUk

Dnygpu Dny'|  6:DU = 0:UDU

- —1 —1

and
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and

—1> < Doy (definition of 6,).
l deDUl \ l \
W\) = \%l
04DU

Compare both results, and use equation (16).
The claim about (dU,~) is left to the reader. =

Next we prove that the composite of two pseudomonads via a distributive law as
defined in section 5, is compatible.

6.2. THEOREM. Assume we have a distributive law as in section 4 and let V the com-
posite pseudomonad defined in section 5. If we define 01 = idgyon, and Oy as the pasting

DUDU
| DwaU
DUU DDUU
Dnl YDd, lDDn
DU DDU

DdU ﬁ
-1
N\U lmU
Id

DU,

DdUU

and 03 as the pasting

DUDU

U’leU

DDU DDUU

DDuU

YpDpy DDn

Id DDU%DU,

then the pseudomonad V is compatible with U and D.
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Proof. Conditions (12), (13), and (14) are fairly easy and left to the reader. The remain-
ing ones are also easy once we have shown that

0, = DUDUU™DUDU and 05 =  DDUDU™% DUDU
DrUU Ypr-t | DU DDrU Ym.y |DrU
DDUUU ;557 DDUU DDDUU 55 DDUU
DDnU DDy | DDn DDDn Ymp, |DDn
DDUUWDDU DDDUW)DDU
mUU Uyt |mU DmU Yy |mU
DUU —F- DU, DDU — —— DU.

To show the first equality above, start with the definition of 6, and make the following
substitutions:

/;U@\ : %l Dry l
l*ﬁw%l 3] l / DW

and

. AN
l%wkl mDil l\ m
\ / \ My l

Now use (coh 3) on the pasting of DDUw,U~!, DDwsU, DDn;[} and DDwoU. Next
make the substitutions:

—_— pr— _—
DDUd;*t
DDwoUU, ————> DDd;;}

U \

_ - o,
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—_— p—
\L \ Dm l DD'UJU\L DDdn l
—_—
DDd,y ’
l DDDuy l
_ >
DM

lenl D l
=
St 7

Finally, use (coh 8).
The proof for 05 is very similar, except that we need the equation:

and
= mUoDDno DnpUU .

uUD Ur uUD

UD—UUD—UDU = UD——=UUD
ﬁD71 rU Tl ﬂUT Ur
uDU
N Dl DU 2 - UDU
= Dn % v
e DUU
UD r .DU Id ﬂDﬁU Dn
DU.

To prove this last equation, observe that Idpy is isomorphic to Dn o rU o uDU, thus it
suffices to show that the equation holds when followed by DnorU ouDU. And, since u,
and ws are invertible, we can paste them below on both sides of the equation. This last
equation is not hard to prove, using (coh 4) and (coh 2). The rest of the proof is left to
the reader. [

7. The Gray-category of pseudomonads in a Gray-category

In this section we define the Gray-category PSM(A) of pseudomonads on a Gray-category
A.

The objects of PSM(A) are pseudomonads in A.

Given pseudomonads D on K, and U on L, we denote the 2-category PSM(A)(D, U)
as [D,U], and we define it as follows. The objects of [D, U] are pairs (G,Gy), where
G : U-Alg — D-Alg : A°? — Gray is a Gray-natural transformation, Gy € A(L, K), such
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that
U-Alg —5 > D-Alg

o] |3
A(—v £) m A(—7 IC)

commutes, where ® is the forgetful Gray-natural transformation defined in section 3. We
can consider U-Alg and D-Alg as trihomomorphisms and G as a tritransformation. A 1-cell
(G,Gy) — (H, Hp) in D, U] is a pair (g, go), where g : G — H is a strict trimodification,
and go : Go — Hp is in A(L, K), such that

G
U-Alg |9 D-Alg = U-Alg

“u
lcp (bl Go(-)
AGK) AL T b sl AGK)
Ho(-)

What we mean by strict trimodification is, a trimodification in which all the invertible
modifications required in the definition ([6],pg. 25) are identities. A 2-cell (g, go) — (h, ho)
in [D, U] is a pair (7, 7o), where 7 : ¢ — h is a perturbation, and g : go — ho isin A(L, K),
such that

— .
U-Algy gx 4 2 gy D-Algy U-Algy
-_—
l QZ
oy _

A(X,K) A(Z,E)@A(X,IC).

