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THE SPAN CONSTRUCTION

ROBERT DAWSON, ROBERT PARÉ, DORETTE PRONK

Abstract. We present two generalizations of the Span construction. The first general-
ization gives Span of a category with all pullbacks as a (weak) double category. This dou-
ble category SpanA can be viewed as the free double category on the vertical category A
where every vertical arrow has both a companion and a conjoint (and these companions
and conjoints are adjoint to each other). Thus defined, Span: Cat→ Doub becomes a
2-functor, which is a partial left bi-adjoint to the forgetful functor Vrt : Doub→ Cat,
which sends a double category to its category of vertical arrows.

The second generalization gives Span of an arbitrary category as an oplax normal dou-
ble category. The universal property can again be given in terms of companions and
conjoints and the presence of their composites. Moreover, SpanA is universal with this
property in the sense that Span: Cat→ OplaxNDoub is left bi-adjoint to the forgetful
functor which sends an oplax double category to its vertical arrow category.

1. Introduction

As remarked in [12], the 2-category Π2A obtained by freely adjoining a right adjoint to
each arrow of a category A, studied in [14] and [15], has zig-zag paths of arrows of A
as 1-cells and equivalence classes of fences as 2-cells. Thus, it would appear that this
construction can be performed in two steps: first, take spans in A (that is, one step zig-
zags), and then take paths of these. Moreover, each of these constructions is interesting
in itself and deserving of further study. And indeed this is so. Paths and spans are also
essential building blocks for other localizations such as the hammock localization [10] and
categories of fractions [17].

In [12] we made a systematic study of the path construction. There we saw that it
was useful, even necessary, to work in the context of double categories and even Leinster’s
fc-multicategories (which we called, more suggestively, lax double categories). The more
important construction presented there is Path∗, which arises as the solution of the prob-
lem of describing the universal oplax normal morphism of double categories. It is in this
construction that the equivalence relation on cells in Π2A first makes its appearance, and
this fact certainly clarifies part of the role of the equivalence relation.
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To complete our construction of Π2A we must study spans in A. If A is a category
with pullbacks, the bicategory SpanA is well-known. It was introduced by Bénabou in
1967; from there, it is an easy step to pass to the (weak) double category SpanA, first
introduced in [19], and briefly considered in [13]. This double category of spans is better
behaved than the bicategory when it comes to universal properties.

However, localization constructions such as Π2 typically do not require categories to
have pullbacks. Without pullbacks we cannot compose spans, but we do know what a
cell from a span into a path of spans ought to be, because the composite of a path of
spans is a limit construction. Generalizations of the Span construction are among the
main motivating examples of Hermida’s multicategories with several objects [21], and
Leinster’s fc-multicategories [26]. It is our purpose in this paper to elevate these versions
of Span from mere examples to the central object of study.

It is clear that all these Span constructions are natural, but it would be reassuring
if we had a universal property to validate them, and provide a framework for further
extensions and a better understanding of the relationship between the Span construction
and other localization constructions. In [13] we established two universal properties of
SpanA, one of which did not refer to pullbacks. We will extend these properties in the
present context.

In Section 2 we review the properties of Span as a bicategory construction, and give
a slightly improved version of our characterization of gregarious morphisms from [13]
(which were called ‘jointed morphisms’ in that paper). In Section 3 we describe the
universal properties of the 2-functor Span: Cat → Doub, defined for categories with
pullbacks. We introduce the notions of gregarious double categories and Beck-Chevalley
double categories. In Section 4 we extend the Span construction to arbitrary categories
and obtain the aforementioned oplax double categories.

2. The bicategory of spans

We begin by recalling the basic facts about spans. If A is a category with pullbacks, the
bicategory SpanA has the same objects as A, but its morphisms are spans,

A S
poo q //B. (1)

We will denote such a span by a pair (p, q), or by its middle object S when there is no

confusion possible. The composite T ⊗B S, also written as TS, of A S
poo q //B with

B T
roo s //C is given by the pullback

T ⊗B S
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and the identity IA on an object A is given by A A
1Aoo 1A //A. Composition, being defined

as it is by a universal property, can hardly be expected to be associative or unitary on
the nose, but it is up to coherent isomorphism. In order to express this we must have
morphisms between spans.

A 2-cell t : S → S ′ is a commutative diagram

A S
poo q //

t
��

B

A S ′
p′

oo
q′

// B .

Vertical composition of 2-cells is defined in the obvious way, whereas horizontal composi-
tion can be defined using the universal property of the pullbacks used in the composition
of the spans. So we obtain a bicategory SpanA. This construction was the main object
of study in our previous paper [13]. In the current paper we will revisit this construc-
tion to discuss its functoriality properties and then we will introduce and study several
extensions.

The category A embeds into SpanA via a morphism of bicategories

( )∗ : A→ SpanA,

which assigns to the morphism f : A→ B the span f∗ = (A A
1Aoo f //B). In saying that

( )∗ is a morphism of bicategories we are considering A as a bicategory with only identity
2-cells. Depending on our choice of pullbacks, a point on which we don’t want to commit
ourselves, composition may only be preserved up to coherent isomorphism, (gf)∗ ∼= g∗f∗.
The morphism ( )∗ is locally full and faithful which means that there is no 2-cell f∗ ⇒ f ′∗
unless f = f ′ and then there is only the identity.

There is another embedding, this time contravariant, of A into SpanA,

( )∗ : Aop → SpanA,

which takes a morphism f : A→ B to the span f ∗ = (B A
1A //foo A).

The relationship between the images f∗ and f
∗ is one of adjointness. SpanA, being

a bicategory, supports the notion of adjointness, expressed in terms of unit and counit
2-cells satisfying the triangle identities as described in [20], page 137; in SpanA, f∗ is left
adjoint to f∗. All of these spans are further related by the Beck-Chevalley condition: If

P

h
��

k // C

g

��
A

f
// B
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is a pullback diagram in A, then the canonical 2-cell

P
k∗ //

⇒

C

A

h∗

OO

f∗
// B

g∗

OO

is an isomorphism.

Every span A S
poo q //B is isomorphic to q∗⊗S p∗ so that the arrows of SpanA are

generated by the arrows of A (i.e., the arrows of the form f∗ for f ∈ A) and their right
adjoints. It is also true, although less obvious, that each 2-cell of SpanA can be factored
as a composition of identities, units and counits of adjunctions f∗ ⊣ f ∗ and SpanA is in
some sense the free bicategory generated by the arrows of A and their adjoints. However,
it is not so in the obvious way, because it is not equivalent to Π2A of [14]. Indeed, it was
the object of [13] to make this precise, but before we can state the main theorem from
that paper we must recall some definitions.

2.1. Gregarious morphisms of bicategories. From the beginning, [2], it was real-
ized that it was too much to require that morphisms of bicategories preserve composition,
even up to isomorphism. There are many examples to back this up. We give just one
which will be important to us later.

Let A and B be categories with pullbacks and F : A→ B an arbitrary functor. This
gives rise to Span(F ) : SpanA → SpanB defined on objects, spans, and 2-cells by the
application of F . So F assigns to the 2-cell

A S
poo q //

t
��

B

A S ′
p′

oo
q′

// B ,

the 2-cell

FA FS
Fpoo Fq //

Ft
��

FB

FA FS ′
Fp′

oo
Fq′

// FB .

Vertical composition of 2-cells is preserved by this functor, but composition of spans
will not be, even up to isomorphism, unless F sends pullbacks to pullbacks. In general,
the universal property of pullbacks only gives us a comparison cell φT,S : F (T ⊗B S) →
FT ⊗FB FS. Such an F will be an oplax morphism of bicategories (the vertical dual of
Bénabou’s notion of morphism of bicategories [2]).
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2.2. Remark. One might object that we should not consider functors F that don’t
preserve pullbacks in our study of the Span construction, and there is some truth to
that. But as noted in [7], one might encounter a pullback-preserving functor U : B→ A
to which we might want to apply Span, and this U could have a left adjoint F which
does not preserve pullbacks, a common and important situation. Moreover, if this F
induces some kind of left adjoint SpanA → SpanB to Span(U), we should take it into
consideration.

To gain further insight into these questions we will address the 2-functoriality of the
Span construction at the end of this section, and further at the end of Sections 3 and 4.

The oplax morphisms Span(F ) : SpanA→ SpanB are all normal. In fact, any mor-
phism of the form Span(F ) preserves identities on the nose, although this in itself is not
enough to ensure normality. The identities must satisfy the unit laws for structure cells
of oplax morphisms of bicategories, which they do. Normality plays a fundamental role
throughout this paper. One of the features of normal morphisms is that one can easily
characterize when they preserve adjunctions.

