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WHAT ARE SIFTED COLIMITS?

J. ADÁMEK, J. ROSICKÝ, E. M. VITALE

Dedicated to Dominique Bourn on the occasion of his sixtieth birthday

Abstract. Sifted colimits, important for algebraic theories, are “almost” just the
combination of filtered colimits and reflexive coequalizers. For example, given a finitely
cocomplete category A, then a functor with domain A preserves sifted colimits iff it
preserves filtered colimits and reflexive coequalizers. But for general categories A that
statement is not true: we provide a counter-example.

Introduction

Sifted colimits play for the doctrine of finite products precisely the role which filtered
colimits play for the doctrine of finite limits. Recall that a small category D which is
filtered has the property that D-colimits commute with finite limits in Set. The converse
is less well known (but trivial to prove using representable functors as diagrams): if D-
colimits commute with finite limits in Set, then D is filtered. Now sifted categories are
defined as those small categories D such that D-colimits commute with finite products
in Set. They were first studied (without any name) in the classical lecture notes of P.
Gabriel and F. Ulmer [6] who proved that D is sifted iff the diagonal ∆: D → D × D
is a final functor; this nicely corresponds to the fact that D is filtered iff the diagonals
∆: D → DJ are final for all finite graphs J . Sifted colimits are colimits whose schemes are
sifted categories; they were studied (independently of [6]) by C. Lair [9] who called them
“tamisante”, later P. T. Johnstone suggested the translation to “sifted”. Besides filtered
colimits, prime examples of sifted colimits are reflexive coequalizers, that is, coequalizers
of parallel pairs of epimorphisms with a joint splitting.

Sifted colimits are of major importance in general algebra. Recall that an algebraic
theory (in the sense of F. W. Lawvere [10]) is a small category T with finite products
and an algebra for T is a functor A : T → Set preserving finite products. The category
Alg T of algebras is a full subcategory of the functor category Set T . Now, let us denote
by SindA the free completion of a category A under sifted colimits (resembling the name

Financial support by the German Research Foundation (DFG) under the project “Coalgebraic Spec-
ifications”, by the Ministry of Education of the Czech Republic under the project MSM 0021622409, and
by FNRS grant 1.5.276.09 are gratefully acknowledged.

Received by the editors 2009-06-22 and, in revised form, 2010-06-08.
Published on 2010-06-10 in the Bourn Festschrift.
2000 Mathematics Subject Classification: 18A30, 18A35.
Key words and phrases: sifted colimit, reflexive coequalizer, filtered colimit.
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IndA for Grothendieck’s completion under filtered colimits, see [4]). Then for every
algebraic theory T the category of algebras is just the above completion of T op:

Alg T = Sind T op

see [2]. And algebraic functors, that is functors between algebraic categories induced by
morphisms of algebraic theories, are precisely the functors preserving limits and sifted
colimits, see [1].

The aim of our paper is to discuss the slogan

“filtered colimits = filtered colimits + reflexive coequalizers.”

This could mean the existence:

A category A has sifted colimits iff it has filtered colimits and reflexive coequalizers.

Or the preservation:

A functor F : A → B preserves sifted colimits iff it preserves filtered colimits and
reflexive coequalizers.

Unfortunately, none of these two statements holds in general, as we demonstrate by
counter-examples. However, both statements are true whenever A is finitely cocomplete.
Whereas the first one is trivial, since filtered colimits imply cocompleteness, the latter one
concerning preservation is not. Let us mention that this result, assuming A is cocomplete,
was proved by A. Joyal (his proof even works for quasicategories, see [7]) and by S. Lack
(see [8]). There proofs are different, and more elegant than our proof below, however,
for our proof we only assume the existence of finite colimits. (Another proof assuming
cocompleteness is presented in [3].)

Let us also remark that there is another interpretation of the above slogan: the free
completion of a category A under sifted colimits can be constructed as a free completion
of IndA under reflexive coequalizers. This is true if A has finite coproducts and false in
general, see [2].