Vertical and horizontal compositions are the obvious ones. The rest of the operations are
defined as follows:

(H7 Ho)(Ga Go) = (HGaHOGO)
(H, Ho)(g,90) = (Hg, Hogo) (h, ho)(G,Go) = (G, hoGo)
(H, Hy)(0,00) = (Ho, Hyoy) (1,70)(G, Go) = (TG, 10Go)

8. Liftings
8.1. DEFINITION. A lifting is a pseudomonad in the Gray-category PSM(A).

In more detail, observe that a pseudomonad D in PSM(A) has to have domain a
pseudomonad U = (U, u, n, By, nu, tu) in A, with domain some object IC of A. Observe
that D is of the form

D = ((D, D), (d.d), (m,m), (3, 8), (7,n) (7L, ).
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Taking the second entries, we obtain a pseudomonad D = (D, d, m, fp, np, pp) in A on
the same object K. Furthermore, given an object & of A, we can define Dy = ﬁX, and
dy = dy etcetera, to obtain a pseudomonad Dy = (D, dx, mx, Bx, nx, px) in Gray, on
the 2-category U-Alg,. D and the family (Dx)x behave well with forgetful 2-functors
and change of base.

9. From a pseudomonad with compatible structure to a pseudomonad in
PSM(A)

Assume we have a pseudomonad V that is compatible with pseudomonads D and U as in
section 6. We want to define a pseudomonad D on the object U of PSM(A). Let & be an
object of A. We begin by defining a 2-functor Dy : U-Alg, — U-Alg,. Given an object
(¢, x) in U-Alg,, with

UX UUxX E-Ux
V X nxl ;é/x lw
X Td X, UX ? X,
Define the first entry of Dx (¢, x) as
\%{
DUDUX
pX
% Uﬁv&
DUX
Dx
Id byy

DX,
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and the second entry of Dy (1), x) as

u UpX T
vupx 22U pU X Jdubux UDUDUX ——> UDUX ub UDX

UDuUX
K{]DuA UDuX
xT

Id <= UDUUX”jif>UDUX

dUUDUX UDByX
dUDUDUX U oIy
= J dUDUX
n
4 DU

nDX nDUX d-1 UDUX, <= DUDUUX ——> DUDUX
UdUDUX ey Dnx DUDU=
-1 —
v bighy % lp” Vot |7
DUdUDUX
DUUDUX —= DUDUDUXD—>U e DUDUX <: DUUX —-—> DUX
0o DUX
JK/Dix ﬂanUX DnDUX pRUX //*‘VX PX DnX 4 Dx Da
UDUX — UDUX DUDUX DUX DX.
UDuX dUDUX pX Dax

If (h,p): (¥,x) — (¥, x") in U-Alg,, then define the first entry of Dx(h, p) as Dh, and
the second as the pasting

UDX UDX'
UDuX ﬂUDugl UDuX'
UDUX TDun UDUX'
dUDUX ﬂdu}g o |dUDUX
DUDUXDUDUhDUDUX'
pX Y pt pX’
DUX DU DUX'

Dx ﬂ Dp Dz’
DX Dh DX’

Given ¢ : (h,p) — (B, p') in U-Alg,, define Dx (&) = DE.

9.1. PROPOSITION. The above definitions make Dy : U-Alg, — U-Algy a 2-functor.
Furthermore, if we define D :U- Alg — U-Alg as Dy at every object X of A, then Disa
Gray-transformation, and (D, D) € [U,U].

Proof. The hardest part of the proof is to show that Dx (1, x) is indeed an object in
U-Alg,. This is what we do, and we leave the rest to the reader. We must show that
(6) and (7) are satisfied. To show (7), pass nyDX to the left hand side, and perform the
following sequence of substitutions:

nuDX ! ] -
nh dnDUX —1
puX Uupux dyupux DyyDUX 1
)
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= B
02 DU X
77UJDUX71 DU6, DU WDUX71
)
—_— pr— _—
> gk
/‘ui/m;l UdUDUXl ADUX l
- )
d-L
DU6, DU UvDU

Newrd o |

-

d—l
] /_M Jarous

S = EEEE——

AN

(see (12))

UDuX
—_—

— —_—
\ (%\
UDpByX Y
Dnﬂk
Y
= —1
dypUux
UDnuX~ dupnx
_—
UDnyX ™

I
—
0
@
@
—
—_
=)
~—
~—
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and
UDuL| UDuz! - Uby UDuX
dalDUuX d5lDUz dUDUX
pz:)l( Pyt pX
DU