We say that an oplax morphism of bicategories Φ: A → B preserves adjunctions if for
each adjunction A f //

A′uoo in A with unit η : 1A → uf and counit ε : fu→ 1A′ , there are
2-cells η̄ : 1ΦA → Φ(u)Φ(f) and ε̄ : Φ(f)Φ(u) → 1ΦA′ which satisfy the triangle identities
and give rise to commutative squares

Φ(1A)
Φη //

ϕA
��

Φ(uf)

ϕu,f
��

and

Φ(fu)

ϕf,u
��

Φε // Φ(1′A)

ϕA′

��
1ΦA η̄

// Φ(u)Φ(f) Φ(f)Φ(u)
ε̄

// 1ΦA′ .

So if Φ is normal we can express η̄ directly in terms of Φη and the structure cells. However,
to define ε̄ in terms of Φε we need that Φ preserves the composite fu up to isomorphism.
Proposition 2.3 below shows that in the presence of normality this condition is also suffi-
cient to ensure that Φ preserves adjunctions.

We see from this discussion that for bicategories normality is a useful property when
considering the preservation of adjunctions, but it is not necessary or sufficient to ensure
this preservation. We will see in Proposition 3.8 that in the context of double categories
normality is equivalent to the preservation of conjoints, a kind of adjointness between
horizontal and vertical morphisms.

The oplax morphisms of the form Span(F ) are more than normal, they preserve not
only identities, but also certain composites, namely those of the form f∗⊗S and those of
the form S ⊗ g∗, for any span S. Indeed, the pullback involved in the composite f∗ ⊗ S
can be chosen to be

