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MONADIC APPROACH TO GALOIS DESCENT AND
COHOMOLOGY

Dedicated to Dominique Bourn at the occasion of his sixtieth birthday.

FRANCIS BORCEUX, STEFAAN CAENEPEEL AND GEORGE JANELIDZE

Abstract. We describe a simplified categorical approach to Galois descent theory. It
is well known that Galois descent is a special case of Grothendieck descent, and that
under mild additional conditions the category of Grothendieck descent data coincides
with the Eilenberg-Moore category of algebras over a suitable monad. This also suggests
using monads directly, and our monadic approach to Galois descent makes no reference
to Grothendieck descent theory at all. In order to make Galois descent constructions
perfectly clear, we also describe their connections with some other related constructions
of categorical algebra, and make various explicit calculations, especially with 1-cocycles
and 1-dimensional non-abelian cohomology, usually omitted in the literature.

Introduction

The so-called Galois descent theory is an old tool used in algebraic geometry, algebraic
number theory, and related topics of ring and module theory. It allows to describe certain
structures of algebra and geometry defined over a base field B using similar structures
defined over a Galois extension E of B. Its results are descent theorems that are of the
form: “The category of B-structures is canonically equivalent to the category of descent
data of E-structures”, usually supplied by descriptions of the set of isomorphism classes
of B-structures with a fixed extension to E in terms of 1-dimensional cohomology of the
Galois group of the Galois extension E/B. If one replaces the Galois extension E/B with
an arbitrary morphism p : E → B in a category C equipped with a Grothendieck fibration
(A, F ) of categories over C, there is still a canonical comparison functor Kp : AB →
Des(p) from the fibre AB of (A, F ) over B to the category Des(p) of suitably defined
descent data. In the Galois descent constructions the role of C is usually played by the
dual category of commutative rings, which explains the direction of the arrow p (and
this is why we use the opposite direction in our Section 4). According to Grothendieck
descent theory, the morphism p : E → B is said to be an effective descent morphism if
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Kp is a category equivalence. Under certain additional conditions on (A, F ) that hold in
many known examples, p : E → B is an effective descent morphism if and only if the
change-of-base functor p∗ : AB → AE is monadic. This follows from the fact that Kp

becomes nothing but the comparison functor, in the sense of monad theory, from AB to
the category of algebras over the monad determined by p∗ and its left adjoint.

In this paper we develop a simplified categorical approach to Galois descent by pre-
senting the category of Galois descent data as the category of algebras over a suitable
monad directly, i.e. not involving the intermediate context of Grothendieck fibrations
and Grothendieck descent. We also show that the monadic approach is helpful in pre-
senting the (1-dimensional) cohomological side of the story by transforming descent data
into suitable 1-cocycles - again directly, i.e. not using Grothendieck’s cocycle condition.
In spite of our goal of simplification, we present some intermediate categorical construc-
tions and various explicit calculations usually omitted in the literature; we believe they
are necessary. On the other hand we omit some other important constructions and their
natural generalizations; e.g. we do not consider torsors, do not discuss generalizations
involving categorical Galois theory whose Galois groupoids are internal groupoids in an
abstract category, and do not even consider infinite Galois extensions of fields.

Section 1 begins with 1-dimensional cocycles and cohomology H1(G,A) of a group
G with abelian and then with non-abelian coefficients. We then extend it replacing a
G-group A with a G-category X, but also show that in some case the G-category case
reduces to the G-group case (Proposition 1.4). Next, we show that involving 2-dimensional
category theory makes all constructions more natural. In particular the category Z1(G,X)
of 1-cocycles G → X becomes nothing but the category PsNat(1,X) of pseudo-natural
transformations 1 → X, and the reduction above can be obtained from a canonical
factorization of pseudo-natural transformations 1→ X.

Section 2 presents a G-category structure on X as a special (“split”) monoid in the
monoidal category Fam(XX) of families of endofunctors of X. A 1-cocycle G → X
then becomes an action of X on an object in X. The coproduct functor Fam(C) →
C, in the case of C being the monoidal category XX, transforms the monoid above
into a monad on X, provided X admits G-indexed coproducts. That monad, denoted
by G(−), plays a crucial role in Galois descent theory. It is in fact extensively used
in Galois theory of commutative rings, where, for a Galois extension E/B, GE is the
algebra of all maps from G to E; however, as far as we know, it was never considered
there as a monad. Note also, that involving the monoidal category Fam(XX) (instead of
just XX) is not absolutely necessary, but makes all constructions more elegant since the
monoidal structure of Fam(XX) is automatically distributive with respect to coproducts,
while in XX it only happens for coproducts of very special objects. Section 2 ends with
Theorem 2.5, according to which a 1-cocycle G→ X is nothing but a G(−)-algebra.

Section 3 begins by comparing split and connected monoids in Fam(C), where “split”
(as above) means being “a family of unit objects” while “connected” means being “inside
C”, i.e. being “a one-member family”. This allows to construct a canonical morphism
from G(−) to any monad T on X that is invariant (in a suitable sense) under the G-action,
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and T is said to be a G-Galois monad if that canonical morphism is an isomorphism. A
monadic adjunction (F,U, η, ε) from X to Y is then called a G-Galois adjunction if it
determines a G-Galois monad on X. The main descent theorem (Theorem 3.6) that
establishes and describes the equivalence Y ∼ Z1(G,X) for a Galois adjunction, is a
straightforward consequence of monadicity in this context. In particular Z1(G,X) plays
the role of the category of descent data. The second main result (Theorem 3.7) describes,
using Theorem 3.6 and abovementioned Proposition 1.4, the full subcategory Y[Y0] of Y
with objects all Y in Y with U(Y ) ∼= U(Y0) for a fixed Y0, as the category of 1-cocycles
G→ End(U(Y0)), where the monoid End(U(Y0)) is equipped with a G-action induced (in
a suitable sense) by the 1-cocycle ξ0 corresponding to Y0. Accordingly, Theorem 3.7 also
describes the set of isomorphic classes of objects in Y[Y0], presented its bijection with
H1(G,End(U(Y0))ξ0) = H1(G,Aut(U(Y0))ξ0).

Section 4 applies our results to the adjunction (E-Mod)op → (B-Mod)op determined
by a homomorphism p : B → E of commutative rings, where E is equipped with a right
G-action making (E-Mod)op a G-category. We show that this adjunction is a G-Galois
adjunction if and only if p : B → E is a G-Galois extension of commutative rings in
the sense of [Chase, Harrison, Rosenberg, 1965]; in particular this implies that G must
be finite. After that we present the Galois descent/cohomology results obtained as direct
translations of Theorems 3.6 and 3.7. The rest of Section 4 is devoted to three classical
examples. Much more examples could be presented of course, but we only wanted to
explain how the general theory works in practice.