To get from the left hand side of (6) to the right hand side, make the following sequence

of substitutions:
-1
l \U”k l tupux l \
_— - —
puDX B yDUX
\ l Mpux l \ n;& l
B

-

S EEE—
—1
l FLUDUX\L dnDUX l NUnDUx
—_—

dnUDle DpyDUX |

—_>
_—>
— = — (see (16))
DuyDUX | 0:DUX D%

0. UDUX

/ / QiDy
—_— —_— )
EEE—— =
-1 —1
\Ud"DUX ~ l dUdUUDUXl dUDnDUXl

1 d—l
UnDUX UdUDUX
_

d-1 d-L
U0 DU X Upy X UDUdUDUX UDUpX
R —
—1 —1 d71
. PUMX™
= (definition of 6y)
A;Dyx\4 Patpux | HvDUX

l 94DUXl 0o DUX ’
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N S
U N

l \ \ \ l d71 l d_l l \
—1 1 UUvdUDUX UUpX
d71 UdUdUDUX UdUpX .
UdUUDUX . . dUdUDUX
dUDUdUDUX dUDUpX 1 3
DUdy v pux DUdy, '

1 —1
DUdUdUDUXl DUdUle
0UDUX Dnyipux Dn_y |0:DUX

—1 —1
deDUXl ppxl /
b

—1 —1
l \ _1\\ \\ l ndUDUXl nox l \
dyvaupux duupx
dnuDUX dnpUX
1 —1
\ l DndUDUXl anxl \ dl\x x l
UdUDUX UpX
)
—_— pr— —_—
Ud(;buU
UUDByX dupnx DUDByX
9

d=t dy1
UDUDIBUX UDUDuUX UDUDnX
ldUDUDUX l Ponux l Ponx l
lpDU X DUDByX

EE— _—
_ dit
1
l\]dUDuUX l UUDuUXl\
1 B — — — _1
dUDU X 1 dUDUUX
dUDUDuUX DUd[;lD Ux
u
_— > —_— )
—_— pr— _—
-1
DUdUDuUX
62DUX  ————> Dnplux 02 DUUX

—1
pDuUXl /

_—
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—_ >

l\_l l TLB}LUX\L anUUx\L
UUDuUX
R~ _
dnpUx -
\ l DnZ)iUX l UDpyX l dUDnXl
—_— _— =
UDﬁUXl
—_ -

d-1
U94X71 UpUX
1 - — - —
d DUDnX d71 dUanX
UpX DU, X~
_—

> )

N T

> )

UDnX
— >

= _—

- 5

_— )

N S

UDpyX R —— — DUDpuyX

NS Sea T

—_— —_—

|
|

[EEE— ——
UDu=t -1
UDx Ugs o UDuy
1 1 -1 —1
UDu sy |  UDuz 4y pUU. dypus
—1 -1 —1 —
dUDUnX dUDUz Pua Pz !

(see (18))

124
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125

e
\\l

_—
UDByUX S Uz UDByX
/ l dUDUUa:l
dupnUx dupnx
_—
-1 1
/ l pU:vl Ay pUs / l
0, UX 1 9,x—1
_ > _ >
%/////// ifil//// p;l %/////
—_—

—1 _
/ UW y l
-1
dypus
_ 1
l dUdUDUUX l dUpUX l /

\\ R
e

_—
| o]

/ dL_JdUDUXl dUle
dyupUs

B
-1
pDUzl \
py X
p*l
_—

s

02 DUUX  ———> Dnpyr, 0:DUX
—1
pDUzl z///////
—— —_— )

S
] o

R —

S,
|

- >

and
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We are now ready to define dy : 1 — Dy, and my

(dx)(p,y) is dX, while the second is the pasting

UX ez UDX
JuX YUd,x |UDuX

dUX UUX —5x- UDUX

Vil ldUUX agl, . |dUupUX

z DUX MLXDUUXZWWXDUDUX

Dy X~ IU/ 02X »X

DnX
Id DUX
ﬂ dy Dx
X - DX,

and (dX)(h,p) = dh.