S

~~
~~~~
~~ q

  A
AA

A

S

q ��@
@@

@ B

}}
}}}}
}}

B
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and such pullbacks are preserved by any functor. The case of S ⊗ g∗ is dual. We saw in
[13] that the condition that an oplax normal morphism preserve composites of the form
fx for every left adjoint f is sufficient to ensure the preservation of adjunctions. However,
there is the following slightly stronger result.

2.3. Proposition. Let Φ: X → Y be an oplax normal morphism of bicategories and
let f ⊣ u be an adjoint pair of arrows in X . If Φ preserves the composite fu, then Φ(f)
is left adjoint to Φ(u). Furthermore, in this case Φ preserves all composites of the form
fx and zu.

Proof. Let ε : fu → 1B and η : 1A → uf be the adjunctions for f ⊣ u. To say that Φ
preserves the composite fu means that the oplaxity 2-cell φf,u : Φ(fu) → Φ(f)Φ(u) is
invertible. Define

ε = (Φ(f)Φ(u)
φ−1
f,u //Φ(fu)

Φ(ε) //Φ(1B)
φB //1ΦB )

and

η = (1ΦA
φ−1
A //Φ(1A)

Φ(η) //Φ(uf)
φu,f //Φ(u)Φ(f)).

Then we obtain commutative diagrams

Φ(f) ∼

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Φ(f)1ΦA

''NNNNNNNNNNN

Φ(f)φ−1
A// Φ(f)Φ(1A)
coh

φ−1
f,1A

��

Φ(f)Φ(η)// Φ(f)Φ(uf)

nat coh

Φ(f)φu,f// Φ(f)Φ(u)Φ(f)

φ−1
f,uΦ(f)

��
Φ(f1A)

coh

''OOOOOOOOOOO

Φ(fη) // Φ(fuf)
∆

φf,uf

OO

φfu,f

//

Φ(εf)

��

Φ(fu)Φ(f)

nat Φ(ε)Φ(f)

��
Φ(1Bf)

((QQQQQQQQQQQQ

φ1B,f // Φ(1B)Φ(f)
coh

φBΦ(f)
��

1ΦBΦ(f)

≀

Φ(f)
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and

Φ(u) ∼

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
1ΦAΦ(u)

&&NNNNNNNNNNN

φ−1
A Φ(u)

// Φ(1A)Φ(u)
coh

φ−1
1A,u

��

Φ(η)Φ(u)// Φ(uf)Φ(u)

nat coh

φu,fΦ(u)
// Φ(u)Φ(f)Φ(u)

Φ(u)φ−1
f,u

��
Φ(1Au)

coh

''OOOOOOOOOOO

Φ(ηu) // Φ(ufu)
∆

φuf,u

OO

φu,fu

//

Φ(uε)
��

Φ(u)Φ(fu)

nat Φ(u)Φ(ε)
��

Φ(u1B)

((QQQQQQQQQQQQ

φu,1B // Φ(u)Φ(1B)
coh

Φ(u)φB

��
Φ(u)1ΦB

≀

Φ(u)

where the diagonal arrows come from unit isomorphisms. Note the arrows φf,uf and φuf,u
in the middle which go up. This is necessary, because we do not know whether they are
invertible. However, the φf,1 and φ1,u are invertible, since they are one-sided inverses to
Φ(f)φA and φAΦ(u) respectively, which are invertible by normality. Thus, Φ(f) ⊣ Φ(u).

Next we will show that composites of the form fx are preserved (up to isomorphism).
The inverse for φf,x : Φ(fx)→ Φ(f)Φ(x) is the composite on the left of the diagram

Φ(f)Φ(x)

≀

Φ(f)Φ(1Ax)

Φ(f)Φ(ηx)
��

Φ(f)φ1A,x //

nat

Φ(f)Φ(1A)Φ(x)

Φ(f)Φ(η)Φ(x)
��

Φ(f)Φ(ufx)

Φ(f)φu,fx

��

Φ(f)φuf,x //

coh

Φ(f)Φ(uf)Φ(x)

Φ(f)φu,fΦ(x)

��
Φ(f)Φ(u)Φ(fx)

εΦ(fx)
��

Φ(f)Φ(u)φf,x //

nat

Φ(f)Φ(u)Φ(f)Φ(x)

εΦ(f)Φ(x)
��

1ΦBΦ(fx)

≀

1ΦBφf,x +3

nat

1ΦBΦ(f)Φ(x)

≀

Φ(fx) φf,x

// Φ(f)Φ(x)

and Φ(f)φ1A,x = Φ(f)φ−1A Φ(x) by normality and coherence of φ. Using the first triangle
identity we conclude that the right side of the previous diagram, preceded by the top is
idΦ(f)Φ(x).
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In the other direction we have the diagram

Φ(fx)

��

≀ nat

φf,x // Φ(f)Φ(x)

≀

Φ(f1Ax)

coh

~~

Φ(fηx)
��

nat

φf,1Ax // Φ(f)Φ(1Ax)

Φ(f)Φ(ηx)
��

Φ(fufx)∆

Φ(εfx)
jjjjj

uujjjjj φfu,fx

��
coh

φf,ufx // Φ(f)Φ(ufx)

Φ(f)φu,fx

��
Φ(1Bfx) nat

φ1B,fx ))TTTTTTTTTTTTTTT
Φ(fu)Φ(fx)

Φ(ε)Φ(fx)
��

def ε

φf,uΦ(fx)
// Φ(f)Φ(u)Φ(fx)

εΦ(fx)
��

Φ(1B)Φ(fx)

**UUUUUUUUUUUUUUUUUUU

φBΦ(fx) +3 1ΦBΦ(fx)

≀
coh

Φ(fx).

Preservation of zu is dual.

The result of Proposition 2.3 leads to the following definition which is fundamental to
all that will follow.

2.4. Definition. An oplax morphism Φ: X → Y of bicategories is called gregarious if
it is normal and preserves all composites of the form fu where f is left adjoint to u. (In
[13] these morphisms were called jointed.)

The following theorem, proved in Proposition 2.8 and 2.9 of [13], establishes gregari-
ousness as a fundamental concept.

2.5. Theorem. An oplax normal morphism of bicategories is gregarious if and only if
it preserves adjoints.

The importance of this notion has been observed by various authors (cf. [6], [7], [8]
and [9]). For a full discussion, see [13].

2.6. The universal property of Span. As we noted above, the embedding

( )∗ : A→ Span(A)

sends all arrows in A to left adjoints in Span(A). So in order to state the universal
property of Span we will use the following property of morphisms of bicategories, which
was introduced in [13].
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2.7. Definition. A (strong) morphism Φ: X → Y of bicategories is sinister if Φ(f)
is a left adjoint for every arrow f of X . A strong transformation t : Φ → Ψ of sinister
morphisms is called sinister if for every arrow f of X , the mate of the naturality isomor-
phism Ψ(f)t(X)

∼→ t(X ′)Φ(f) is itself an isomorphism t(X)Φ(f)∗
∼→ Ψ(f)∗t(X ′). (See

[13], Section 1.2.)

The main theorem of [13] now states that ( )∗ : A → SpanA is the universal sinister
morphism in the following precise sense.

2.8. Theorem. Let A be a category with pullbacks and B an arbitrary bicategory. Then

1. Composing with ( )∗ : A → SpanA gives an equivalence of categories between the
category of gregarious morphisms SpanA → B with oplax transformations and the
category of sinister morphisms A→ B with strong transformations.

2. Under this correspondence, strong transformations F → G : SpanA ⇒ B correspond
to sinister transformations F ◦ ( )∗ → G ◦ ( )∗ : A ⇒ B.

3. Strong morphisms SpanA→ B correspond to sinister morphisms A→ B satisfying
the Beck-Chevalley condition.

2.9. Functoriality. We write PBCat for the category of categories with pullbacks
and pullback-preserving functors and pbCat for the category of categories with pullbacks
and arbitrary functors. Then Span can be considered either as a functor Span : PBCat→
Bicat (where the morphisms of the codomain category are homomorphisms, also called
pseudo functors or strong morphisms, of bicategories) or as a functor Span : pbCat →
BicatOplaxN (where the morphisms of the codomain category are oplax normal morphisms
of bicategories). Since we are interested in the preservation of adjunctions, we may want
to ask the question whether either of these functors is a 2-functor.

However, this question does not make sense because neither BicatOplaxN nor Bicat
can be considered as a 2-category (or bicategory) in a way that would include natural
transformations with non-identity components on the objects and non-identity 2-cells for
the arrows. For BicatOplaxN this is obvious as there is no way of whiskering any type of
natural transformations with oplax morphisms. For Bicat with homomorphisms there
is a notion of whiskering. However, there are several problems with the horizontal and
vertical composition of the natural transformations: vertical composition is not necessarily
associative on the nose if the codomain object of the homomorphisms is a bicategory,
and there are problems with middle-four-interchange and horizontal composition as well.
These issues have been discussed in detail in [24].

We will revisit the question of functoriality of the Span construction again at the end of
the next section and show that with a slight modification of this construction the problem
can be resolved and we will gain further insight into the existence of certain limits and
colimits and their properties in the Span categories.
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3. The double category of spans

There is another version of the Span construction which will be central to what follows.
Although a seemingly minor modification of SpanA, the difference will be crucial. We
are referring to the (weak) double category SpanA.

As before, let A be a category with pullbacks. SpanA is the double category with the
same objects as A. The vertical arrows are the morphisms of A, the horizontal arrows
are the spans in A and the double cells are commutative diagrams

A

f
��

S
poo

x

��

q // B

g

��
A′ S ′

p′
oo

q′
// B′ .

Vertical composition is as in A and horizontal composition as in SpanA. Of course,
horizontal composition is not strictly unitary or associative, so we only get a weak double