Finally, let us mention that it is not clear how old the idea of Galois descent really
is. Apart from Grothendieck’s work, relatively recent sources (among many others) are
[Serre, 1964] (mentioning “descent for forms”), [Knus, Ojanguren, 1974], [Greither, 1992],
[Jahnel, 2000]. As it was pointed out to the third named author during his talk in
Budapest by Tamás Szamuely, Galois descent is also mentioned by J.-P. Serre in [Serre,
1959] with a reference to [Weil, 1956], although Serre himself also mentions there an older
work of F. Châtelet.

1. G-categories and cohomology

Ordinary non-abelian cohomology of groups. Let G be a group, and A a G-
module - which is the same as a module over the integral group ring Z[G]. Classically, a
map ϕ : G→ A is said to be a 1-cocycle if

ϕ(hg) = ϕ(h) + hϕ(g) (1.1)

for all g, h ∈ G. The set Z1(G,A) of all 1-cocycles forms an abelian group under the
pointwise addition, and the map A→ Z1(G,A) defined by a 7→ (g 7→ ga− a) is a group
homomorphism. Denoting the image of that map by B1(G,A) (=the group of boundaries)
one then defines the 1-dimensional cohomology group H1(G,A) as the quotient group

H1(G,A) = Z1(G,A)/B1(G,A). (1.2)
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More generally, this extends to the non-abelian context as follows:
• First of all the non-abelian version of the notion of G-module is to be chosen. Since
a G-module is the same as a G-object in the category of abelian groups, the obvious
candidate is a G-group, i.e. a G-object in the category of groups. Such a G-group A is a
group A equipped with a G-action satisfying g(ab) = g(a)g(b), for all g ∈ G and a, b ∈ A.
Equivalently, a G-group is an internal group (=group object) in the category of G-sets.
• We then repeat the definition of a 1-cocycle ϕ : G→ A with

ϕ(hg) = (ϕ(h))(hϕ(g)) (1.3)

instead of (1.1). However, now the set Z1(G,A) does not have any natural group struc-
ture - it is just a pointed set with the trivial group homomorphism G → A being the
distinguished point.
• Yet, the group A acts on Z1(G,A) via

(aϕ)(g) = a(ϕ(g))(ga)−1, (1.4)

and we can now define the non-abelianH1(G,A) as the pointed setH1(G,A) = Z1(G,A)/A
of orbits. Another well-known way to do this is to regard Z1(G,A) as a groupoid, and
then define H1(G,A) as the set H1(G,A) = π0(Z1(G,A)) of its connected components.
Accordingly the objects of Z1(G,A) are 1-cocycles G→ A, and a morphism ϕ→ ψ is an
element a in A such that aϕ = ψ under the action (1.4).

From G-groups to G-categories. We are now going to replace a G-group A by
a G-category X defined as a G-object in the category Cat of all categories. We will
hence consider X as an ordinary category equipped with a G-indexed family of functors
g(−) : X→ X, with 1(−) = 1X and (hg)(−) = h(−)g(−). We introduce

1.1. Definition. Let G be a group and X a G-category. Then:

(a) A 1-cocycle (X, ξ) : G→ X is an object X in X together with a family ξ = (ξg)g∈G
of morphisms ξg : g(X) → X in X satisfying ξ1 = 1X and ξhg = ξhh(ξg) for all
g, h ∈ G.

(b) A morphism f : (X, ξ) → (X ′, ξ′) of 1-cocycles is a morphism f : X → X ′ in
X such that fξg = ξ′gg(f), for all g ∈ G; the thus obtained category of 1-cocycles
G→ X will be denoted by Z1(G,X).

(c) The isomorphism class of an object (X, ξ) in Z1(G,X) will be denoted by [X, ξ], and
the set of all such classes by H1(G,X); we will call it the 1-dimensional cohomology
set of the group G with coefficients in the G-category.

This indeed generalizes the definition for groups, but we have to make
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1.2. Remark. (a) Let (X, ξ) : G→ X be a 1-cocycle. Then each ξg is an isomorphism.
Indeed, applying ξ1 = 1X and ξhg = ξhh(ξg) to the case h = g−1, we conclude that
each ξg−1 is a split epimorphism and each g−1(ξg) is a split monomorphism; since every
element of G can be presented as a g−1, and all functors of the form g(−) (g ∈ G) are
isomorphisms, this tells us that each ξg is a split epimorphism and a split monomorphism
at the same time, i.e. each ξg is an isomorphism. This yields an alternative definition of a
1-cocycle: if we require each ξg to be an isomorphism (or just ξ1 to be an isomorphism),
then ξ1 = 1X can be deduced from ξhg = ξhh(ξg). Indeed, applying it to g = h = 1 we
obtain ξ1ξ1 = ξ1, and so ξ1 is an identity whenever it is an isomorphism. In particular,
when X is a groupoid (i.e. every morphism in it is an isomorphism) we can simply omit
the condition ξ1 = 1X in Definition 1.1(a).

(b) If X is a groupoid, then obviously Z1(G,X) also is a groupoid, and in this case
H1(G,X) is the same as π0(Z1(G,X)).

(c) When X has only one object, a 1-cocycle (X, ξ) : G → X becomes just a map
ξ from G to the monoid of endomorphisms of the unique object of X written as g 7→ ξg
satisfying ξ1 = 1 and ξhg = ξhh(ξg) above. If in addition that monoid is a group, then (by
(a)) we can omit the first of these two equalities, and the second one becomes precisely
(1.3) if we write ϕ(g) for ξg, etc. Thus, when X is a G-group A regarded as a one
object G-category, the category Z1(G,X) and the set H1(G,X) coincide with the ordinary
(groupoid) Z1(G,A) and (set) H1(G,A) respectively.

(d) Unlike the case of a G-group, the general H1(G,X) has no distinguished point; in
order to get such a point we have to take X itself to be pointed, i.e. to have a distinguished
object X0 such that g(X0) = X0 for all g ∈ G.

From G-categories to G-groups. Given an object X in a G-category X, let us com-
pare:
• the 1-cocycles (X, ξ) : G→ X with the same fixed X; their full subcategory in Z1(G,X)
will be denoted by Z1(G,X)X , and the corresponding subset in H1(G,X) will be denoted
by H1(G,X)X ;
• the 1-cocycles G→ End(X)ρ, where End(X)ρ is the endomorphism monoid of X consid-
ered as a category (= the full subcategory in X with the unique object X) and equipped
with a G-category structure ρ;
• the 1-cocycles G→ Aut(X)ρ, where Aut(X)ρ is the automorphism group Aut(X) of X
in X equipped with a G-group structure ρ.

