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NOTES ON EFFECTIVE DESCENT AND PROJECTIVITY IN
QUASIVARIETIES OF UNIVERSAL ALGEBRAS

Dedicated to Walter Tholen on the occasion of his sixtieth birthday

ANA HELENA ROQUE

Abstract. We present sufficient conditions under which effective descent morphisms
in a quasivariety of universal algebras are the same as regular epimorphisms and exam-
ples for which they are the same as regular epimorphisms satisfying projectivity.

1. Preliminaries

A variety is a full subcategory of the category of structures for a first order (one sorted)
language, closed under substructures, products and homomorphic images. It is a regular
category not necessarily exact for which effective descent morphisms are exactly the regu-
lar epimorphisms (strong surjective homomorphisms). The same is true of "prevarieties"
(full subcategories of the category of structures, closed under substructures, products and
strong homomorphic images) [4]. Any quasivariety is the subcategory of a variety or-
thogonal to a set of epimorphisms which are either strong surjective homomorphisms or
bijective homomorphisms. Projectivity of the domain of such a bijective homomorphism
w.r.t. a regular epimorphism p was shown in [2] to be a necessary and sufficient condition
for p to be an effective descent morphism in models of Preorder.

In the case of universal algebras varieties are exact categories and consequently their
effective descent morphisms are the regular epimorphisms i.e., the surjective homomor-
phisms. A quasivariety of universal algebras as the subcategory of a variety of universal
algebras orthogonal to a set of regular epimorphisms is a regular category whose regu-
lar epimorphisms are again the surjective homomorphisms. A quasivariety of universal
algebras is (a full subcategory of the category of structures for a first order (one sorted)
algebraic language) axiomatizable by quasi-identities [3], that is, by sentences of the form

∀x1...∀xn

k∧
i=1

θi → δ

where each θi and δ are identities.
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Proposition 2.2 below, is an equivalent to the following well known criterion for effective
descent found in [1]:

1.1. Proposition. Let C be a category with pullbacks and D be a full subcategory of C,
closed under pullbacks. Let p : E → B be a morphism in D. Then:

If p is an effective descent morphism in C, then p is an effective descent morphism in
D if and only if for each pullback

D
s //

δ
��

A

α

��
E p

// B

in C, A is in D whenever D is in D.

2. Effective descent and Projectivity

Let C be a category with pullbacks in which the classes of regular epimorphisms and
effective descent morphisms coincide and let S be a set of regular epimorphisms in C.

2.1. Definition. Given a morphism p : E → B, we say that (A, α) in (C ↓ B) has the
factorization property with respect to p, if for each r in S and each commutative square

dom r
u //

r

%%JJJJJJJJJ

��

A

α

��

cod r

<<x
x

x
x

x

E p
// B

u factors through r.

2.2. Proposition. Let p : E → B be a morphism in S⊥ which is a regular epimorphism
in C; p is an effective descent morphism in S⊥ if and only if for any (A, α) in (C ↓ B)
with the factorization property w.r.t. p, A is in S⊥.

Proof. Since S⊥ is closed under pullbacks and any regular epimorphism in C is an
effective descent morphism in C, from Proposition 1.1 we only need to show that the
pullback condition in there is equivalent to the condition stated here. In fact, we only
have to show that (A, α) in (C ↓ B) has the factorization property w.r.t. p if and only if
E ×B A is in S⊥.

Let (A, α) be in (C ↓ B) and consider the pullback

E ×B A

π1

��

π2 // A

α

��
E p

// B.
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Note that, since E is in S⊥, for each r in S, any morphism from dom r into E factors
through r.

Given r in S and u : dom r → A satisfying α ◦ u = p ◦ h for some h, then h = v ◦ r for
some v, and if E ×B A is in S⊥, the unique morphism f : dom r → E ×B A induced by
h and u (which must satisfy π2 ◦ f = u), is of the form f = g ◦ r, for some g. Therefore,
u = π2 ◦ f = π2 ◦ g ◦ r.

dom r

h

##

r
%%JJJJJJJJJ

u

%%

cod r

v

!!

g

%%J
J

J
J

J

w

&&
E×BA

π1

��

π2 // A

α

��
E p

// B

Conversely, if (A, α) has the factorization property w.r.t. p and f : dom r → E ×B A,
then π1 ◦ f = v ◦ r for some v, and since α ◦ π2 ◦ f factors through p, π2 ◦ f = w ◦ r for
some morphism w. Let g : cod r → E×B A be the morphism induced by v and w. Then,
π1 ◦ g ◦ r = v ◦ r = π1 ◦ f and π2 ◦ g ◦ r = w ◦ r = π2 ◦ f , that is, f = g ◦ r.