category. This is most easily expressed by saying that the substructure consisting of
objects, horizontal arrows, and (horizontally) special cells, form a bicategory. Here, special
cells are those which have identity arrows as horizontal domain and codomain, so they
are of the form

A S
poo

x

��

q // B

A S ′
p′

oo
q′

// B .

So there are special associativity and unit cells that satisfy the usual coherence conditions.
Where this doesn’t lead to confusion we will suppress the occurrence of these cells in our
pasting diagrams. Note that, while horizontal composition of spans requires a choice of
pullbacks and is only associative up to isomorphism once this choice has been made, the
horizontal composition of cells is uniquely determined and as associative as possible.

3.1. Convention. For the rest of this paper, except for Section 4.28, we will refer to
weak double categories simply as double categories as they seem to be the more cen-
tral concept. We will talk of a strict double category when the bicategory substructure
mentioned above is in fact a 2-category.

An important aspect of this new Span construction is that it retains the morphisms
of A in the structure. And these can be used to formulate concepts and universal prop-
erties which SpanA doesn’t support, as we shall see later. Shulman has also noted this
important feature in [30].

Let us digress a bit to elaborate on this. It is useful to view internal categories in A
as monads in SpanA. However, this monad approach does not give us internal functors
as a natural notion of morphisms between internal categories. Looking for guidance, we
might consider a monad in SpanA as a lax morphism defined on the bicategory 1 and so
we might consider lax, oplax, or strong transformations between them. However, none of
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these give functors (nor do any of them give profunctors). In order to get internal functors
the usual trick is to restrict to lax transformations whose components are maps. While
this works, it is certainly ad hoc and does not generalize properly. For example, in the
bicategory V -Mat of V -matrices, monads are V -categories, but maps between V -monads
do not give V -functors.

Taking the double category SpanA instead, lax morphisms 1 → SpanA are still
category objects in A, but now we have a good notion of vertical transformation between
lax morphisms, and these are exactly the internal functors. Note in passing that lax
morphisms 2→ SpanA are profunctors, and that vertical transformations between them
are cells in the double category Cat of categories, functors, and profunctors.

3.2. Oplax morphisms of double categories. We mentioned lax morphisms of
double categories and we should say a word about the definitions of lax and oplax mor-
phisms. It is spelled out in detail in [12], Section 1.9, for the oplax version (which is
most useful for our work). An oplax morphism of double categories F : A → B assigns
objects, horizontal arrows, vertical arrows, and double cells of B to similar ones in A
respecting all domains and codomains and preserving vertical composition (of arrows and
cells). Horizontal identities and composition are not preserved, but comparison special
cells

FA
F1A //

φA

FA

and

FA
F (f ′f) //

φf ′,f

FA′′

FA
1FA

// FA FA
Ff

// FA′
Ff ′

// FA′′

are given, satisfying the coherence conditions given in Section 1.9 of [12]. There are
three conditions which are straightforward generalizations of the coherence conditions for
oplax morphisms of bicategories, and one condition proper to double categories, namely
naturality of ϕA in A, with respect to vertical arrows: For every vertical arrow v : A • //B
we require

FA

•Fv
��

F1v

F1A // FA

•Fv
��

FA
F1A //

φA

FA

FB
F1B

//

φB

FB = FA

•Fv
��

1Fv

1FA

// FA

•Fv
��

FB
1FB

// FB FB
1FB

// FB.

Note that this condition is vacuous for bicategories (considered as double categories with
only identity vertical arrows).

Vertical transformations t : F → G between oplax morphisms were also defined in [12],
Definition 1.13. They associate to each object A of A a vertical arrow tA : FA • //GA
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and to each horizontal arrow f : A→ A′ of A a cell

FA
Ff //

•tA
��

tf

FA′

• tA′
��

GA
Gf

// GA′

satisfying four conditions, two saying that t is vertically natural and two saying that it is
horizontally compatible with the identities and composition.

In this way we get a 2-category DoubOpl of double categories, oplax morphisms, and
vertical transformations. Because oplax morphisms are vertically functorial and vertical
transformations are vertically natural we get a canonical forgetful 2-functor

Vrt : DoubOpl → Cat,

which forgets everything but the vertical structure. It can be thought of as the ‘category
of objects’ functor, generalizing Ob : Cat→ Set.

3.3. Gregarious Double Categories. Returning to our general discussion of SpanA,
apart from ( )∗ and ( )∗ there is a third, more direct, way of includingA in SpanA, viz. the
inclusion of A as vertical arrows. We will always consider A as contained in SpanA in
this way and not use any special notation for the inclusion.

Now the question is, what is the relationship between f , f∗, and f
∗ in SpanA? Recall

from [19] the following definitions.

3.4. Definition. Let D be a double category and consider horizontal morphisms f : A→
B and u : B → A and a vertical morphism v : A • //B . We say that f and v are com-
panions if there exist binding cells

A

ψ

A

•v

��
and

A

•v

��

f //

χ

B

A
f

// B B B,

such that

A

ψ

A

•v

��
A

ψ

A

•v

��

f //

χ

B

=

A
f //

idf

B A

•v

��
1v

A

•v

��
and A

f
//

•v

��
χ

B =

A
f

// B B A
f

// B B B

B B .
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Dually, u and v are conjoints if there exist binding cells

A

•v

��
α

A

and

B
u //

β

A

•v
��

B u
// A B B,

such that

A

•v

��
α

A

B

β

u // A

•v

��
α

A

=

B
u //

idu

A A

•v

��
1v

A

•v

��
and B

β

u
// A

•v

��

=

B B u
// A B u

// A, B B

B B .

Finally, f is left adjoint to u in D if there exist special cells

A

η

A

and

B

ε

u // A
f // B

A
f

// B u
// A B B,

such that

A

η

A
f //

idf

B

A
f //

idf

B

A
f

//

idf

B u
//

ε

A
f

// B =

A
f

// B

A
f

// B B

and

B
u //

idu

A

η

A

B

idu

u // A

B u
//

ε

A
f

// B u
//

idu

A =

B u
// A

B B u
// A ,

i.e., f is left adjoint to u in the bicategory of horizontal arrows and special cells.

Note that companions in symmetric double categories (where the horizontal and ver-
tical arrow categories are the same) were studied by Brown and Mosa [4] under the name
‘connections’.

The following result extends that of Proposition 1.4 in [18].
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3.5. Proposition. Given f , u, and v as above, if any two of the relations in the
definition hold, so does the third.

Proof. The proof is an amusing exercise in pasting diagrams which is left to the reader.
We will do one case as an example. Suppose for example that f is left adjoint to u via ε
and η and that u and v are conjoints via α and β. Then define χ and ψ to be

A

•v

��
α

A
f //

idf

B A

η

A

B u
//

ε

A
f

// B and A
f

//

idf

B

β

u
// A

•v

��
B B A

f
// B B

respectively. Then χψ is the composite

A

η

A

id1A

A

idf

f // B

A
f

//

idf

B

β

u
// A

•v

��
α

A

iff

f // B

A
f

//

idf

B

id1B

B u
//

ε

A
f

// B

A
f

// B B B.

The composite αβ in the middle is equal to idu so the whole middle row is an identity
and the big square reduces to a vertical identity cell by the first triangle identity for η
and ε.

Companions are unique up to isomorphism and compose in the sense that if f and v
are companions and f ′ and v′ are companions and f ′ and f are composable, then f ′f and
v′ · v are again companions. A similar statement holds for conjoints by duality and the
corresponding statement for adjoints is well known.

3.6. Examples.

1. In SpanA, f and f∗ are companions, the binding cells being

A A A