1.3. Observation. Clearly the G-category structure of X restricts to a G-category
structure on End(X) if and only if the object X is G-invariant. However there is another
way to make such a structure. For any 1-cocycle (X, ξ) : G → X (with the same X),
g ∈ G, and an endomorphism a : X → X, we define ga = ξgg(a)(ξg)

−1 (writing ga for the
new G-action in distinction from the old g(a)). We will denote this structure by ρ(ξ), and
write Z1(G,End(X)ξ) for the corresponding category of 1-cocycles and H1(G,End(X)ξ)
for the corresponding 1-dimensional cohomology set respectively. The action ρ(ξ) clearly
restricts to a G-group structure on Aut(X); we will then write Z1(G,Aut(X)ξ) and
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H1(G,Aut(X)ξ) respectively. Of course Z1(G,Aut(X)ξ) is just the groupoid whose mor-
phisms are all isomorphisms in Z1(G,End(X)ξ), and therefore H1(G,Aut(X)ξ) is the
same as H1(G,End(X)ξ)

After this a straightforward calculation proves

1.4. Proposition. Let (X, ξ) : G → X be a fixed 1-cocycle. The assignment ϕ 7→(
X, (ϕ(g)ξg)g∈G

)
extends to a category isomorphism Z1(G,End(X)ξ) ∼= Z1(G,X)X , and

in particular
H1(G,Aut(X)ξ) = H1(G,End(X)ξ) ∼= H1(G,X)X .

1.5. Remark. Proposition 1.4 almost reduces the description of H1(G,X) to the case
where X is a G-group. Since H1(G,X) obviously is the disjoint union of H1(G,X)X for
all objects X from any fixed skeleton of the category X, and each H1(G,X)X is either
empty, or bijective to H1(G,Aut(X)ξ) for some ξ, it gives a bijection of the form

H1(G,X) ∼= t(X,ξ)∈ΞH
1(G,Aut(X)ξ), (1.5)

where Ξ is any set of 1-cocycles (X, ξ) : G→ X satisfying the following conditions:
(a) if (X, ξ) and (X ′, ξ′) are in Ξ, then X and X ′ are not isomorphic in X;
(b) Ξ is a maximal set with the property (a).

Involving 2-dimensional category theory. Consider the following two questions:
Question A: What is an appropriate notion of a morphism of G-categories?
Question B: Are the ordinary and the generalized notions of 1-cocycle merely technical,
or do they occur as special cases of natural categorical constructions?

Considering G-categories as G-objects in Cat, or as internal categories in the category
SetsG of G-sets, one would of course define the morphisms between them as the G-
functors, i.e. as the morphisms of G-objects in Cat, or, equivalently, as internal functors
in SetsG. However, thinking of a G-category as a functor from G to Cat, and having
in mind that Cat is a 2-dimensional category, we have a choice between the natural
transformations which will give us the G-functors again, and the so-called pseudo-natural
transformations. The second choice suggests the following answer to Question A:

1.6. Definition. Let C and D be G-categories. A morphism from C to D is a pair
(F, ξ), in which F is a functor from C to D considered as ordinary categories, and ξ =
(ξg,C)g∈G,C∈Ob(C) a family of isomorphisms ξg,C : g(F (C)) → F (g(C)) natural in C and
satisfying ξ1,C = 1F (C) and ξhg,C = ξh,g(C)h(ξg,C) for all objects C ∈ C and all g, h ∈ G.

Furthermore, there are morphisms between pseudo-natural transformations called
modifications, and for given C and D, they together form a category PsNat(C,D). The
objects of PsNat(C,D) are thus the morphisms from C to D in the sense of Defini-
tion 1.6, and a morphism f : (F, ξ)→ (F ′, ξ′) in PsNat(C,D) is a natural transformation
f : F → F ′ such that

fg(C)ξg,C = ξ′g,Cg(fC). (1.6)
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In particular if we take C = 1 (the category with only one object and one morphism) and
write X instead of D, then PsNat(C,D) becomes nothing but what we called Z1(G,X),
yielding a good affirmative answer to our Question B.

2-Functoriality of Z1(G,X) in X. In order to take X 7→ Z1(G,X) into a 2-functor
we need to make one more step into 2-dimensional category theory:
Given three G-categories C,D,E, we construct the composition functor

⊗ = ⊗C,D,E : PsNat(D,E)× PsNat(C,D)→ PsNat(C,E)

as follows
• (F , ξ)⊗ (F, ξ) = (FF, ξ⊗ ξ) on objects, where ⊗ is the argumentwise pasting operation,
i.e. ξ ⊗ ξ is defined by (ξ ⊗ ξ)g,C = (F (ξg,C))ξ

g,F (C)
;

• on morphisms the functor ⊗ is the ordinary horizontal composition of natural trans-
formations, i.e. for f : (F , ξ) → (F ′, ξ′) in PsNat(D,E) and f : (F, ξ) → (F ′, ξ′) in
PsNat(C,D), the composite f ⊗ f : (F , ξ) ⊗ (F, ξ) → (F ′, ξ′) ⊗ (F ′, ξ′) is defined by
(f ⊗ f)C = (f

F ′(C)
)(F (fC)) (which is the same as (F ′(fC))(f

F (C)
)).

The collection of all G-categories, their pseudo-natural transformations, and modifi-
cations with the composition ⊗ and the obvious identity pseudo-natural transformations
1C : C→ C (for all C) form a 2-dimensional category G-Cat, in which the hom-categories
homG-Cat(C,D) are the categories PsNat(C,D). In particular, in the notation above, we
have

Z1(G,X) = homG-Cat(1,X) = PsNat(1,X), (1.7)

yielding a 2-functor Z1(G,−) : G-Cat→ Cat.

A remark on Z0(G,X) and H0(G,X). Let us repeat our constructions “decreasing the
dimension by one”. That is, we take the G-category X to be a discrete category, i.e. a
category with no nonidentity morphisms, X = Dis(S) - denoting the G-set of its objects
by S. Then it is easy to see that the pseudo-natural transformations above become just
the natural transformations, the modifications become identities, i.e. Z1(G,Dis(S)) is
discrete, and we have

Z1(G,Dis(S)) ∼= Dis{s ∈ S | gs = s for all g ∈ G}. (1.8)

Since the classical definitions of Z0(G,S) and H0(G,S) say

H0(G,S) = Z0(G,S) = Dis{s ∈ S | gs = s for all g ∈ G}, (1.9)

we conclude that Z1(G,X) and H1(G,X) defined for an arbitrary G-category X, gener-
alize not only Z1(G,A) and H1(G,A) for a G-group A, but also Z0(G,S) and H0(G,S)
for a G-set S.
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A categorical construction behind Proposition 1.4. Any functor F : C → D
canonically factorizes as

C
F (1)

// fact(F ) F (2)
// D (1.10)

where:
• the objects in fact(F ) are as in C and the morphisms as in D, that is
homfact(F )(C,C

′) = homD(F (C), F (C ′));
• the functor F (1) is defined by F (1)(C) = C on objects and F (1)(u) = F (u) on morphisms;
• the functor F (2) is defined by F (2)(C) = F (C) on objects and F (2)(u) = u on morphisms.