Define the first entry of (mx),,) as mX, and the second as the pasting

UmX

UDDX UDU
UDuDX %\ YUm,x  |UDuX
UDUDX UDDUX UDUX
Y UDuy) vopux TV
dUDUDX \X\i“’( lUD%(d\
UDUDu
DUDUDX y UDUDUXdU <:U DUDDUX dmux dUDUX
4y bu pu N UmUX
pDX M " ldUD% UDU@SX\\
DUDX L<)—1:X DUDUDUX DUpX DUDUX
DUDuX /
pDUX
DUDUX
DAUDUX Yool DUX 1d U iy X pX
DDUDUX — DUDUX
DpX Vo5 x X
DDUX — DUX
DDz V ma Dz
DDX — DX.
Define (mX)(h,p) = M.

9.2. PROPOSITION. With the above definitions, dy :

1 — Dy and my :

126

: DyDx — Dgy. The first entry of

DXDX — DX

are strong transformations. Furthermore, defining d as dx, and m as my at every object
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X of A, we have that, (d,d) : 1 — (D, D) and (m,m) : (D,D)(D,D) — (D, D) are
1-cells in the 2-category [U, UJ.

Proof. The size of the diagrams obtained is what makes it hard to prove that (mx )y
satisfies (10). To get from the left hand side of (10) to the right hand side make the
following three substitutions:

U63:DUX
—1
dUpDUX d—l
= y UDUz

Pz
nDUDUD??E DUX
K py X R ——
05 DU X

-~ <~ <= = <«
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128

N

\ UDugp.x \UnDUDUX
UDByDX &= ——— UDujipux
1 UOsDU X
dyDUUDux
1 —1
dyppx dupnpx.  ————> -1 1 dypx
\ /l Wx dyppux
sy DX 04DX 1 PUDux ~1
\ / \ Paupux
DUX X
\DdUdUDUX M py DU My
-1
Dnpyux
0 DU X
Dd,,pux 65 DUX
—1 —1 —1
AU DUDUDuX dypupx l dypx
—1 -1
Ppupux ppxl
v X
p—l
DuX /I/VX

WX/

and

UD;L
_— DuX o UmUX
1 —
"DuDX a1 Udy bupux UDU0s
UdUDUDX
\ \l a1 a1 l
UDUDUDuX UDUpX
dnDUDX
—1 —1
l Ppupux ppxl
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_

i \\\\\‘
\dl\

—_—

-1
"pux UdUDUX
-1 E—
dupuDUX

—1

The fact that the three equalities above are indeed satisfied and the rest of the proof are
left to the reader. [

n

It is easily seen that, defining 7, 5, and 1 at every X as (nx) ) = X, (Bx)wy) =

BpX, and (px) @) = X, we obtain 2-cells (77,7), (B, B), and (g, p) in [U, U]. We thus
have:

9.3. THEOREM. D = ((E,D),(CZ d),(ﬁl,m),(g, B8), (m,m), (i1, 1)) is a pseudomonad in
PSM(A), on the object U. "

10. From a pseudomonad in PSM(A) to a distributive law

Assume that we have a pseudomonad in PSM(A) as in section 8. We produce a distribu-
tive law as follows. Consider Dy : U-Alg, — U-Alg,. Since the diagram

U-Alg,. 25~ TU-Alg,.

o | |

commutes, we have that Dy (0y, py) is of the form (o1, 0y) with

UDU vUuDpU Y- UDU

2N

DU DU, UDU —— DU.

Id

Furthermore, since the diagram

U-Alg,. 25~ U-Alg,

oo,k

U-Alg, 25 U-Alg,
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commutes, where U is the change of base 2-functor defined in section 3, then Dy (n, uy) :
Di(BuU, puU) — Dy(Bu, pu) is of the form (Dn,o3) : (01U, 09U) — (01, 02) with o3 of

the form

UDUU Y% U DU

o |

DUU —5—~ DU
Similarly, it can be shown that (di) (s, u,) is of the form (dU, o4), with

vU 2% upu

| e |

 ——
U dU

If we apply Dy to (01, 09) we obtain another U-algebra (o7, %), with

UDDU vUuDDU">~UDDU

uDD s’ n o o
/y/ \>Q\ ooo| vy |

DDU DDU,  UDDU—— DU.

Applying Dy to (s,09) : (BuDU, uyDU) — (01, 03), we obtain a morphism (Ds, 1) with

UDUDU 22~ UDDU

sDUl ﬂ .l ls’
DUDU s DDU.

We also have that (mx)(s,,uy) is of the form (mU, v1), with

UDDU % U DU

e

DDUTDU.

Define o5 as the pasting

UmU

UDDU UDU

UDuDUl

UDay?