f

��
and

A

f

��

A

f

��

f // B

A A
f

// B B B B.

Similarly, f and f∗ are conjoints. The fact that f∗ is left adjoint to f ∗ follows by
Proposition 3.5.
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2. A 2-category A gives a double category of quintets, Q(A), where a typical cell looks
like

A

g

��

f //

α⇓

B

h
��

C
k

// P .

In Q(A), the horizontal f and vertical f are companions, whereas a horizontal f
and a vertical v are conjoints if and only if v is left adjoint to f in A.

Normal morphisms of double categories preserve companions and conjoints, but more
is true.

3.7. Definition. Let F : A → B be an oplax (not necessarily normal) morphism of
double categories.

1. We say that F preserves companions if for each companion pair f : A → B and

v : A • // B with binding cells χ and ψ in A there exists a double cell

FA

ψ

FA

•Fv
��

FA
Ff

// FB

in B, such that Fψ = ψ · φA and Ff and Fv are again companions with binding
cells ψ and φB · Fχ.

2. We say that F preserves conjoints if for each conjoint pair f : A→ B and v : B • //A
with binding cells α and β in A there exists a double cell

FB

•Fv
��

α

FB

FA
Ff

// FB

in B, such that α · φB = Fα and Ff and Fv are again conjoints with binding cells
φA · Fβ and α.

3.8. Proposition. For an oplax morphism F : A→ B of double categories the following
are equivalent:

1. F is normal;

2. F preserves companions;

3. F preserves conjoints.
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Proof. To see that (1) implies (2), let f : A // B and v : A • // B be companions

with binding cells ψ and χ as in Definition 3.4. Let ψ = Fψ · φ−1A . Then obviously,
Fψ = ψ · φA. So we need to show that

FA

φ−1
A

1FA // FA FA

•Fv
��

Fχ

Ff // FB

FA

Fψ

F1A // FA

•Fv
��

and FB
F1B //

φB

FB

FA
Ff

// FB FB
1FB

// FB.

satisfy the conditions to be binding cells for Ff and Fv. Their vertical composition is
equal to φB ·Fχ ·Fψ ·φ−1A = φB ·F (χ ·ψ) ·φ−1A = φB ·F (1v) ·φ−1A = 1F (v) ·φA ·φ−1A = 1F (v).
Their horizontal composition is equal to

FA
1FA //

φ−1
A

FA
Ff //

idFf

FB

FA
F1A //

Fψ

FA

•Fv
��

Ff //

Fχ

FB

FA
Ff //

idFf

FB

φB

F1B // FB

FA
Ff

// FB
1FB

// FB,

which, by coherence for F , is equal to

FA
Ff //

φf,1A

FB FA
Ff //

F (χψ)

FB

FA

Fψ

F1A // FA

•Fv
��

Fχ

Ff // FB

=

FA
Ff //

φ1B,f

FB

FA
Ff //

idFf

FB

φB

F1B // FB FA
Ff

//

idFf

FB

φB

F1B
// FB

FA
Ff

// FB
1FB

// FB FA
Ff

// FB FB

and F (χψ) = F (idf ) = idFf and (φBidFf ) · φ1Ff
= idFf so the whole composite is idFf ,

i.e., Ff and Fv are companions with binding cells ψ̃ = Fψ · φ−1A and χ̃ = φB · Fχ. The
corresponding result for conjoints ((1) implies (3)) follows by duality.

To show that (2) implies (1), suppose that F : A → B preserves companions. Note
that for every object A, the horizontal identity arrow 1A and the vertical identity arrow
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IdA are conjoints with binding cells χ = ψ = ιA. This gives rise to the existence of a
double cell

FA
1FA //

ιA

FA

FA
F1A

// FA

such that
φA · ιA = ιFA, (2)

and F1A and the vertical identity on A are companions in B with binding cells

FA
1FA //

ιA

FA

and

FA

φA

F1A // FA

FA
F1A

// FA FA
1FA

// FA.

The conditions on the binding cells give us that φAιA = idF1A and φA · ιA = ιFA. Since

FA
1FA //

ιFA

FA
1FA //

φA

FA FA
F1A //

φA

FA

FA
1FA //

ιA

FA
F1A //

φA

FA = FA
1FA //

ιA

FA
1FA //

ιFA

FA = FA
1FA //

ιA

FA

FA
F1A

// FA
1FA

// FA FA
F1A

// FA
1FA

// FA FA
F1A

// FA ,

i.e., φAιA = ιA · φA, we derive that ιA · φA = idF1A and φA · ιA = ιFA. So ιA = φ−1A ,
and we conclude that F is normal. The corresponding result for conjoints, i.e., that (3)
implies (1), follows again by duality.

3.9. Proposition. An oplax normal morphism of double categories preserves compos-
ites of the form v∗x, where v∗ is the companion of a vertical arrow v.

Proof. We need to show that the double cell

F (v∗x) //

φv∗,x

Fx
//
Fv∗

//
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is vertically invertible. We claim that the inverse is the pasting of the following diagram:

F (ψv idx)

Fx //

•Fv
��

Fv∗ //

Fχv

θv∗,x :=
F (v∗x)

//

idF (v∗x) φB

F1B
//

F (v∗x)
//

idF (v∗x)
1FB

//

F (v∗x)
// .

The following calculation shows that θv∗,x · φv∗,x = idF (v∗x). By naturality of φ and the
horizontal binding cell equality for companion pairs,

F (v∗x) //

φv∗,x

F (v∗x) //

F (χvψv idx)

F (v∗x) //

F (idv∗x)

Fx
//

F (ψv idx) •
Fv��

F (χv)
Fv∗

//
F (1Bv∗x)

//

φ1B,v∗x
F (1Bv∗x)

//

φ1B,v∗x

F (v∗x)
//

idF (v∗x)
F1B

//

φB

=
idF (v∗x)
F (v∗x)

//

φB

F1B
// =

idF (v∗x)
F (v∗x)

//

φB

F1B
//

F (v∗x)
//

idF (v∗x)
1FB

//
F (v∗x)

//

idF (v∗x)
1FB

//
F (v∗x)

//

idF (v∗x)
1FB

//

F (v∗x)
//

F (v∗x)
//

F (v∗x)
//

which is equal to idF (v∗x) by a unit law for φ.
In order to show that φv∗,x · θv∗,x = idFv∗ idFx, we first make a couple of observations

about normal oplax morphisms of double categories. Let h : A → B be any horizontal
arrow in A. Since φA and φB are vertically invertible in B and

F (1Bh) //

φ1B,h

Fh //

idFh

F (h1A) //

φh,1A

Fh
//

idFh φB

F1B
// = =

φA

F1A
//

Fh
//

idFh

Fh
//

1FB

//
Fh

//
1FA

//
Fh

//

we derive that

Fh //

idFh φB

F1B //

=

Fh //

φ−1
1B,h

F1B //

and

F1A //

φA idFh

Fh //

=

F1A //

φ−1
h,1A

Fh //

Fh
//

1FB

//
F (1Bh)

//
1FA

//
Fh

//
F (h1A)

// .

(3)
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We can apply this to the binding cells of a companion pair to obtain the following. By
naturality of φ we have

F (v∗1A) //

φv∗,1A

F (v∗1A) //

F (χvψv)
F (1A) //

Fψv •Fv

��

Fv∗ //

Fχv

=
φ1B,v∗
F (1Bv∗)

//

Fv∗
//

F1B
//

Fv∗
//

F1B
//

and by vertical composition with inverses we obtain

F1A //

Fψv •Fv
��

Fχv

Fv∗ //

= φA

F1A // Fv∗ //

idFv∗ = φA

F1A // Fv∗ //

idFv∗

idFv∗

Fv∗
//

φB

F1B
//

1FA

//

idFv∗

Fv∗
//

1FA

//
Fv∗

//

Fv∗
//

1FB

//
Fv∗

//

F (χvψv)

Fv∗
//

idFv∗

Fv∗
//

1FB

// .

(4)

We will now use this to calculate the composition φv∗,x · θv∗,x:

F (ψv idx)

Fx //

•
Fv
��

Fχv

Fv∗ //

=

Fx //

F (ψv idx) •
Fv
��

Fχv

Fv∗ // by associativity

idF (v∗x)
F (v∗x)

//

φB

F1B
//

F (v∗x)
//

φv∗,x
F1B

//

φB

F (v∗x)
//

idF (v∗x)
1FB

//
Fx

//
Fv∗

//
1FB

//

F (v∗x)
//

φv∗,x

Fx
//

Fv∗
//

=

F (1Ax) //

φ1A,x

Fv∗ //

idFv∗

by naturality of φ

Fx
//

idFx

F1A
//

Fψ •
Fv��

Fχv

Fv∗
//

Fx
//

idFx

Fv∗
//

idFv∗

F1B
//

φB

Fx
//

Fv∗
//

1FB

//
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=

F (1Ax) //

φ1A,x

Fv∗ //

idFv∗

by (4)

Fx
//

idFx φA

F1A
//

Fv∗
//

idFv∗

Fx
//

Fv∗
//

1FB

//

and this is equal to idFv∗ idFx by (3).

3.10. Remark. Note that we can apply Proposition 2.3 to the horizontal bicategory of
a double category to show that an oplax normal morphism preserves composites of the
form v∗x if and only if it preserves composites of the form zv∗ if and only if it preserves
composites of the form v∗v

∗. So we conclude that oplax normal morphisms preserve all
these composites.

3.11. Definition. A double category is gregarious if every vertical arrow has a com-
panion and a conjoint. We write GregDoubOplaxN for the 2-category of gregarious double
categories, oplax normal morphisms and vertical transformations.

Gregarious double categories were introduced and studied as framed bicategories by
Shulman in [30].

3.12. Examples.

1. The double category of commuting squares in a groupoid is gregarious.

2. If A is a 2-category in which every arrow has a right adjoint, then the double
category Q (A) of quintets is gregarious.

3. For any category A with pullbacks, the double category SpanA is gregarious.

3.13. The universal property of Span. Let A be a gregarious double category with
A0 as category of objects and vertical arrows and A1 as category of horizontal arrows
and cells (with vertical composition of cells). Any choice of companions for the vertical

arrows in A gives rise to a functor Ξ: A20 → A1, defined by:

Ξ( •
x // ) :=

x∗ // (5)

Ξ

 •
x //

•u

��
•v

��
•
y

//

 :=
•u

��
•u

��

x∗ //

•x

��
χx

ψy •y

��
•v

��
•v
��

y∗
// .

(6)
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Dually, a choice of conjoints gives rise to a functor Z : A20 → A1, defined by:

Z( •
x // ) := x∗ // (7)

Z

 •
x //

•u

��
•v

��
•
y

//

 :=

x∗ //

βx •x

��
•u

��
•u

��

•v

��
•v

��
•y

��
αy

y∗
// .

(8)

As we will use the cells from these definitions frequently, we will use the following abbre-
viations:

ξ(x, u, v, y) = Ξ

 •
x //

•u

��
•v

��
•
y

//

 and ζ(x, u, v, y) = Z

 •
x //

•u

��
•v

��
•
y

//

 (9)

There are corresponding folding operations on the cells of the double category that
send cells to special horizontal cells. By abuse of notation we will write for a cell

f //

•u

��
γ •v

��
g

// ,

ξ(γ) =
ψu

f //

•u

��
γ •v

��
χv

v∗ //

u∗
//

g
// and ζ(γ) =

u∗ //

βu •u

��
γ

f //

•v

��
αv

g
//

v∗
// .

Note that ζ(ξ(x, u, v, y)) = ξ(ζ(u, x, y, v)). This cell will play an important role in our
study of a Beck-Chevalley type condition for double categories, so we will give it a special
name:

u∗ //

βu •u

��

•x

��

χx

x∗ //

Υ(x, u, v, y) :=

ψy •y

��

•v

��

αv

y∗
//

v∗
//

(10)
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3.14. Lemma. For any commutative cube of vertical arrows

a

��

x1 ��?
??

??
??

u1 //

b

��

y1

��?
??

??
??

v1 //

c

��

d

��
x2 ��?

??
??

??
u2 //

y2

��?
??

??
??

v2
//

the cells defined in (9) and (10) satisfy

(ζ(y1, b, d, y2)ξ(v1, c, d, v2)) ·Υ(u1, x1, y1, v1) =

Υ(u2, x2, y2, v2) · (ξ(u1, a, b, u2)ζ(x1, a, c, x2)).

Proof. Straightforward calculation using the cancelation properties of the companion
and conjoint binding cells.

We can now state a variant of part 1 of Theorem 2.8 for the double category SpanA.

3.15. Theorem. Let A be a category with pullbacks and B be a gregarious double cate-
gory. Then composing with the inclusion A ↪→ SpanA gives an equivalence of categories
between the category of oplax normal morphisms SpanA → B with vertical transforma-
tions, and the category of functors A→ Vrt (B) with natural transformations,

GregDoubOplaxN(SpanA,B) ≃ Cat (A,Vrt (B)).

Proof. For every vertical arrow v in B, choose a companion v∗ with cells χv and ψv and a
conjoint v∗ with cells αv and βv. For the vertical identity arrows, choose the companions
and conjoints to be the corresponding horizontal identity arrows with the ι cells as binding
cells. Note that for composable vertical morphisms v1 and v2, we don’t get necessarily
that (v2 · v1)∗ = (v2)∗(v1)∗ or (v2 · v1)∗ = (v1)

∗(v2)
∗, but there are canonical vertical

isomorphisms τv1,v2 and σv1,v2 defined by

(v2·v1)∗ //

σv1,v2

(v2·v1)∗ //

βv2·v1

v1
��

v1
��
αv1

:=
v2

��
αv2

(v1)∗
//

(v2)∗
//

(v1)∗
//

(v2)∗
//

(v1)∗
//

(11)

and
(v2·v1)∗ //

τv1,v2

ψv1
v1
��

v1
��

(v2·v1)∗ //

χv2·v1:=
(v1)∗

//

ψv2
v2
��

(v1)∗
//

(v2)∗
//

(v1)∗
//

(v2)∗
// .

(12)
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With these choices of companions and conjoints, a functor F : A→ Vrt (B) can be lifted
to an oplax normal morphism F̃ : SpanA→ B defined as follows. On objects and vertical

arrows, F̃ = F , and on horizontal arrows, F̃ (A S
qoo p //B ) = (Fp)∗(Fq)

∗. Further, F̃
sends a cell

A1

v1
��

S1
q1oo p1 //

w
��

B1

v2
��

A2 S2q2
oo

p2
// B2

in SpanA to the following horizontal composition of cells in B (cf. (9)),

•Fv1
��

(Fq1)∗ //

ζ(Fq1,Fw,Fv1,F q2) Fw•

��

(Fp1)∗ //

ξ(Fp1,Fw,Fv2,Fp2) •Fv2
��

(Fq2)∗
//

(Fp2)∗
// .

Note that by our choice of companions and conjoints for the vertical identity arrows, F̃
preserves horizontal identities on the nose. To obtain the comparison cells for horizontal
composites, consider a composable pair of horizontal arrows

A S
qoo p // B S ′

q′oo p′ // C

in SpanA, with pullback

S ×B S ′

q′
��

p // S ′

q′
��

S p
// B

in A. The comparison cell φS,S′ is defined as the composite

F (qq′)∗ //

σ
Fq′,Fq

F (p′p)∗ //

τFp,Fp′

(Fq)∗ //

Υ(Fp,Fq′,F q′,Fp)

(Fq′)∗ // (Fp)∗ // (Fp′)∗ //

(Fq)∗
//

(Fp)∗
//

(Fq′)∗
//

(Fp′)∗
// ,

(13)

with Υ as defined in (10). Straightforward calculations show that these comparison cells
satisfy the coherence conditions.

To check that these comparison cells satisfy the naturality conditions with respect to
cells, consider the horizontally composable cells

A1

a
��

S1
q1oo

s
��

p1 // B1

b
��

S ′1
q′1oo

s′
��

p′1 // C1

c
��

A2 S2q2
oo

p2
// B2 S ′2q′2

oo
p′2

// C2
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in SpanA with composition

A1

a
��

S1 ×B1 S
′
1

q1q′1oo
p′1p1 //

b̃ ��

C1

c
��

A2 S2 ×B2 S
′
2

q2q′2

oo
p′2p2

// C2 .

We need to show that

(Fq1q′1)
∗

//
(Fp′1p1)∗ //

φS1,S
′
1

(Fq1q′1)
∗

//

Fa

��
ζ F s̃

��
ξ

(Fp′1p1)∗ //

Fc

��

Fa

��

(Fq1)∗ //

ζ Fs

��

(Fp1)∗ //

ξ

(Fq′1)
∗
//

Fb

��
ζ Fs′

��

(Fp′1)∗ //

ξ Fc

��

=
(Fq2q′2)

∗
//

φS2,S
′
2

(Fp′2p2)∗
//

(Fq2)∗
//

(Fp2)∗
//

(Fq′2)
∗
//

(Fp′2)∗
//

(Fq2)∗
//

(Fp2)∗
//

(Fq′2)
∗
//

(Fp′2)∗
// .

(14)

By Lemma 3.14 we get that the left-hand side of this equation can be rewritten as

F (q1q′1)
∗

//

σ

F (p′1p1)∗ //

τ

F (q1q′1)
∗

//

σ

F (p′1p1)∗ //

τ
(Fq1)∗ //

Υ

(Fq′1)
∗
// (Fp1)∗ //

(Fp′1)∗ //

= Fa
��

(Fq1)∗ //

ζ Fs
��

(Fq′1)
∗
//

ζ F s̃
��

(Fp1)∗ //

ξ Fs′

��

(Fp′1)∗ //

ξ Fc
��

Fa
��

(Fq1)∗ //

ζ Fs
��

(Fp1)∗ //

ξ

(Fq′1)
∗
//

Fb
��

ζ Fs′

��

(Fp′1)∗ //

ξ Fc
��

(Fq2)∗
//

Υ
(Fq′2)

∗
//

(Fp2)∗
//

(Fp′2)∗
//

(Fq2)∗
//

(Fp2)∗
//

(Fq′2)
∗
//

(Fp′2)∗
//

(Fq2)∗
//

(Fp2)∗
//

(Fq′2)
∗
//

(Fp′2)∗
// .

It is now straightforward to check that

F (q1q′1)
∗

//

σ

F (q1q′1)
∗

//

Fa

��
ζ F s̃

��

Fa

��

(Fq1)∗ //

ζ Fs

��

(Fq′1)
∗
//

ζ F s̃

��

=
F (q2q′2)

∗
//

σ

(Fq2)∗
//

(Fq′2)
∗
//

(Fq2)∗
//

(Fq′2)
∗
//

and
F (p′1p1)∗ //

τ F s̃

��
ξ

(Fp′1p1)∗ //

Fc

��

F s̃

��

(Fp1)∗ //

ξ Fs′

��

(Fp′1)∗ //

ξ Fc

��

=

τ
(Fp′2p2)∗

//

(Fp2)∗
//

(Fp′2)∗
//

(Fp2)∗
//

(Fp′2)∗
//
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and this gives us (14).
We conclude that F̃ is oplax normal. Also note that F̃ ◦ IA = F , so composition with

IA is essentially surjective.
A natural transformation γ : F ⇒ F ′ : A ⇒ Vrt (B) lifts to a vertical transformation

γ̃ : F̃ ⇒ F̃ ′ : SpanA ⇒ B defined as follows. For an object A in SpanA, γ̃A is the vertical

arrow γA in B. For a horizontal arrow A S
qoo p //B , the cell

F̃A

•γ̃A
��

γ̃S

F̃ (S) // F̃B

• γ̃B
��

F̃ ′A
F̃ ′(S)

// F̃ ′B

is defined as

•γA
��

(Fq)∗ //

ζ(Fq,γS ,γA,F
′q) γS•

��

(Fp)∗ //

ξ(Fp,γS ,γB ,F
′p) •γB

��
(F ′q)∗

//
(F ′p)∗

// .

Note that if S is the identity span on A, then this diagram becomes the identity on γA.
To show that γ̃ satisfies the (oplax) functoriality property with respect to horizontal

composition, let A S
qoo p //B S ′

q′oo p′ //C be a composable pair of horizontal arrows

in SpanA with composition A T
qq′oo p′p //C . We need to show that

F (T ) //

φS,S′ •γ̃A
��

γ̃T

F (T ) //

• γ̃C
��F (S) //

•γ̃A
��

γ̃S • γ̃B
��

F (S′) //

γ̃S′ • γ̃C
��

≡ F ′(T ) //

φ′
S,S′

F ′(S)
//

F ′(S′)
//

F ′(S)
//

F ′(S′)
//

(15)

and the proof of this equation is completely analogous to that of (14).
The transformation γ̃ commutes trivially with the identity structure cells of F̃ , since

this functor preserves identities on the nose. Finally, note that γ̃ ◦ IA = γ, so composition
with IA is full. To conclude that it is also faithful, note that γ̃ is completely determined
by γ.

3.16. Remarks. Note that Theorem 3.15 states that Span is a partial left biadjoint to
the forgetful 2-functor

Vrt : DoubOplaxN → Cat.

This is better than the bicategory version of the universal property of Span, Theorem
2.8, where we did not get a partial adjoint. That is because using the double category
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structure we were able to replace the condition on the morphism A → B, i.e., to be
sinister, with a condition on the receiving double category B, i.e., to be gregarious. Or,
put differently, when we pass from A to SpanA we add right adjoints for the arrows of
A, but this is not a completion. There are new arrows in SpanA, which do not have