If C and D are G-categories and F is a G-functor, then, since the factorization (1.10) is
functorial, this makes fact(F ) a G-category and F (1) and F (2) G-functors. More generally,
if (F, ξ) : C → D is a morphism of G-categories in the sense of Definition 1.6, then
fact(F ) can still be regarded as a G-category and there are canonical ξ(1) and ξ(2) making
(F (1), ξ(1)) and (F (2), ξ(2)) morphisms of G-categories. Explicitly:
• For each g ∈ G, the functor g(−) : fact(F )→ fact(F ) is defined as g(−) : C → C on
objects and via

gF (C)
ξg,C //

g(a)

��

Fg(C)

g(a)

��
gF (C ′)

ξg,C′ // Fg(C ′)

(1.11)

on morphisms; here the first vertical arrow represents the image under g(−) : D → D of
an arbitrary a : F (C) → F (C ′) in D, but the second one is the new g(a) to be defined
as a morphism from Fg(C) to Fg(C ′) in D.
• Since ξg,C is natural in C, it is easy to check that the diagram

C
F (1)

//

g(−)

��

fact(F )

g(−)

��
C

F (1)
// fact(F )

(1.12)

commutes for every g ∈ G, and so ξ(1) is to be defined as the appropriate family of identity
morphisms.
• For a morphism a : C → C ′ in fact(F), the diagram (1.11) can now be rewritten as

gF (2)(C)
ξg,C //

gF (2)(a)
��

F (2)g(C)

F (2)g(a)
��

gF (2)(C ′)
ξg,C′ // F (2)g(C ′)

(1.13)

and accordingly ξ(2) is defined as the family of isomorphisms

ξg,C : gF (2)(C) = gF (C)→ Fg(C) = F (2)g(C).
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1.7. Definition. Let (F, ξ) : C → D be a morphism of G-categories. With notation
as above, we will say that (F, ξ) = (F (2), ξ(2)) ⊗ (F (1), ξ(1)) is the canonical factorization
of (F, ξ).

1.8. Example. Let (X, ξ) : G → X be a 1-cocycle as in Proposition 1.4 and (F, ξ) =
(F (2), ξ(2))⊗ (F (1), ξ(1)) the canonical factorization of the corresponding morphism (F, ξ) :
1→ X. Then
(a) the category fact(F ) is the same as the monoid End(X);
(b) the G-category structure ρ(ξ) on End(X) described in Observation 1.3 is the same as
the G-category structure on fact(F ) described now ((1.11));
(c) the composite of the isomorphism Z1(G,End(X)ξ) ∼= Z1(G,X)X described in Propo-
sition 1.4 and the embedding Z1(G,X)X → Z1(G,X) is the same as the functor

Z1(G, (F (2), ξ(2))) : Z1(G, fact(F ))→ Z1(G,X).

2. 1-Cocycles as algebras over a monad

G-Category structures as monoids. Given a category C, let Fam(C) be the category
of families of objects in C. Recall that the objects of Fam(C) are all families (Ai)i∈I with
Ai ∈ C, and a morphism (Ai)i∈I → (Bj)j∈J is a pair (f, u) in which f : I → J is a map
of sets, and u is a family of morphisms ui : Ai → Bf(i). If C is a monoidal category
C = (C,⊗, 1, α, λ, ρ), then so is Fam(C) = (Fam(C),⊗, 1, α′, λ′, ρ′) with

(Ai)i∈I ⊗ (Bj)j∈J = (Ai ⊗Bj)(i,j)∈I×J , (2.1)

with 1 in Fam(C) being the one-member family corresponding to the 1 in C, and with
obvious α′, λ′, ρ′. According to this description, a monoid in (Fam(C),⊗, 1) can be iden-
tified with a system ((Mi)i∈I , e,m), in which:
• I is an ordinary monoid;
• m is a family of morphisms m(i,j) : Mi ⊗Mj → Mij in C satisfying the suitable asso-
ciativity condition;
• e is a morphism in C from 1 to M1 (where the index 1 of M1 is the identity element of
the monoid I) satisfying the suitable identity condition.
In particular, if C = (C,⊗, 1) is a strict monoidal category, and (Mi)i∈I an object in
Fam(C) in which
• I is equipped with (an ordinary) monoid structure;
• Mi ⊗Mj = Mij for all i, j ∈ I;
• M1 = 1
- then the system ((Mi)i∈I , e,m), in which all m(i,j) and e are identity morphisms, is a
monoid in Fam(C) (although Fam(C) is not strict!); let us call such a monoid split. Com-
paring this notion with the notion of G-category considered in Section 1, we immediately
observe:

Let G be a group. To make a category X a G-category is the same thing as to give
a split monoid (Mi)i∈I in the monoidal category Fam(XX) associated to the monoidal
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category XX = (XX, ◦, 1X) of endofunctors of X, with I = G. According to the notation
of Section 1, (the underlying object of) that monoid is to be written as

(g(−))g∈G. (2.2)

Split monoid actions as 1-cocycles. Let M = (M, e,m) be a monoid in a monoidal
category C. Recall that an M -action in C is a pair (X, ξ), where X is an object in C
and ξ : M ⊗X → X a morphism in C satisfying the associativity and identity properties
with respect to the monoid structure of M . We will also say that ξ is an M -action on X.
Consider the following

2.1. Situation. We take:
• C to be a strict monoidal category, but then replace it by the monoidal category Fam(C)
as defined above.
• M = ((Mi)i∈I , e,m) a split monoid in Fam(C).
• X an object in C regarded as a one-member family, and therefore an object in Fam(C).
In this case an M -action on X can be described as a family ξ = (ξi)i∈I of morphisms
ξi : Mi ⊗X → X with

ξ1 = 1X and ξij = ξi(Mi ⊗ ξj). (2.3)

After that consider a further special case:

2.2. Situation. We take (C,⊗, 1) = (XX, ◦, 1X) (where X is a G-category as in Sec-
tion 1), (Mi)i∈I the monoid (2.2) , and X an object in X regarded as a constant functor
X→ X. We will say that (X, ξ) is a (g(−))g∈G-action on an object in X, if ξg is a constant
natural transformation for each g in G.

Comparing the formulae (2.3) with those in Definition 1.1(a), we obtain:

2.3. Proposition. A pair (X, ξ) = (X, (ξg)g∈G) is an object in Z1(G,X) if and only if
it is a (g(−))g∈G-action (on X). This yields a canonical isomorphism between the category
Z1(G,X) of 1-cocycles G→ X and the category of (g(−))g∈G-actions on objects in X.