UDUDU vy

D
Sld \Ef\\

DUDU ¥~ UDDU

A
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It is with the help of o1 to o5 that we define the distributive law as follows:
Define r = s o U Du, w; as the pasting

yUD %
D Juow  UDU
%x % a%
DU Id DU’
wo as the pasting
U UDU\
Yoo DU,
-
U
ws as the pasting
vup YRy pu Y- ypu Y24 UD“UUDUU “Us puu
MﬁUlUDn
nD nDU UDU %;1 Dn
ﬂngt 1&02 \
UD “UDu UDU p DU,
and w, as the pasting
up —2“~upU ° DU
\Umu TUmU 75
Um UDDU 555 UDUDU mU
lLUDqu sDU
UDDu pUDu  spu
UDD —;5.5UDUD DUD —5;5.> DUDU DDU.

The proof that we obtain a distributive law in this way is based on the behavior of the
2-cells 0y-05. Aside from the obvious conditions that come from the facts that (o1, 09) is a
U-algebra, (Dn, o3) and (dU, o4) are homomorphisms of U-algebras, we have the following
conditions.

10.1. PROPOSITION. The following are 2-cells in U-Algy:

Dny : Id — (Dn,o3) o (DUu, s, "). (26)
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Dy : (Dn,o3) o (DUn, s, ') — (Dn,as3) o (DnU, o3U).
dn : (Dna 0-3) © (dUU7 U4U> - (dUu U4> © (n7 /MU) (27)

Furthermore, the following equations are satisfied:

DDU ubpy UDppU Y™~ upU ppU P22y ppU
W Yaupupy | UDuDU mUl /- lUmU
DUDU —— UDUDU - pUu—P%UDU
DU | oy Yo . Idlé/al is
Y o iy pU DU,
Ds
DDU DU

vuDppU ™ yUu DU (28)

nDDUl Y -1
UDDU

UmU

UDuD




Theory and Applications of Categories, Vol. 5, No. 5

UmUU

UDDUU ——UDUU

UDn
Ump, ﬂ
UDDU = UDU

-1
Dup,

/

UDDn

UDUDUU

sDUU

DUDUU

DsU

UDuDU

ﬂngDU

DUDn

DDUU
v

DDn

<
)
S
)
3

]

n

sDU s
DUDU
Ds ﬂo’s

DDU W DU

T
d

UDU 1d
UDuU UnpU

UDDUWUDU

UDdU
]

UDUU
ﬂU Ugy)

sU UDuDU

UDUd
DUU 1ylll)UDU

s
daU
Dn

DUAU
DU

/

)

sDU s

DUDU

ﬂD 4
Ds ﬂg5

DdU
DDU T DU

Q

uvpU -L2Y yppu

UuDU

UDDUU Y ypUU

UDuDUU

UDUDUU

sDUU sU

DUDUU

DsU

UDn

UDU

ﬂasU s
DDUU ——> DUU Yoy

Dn
My, Vi
DDU —— DU.

DDn

UDU

UDuULU;%EJE\\

UDUU 5> UDU

sUl ﬂgg ls

DUU DU —~ DU,

DdUl 7’%

DDU

Dn

= UDU

UUDU === DUDU

nDU

UDU

s

DU

 ——
dUDU

ﬂUduDU

ﬂm; DU

Y/ a,

dDU

DUDU

DDU

UmU
UDuD

UDU

sDU

Ds ﬂo-5 s

Id DU

UUDU | %,

nDU

UdDU

Id
v5y UDDU

UmU

UDU

S

DU,

(30)
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uUDDU Y DU
U vpupy
UDDDU %, UDUDU
UDuDDU DUMU sDU
UDUDDU <, DUDU
mU
DUDDU
DU DuDU Ds
DUDUDU
DsDU ﬂDa5
DDUDU DDU ——= DU
DDs %7 YusU %
DDDU ———= DDU
UDDU Y- U DU (31)
P )
UDDDU ———> UDDU

UmDU
UDuDD UDDuDU UDuDU
ﬂUmuDU

UDUDDU , 5=: UDDUDUy;——=UDUDU

et UmUDU
sDDU UDuDUDU 5
UDUDuD

DUDDU < UDUDUDU

DuDU
DUD DU
DUDuD sDUDU Yo DU 5

DUDUDU

DsDU Y os
DDUDUWDUDU DU.
DDs Ve D%
DDDU U DDU

Observation: The equations that appear in the proposition can be written as condi-
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tions in U-Alg,. For instance, it can be shown that the pair of pastings:

and

UDDU
UDuDU

ubbU /o pupy ¥ UDUDU

uDUDU w\
o1 DU ﬂ

DuDU
DDU —= DUDU i DUDU
N}
Do )4
Id 1
DDU,
UUDuDU UsDU UDs
DuUDU 2
UDug UDuDU
1d _ >
Dy DU UDUs
DnDU
nDDU nDUDU sU DUK/ sDU
3;1
sDU -
y”BiDU /cszU 03DU~1 7 DUs b
DnDU Do §
)
UDuDU sDU Ds