2.3. Corollary. Let S be contained in the class of epimorphisms of C, and p : E → B
be a morphism in S⊥ which is a regular epimorphism in C; p is an effective descent
morphism in S⊥ if for each r in S, dom r (or cod r) is projective w.r.t. p (i.e. for each
r in S every f : dom r → B factors through p).

Proof. Let (A, α) in (C ↓ B) have the factorization property w.r.t. p, and let r be in
S and u : dom r → A. Then, by projectivity, α ◦ u = p ◦ h for some h, and by the
factorization property, u factors through r; therefore A is in S⊥.

Notice that since each r in S is an epimorphism and both E and B are in S⊥, projec-
tivity of dom r (w.r.t. p) is equivalent to projectivity of cod r (w.r.t. p).

Suppose that Q is the full subcategory of a variety V determined by a set Σ of quasi-
identities.

Each conjunction θ of identities induces a congruence Cθ on the free object FV(V )
in V over the set V of variables of the language. A quasi-identity θ → δ induces then
a canonical surjective homomorphism FV(V )/Cθ

→ FV(V )/Cθ∨Cδ
. Let S be the set of

these homomorphisms, one for each quasi-identity in Σ. Then Q is the subcategory of V
orthogonal to S, i.e., S⊥ = Q in V.

Corollary 2.3 reads then
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2.4. Corollary. Let p : E → B be a surjective homomorphism in Q. Then 1. implies
2.:

1. for each θ → δ ∈ Σ and each assignment to the variables s into B, if B |= θ[s] then
there is an assignment s1 into E such that p ◦ s1 = s and E |= θ[s1].

2. p is an effective descent morphism in Q.

and Proposition 2.2 reads

2.5. Proposition. Let p : E → B in Q be a surjective homomorphism; p is an effective
descent morphism in Q if and only if for each algebra A in V and each homomorphism
α : A → B, if A is not a model of Σ there exist θ → δ ∈ Σ and assignments s1 and s2

into E and A respectively, such that p ◦ s1 = α ◦ s2, E |= θ[s1] and A |= θ ∧ ¬δ[s2].

Not all regular epimorphisms in Q are effective descent morphisms as shown in the
following examples borrowed from [1]:

2.6. Example.

1. A binary operation · with at most one idempotent that is, models of

∀x∀y x · x ≈ x ∧ y · y ≈ y → x ≈ y.

Take E with no idempotents, B the terminal object, A with two idempotents (not
a model) and p : E → B and α : A → B the only possible morphisms; dom r
is the free object on two idempotents and for a morphism u : dom r → A, α ◦ u
cannot factor through p for if it did, E had at least one idempotent. Therefore, by
Proposition 2.2, p is not an effective descent morphism.

2. Models of {x · c ≈ x, c · x ≈ x, x · (x · (x · x)) ≈ c → x · x ≈ c} (· a binary operation
and c a constant).

Take the Abelian groups E = Z, B = Z2, A = Z4 (not a model) and p : E → B and
α : A → B the canonical homomorphisms. Suppose that α ◦ u = p ◦ h, for some h.
Then, since Z is a model, h(x + x) = 0, and because 0 is the only nilpotent in Z,
h(x) = 0. Then, α ◦ u(x) = p ◦ h(x) = 0 so that u(x) is either 0 or 2 in Z4, and in
any case, u(x) + u(x) = 0. Hence u factors through r and therefore, by Proposition
2.2, p is not an effective descent morphism.

In particular not all regular epimorphisms in Q satisfy projectivity. But they do in
some common quasivarieties:

Let Q denote the category of models of a theory T whose axioms are sentences either
of the form:

1. ∀x1...∀xn θ, or of the form
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2. ∀w1...∀wn θ1∧ ...∧ θk →
∧m

i=1 xi ≈ yi∧
∧l

j=1 zj ≈ tj where θ and θi are identities, all
variables zj are distinct from all the variables xi and yi and each zj does not occur
in any of the terms tj

with the additional condition that

T `
m∧

i=1

xi ≈ yi ∧
l∧

j=1

zj ≈ tj → θ1 ∧ ... ∧ θk

for each formula of type 2..

2.7. Proposition. If p : E → B is a regular epimorphism in Q, then
for each formula of form 2. and for each s : V → B (V the set of variables) such that

B � θ1 ∧ ... ∧ θk[s]

there exists s′ : V → E with p ◦ s′ = s and E � θ1 ∧ ...∧ θk[s
′], i.e., projectivity is satisfied

w.r.t. p.