Involving the coproduct functor Fam(C) → C. In (say) Situation 2.1, if C had
coproducts preserved by the functors C ⊗ −, − ⊗C : C → C for every object C in
C, then the monoid structure of (Mi)i∈I would of course induce a monoid structure on
the coproduct

∐
i∈IMi, and there would be a straightforward way to compare the actions

of these two monoids. However having in mind Situation 2.2, we cannot assume the
preservation of coproducts by C ⊗− for every C; what we really need is the following:

2.4. Proposition. Let C be a monoidal category with coproducts preserved by −⊗C :
C→ C for each object C in C, and M = ((Mi)i∈I , e,m) a monoid in Fam(C) such that
Mi ⊗ − : C → C preserves coproducts for each i ∈ I. Then the monoid structure of
(Mi)i∈I induces a monoid structure on the coproduct

∐
i∈IMi and there is a canonical

isomorphism between the category of (Mi)i∈I-actions (i.e. M-actions) on one-member
families in Fam(C) and the category of

∐
i∈IMi-actions in C.
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In Situation 2.2, assuming the existence of G-indexed coproducts in X, all the required
conditions hold since all the functors g(−) (g ∈ G) are isomorphisms and therefore pre-
serve coproducts. Here

∐
i∈IMi =

∐
g∈G g(−) being a monoid in (XX, ◦, 1X) is a monad

on X; let us denote it by G(−). From Propositions 2.3 and 2.4, we obtain

2.5. Theorem. Let G be a group and X a G-category with G-indexed coproducts. Then
there is a canonical isomorphism between the category Z1(G,X) of 1-cocycles G→ X and
the category XG(−) of G(−)-algebras. For a 1-cocycle (X, ξ) : G → X with ξ = (ξg)g∈G,
the corresponding G(−)-algebra is the pair (X, ξ∗) with the same X and ξ∗ : G(X) =∐

g∈G g(X)→ X induced by all ξg : g(X)→ X (g ∈ G).

Convention: we will identify ξ and ξ∗, and just write ξ.

3. G-Galois monads and adjunctions

Relating split and connected monoids. Let M = ((Mi)i∈I , e,m) be a split monoid
as in Situation 2.1, andM ′ = (M ′, e′,m′) a monoid in the monoidal category C. Regarding
C as a monoidal subcategory of Fam(C), we can regard M ′ as a monoid in Fam(C), and
we will call such a monoid in Fam(C) connected. We need the description of monoid
homomorphisms from M to M ′, i.e. morphisms u : M → M ′ in Fam(C) making the
diagrams

M
u // M ′

1

e

__@@@@@@@@ e′

>>}}}}}}}}

M ⊗M u⊗u //

m

��

M ′ ⊗M ′

m′

��
M

u // M ′

(3.1)

commute. Since M ′ regarded as an object in Fam(C) is a one-member family, a morphism
u : M →M ′ in Fam(C) is nothing but an I-indexed family of morphisms ui : Mi →M ′

- and the commutativity of (3.1) expressed in the language of ui’s becomes

M1
u1 // M ′

1

=

``AAAAAAAA e′

>>~~~~~~~~

Mi ⊗Mj
ui⊗uj //

=

��

M ′ ⊗M ′

m′

��
Mij

uij // M ′

(3.2)

i.e.
e′ = u1, m′(ui ⊗ uj) = uij (i, j ∈ I). (3.3)

We will use an example of such a homomorphism provided by

3.1. Lemma. Let M = ((Mi)i∈I , e,m) and M ′ = (M ′, e′,m′) be as above, and let

M ′ ⊗Mi = M ′ and m′ ⊗Mi = m′ (3.4)

for every i ∈ I. Then the family u = (ui)i∈I , where ui = e′ ⊗Mi is the morphism

Mi = M1i = M1 ⊗Mi
e′⊗Mi // M ′ ⊗Mi = M ′, (3.5)

is a monoid homomorphism from M to M ′.
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Proof. We have that e′ = e′ ⊗ 1 = e′ ⊗M1 = u1, and

m′(ui ⊗ uj) = m′(M ′ ⊗ uj)(ui ⊗Mj) (since ⊗ is a bifunctor)
(3.4)
= (m′ ⊗Mj)(M

′ ⊗ e′ ⊗Mj)(e
′ ⊗Mi ⊗Mj)

=
(
(m′(m′ ⊗ e′))⊗Mj

)
(e′ ⊗Mij) (since (−)⊗Mj is a functor)

= (1M ′ ⊗Mj)uij (since M ′ is a monoid)

= uij,

as desired (see (3.3)).

Lemma 3.1 easily gives

3.2. Corollary. Under the assumptions of Proposition 2.4 and Lemma 3.1, the mor-
phism

∐
i∈IMi → M ′ induced by the family of morphisms (3.5) is a monoid homomor-

phism in the monoidal category C.

Applying this to Situation 2.2, we obtain

3.3. Corollary. Let (T, η, µ) be a monad on X with T (g(−)) = T and µ(g(−)) = µ
for all g ∈ G. Then the natural transformation γ : G(−) =

∐
g∈G g(−) → T induced by

the natural transformations

g(−) = 1X(g(−))
η(g(−))−→ T (g(−)) = T (g ∈ G), (3.6)

is a morphism of monads.

G-Galois monads and adjunctions. Take a monad T = (T, η, µ) on X, and let
(F T , UT ) be the associated free-forgetful adjunction between X and XT , with unit η :
1X → UTF T and counit ε : F TUT → 1XT . The assumptions T (g(−)) = T and µ(g(−)) =
µ of Corollary 3.3 can be reformulated as F T (g(−)) = F T , and γ : G(−) =

∐
g∈G g(−)→

T being a morphism of monads induces a functor

Kγ : XT → XG(−) ∼= Z1(G,X). (3.7)

Explicitly, for a T -algebra (X, ζ), we have

Kγ(X, ζ) = (X, ξ) with ξg = ζηg(X) (g ∈ G). (3.8)

3.4. Definition. Let G be a group and X a G-category with G-indexed coproducts.
A monad T = (T, η, µ) on X is said to be a G-Galois monad if

(a) T (g(−)) = T and µ(g(−)) = µ for all g ∈ G;

(b) the morphism γ : G(−) =
∐

g∈G g(−)→ T is an isomorphism.

Equivalently, T is a G-Galois monad if the free functor F T satisfies F T (g(−)) = F T for
all g ∈ G and the functor Kγ is an isomorphism.

If instead of a monad T we begin with an adjunction

X
F //

Y
U

oo , η : 1X → UF, ε : FU → 1Y (3.9)

where X is a G-category again, Definition 3.4 should be reformulated as
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3.5. Definition. An adjunction (3.9) is said to be a G-Galois adjunction if

(a) F (g(−)) = F , for all g ∈ G;

(b) the category X admits G-indexed coproducts and the morphism γX :
∐

g∈G g(X)→
UF (X) induced by the collection of morphisms ηg(X) : g(X) → UF (g(X)) =
UF (X) (g ∈ G) is an isomorphism for each object X ∈ X;

(c) the functor U is monadic.

Recall that for a general adjunction (3.9) with the corresponding monad T = (T, η, µ) =
(UF, η, UεF ), the comparison functor K : Y → XT is defined by K(Y ) = (U(Y ), U(εY )),
and when U is monadic the quasi-inverse L : XT → Y of K can be described via the
coequalizer diagram

FUF (X)
εF (X) //

F (ζ)
// F (X) // L(X, ζ) (3.10)

where (X, ζ) is any T -algebra. Moreover, if Y admits coequalizers, then K always (i.e.
even under no monadicity assumption) has a left adjoint L defined in the same way.