135

define an object in U-Alg,. Thus, the first two equations say that (mU,o5) : (¢,9) —
(01,09) is a U-algebra morphism. Similarly the rest of the equations. We leave the details
for the interested reader.

Proof. The fact that Dny and Duy are 2-cells in U-Algy- follow from applying Di to ny
and puy, respectively. The statement about d,, follows from pseudonaturality of di. As
for the equations, the proof of the last equation is fairly typical, and it is the only one we
do. We begin by introducing some notation and deducing some equations we will need.

The notation is

Di( (BuDDU, iyDDU) S22 (o1 1)) = (01DDU, 03 DDU) L (07 o),
Dx ((0:DU, 050U - D5t ot)) = (0,DU, o, DUY L2207 1),
De (0}, 05) ™ (01,09) = (o7, 00) 2" o), o),

and (m/C)(UMm) - (mDU7 73) : (0-1/7 Ug) - (Uiv O-é)
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Now the equations. Since

_ DD
U-Algy Ime U-Alg,e = U-Algy
T Dr
l‘p’c @Kl o)
AK.K)  AKK) ) AK.K),
50)

we have that m, = (mx)(s,0,) is a 2-cell

(o, DU, o, DUY "Y1 P (4 DU, 0, DU
(DDS,T3)l W ms l(Ds,n)

(04, 04) — i (0}, 1)

in U-Alg,.. From this we obtain the equation

— = (32)
v1 DU Ums
ii’ii¢ i\f‘"’¢§¢
Similarly, (pix)(gy,uy) is a 2-cell
e )
(mDUm)l YU l(mUm)

(0, 0%) v (01,09).

We thus obtain the equation
ISt~ T
\i " i \"DN L

Observe that

(UDs,nBi)

(DU DU, juy DU DU (BuDDU, jisDDU)
(sDU,agDU)l (} 1 l(s’,aé)
(O’lDU, O'QDU) (Ds,1) (0'1,0'5)
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is a 2-cell in U-Alg,.. Since Dy behaves well with change of base, then Dx(UDs,np.) =
(DUDs, sp). Thus, applying Dy, we have that

(DUDs,sph)

(c1:DUDU, 0, DUDU)
(DsDU,n)l {Dn l(Ds’m)
(o1 DU, ob,DU)

(0,DDU, 0,DDU)

(DDs,73) (o, 0)

is a 2-cell in U-Alg,. From this we obtain the equation

NN e
N
\D'r/
We also have that
(UmUsn 1)
(BuDDU, pyDDU) (BuDU, juy DU
(S'JE)l v m l(sm)
(01, 03) (mUn1) (01,02)
is a 2-cell in U-Alg,. Applying Dx to it we obtain that the equation
= T (35)

| b 1
~ o |

E——— _—

is satisfied.
We are ready to show (31). Start with the second member of the equation, and use
(32). Next make the substitution

_— pr—

l UmuDU l
UDo;!
E—

S

Use now (33) and (34). Make the substitutions

_—
UmDU

_— =

-
UDr ! T UDu7!
/%T ! l Ds Dcri_1

Y 9
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1
lu ) lUDumU l )
Do UDo;
\ UD’Y\
)

_—
UDmU

and

|

/L

using that (Ds,m1) : (01DU,02DU) — (07,04) and (mU,v1) : (of,0%) — (01,09) are
1-cells in U-Algy.. Then the substitution

y

UDDoy lUDuDDU

DuDuDU
l UDup! l l

DuDU
-1 DUDo;
IEN 1

/i

/
i

Finally, use (35). n
We show now that we do have a distributive law.

10.2. THEOREM. With the above definitions, r : UD — DU and the invertible 2-cells
w1, wa,ws, and wy, define a distributive law of U over D.