Proof. Let p : E → B be a regular epimorphism in Q. Then, p is a surjective homomor-
phism. If B � θ1 ∧ ... ∧ θk[s], since B is a model of T , B �

∧m
i=1 xi ≈ yi ∧

∧l
j=1 zj ≈ tj[s],

that is s(xi) = s(yi) and s(zj) = s̄(tj). As p is surjective, we may consider s′ : V → E
with s′(xi) = s′(yi) ∈ p−1(s(xi)) = p−1(s(yi)) and for the other variables choose s′(v) ∈
p−1(s(v)). Then, p ◦ s′ = s.

Let s′′ : V → E be such that s′′(zj) = s̄′(tj) and equal to s′ for variables other than
the zj’s. Then, p ◦ s′′ = s. Also, s′ and s′′ coincide in the variables occurring in the tj

′s
(since the zi do not occur there) and so

s̄′′(tj) = s̄′(tj) = s′′(zj) and s′′(xi) = s′(xi) = s′(yi) = s′′(yi)

that is, E �
∧m

i=1 xi ≈ yi ∧
∧l

j=1 zj ≈ tj[s
′′]. As E is a model of T , from the additional

condition it follows that E � θ1 ∧ ... ∧ θk[s
′′].

2.8. Corollary. In Q = Mod(T ) with T as above, the classes of regular epimorphisms
and of effective descent morphisms coincide.

Proof. Follows from Corollary 2.3.

The following are such quasivarieties:

2.9. Example. The categories of

1. Models of ("joint") injectivity:

∀x1...∀xn∀y1...∀yn fx1...xn ≈ fy1...yn ∧ gx1...xk ≈ gy1...yk → ∧n
i=1xi ≈ yi, k ≤ n

2. Models of cancellation law: ∀x∀y∀z fxz ≈ fyz → x ≈ y
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3. Torsion free abelian groups:

Axioms of abelian group +...∀x f...fxx...x ≈ c → x ≈ c

4. Models of

{∀x x ∧ x ≈ x, ∀x∀y x ∧ y ≈ x&(x ∧ z ≈ y ∧ z)&(x ∨ z ≈ y ∨ z) → x ≈ y}

5. Models of

{∀x x∧x ≈ x, ∀x x∨x ≈ x, ∀x x∨ x̄ ≈ 1,∀x∀y (x∧y)∨(x ∨ y) ≈ 1 → x ≈ y}

where the axioms in 4. (respectively 5.) were picked among the axioms of ortholattices
(respectively orthomodular lattices).

2.10. Observation. Let T be the theory of monoids with the identity denoted by 1,
satisfying x4 ≈ 1 → x2 ≈ 1 and let Q = Mod(T ). Then T ` x2 ≈ 1 → x4 ≈ 1. E, B and
p as in Example 2.6.2. are in Q but the surjective homomorphism p is not an effective
descent morphism in Q. This shows the necessity of "linearity" of the identities zi ≈ ti of
Proposition 2.7.

In the cases of Example 2.6, the given regular epimorphisms are not effective descent
morphisms but also do not satisfy projectivity. In fact, in both cases, being an effective
descent morphism is equivalent to being a regular epimorphism satisfying projectivity.
Note that a morphism for which projectivity holds need not be a regular epimorphism.

2.11. Proposition.

1. For Q = Mod(x · x ≈ x∧ y · y ≈ y → x ≈ y) with · a binary operation, a morphism
is an effective descent morphism in Q if and only if it is a regular epimorphism and
satisfies projectivity.

2. For Q = Mod({x · c ≈ x, c · x ≈ x, x · (x · (x · x)) ≈ c → x · x ≈ c}) with · a binary
operation and c a constant, a morphism is an effective descent morphism in Q if
and only if it is a regular epimorphism and satisfies projectivity.

Proof. Since surjective homomorphisms in Q which satisfy projectivity are effective
descent morphisms it is enough to show that an effective descent morphism in Q satisfies
projectivity. Let p : E → B in Q be an effective descent morphism.

1. Suppose that B |= x · x ≈ x ∧ y · y ≈ y[s]. Then, since B is in Q, s(x) = s(y).
Call this element b0. Take a 6∈ |B| and let A be the algebra defined by |A| = |B| ∪ {a}
the underlying set, and operation a · a = a and c · d = α(c) · α(d) otherwise, where
α : |A| → |B| is the function given by α(a) = b0 and α(b) = b for b ∈ |B|; α : A → B is a
homomorphism since b0 · b0 = b0.