Let us provide another construction for the functor L in the situation of Definition 3.5,
using the fact that the monad involving there is isomorphic (by 3.5(b)) to the monadG(−).
At the same time this will describe the composite of L with the isomorphism between the
categories Z1(G,X) and XT , i.e. show how to calculate the object in Y corresponding to
a given 1-cocycle G→ X. For, we observe:
• Since γX :

∐
g∈G g(X)→ UF (X) in Definition 3.5 is an isomorphism, we can replace the

two parallel arrows in (3.10) by their composites with F (γX). Moreover, since the functor
F being a left adjoint sends coproducts to coproducts, we can make a further replacement
by composing with the canonical isomorphism

∐
g∈G F (g(X)) → F (

∐
g∈G g(X)). After

that, instead of defining L(X, ζ) via the coequalizer diagram (3.10), we can define it via
the morphism F (X)→ L(X, ζ) that composed with

F (g(X))
F (ιg) // F (G(X))

F (γX)// FUF (X)
εF (X) // F (X) (3.11)

and with

F (g(X))
F (ιg) // F (G(X))

F (γX)// FUF (X)
F (ζ) // F (X) (3.12)

makes them equal for every g ∈ G, and is universal with this property (where ιg is the
coproduct injection corresponding to g).
• For the composite (3.11), we have, using the definition of γ for the second equality,

εF (X)F (γX)F (ιg) = εF (X)F (γXιg) = εF (X)F (ηg(X))
3.5(a)
= εF (g(X))F (ηg(X)),

which is the identity morphism of F (g(X)) = F (X) by one of the triangular identities for
adjoint functors.
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• And for (3.12): F (ζ)F (γX)F (ιg) = F (ζγXιg) = f(ζηg(X)) = f(ξg), with ξ as in (3.8).
• It follows easily from 1.1(a) and 3.5(a) that the assignment g 7→ F (ξg) determines a
group homomorphism G→ Aut(F (X)), i.e. it makes F (X) a G-object in Y. Moreover, if
we regard Y as a G-category with the trivial action of G then the category Z1(G,Y) of 1-
cocycles G→ Y is of course nothing but the category YG of G-objects in Y, and then F ,
obviously being a G-functor, induces a functor Z1(G,F ) : Z1(G,X)→ Z1(G,Y) = YG.
Of course the G-object in Y obtained above is nothing but Z1(G,F )(X, ξ).
• If Y admits “all” colimits (say, as large as its hom-sets), then there is the colimit functor
colim : YG → Y, sending a G-object Y to its universal quotient with the trivial G-action.
We will briefly write colim(Y ) = Y/G, also when that colimit exists just for a given object
Y . In particular L(X, ζ) = F (X)/G.

Summarizing, and using the isomorphism (3.7) defined by (3.8) and the definition of
the comparison functor K : Y → XT , we obtain

3.6. Theorem. (a) For an adjunction (3.9) satisfying 3.5(a) and (b) the left adjoint
L : XT → Y of the comparison functor K : Y → XT can be described as

L(X, ζ) = F (X)/G, (3.13)

where F (X) is regarded as a G-object in Y via g 7→ F (ξg) = F (ζηg(X)) : F (X)→ F (X).
(b) If (3.9) is G-Galois adjunction then there is a category equivalence

Y ∼ Z1(G,X), (3.14)

under which an object Y in Y corresponds to the 1-cocycle
(
U(Y ), (U(εY )ηg(U(Y )))g∈G

)
:

G → X; conversely, a 1-cocycle (X, ξ) : G → X corresponds to the object F (X)/G,
where F (X) is regarded as a G-object in Y via g 7→ F (ξg) : F (X)→ F (X).

Furthermore, applying Proposition 1.4, we obtain:

3.7. Theorem. If (3.9) is a G-Galois adjunction, then every object Y0 in Y admits a
category equivalence

Y[Y0] ∼ Z1(G,End(U(Y0))ξ0), (3.15)

in which Y[Y0] is the full subcategory in Y with objects all Y in Y with U(Y ) isomorphic
to U(Y0), and (U(Y0), ξ0) = (U(Y0), (U(εY0)ηg(U(Y0)))g∈G) is the 1-cocycle G → X corre-
sponding to Y0 under the equivalence (3.14). In particular the set of isomorphism classes
of objects in Y[Y0] is bijective to H1(G,End(U(Y0))ξ0) = H1(G,Aut(U(Y0))ξ0).

3.8. Remark. The equivalence (3.15) is “less canonical” than the equivalence (3.14) in
the following sense: let Y[Y0] be the full subcategory in Y with objects all Y in Y with
U(Y ) = U(Y0), and let

Y(Y0)→ Z1(G,X)U(Y0) and Z1(G,X)U(Y0) → Y[Y0] (3.16)



106 FRANCIS BORCEUX, STEFAAN CAENEPEEL AND GEORGE JANELIDZE

be the functors induced by the equivalence (3.14). Since both of them obviously are
category equivalences, so are the composites

Y(Y0)→ Z1(G,X)U(Y0) → Z1(G,End(U(Y0))ξ0) and
Z1(G,End(U(Y0))ξ0)→ Z1(G,X)U(Y0) → Y[Y0],

(3.17)

where ξ0 is as in Theorem 3.7, and the isomorphism Z1(G,X)U(Y0)
∼= Z1(G,End(U(Y0))ξ0)

is obtained from Proposition 1.4. However, since the category Y(Y0) is only equivalent,
but not equal to Y[Y0], the functors (3.17) are not exactly quasi-inverse to each other.
One can say that the equivalence (3.15) is only canonical up to a choice of the quasi-
inverse of the inclusion functor Y(Y0) → Y[Y0]. Yet, since the second functor in (3.17)
is uniquely determined only up to the choice of colimits in Y, it is useful to describe
it explicitly. And, since it is a composite of explicitly given functors, the description is
straightforward:

(ϕ ∈ Z1(G,End(U(Y0))ξ0)) 7→ F (Y0)/G, (3.18)

where G acts on F (Y0) by
g 7→ F (ϕ(g)U(εY0ηg(U(Y0))), (3.19)

since g 7→ F (ξg) in (3.13), the role of ξg is played by ϕ(g)ξ0g here according to Proposi-
tion 1.4, and ξ0g = U(εY0ηg(U(Y0))) as in Theorem 3.7.