Acknowledgement We are grateful to the referee whose comments led us to an improved
presentation of our result.

1. Existence of Sifted Colimits

As mentioned in the Introduction, a small category D is called sifted iff D-colimits com-
mute in Set with finite products. That is, given a diagram

D × J → Set

where J is a finite discrete category, then the canonical morphism

colim
D

(
∏
J

D(d, j)→
∏
J

(colim
D

D(d, j)
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is an isomorphism.
Colimits of diagrams over sifted categories are called sifted colimits.

1.1. Remark.

(i) As proved by P. Gabriel and F. Ulmer [6], a small, nonempty category D is sifted if
and only if the diagonal functor ∆: D → D×D is final. This means that for every
pair of objects A,B of D the category (A,B) ↓ ∆ of cospans on A,B is connected.
That is:

(a) a cospan A→ X ← B exists, and

(b) every pair of cospans on A,B is connected by a zig-zag of cospans.

This characterization was later re-discovered by C. Lair [9].

(ii) P. Gabriel and F. Ulmer [6] also proved that a small category D is sifted if and only
if D is final in its free completion FamD under finite coproducts. In fact, (a) and
(b) above clearly imply the same property for finite families of objects too. This is
precisely the finality of D → FamD.

(iii) Every small category with finite coproducts is sifted. This immediately follows from
(i).

1.2. Example. ([2]) Reflexive coequalizers are sifted colimits. That is, the category D
given by the graph

P

a1 ))

a2
55
Qdoo

and the equations
a1 · d = idB = a2 · d

is sifted. This follows from the characterization of sifted colimits mentioned in the Intro-
duction. We present a full proof here because we are going to use it again below. Let us
add that this fact was already realized by Y. Diers [5] but remained unnoticed. Another
proof is given in [12], Lemma 1.2.3.

In fact, suppose that

A
a2
//

a1 //
B

c // C and A′
a′2

//
a′1 //

B′
c′ // C ′

are reflexive coequalizers in Set. We can assume, without loss of generality, that c is the
canonical function of the quotient C = B/ ∼ modulo the equivalence relation described
as follows: two elements x, y ∈ B are equivalent iff there exists a zig-zag

A : z1
ai1

���������� ai2

��<<<<<<<< z2
ai3

���������� ai4

��<<<<<<<< ······ zk
ai2k−1

���������� ai2k

��????????

B : x ··· y
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where i1, i2, . . . , i2k are 1 or 2. For reflexive pairs a1, a2 these zig-zags can always be chosen
to have the following form

A : z1
a1

����������
a2

��<<<<<<<< z2
a2

����������
a1

��<<<<<<<< ······ z2k
a2

����������
a1

  AAAAAAAA

B : x ··· y

(∗)

where for the elements z2i of A we use a1, a2 and for the elements z2i+1 we use a2, a1. In
fact, let d : B → A be a joint splitting of a1, a2. Thus given a zig-zag, say,

z
a2

����������
a1

��???????

x y

we can modify it as follows: put z1 = d(x) and z2 = z to get

z1
a1

��~~~~~~~~
a2

  @@@@@@@@ z2
a2

��~~~~~~~~
a1

��@@@@@@@@

x x y

Moreover, the length 2k of the zig-zag (∗) can be prolonged to 2k + 2 or 2k + 4 etc. by
using d. Analogously, we can assume C ′ = B′/ ∼′ where ∼′ is the equivalence relation
given by zig-zags of a′1 and a′2 of the above form (∗). Now we form the parallel pair

A× A′
a1×a′1 //

a2×a′2
// B ×B′

and obtain its coequalizer by the zig-zag equivalence ≈ on B ×B′. Given (x, x′) ≈ (y, y′)
in B × B′, we obviously have zig-zags both for x ∼ y and for x′ ∼′ y′ (use projections
of the given zig-zag). But also the other way round: whenever x ∼ y and x′ ∼′ y′, then
we choose the two zig-zags so that they both have the above type (∗) and have the same
lengths. They create an obvious zig-zag for (x, x′) ≈ (y, y′). From this it follows that the
map

A× A′
a1×a′1 //

a2×a′2
// B ×B′ c×c′ // (B/ ∼)× (B′/ ∼′)

is a coequalizer, as required.