right adjoints. However, passing from A to SpanA is a completion process. Every arrow
in A gets a companion and conjoint and there are no new vertical arrows.

However, there are two points on which Theorem 3.15 is unsatisfactory. The first is
the fact that as a left adjoint Span is only defined for categories with pullbacks, not for
all categories. The other issue is more subtle. Gregarious oplax morphisms of double
categories do not preserve all horizontal composites. Generally, one would like morphisms
to be structure preserving maps, so we would like to change the structure. Both of these
issues will be resolved in Section 4.

3.17. Beck-Chevalley double categories. The most general equivalence of cate-
gories in the description of the universal property of the bicategory SpanA in Theorem
2.8,

BicatGreg(SpanA,B) ≃ BicatSinister(A,B), (16)

restricts to
BicatStrong(SpanA,B) ≃ BicatBeck(A,B)

because strong morphisms from SpanA to B correspond under (16) to sinister morphisms
that satisfy the Beck-Chevalley condition.

So we may ask the question whether there is a similar restriction of the equivalence
of categories in Theorem 3.15. In other words, what do strong morphisms SpanA → B
correspond to? It is clear that we will need to consider functorsA→ Vrt (B) that preserve
pullbacks, so we will need B to have at least pullbacks of vertical arrows. This leads us
to consider the following concept.

3.18. Definition. A double category

A2

π1 //
m //
π2

// A1

s //

t
// A0uoo

is said to have vertical pullbacks if this diagram lies within the category PBCat of cate-
gories with pullbacks and pullback-preserving functors between them.

A morphism F : A→ B between categories with vertical pullbacks is said to preserve
these pullbacks if its components Fi : Ai → Bi are pullback-preserving functors. When
there is no confusion possible, we will also call such an F a pullback-preserving morphism.

Let us spell out what it means for a double category B to have vertical pullbacks. If
we represent B by a diagram of categories and functors as in the definition above, the fact
that u preserves pullbacks means that for every cospan of vertical arrows A a

//C B
b

oo
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with pullback

A×C B a //

b
��

B

b
��

A a
// C

the corresponding square of unit cells

a

��~~
~~

~~
~
b

��

a

��~~
~~

~~
~

b

��
b

��

b

��a��~~
~~

~~
~

a��~~
~~

~~
~

is a pullback in B1. As a consequence we obtain the following 2-dimensional universal

property for pullback squares in B0. For any horizontal arrow X
h // Y with cells

X

xA
��

γA

h // Y

yA
��

and

X

xB
��

γB

h // Y

yB
��

A A B B

such that

X

xA
��

γA

h // Y

yA
��

=

X

xB
��

γB

h // Y

yB
��

A

a

��

A

a

��

B

b
��

B

b
��

C C C C

there is a unique cell

X
h //

x̃
��

γ̃

Y

ỹ
��

A×C B A×C B
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such that 1b · γ̃ = γA and 1a · γ̃ = γB, as depicted in

Y

ỹ

��:
:

:
:

:
:

:
:

:

yA

��

yB

##

X

h

;;wwwwwwwww

xA

''

x̃ **TTTTTTTTTT
γ̃

xB

++γA A×C B
b
��

a
//

γB

B

b
��

A a
// C.

Note that this is a generalization of the 2-dimensional universal property of pullbacks in
2-categories.

The fact that m preserves pullbacks means that one can horizontally compose two
vertical pullback squares of cells and obtain again a vertical pullback square of cells. This
is what was called “having a functorial choice of pullbacks” in [19].

3.19. Examples.

1. If A is a category with pullbacks, then the double category of pullback squares in
A has vertical pullbacks.

2. If A is a category with pullbacks, then the double category SpanA has vertical
pullbacks. The pullback of cells is depicted in the following diagram.

A1 ×A A2

a2

yytttttttttt

a1

��

S1 ×S S2
q̃oo p̃ //

s1

��

s2

zzuuu
uuu

uuu
u

B1 ×B B2

b2

yytttttttttt

b1

��

A1

a1

��

S1
q1oo p1 //

s1

��

B1

b1

��

A2

a2
yysssssssssss

S2

s2
zzttttttttttt

q2oo p2 // B2

b2yysssssssssss

A T
qoo p // B

(17)

With a straightforward diagram chase using the universal properties of all pullbacks
involved the reader may verify that all the structure maps are pullback-preserving.

3. Let V be a monoidal category with sums (that distribute over tensor) and pullbacks.
Then there is a double category V -Mat with sets as objects, functions as vertical
arrows, and V -matrices [Vij] : I → J as horizontal arrows. The cells are of the form

I

f

��

[Vii′ ] //

[αii′ ]

I ′

f ′

��
K

[Wkk′ ]
// K ′
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where the αii′ : Vii′ → Wf(i)f ′(i′) are arrows in V . To define the vertical pullback of
squares

I

f

��
[αii′ ]

[Vii′ ] // I ′

f ′

��
and

J

g

��
[βjj′ ]

[Wjj′ ] // J ′

g′

��
K

[Xkk′ ]
// K ′ K

[Xkk′ ]
// K ′

let P = I ×K J and P ′ = I ′×K′ J ′ in Sets. Moreover, for (i, j) ∈ P and (i′, j′) ∈ P ′,
let

Y(i,j),(i′,j′)
α(i,j),(i′,j′) //

β(i,j),(i′,j′)
��

Wjj′

βjj′

��
Vii′ αii′

// Xkk′

(where k = f(i) and k = g(j), and k′ = f ′(i′) and k′ = g′(j′)) be a pullback in V .
Then the pullback of the cells [αii′ ] and [βjj′ ] is

P

π2

��

π1
''NNNNNNNNNNNNNN

[Y(i,j),(i′,j′)] //
[β(i,j),(i′,j′)]

[α(i,j),(i′,j′)]

P ′

π2

��

π1

''OOOOOOOOOOOOOO

I
[Vii′ ] //

f

��

[αii′ ]

I ′

f ′

��

J

g
''NNNNNNNNNNNNNN

[Wjj′ ]
// J ′

g′ ''OOOOOOOOOOOOOO

[βjj′ ]

K
[Xkk′ ]

// K ′ .

We see now that the horizontal composition of vertical pullback squares of cells
will only give a pullback square of cells if the sums and tensors distribute over the
pullbacks.

Moreover, this double category is gregarious. For a vertical arrow f : I → K, we
define the companion horizontal arrow as f∗ : I → K with (f∗)ik = I if f(i) = k and
(f∗)ik = 0 otherwise. The binding cells are defined in the obvious way. For example,
χik = 1I if f(i) = k and χik = 10 otherwise. The conjoint f∗ : K → I is defined by
(f∗)ki = I if f(i) = k and (f ∗)ki = 0 otherwise.

The fact that the vertical pullback of cells in SpanA is formed as in (17) generalizes
to the following result for gregarious double categories.

3.20. Proposition. Let A be a gregarious double category. Then the functor Ξ: A20 →
A1, defined in (5) and (6), and the functor Z : A20 → A1, defined in (7) and (8), preserve
all limits that the functor U : A0 → A1 (which sends objects and vertical arrows to their
horizontal identities) preserves.
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Proof. We will show this for Ξ. The proof for Z is its dual. Let P(A) be the category
whose objects are diagrams of the form

A •
x // B

f // C

in A, and arrows are commutative diagrams of the form

A
x
• //

•v1
��

B
f //

•v2
��

α

C

•v3
��

A′
x′
• // B′

f ′
// C ′

in A.
The functor Ξ factors through P(A) in the following way:

A20
Ξ //

L ""D
DD

DD
DD

D
A1

P(A)
Γ

==zzzzzzzzz

where L is defined by (
A •

x // B
)
7→

(
A •

x // B B
)


A •

x //

•u
��

B

•v
��

A′ •
x′ // B′

 7→


A •

x //

•u
��

B

•v
��

1v

B

•v
��

A′ •
x′ // B′ B′


and Γ is defined by(

A •
x // B

f // C

)
7→

(
A •

fx∗ // C

)


A
x
• //

•v1
��

B
f //

•v2
��

α

C

•v3
��

A′
x′
• // B′

f ′
// C ′

 7→


A

fx∗ //

•v1
��

αξ(x,v1,v2,x′)

C

•v3
��

A′
f ′(x′)∗

// C ′

 .

A straightforward calculation shows that L preserves all limits that U preserves.
We will now show that Γ has a left adjoint and therefore preserves all limits. The left
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adjoint is the functor ∆: A1 → P(A) defined by(
A

f // B

)
7→

(
A A

f // B

)


A

•u
��

α

f // B

•v
��

A′
f ′

// B′

 7→


A

•u
��

A

•u
��

α

f // B

•v
��

A′ A′
f ′

// B′

 .

Note that the composite ∆Γ: P(A)→ P(A) is given by(
A •

x // B
f // C

)
7→

(
A A

fx∗ // B

)


A

•v1
��

•
x // B

•v2
��

α

f // C

•v3
��

A′ •
x′ // B′

f ′
// C ′

 7→


A

•v1
��

A

•v1
��
αξ(x,v1,v2,x′)

fv∗ // C

•v3
��

A′ A′
f ′(x′)∗

// B′

 .

We define the counit to be the natural transformation ε : ∆Γ⇒ 1P(A) by

ε(x,f) =
•x

��

fx∗ //

idfχx

•
x

//
f

//

To check that this is indeed natural, let

A
x
• //

•v1
��

B
f //