4. Galois descent for modules and algebras

Galois adjunctions correspond to finite Galois extensions. Let us take the
adjunction (3.9) to be

(E-Mod)op
F=(−)p // (B-Mod)op

U=E⊗B(−)
oo , (4.1)

η : 1(E-Mod)op → UF, ε : FU → 1(B-Mod)op ,

where
• p : B → E is a homomorphism of non-trivial commutative rings with 1;
• F : (E-Mod)op → (B-Mod)op is the (dual of) the restriction-of-scalars functor from
the dual (=opposite) category of E-modules to the dual category of B-modules, for which
we shall write F (D) = Dp;
• U : (B-Mod)op → (E-Mod)op is the (dual of) the induction functor, for which we
shall write U(A) = E ⊗B A;
• η = (ηD : E ⊗B Dp → Dp)D∈(E-Mod)op is defined by ηD(e ⊗ d) = ed (here and below,
whenever it makes sense, we keep the direction of arrows as in the categories of modules,
not as in their duals);
• ε =

(
εA : A→ (E ⊗B A)p

)
A∈(B-Mod)op

is defined by εA(a) = 1⊗ a.

We will also assume that (E, p) is equipped with a right action of a group G, i.e. G
acts on E on the right (via ring automorphisms of E) with p(b)g = p(b) for each b ∈ B
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and g ∈ G. This makes (E-Mod)op a G-category, in which g(D) = Dg, i.e. g(D) = D as
abelian groups and, for e ∈ E and d ∈ D, we have:

ed ∈ g(D) is the same as (eg)d ∈ D. (4.2)

4.1. Theorem. The adjunction (4.1) equipped with the G-category structure on (E-Mod)op

defined by (4.2) is a G-Galois adjunction if and only if the following conditions hold:

(a) p : B → E is an effective (co)descent morphism, i.e., considered as a homomor-
phism of B-modules, it is a pure monomorphism;

(b) the map h : E ⊗B E → GE, where GE denotes the E-algebra of all maps from G
to E, defined by h(e⊗ e′)(g) = (eg)e′, is bijective;

(c) the group G is finite.

Proof. (a) simply means that the functor U : (B-Mod)op → (E-Mod)op is monadic (see
[Janelidze, Tholen, 2004] for details). On the other hand condition 3.5 (b) now becomes:
the map

γD : E ⊗B Dp → GD, γD(e⊗ d)(g) = (eg)d, (4.3)

is bijective for each D in E-Mod.
Since this condition implies 4.1(b), it suffices to prove that, under conditions 4.1 (a) and
4.1(b), condition 3.5(b) is equivalent to condition 4.1(c). For, note that we can identify
h with γE, and consider the commutative diagram

(E ⊗B E)⊗E Dp
h⊗1D //

��

(GE)⊗E Dp

��
E ⊗B Dp

γD // GD,

(4.4)

whose vertical arrows are obvious canonical maps. Since its top arrow is bijective by 4.1
(b), and its left-hand vertical arrow is always bijective, the bijectivity of its bottom arrow
is equivalent to the bijectivity of its right-hand vertical arrow. Therefore all we need to
observe is that the canonical map (GE)⊗E Dp → GD is bijective for every E-module D
if and only if G is finite.

4.2. Remark. One can replace ordinary modules with modules equipped with various
kinds of additional structure, and, in particular, with various kinds of algebras. To be
more precise, Theorem 4.1 still holds if instead of E-Mod and B-Mod we have E-Alg
and B-Alg respectively, where “-Alg” refers to, for example, (a) arbitrary (not necessarily
associative or commutative) algebras, with or without 1; (b) associative algebras, with or
without 1; (c) (associative and) commutative algebras, with or without 1; (d) Lie algebras;
(e) Jordan algebras; (f) differential algebras.
All we need here is to know that the functors F and U of (4.1) induce similar functors
for these kinds of algebras, and that replacing modules with algebras does not affect
monadicity. For this, see [Janelidze, Tholen, 2004, Sec. 6].
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Translation of Theorems 3.6 and 3.7 for modules and algebras. Theorem 4.1
allows us to apply Theorems 3.6 and 3.7 to modules and algebras. This gives:

4.3. Theorem. Suppose the equivalent conditions of Theorem 4.1 hold. Then the cate-
gory of B-modules is equivalent to the category Z1(G, (E-Mod)op)op, which can be identi-
fied with the category of E-modules D on which G acts on the right via B-module automor-
phisms with (ed)g = (eg)(dg) for all e ∈ E, d ∈ D, and g ∈ G. Under this equivalence:
(a) a B-module A corresponds to the E-module E⊗B A, on which G acts on the right via
B-module automorphisms with (e⊗ a)g = eg ⊗ a for all e ∈ E, a ∈ A, and g ∈ G;
(b) an E-module D equipped with a right G-action as above corresponds to the B-module
DG = {d ∈ D | dg = d for all g ∈ G}, where the scalar multiplication B ×DG → DG is
induced by the scalar multiplication B ×Dp → Dp.

Proof. A 1-cocycle (D, ξ) : G→ (E-Mod)op is an E-module D together with a family
ξ = (ξg)g∈G of E-module isomorphisms ξg : D → Dg in X satisfying ξ1 = 1X and
ξhg = ξgξh (having in mind that h(ξg) = ξg, since h(−) : (E-Mod)op → (E-Mod)op is
the restriction-of-scalars functor corresponding to h). Since the E-module structure on Dg

is given by (4.2), it is easy to see that to say that ξg : D → Dg is an E-module isomorphism
is to say that ξg(ed) = (eg)ξg(d) for all e ∈ E, d ∈ D, and g ∈ G. After that we put
dg = ξg(d), and this gives the desired description of the category Z1(G, (E-Mod)op)op. It
remains to prove (a) and (b).

(a) By Theorem 3.6(b), the 1-cocycle G→ (E-Mod)op corresponding to a B-module
A, is the pair (E ⊗B A, (ηg(E⊗BA))(E ⊗B εA))g∈G). Using the explicit formulae for ε and
η given in the description of the adjunction (4.1), we have

(ηg(E⊗BA))(E ⊗B εA))(e⊗ a) = ηg(E⊗BA))(e⊗ (1⊗ a)) = e(1⊗ a) = eg ⊗ a,

where the last equality follows from the fact that e(1 ⊗ a) is calculated in g(E ⊗B A).
According to our way of defining a right G-action out of a 1-cocycle G → (E-Mod)op

this gives
(e⊗ a)g = (ηg(E⊗BA))(E ⊗B εA))(e⊗ a) = eg ⊗ a,

as desired.
(b) now follows immediately from Theorem 3.6(b).