1.3. Example. By merging two copies of reflexive pairs we also obtain a sifted category
D: let D be given by the graph

A

a1
++

a2

33 B
doo d′ // A′

a′2

kk

a′1
ss
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and the equations making both parallel pairs reflexive:

ai · d = idB = a′i · d′ for i = 1, 2

The proof that D is sifted is completely analogous to the proof of Example 1.2: we verify
that colimits over D in Set commute with finite products. Assume that the above graph
depicts sets A,B and A′ and functions between them. Then a colimit can be described
as the canonical function c : B → C = B/ ∼ where two elements x, y ∈ B are equivalent
iff they are connected by a zig-zag formed by a1, a2, a

′
1 and a′2. Since the two pairs are

reflexive, the length of the zig-zag can be arbitrarily prolonged. And the type can be
chosen to be

z1
a1

~~~~~~~~~ a2

��======== z2
a2

���������� a1

��======== z3
a′1

���������� a′2

��======== z4
a′2

���������� a′1

��========
......

z4k
a′1

  BBBBBBB

x y

From that it is easy to derive that D is sifted.

1.4. Example. A category A which does not have sifted colimits although it has both
filtered colimits and reflexive coequalizers: A is the free completion of D from 1.3 under
filtered colimits and reflexive coequalizers. We claim that A is obtained from D by simply
adding the coequalizer c of a1, a2 and the coequalizer c′ of a′1, a

′
2. That is, we consider

the graph

A a1

��a2 ++

A′

a′2rr

a′1

		
B

d
``AAAAAAAA

d′
<<zzzzzzzz

c′

~~}}}}}}}
c

""DDDDDDDDD

C ′ C

and the equations
c · a1 = c · a2 c′ · a′1 = c′ · a′2.

In fact, the category A is clearly finite. Therefore, its only filtered diagrams are its
idempotents:

ei = d · ai and e′i = d′ · a′i (i = 1, 2) .

We claim that a1 is the colimit of e1. In fact, a1 · e1 = a1, and given a morphism f with

f · e1 = f ,

then we see that f · d · a1 = f , consequently, f factorizes through a1. Since a1 is an
epimorphism, this factorization is unique. Analogously for e2, e

′
1 and e′2. Thus, A has

filtered colimits. And it has reflexive coequalizers because its only reflexive pairs of
distinct morphisms are a1, a2 whose coequalizer is c, and a′1, a

′
2 whose coequalizer is c′.

It is obvious that the (sifted) embedding D : D → A does not have a colimit.
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2. Preservation of Sifted Colimits

2.1. Theorem. A functor F : A → B with A finitely cocomplete preserves sifted colimits
iff it preserves filtered colimits and reflexive coequalizers.

Proof. Given a sifted diagram D : D → A with a colimit in A, we prove that F ·D has
colimit F (colim D) in D.

Recall from 1.1(ii) that D : D → FamD is final, thus, D has the same colimit as
its extension D : FamD → A preserving finite coproducts. Therefore, without loss of
generality we can assume that D has finite coproducts and D preserves them (if not,
substitute D for D). Recall also the construction of finite colimits via finite coproducts
and coequalizers from [11]: given a finite graph M and a functor F : M → A we form
coproducts ∐

i

F (i)

indexed by objects i of M and with injections.

αi : F (i)→
∐
i

F (i).

Analogously, we form coproducts ∐
f :i→i′

F (i)

indexed by morphisms f of M and with injections

βf : F (i)→
∐

f :i→i′

F (i).

Consider morphisms

a, b :
∐

f :i→i′

F (i)→
∐
i

F (i)