A is not in Q because a · a = a and b0 · b0 = b0 but a 6= b0. Moreover, since α is a
homomorphism and B is in Q satisfying b0 · b0 = b0, the only assignments s′ for which
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A |= x · x ≈ x ∧ y · y ≈ y ∧ x 6≈ y[s′] are such that {s′(x), s′(y)} ⊆ {a, b0}. Since for any
such assignment α ◦ s′ = s, by Proposition 2.5 there exists an assignment s1 into E such
that E |= x · x ≈ x ∧ y · y ≈ y[s1] and p ◦ s1 = s. This says that projectivity w.r.t. p is
satisfied.

2. Q is a subcategory of the variety V = Mod({x · c ≈ x, c · x ≈ x}). Suppose that
B |= x · (x · (x · x)) ≈ c[s]. Let s(x) = b0 and cB = 1. Since B is in Q, b0 · b0 = 1. Take
a0, a1 6∈ |B| distinct and let A be the algebra defined by |A| = |B| ∪ {a0, a1} with cA = 1,
ai ·1 = ai = 1 ·ai, i = 0, 1, a0 ·a0 = a1 and b ·d = α(b) ·α(d) otherwise, where α : |A| → |B|
is the function defined by α(a0) = b0, α(a1) = 1 and α(b) = b for b ∈ |B|; α : A → B is a
homomorphism and A is in V.

But A is not in Q since

a0 · (a0 · (a0 · a0)) = a0 · (a0 · a1) = a0 · (α(a0) · α(a1))

= a0 · (b0 · 1) = a0 · b0 = α(a0) · α(b0) = b0 · b0 = 1

and a0·a0 = a1 6= 1. In fact the only assignment s′ for which A |= x·(x·(x·x)) ≈ c∧x 6≈ c[s′]
is the above one i.e., s′(x) = a0. But α ◦ s′(x) = α(a0) = b0, that is α ◦ s′ = s. Hence, by
Proposition 2.5 there exists an assignment s1 into E such that E |= x · (x · (x · x)) ≈ c[s1]
and p ◦ s1 = s. This says that projectivity w.r.t. p is satisfied.

For not all effective descent morphisms in a quasivariety of universal algebras projec-
tivity is satisfied as shown in the following

2.12. Example.

1. Consider the quasivariety Q of (multiplicative) semigroups satisfying the quasi-
identity

x4 ≈ x2 ∧ y4 ≈ y2 → x2 ≈ y2,

and the following objects of Q:

• the algebra E = {ui : i ≥ 1} ∗ {v} of non-empty finite strings of u’s and v’s,
multiplication being concatenation, with the property that any substring of v’s
may be replaced by a single v (in particular, vi = v, for any i ≥ 2);

• the algebra B = {u, v} such that the multiplication of any two elements is always
v.

Sending u to u and everything else to v defines a regular epimorphism p : E → B.
Note that p does not satisfy projectivity as in B both elements satisfy x4 ≈ x2,
while v is the sole element of E that satisfies this identity. On the other hand, p
is an effective descent morphism: indeed if A is an associative magma such that
elements a, b ∈ A exist that satisfy

a4 = a2, b4 = b2 and a2 6= b2
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then also
(a2)4 = (a2)2, (b2)4 = (b2)2 and (a2)2 6= (b2)2

and it follows that for any morphism of magmas α : A → B, sending x and y to v
in E, on the one hand, and x to a2 and y to b2 in A, on the other hand, gives the
required assignments.

2. Let Q be the same quasivariety as in example 1. above, E = {ei : i ≥ 0} of possibly
empty finite strings of e’s with multiplication given by ei·ej = ei+j, B = {−1, 1} with
the usual multiplication and p : E → B the unique morphism such that p(e0) = 1
and p(e) = −1. In particular, let p from additive natural numbers onto B be defined
by p(0) = 1 and p(n) = (−1)n for n 6= 0.

3. Take Q to be the quasivariety of monoids, with the identity represented by 1, which
satisfy x4 ≈ x2 → x2 ≈ 1. Let E, B and p be as in example 2. with 1 interpreted
as e0 and 1, respectively.

3. Necessary conditions and Sufficient conditions

We end these notes with necessary conditions and sufficient conditions for a regular epi-
morphism to be an effective descent morphism in a quasivariety Q of universal algebras.

Suppose that Q is the full subcategory of a variety V determined by a set Σ of quasi-
identities. Each element of Σ is of the form θ → δ with θ =

∧
i t

i
1 ≈ ti2 and δ = u1 ≈ u2.