4.4. Theorem. Suppose the equivalent conditions of Theorem 4.1 hold, and A0 is a
fixed B-module. Then the full subcategory of the category of B-modules

B-Mod[A0] = {A ∈ B-Mod | E ⊗B A ∼= E ⊗B A[0] in E-Mod}

is equivalent to the category Z1(G,End(E ⊗B A0)op
ξ0

)op, where (E ⊗B A0, ξ0) : G →
(E-Mod)op is the 1-cocycle, corresponding to A0, which makes End(E ⊗B A0)op a one-
object G-category, as in Observation 1.3. Moreover:

(a) The G-category constructed above on End(E ⊗B A0)op, written as

G× End(E ⊗B A0)op → End(E ⊗B A0)op, (g, u) 7→ gu,
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has, for each g ∈ G, the E-module isomorphism g(u) : E ⊗B A0 → E ⊗B A0 defined by

(gu)(t) = (u(tg))g−1 (t ∈ E ⊗B A0), (4.5)

using the right action of G on E ⊗B A0 described in 4.3 (a).
(b) In particular, we have a bijection between B-Mod[A0]/ ∼= and H1(G,Aut(E ⊗B

A0)op, where B-Mod[A0]/ ∼= is the set of isomorphism classes of objects of the category
B-Mod[A0] and the action of G on Aut(E ⊗B A0)op is defined by (4.5).

Proof. The first assertion of the theorem is really a direct translation of Theorem 3.7
and the same is true for the assertion 4.4(b) provided we can use 4.4(a). Therefore we
only need to prove 4.4(a). For, we observe:

(i) As we see from the proof of 4.3 (a), ξ0 = (ξ0g)g∈G, where ξ0g : E⊗BA0 → (E⊗BA0)g
is defined by ξ0g(e⊗ a) = eg ⊗ a.

(ii) Recall the formula ga = ξgg(a)(ξg)
−1 from Observation 1.3. It tells us that gu in

4.4 (a) is defined by gu = ξ0gu(ξ0g)
−1 (since g(−) : (E-Mod)op → (E-Mod)op is the dual

restriction-of-scalars functor, we write u instead of g(u)).
(iii) eg⊗ a) above is the same as (e⊗ a)g in E ⊗B A0 (on which G acts via B-module

automorphisms as described in 4.3(a)).
(4.5) follows from these three observations.

4.5. Remark. The following obvious reformulations are useful:
(a) Formula (4.5) implies that (gu)(1 ⊗ a) = (u(1 ⊗ a))g−1, for each a ∈ A0 - which

determines gu since it is an E-module homomorphism and E ⊗B A0 is generated by the
elements of the form 1⊗ a (a ∈ A0) as an E-module.

(b) Since Aut(E ⊗B A0)op and Aut(E ⊗B A0) are isomorphic (by sending automor-
phisms to their inverses), 4.4(b) can be restated as a bijective correspondence between
B-Mod[A0]/ ∼= and H1(G,Aut(E ⊗B A0), where the action of G on Aut(E ⊗B A0) is
defined by (4.5).

4.6. Remark. If we are not interested in the cohomological side of the story, the first
assertion of Theorem 4.3 reduces to:

(a) Under the equivalent conditions of Theorem 4.1, the category B-Mod is equivalent
to the category of E-modulesD on whichG acts on the right via B-module automorphisms
with (ed)g = (eg)(dg) for all e ∈ E, d ∈ D, and g ∈ G.

After that 4.3(a) implies that:
(b) Under the equivalent conditions of Theorem 4.1, the category B-Mod[A0] is equiv-

alent to the category defined as follows:
• the objects are right actions of G on E ⊗B A0 via B-module automorphisms with

(et)g = (eg)(tg), for all e ∈ E, t ∈ E ⊗B A0, and g ∈ G}; (4.6)

• the morphisms are E-module homomorphisms that preserve G-action.
This suggests to ask if Theorem 4.4 provides a better (non-cohomological) description

of the category B-Mod[A0]? It is easy to check that the direct translation of the first two
assertions of Theorem 4.4 gives:
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(c) Under the equivalent conditions of Theorem 4.1, the category B-Mod[A0] is equiv-
alent to the category defined as follows:
• the objects are right actions ∗ of G on E ⊗B A0 via E-module automorphisms, which
together with the fixed right G-action defined as in 4.3(a), satisfy

t ∗ hg = ((t ∗ h)h ∗ g)h−1 forall t ∈ E ⊗B A0, and g, h ∈ G; (4.7)

• the morphisms are the E-module homomorphisms that preserve the G-action ∗.
Indeed, using (1.3) with (1.4), and denoting ϕ(g)(t) by t ∗ g, we have

t ∗ hg = ϕ(hg)(t) = ((hϕ(g))(ϕ(h)))(t) = (hϕ(g))((ϕ(h)(t))

= (hϕ(g))(t ∗ h) = ((ϕ(g)((t ∗ h)h)))h−1 = ((t ∗ h)h ∗ g)h−1,

where the reason of writing (hϕ(g))(ϕ(h)) instead of (ϕ(h))(hϕ(g)) is that we are applying
(1.3) to 1-cocycles G→ End(E ⊗B A0)op.
In comparison with (b), the advantage of (c) is that the variable G-actions are actions
via E-module automorphisms, although formula (4.7) looks complicated unless it is in-
terpreted cohomologically.

Again, all these calculations and results can be copied for various kinds of algebras
(see Remark 4.2).

Galois cohomology of commutative rings.

4.7. Theorem. With notation as above, suppose conditions 4.1(b) and 4.1(c) hold.
Then the following conditions are equivalent:

(a) condition 4.1(a);
(b) p is injective and makes E a finitely generated projective B-module;
(c) p induces an isomorphism B ∼= EG.

Proof. (a) ⇒ (c): Under the category equivalence described in Theorem 4.3, the B-
module E corresponds to the E-module E ⊗B B ∼= E, on which G acts as originally on
E (see 4.3(a)), and then 4.7(c) follows from 4.3(b). (c) ⇒ (b) follows from the results
of [Chase, Harrison, Rosenberg, 1965] (see also [Chase, Sweedler, 1969] and [DeMeyer,
Ingraham, 1971]). (b) ⇒ (a) is well-known, and can be proved easily as follows. E is
finitely generated and projective and faithful as a B-module, hence it is a B-progenerator
(see for example [DeMeyer, Ingraham, 1971, Corollary I.1.10]), and a fortiori faithfully
flat as a B-module. We need to show that, for any B-module N , the map iN : N →
N ⊗B E, iN(n) = n ⊗B 1E is injective. It suffices to show that iN ⊗B E is injective. If
x =

∑
i ni⊗B ei ∈ Ker(iN ⊗BE), then

∑
i ni⊗B 1E⊗B ei = 0, and, multiplying the second

and third tensor factor, we find that x = 0.

From the results of [Chase, Harrison, Rosenberg, 1965] we also conclude:

4.8. Corollary. The equivalent conditions of Theorem 4.1 hold if and only if p : B →
E is a Galois extension with Galois group G in the sense of [Chase, Harrison, Rosenberg,
1965].
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Notes Math. 224, Springer, Berln, 1971.

J. Jahnel, The Brauer-Severi variety associated with a central simple algebra, Linear
Algebraic Groups and Related Structures 52 (2000), 1–60.

G. Janelidze and W. Tholen, Facets of Descent III: Monadic descent for rings and algebras,
Appl. Categ. Structures 12 (2004), 461–467.
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Clemens Berger, Université de Nice-Sophia Antipolis, cberger@math.unice.fr
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