such that a · βf = αi and b · βf = αi′ · Ff for each morphism f : i → i′ in M . If
q :

∐
i

F (i) → Q is the coequalizer of a and b, then Q = colim F with the colimit cocone

q · αi.
We now prove the theorem:
(1) For every finite reflexive subgraph M of D we form coproducts in D

iM =
∐
i

i jM =
∐

f :i→i′

i

and morphisms
aM , bM : jM → iM
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analogous to those considered above. Since D preserves the two coproducts, we have
a = DaM and b = DbM and the colimit QM of the domain restriction D/M of D on M
is given by the coequalizer

DjM
DaM //

DbM
// DiM

qM // QM = colim D/M

Since the graph M is reflexive, aM , bM is a reflexive pair, thus, so is DaM , DbM . Let M
be the directed family of all finite reflexive subgraphs of D.

(2) Let ki : Di→ K (i ∈ objD) be a colimit of D, then we prove that (Fki) is a colimit
of FD. We express D as the directed union of all D/M for M ∈M and for each M ∈M
we see that

kiM ·DaM = kjM = kiM ·DbM (1)

from which we derive that kiM factors through the coequalizer

kiM = rM · qM for some rM : QM → K . (2)

Then K is the filtered colimit of all QM with the colimit cocone (rM)M∈M (since every
colimit is a filtered colimits of all finite subcolimits). We conclude that

(i) FK is a colimit of FQM with the cocone FrM (M ∈M),

and

(ii) for every M ∈M the coequalizer of FDaM and FDbM is FqM .

(3) Given a cocone
xi : FDi → X (i ∈ objD)

of FD, we are to find a factorization through (Fki). Analogously to (1) above we have,
for every M ∈M

xiM · FDaM = xjM = xiM · FDbM
thus, there exists a unique

yM : FQM → C with xiM = yM · FqM . (3)

These morphisms form a cocone of the filtered diagram of all FQM ’s: in fact, the con-
necting morphisms

qM,M ′ : QM → QM ′ (M,M ′ ∈M, M ⊆M ′)

are defined by the commutative squares

DiM
DiMM′ //

qM

��

DiM ′

qM′

��
QM qM,M′

// QM ′
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where iMM ′ : iM → iM ′ is the coproduct injection in D. The desired equality

yM = yM ′ · FqMM ′

easily follows since, by (ii), FqM is an epimorphism:

FDiM
FDiMM′ //

xiM
""FFFFFFFFF

FqM

��

FDiM ′

FqM′

��

xi′
M{{wwwwwwwww

·

FQM

yM

<<xxxxxxxxx

FqM,M′
// FQM ′

yM′

ccFFFFFFFFF

Consequently, we obtain the unique

y : FK → X with y · FrM = yM .

This is the desired factorization: for every i ∈ I we have

y · Fki = xi.

In fact, consider the singleton subgraph M with one object i and its identity morphism.
Obviously

iM = i and qM = id , thus, rM = ki

which yields by (3)
yM · Fki = yM = yM · FqM = xiM = xi .

The uniqueness is clear: since each FqM is an epimorphism, from (2) we see that (FrM ·
FqM) is collectively epic, and then (1) implies that (Fki) is collectively epic.

2.2. Example. A functor F which

(1) does not preserve sifted colimits

but

(2) preserves filtered colimits and reflexive coequalizers

can be constructed as follows.
By adding to the category A of 1.4 a terminal object T we obtain a category A′ in

which the sifted diagram D : D → A has colimit

colim D = T .

Let B be the category obtained from A′ by adding a new terminal object S. The functor
F : A′ → B with F (T ) = S which is the identity map on objects and morphisms of A
does not preserve sifted colimits because colim F ·D = T but F (colim D) = S. It is easy
to verify that F preserves filtered colimits and reflexive coequalizers.
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