Take Θ = Cθ =< (ti1, t
i
2) > to be the congruence on the algebra of terms T (V ), generated

by the pairs (ti1, t
i
2) with ti1 ≈ ti2 subformulas of θ.

Below we will denote by πΘ both the canonical projection T (V ) → T (V )/Θ and its
restriction to V . Also, for any substitution ϕ : V → T (V ), ϕ(θ) will denote the formula∧

i ϕ̄(ti1) ≈ ϕ̄(ti2) and analogously for ϕ(δ).

The following sufficient condition reflects what happens in Example 2.12:

3.1. Proposition. Let p : E → B be a surjective homomorphism in Q. Then 1. implies
2.:

1. For each θ → δ in Σ and each assignment s : V → B such that B |= θ[s] there exist
an assignment s1 into E and a substitution ϕ : V → T (V ) such that p ◦ s1 = s̄ ◦ ϕ,
E |= θ[s1] and

ThV, θ ` ϕ(θ) and ThV, θ, ϕ(δ) ` δ.

2. p is an effective descent morphism in Q.

Proof. Let A be in V, α : A → B be a homomorphism and suppose that A is not in Q.
Then, there exist θ → δ in Σ and an assignment s : V → A such that A |= θ ∧ ¬δ[s], so
that B |= θ[α ◦ s]. By assumption, for some assignment s1 into E and some substitution
ϕ : V → T (V ) we have that p◦s1 = α ◦ s◦ϕ = α◦s̄◦ϕ, E |= θ[s1] and A |= ϕ(θ)∧¬ϕ(δ)[s],
that is A |= θ ∧ ¬δ[s̄ ◦ ϕ]. By Proposition 2.5, p is an effective descent morphism in Q.
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3.2. Example. In Example 2.12.1. take s1(x) = s1(y) = v, ϕ(x) = x2 and ϕ(y) = y2.

3.3. Corollary. Let p : E → B be a surjective homomorphism in Q. Then 1. implies
2.:

1. For each θ → δ in Σ and each assignment s : V → B if B |= θ[s] then there exist
an assignment s1 into E and a substitution ϕ : V → T (V ) which is the identity on
the variables of δ such that p ◦ s1 = s̄ ◦ ϕ, E |= θ[s1] and ThV, θ ` ϕ(θ).

2. p is an effective descent morphism in Q.

Proof. It follows from Proposition 3.1 since as ϕ is the identity in the variables of δ,
ϕ(δ) = δ and so ϕ(δ) ` δ.

In the following necessary condition we assume that Σ = {θ → δ} is a singleton and
V is the category of algebras for the language. We also assume that θ → δ is not a valid
formula for otherwise Q = V.

3.4. Proposition. Let p : E → B be a surjective homomorphism in Q. Then 1. implies
2.:

1. p : E → B is an effective descent morphism in Q.

2. For each assignment s such that B |= θ[s] there exist an assignment s1 into E and
a substitution ϕ : V → T (V ) such that p ◦ s1 = s ◦ ϕ,

E |= θ[s1], (ϕ̄(ti1), ϕ̄(ti2)) ∈ Θ and (ϕ̄(u1), ϕ̄(u2)) 6∈ Θ

or equivalently, E |= θ[s1], θ ` ϕ(θ) and θ,¬δ 6` ϕ(δ).

Proof. Suppose that B |= θ[s]. Since θ → δ is not valid, T (V )/Θ |= θ ∧ ¬δ[πΘ] and
therefore T (V )/Θ is not a model of Σ.

Moreover, s̄ decomposes as β ◦ πΘ for some homomorphism β. By Proposition 2.5
there exist s1 and ϕ : V → T (V ) such that

p ◦ s1 = β ◦ πΘ ◦ ϕ = s̄ ◦ ϕ, E |= θ[s1] and T (V )/Θ |= θ ∧ ¬δ[πΘ ◦ ϕ],

that is, (ϕ̄(ti1), ϕ̄(ti2)) ∈ Θ and (ϕ̄(u1), ϕ̄(u2)) 6∈ Θ and therefore θ ` ϕ(δ) and θ,¬δ 6` ϕ(δ)
as required.

The gap between the above sufficient and necessary conditions seems to be the gap
between non deducibility and deducibility of the negation (of ϕ(δ)).

Acknowledgements: The author is grateful to the referee who kindly provided an
example (reproduced as 1. in Example 2.12) – missing in the first version of this paper –
of an effective descent morphism w.r.t. which projectivity does not hold.
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