Proof. We show (coh 3, 6 and 8), leaving the rest to the reader. Start on the left hand
side of (coh 3) and make the following substitutions:

D

li}g ) lj}l\ using (27),
\l_dgl S B}l
I

A
EN N
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using that (dU, o4) : (Bu, ) — (01, 02) is a 1-cell in U-Algy;

= Y

[ R

A ]
I BN

and

139

To prove (coh 6), start on the right hand side, and make the following substitutions:

- o =
—1 n
/ UUDuDu l / V
"pup Y ____ O -
. . DuDU
UsDu UDuDu
-1
Ry UDByD o9 DU DU ByDU

/l SUDu l
o3D~1 -1
. Du o3DU1

?

/ Ump, \
UDup! ' ————— using (29)
7 {\
— -1
SD}L 73
1
Doy " —— \ o3
Mn
- >
—_— )
—_— pr— —_—
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N

UDDBy, ——
l Umn, l
_

Now use (28). Conclude with the substitution

and

N ]

N,
1
DDu > "Dy
- o =

To prove (coh 8), start on the left hand side, and make the substitutions:

N e

- UD UDug' ——=

Ny

Su

s
d
—> $Du —
- = -

I

and

lﬁ_} |

Now, use (30), then the equation obtained from (26). It is easily seen that what remains
equals the identity. [

11. (Co-)KZ-doctrines over KZ-doctrines

Distributive laws for KZ-doctrines over KZ-doctrines are formally very similar to dis-
tributive laws of co-KZ-doctrines over KZ-doctrines. We start this section by recalling
the definition and some aspects of KZ-doctrines [9] (see [8] as well). Then we define dis-
tributive laws of co-KZ-doctrines over KZ-doctrines, and we show that such a distributive
law induces a distributive law between the induced pseudomonads, as defined in section
4. Finally, we show that the composite pseudomonad given by a distributive law of a
KZ-doctrine over a KZ-doctrine is again a KZ-doctrine.
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11.1. We are still working in a Gray-category A, and K is an object of A.

11.2. DEFINITION. A KZ-doctrine D on IC consists of an object D, 1-cells d : 1x — D,
and m : DD — D in A(K,K) and a fully-faithful adjoint string n,e : Dd - m; and
a,B:mAdD: D — DD such that

WDD d/4DNlD

Ik % D MD—ﬁ\i D = 1g @'y DD™=D. (36)
% % k /4Dd
DD D
The 2-cell § : Dd — dD is defined as the pasting
D—"" D
g1 Dd
ﬁD SR

Idpp

and it satisfies the equations d od = dg and mod = 3= -n~ L.

In a co-KZ-doctrine U, with w : 1 — U and n : UU — U, the fully-faithful adjoint
string is of the form vU 4 n 4 Uu.

Proposition 10.1 of [9] says that D induces a pseudomonad D = (D, d, m, 3,n, u) if p
is defined as the pasting

pDD P> _ ppp—P" . pp
ozDU m
mD dDD dn | /" dD Pl
DD——— D D

11.3. Assume we have a KZ-doctrine

D= (D7 d? m, ap, /6D7 "D, €D),
and a co-KZ-doctrine U = (U, u, n, ay, Bu, nu, €y ), with

DD —% -~ DD, ., DD D 4. p, D_ .
AUO%D / UﬁD\A Dd\ Uﬂ% /U/GD
D D —— D, DD DD ——— DD,
and
U\if/U, N uU if uv, . UU
) 7 27N DN e
Vo UuU b Uv, g~ Y U U.

Id Id

Since we are assuming D to be a KZ-doctrine, and U to be a co-KZ-doctrine, then (p
and 7p, and ay, and €y are invertible. Let 6 : Dd — dD and v : uU — Uu be the
corresponding induced 2-cells.
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11.4. DEFINITION. A distributive law of U over D consists of a 1-cell r : UD — DU 1in
A(K, K), together with an invertible 2-cell

UD
27N
w1 I;/
D Du DU7

such that the pasting

Du

UDU ———=DUU ————= DU
_ 1 De
NUN UU/ uru%”“
UD - DU

is invertible. We denote the inverse by ws. We further require the pasting

Ur rU

ws = UUD UuuD UDU DUU

\\\\\& Uniejiii,j%fi////j &T///BEZ\UD;T\\\\

to be invertible, and the pasting

UDD UDD—>DUD—>DDU

Wy =

to be invertible. We also require the following two coherence conditions:

UD——= DU D———>DU
UuD<1%>uU£ “DUlwlUﬂD“U UuD \u %

UUD —;>UDU —= DUU "> DU UUD__9UD3€_>DUU7%>DM
and

UD——— DU = UD———»DU

DUd DdU
UdD<<:>UDd l -1 UdD d 1
D w D
Ud }4/ ra w% 2

UDD —~ DUD —~ DDU >~ DU UDD4—>DUD——>DDU;5>DU
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Using the equations von =ny - Gy and 6 om = ap - €p, and the coherence conditions,
it is not hard to see that the inverse of ws is

D de DU,
U,Dau
\U/BUD leU_l Dn
UUD UUD o~ UDU —= DUU
and the inverse of wy is
UDD vDD -2~ pup -2~ DDU

\ UUW Ud% MDN

Looking at the definition it seems possible to define a distributive law in terms of wo,
defining wy; with a similar pasting as wy was defined above. It can be shown that if we
start with wy, define wy as above, and then use a similar pasting to define a new w| we
have that w; = w]. And similarly if we start with ws.

11.5. THEOREM. IfDD and U are the pseudomonads determined by the KZ-doctrine D
and the co-KZ-doctrine U respectively, then r together with wy, wo, ws and w, define a
distributive law of U over D.

Proof. Since U is a co-KZ-doctrine, we have that Gy = 0@1 and ny = eal. With this

in mind, we must show that the coherence conditions (coh 1) to (coh 9) of section 4 are
satisfied. We show that (coh 1), (coh 3) and (coh 4) are satisfied and leave the others to
the reader.

Consider the inverse of the left hand side of (coh 1). To get the inverse of the right
hand side make the following four substitutions

Uou:qul,

—
\L u;l \L u;[} \L —_— ——
\Udy

U TN _ o
_— —_— =

. L Dug1
Upy Ty A

w1
—_— > —_— >
and
- ZdDu
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To prove (coh 3) start with the inverse of the right hand side and make the following
substitutions:

von =1y - fu,

;) Uy ) 4(15\
lﬂlﬁl lwate | s |

- > =
-1
u _
l Dnlwl(]\ DA
—_ >

- —1
Uay* DUy
\ l Ud, l Tn l T Ud;[l] T T;Ul T /
—_— pr— _—
l Duyt

L ] |
Wlﬂ:l N %Dfqu\x Dn

Comparing the pasting obtained with the left hand side of (coh 3), we see that we must
show that

and

= DnorUoUuw,*.

N
= D

Now, pass every 2-cell of the left hand side to the right hand side, except for ny. It is not
hard to see, with the help of (coh 1), that the resulting equation is satisfied.
Start with the inverse of the left hand side of (coh 4), and make the following sequence

of substitutions:
—_— —_— pr—
oot 27 )
pu

uﬁl l
—_— )
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= _—

T . [y \%l l
Un UyUD
—_— _— )
—_— prm— _—

/ ur u l\
Uy U D Uy DU
-1 -1
Uu, ug, l /
E—— —
wUD ) N ByDU
ug o
- o -

and

11.6. Assume now that D is a KZ-doctrine as before, but that U is also a KZ-doctrine.
The data for D is unchanged, and the data for U is now:

UU\if uv, U/UU\ U\ ’J/U, U
VT P T NN A b
v U#U, "o U0 ——UU.

We have v : Uu — uU.

Copying almost exactly the definition of a distributive law of a co-KZ-doctrine over a
KZ-doctrine, we obtain the concept of a distributive law of the KZ-doctrine U over the
KZ-doctrine D. If U and D are the pseudomonads induced by U and D respectively, we
obtain, in a very similar way, a distributive law between the pseudomonads U and . Let
V be the composite pseudomonad obtained from this last distributive law, as in section

d.
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11.7. THEOREM. The composite pseudomonad obtained from a distributive law between
KZ-doctrines is again a KZ-doctrine.

Proof. We follow the notation introduced before the statement of the theorem, and the
notation for V is the same as in section 5. According to theorem 11.1 of [9], it suffices to
show that p 4 vV with counit By. Define ¥ : Vv — vV as the pasting

DU DUU
e
DuU DUdU
DU DdU I
w} uqU ﬂ
dDU

TDU>DUDU’

DDU
duDUU/ /
uDU dUDU
UDU

It is not hard to see that ¥ ov = p, and that pod = 3 ! Ny 1. Using these two equations,
an easy calculation shows that p 4 vV with unit

Id

VvV __ 9V _VVV

vaV vp b

4%

Vp

vV
e

and counit (y. [
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