•v2
��

α

C

•v3
��

A′
x′
• // B′

f ′
// C ′

be any arrow in P(A). Then we need to show that

•x

��

fx∗ //

idfχx •v1

��
•v1

��

fx∗ //

αξ(x,v1,v2,x′) •v3

��

•v1

��

•
x

//

•v2

��

f
//

α •v3

��

=

•x′

��

f ′(x′)∗
//

idf ′χx′

•
x′

//
f ′

// •
x′

//
f ′

// ,
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i.e., that

•v1

��
•v2x

��

fx∗ //

αχx •v3

��
= •v1

��
•v1

��

fx∗ //

(idf ′χx′ )·(αξ(x,v1,v2,x′)) •v3
��

•
x′

//
f ′

// •
x′

//
f ′

// ,

and this follows immediately from the definition of ξ(x, v1, v2, x
′) and one of the binding

cell identities for x′.
Note that we can take (idA)∗ = 1A and ξ(idA, u, u, idB) = 1u, so it follows that

Γ∆ = 1A1 , and we may take the unit of the adjunction to be the identity transformation.
This completes the proof of this proposition.

3.21. Corollary. Let B be a gregarious double category with vertical pullbacks. Any
commutative cube of vertical arrows

A1 ×A A2

a1

��

ṽ //

a2 %%JJJJJJJJJJ B1 ×B B2

b1

��

b2

%%JJJJJJJJJJ

A1

a1

��

v1
// B1

b1

��

A2

a2
%%KKKKKKKKKKK

v2 // B2

b2

%%KKKKKKKKKKK

A v
// B

where the left and right faces are pullback squares, gives rise to the following vertical
pullbacks of cells:

A1 ×A A2

ξ(ṽ,a2,b2,v1)

a1

��

(ṽ)∗ //

a2 %%JJJJJJJJJJ B1 ×B B2

b1

��

b2

%%JJJJJJJJJJ

A1

a1

��

(v1)∗
//

ξ(v1,a1,b1,v)

B1

b1

��

A2

a2
%%KKKKKKKKKKK

(v2)∗ //

ξ(ṽ,a1,b1,v2)

B2

b2

%%KKKKKKKKKKK

A v∗
//

ξ(v2,a2,b2,v)

B

(18)
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and

B1 ×B B2
ζ(ṽ,b2,a2,v1)

b1

��

b2 %%JJJJJJJJJJ A1 ×A A2

(ṽ)∗oo

a1

��

a2

%%JJJJJJJJJJ

B1

ζ(v1,b1,a1,v)

b1
��

A1

a1

��

(v1)∗
oo

B2

b2 %%KKKKKKKKKKK

ζ(ṽ,b1,a1,v2)

A2

a2

%%KKKKKKKKKKK
(v2)∗oo

B

ζ(v2,b2,a2,v)

A .
v∗

oo

(19)

We would like to restrict the equivalence in Theorem 3.15 in such a way that we obtain
pullback-preserving strong morphisms SpanA→ B as objects on the left-hand side of the
equivalence.

Note that we cannot put the Beck-Chevalley condition on the functors from A into
Vrt (B), since Vrt (B) doesn’t contain the information about the companions and conjoints
in B. However, just as with the notion of gregariousness, we can make the Beck-Chevalley
condition a property of gregarious double categories rather than a property of the mor-
phisms between them.

3.22. Definition. A Beck-Chevalley double category is a gregarious double category
which has vertical pullbacks and for which the following version of the Beck-Chevalley
condition holds: For each pullback square of vertical arrows

k //

h
��

g

��
f

//

the induced cell
h∗ //

βh h

��
k

��

χk

k∗ //

Υ(k, h, g, f) =

ψf f

��

g

��

αg

f∗
//

g∗
//

(as defined in (10)) is vertically invertible. We will call the cells of the form Υ(k, h, g, f)
Beck-Chevalley cells.

We write BCDoub for the 2-category of Beck-Chevalley double categories with strong
pullback-preserving morphisms and vertical transformations.

3.23. Examples.

1. For any category A with pullbacks, the double category Span(A) is Beck-Chevalley.
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2. The double category Rel with sets as objects, functions as vertical arrows and rela-
tions as horizontal arrows is a Beck-Chevalley double category.

3. In V -Mat (with V as in Example 3.19 (3)) let

P •
q //

•p
��

J

•g
��

I •
f

// K

be a vertical pullback square. Then

(g∗f∗)ij =
∑
k∈K

(f∗)ik ⊗ (g∗)kj =

{
I if f(i) = g(j)
0 otherwise

and

(q∗p
∗)ij =

∑
r,s

f(r)=g(s)

(q∗)i,(r,s) ⊗ (p∗)(r,s),j =

{
I if f(i) = g(j)
0 otherwise

and Υ(q, p, g, f) is the vertical identity cell. So V -Mat is a Beck-Chevalley double
category (if V satisfies the conditions in Example 3.19 (3)).

We are now ready to state the restriction of the equivalence in Theorem 3.15 to
pullback-preserving strong morphisms of double categories.

3.24. Theorem. Let A be a category with pullbacks and B be a Beck-Chevalley double
category. Then composing with the inclusion A ↪→ SpanA gives an equivalence of cat-
egories between the category of strong pullback-preserving morphisms SpanA → B with
vertical transformations, and the category of pullback-preserving functors A → Vrt (B)
with natural transformations,

BCDoub (SpanA,B) ≃ PBCat (A,Vrt (B)).

Proof. It is clear that for any pullback-preserving strong morphism F : SpanA → B,
the composition with the inclusion A ↪→ SpanA induces a pullback-preserving functor of
categories A→ Vrt B.

To show that this functor BCDoub(SpanA,B)→ PBCat (A,Vrt (B)) is essentially
surjective, let F : A→ VrtB be a pullback-preserving functor and let F̃ : SpanA→ B be
the lifting constructed in the proof of Theorem 3.15.

Since B is a Beck-Chevalley double category and F preserves pullbacks, the cell
Υ(Fp, Fq′, F q′, Fp) is vertically invertible for every pullback diagram

S ×B S ′

q′

��

p // S ′

q′

��
S p

// B
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in A. Diagram (13) shows that this implies that the comparison cells for F̃ are all
isomorphisms (since σ and τ are vertical isomorphisms), so F̃ is a strong morphism.

We also need to show that F̃ preserves all vertical pullbacks. It preserves pullbacks
of vertical arrows by the assumption that F preserves pullbacks. We will consider the
image of the pullback diagram (17) under F̃ . To make our notation more manageable,
let ζi = ζ(Fqi, Fsi, Fai, F q), and ξi = ξ(Fpi, Fsi, F bi, Fp) for i = 1, 2. Also, let ζ1 =
ζ(F q̃, Fs1, Fa1, F q2), ζ2 = ζ(F q̃, Fs2, Fa2, F q1), ξ1 = ξ(F p̃, Fs1, F b1, Fp2), and ξ2 =
ξ(F p̃, Fs2, F b2, Fp1). Now we need to show that the vertical square of cells

ξ2ζ2 //

ξ1ζ1
��

ξ1ζ1
��

ξ2ζ2
//

(20)

is a pullback square. Corollary 3.21 gives us that the squares

ζ2 //

ζ1
��

ζ1
��

and

ξ2 //

ξ1
��

ξ1
��

ζ2
//

ξ2
//

are vertical pullbacks. The fact that (20) is a pullback follows now from the fact that the
horizontal composition of two vertical pullback squares of cells is again a vertical pullback
square.

3.25. Functoriality. We saw in Section 2.9 that the bicategory version of Span is not
a 2-functor. The double category version, however, is. As implied by Theorem 3.15 and
Theorem 3.24, the Span construction should give bifunctors from pbCat to DoubOplaxN

and from PBCat to BCDoub. In fact, more is true.

3.26. Proposition. The Span construction gives a 2-functor Span: pbCat→ DoubOplaxN

which restricts to a 2-functor Span: PBCat→ BCDoub.

One consequence of 2-functoriality is that Span preserves adjunctions. This will give
us completeness results for double categories of the form SpanA. There are various
equivalent ways of discussing limits and colimits in double categories (see for example
[19]). Definition 3.28 below is best suited to our purpose.

3.27. Proposition. The 2-categories pbCat, PBCat, DoubOplaxN, and BCDoub
are cotensored and the 2-functors

PBCat

��

Span // BCDoub

��
pbCat

Span // DoubOplaxN

preserve cotensors.
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Proof. IfA is a category with pullbacks and I an arbitrary category, the functor category
AI also has pullbacks, and cartesian closedness of Cat gives the cotensor property for
pbCat:

I −→ pbCat (B,A)
B −→ AI in pbCat

The bijection restricts to a bijection

I −→ PBCat (B,A)
B −→ AI in PBCat

This is quite general and would work for any class of limits or colimits in place of pullbacks.
Given a weak double category A, it can be considered a weak category object in Cat,

A2
////// A1

//
// A0.oo

Since ( )I is a 2-functor, it follows that

AI
2

////// AI
1

//
// AI

0.
oo

is again a weak double category object, which we shall denote by AI. A basic calculus of
adjoints shows that AI is indeed the cotensor of A by I in DoubOplaxN, i.e., we have an
isomorphism of categories

DoubOplaxN(B,AI) ∼= Cat(I,DoubOplaxN(B,A)).

This isomorphism is easily seen to restrict to an isomorphism

BCDoub(B,AI) ∼= Cat(I,BCDoub(B,A)).

It is clear from the constructions that cotensors are preserved by the 2-functors Span and
‘inclusion’.

3.28. Definition. A double category A has oplax I-colimits if the diagonal ∆: A→ AI

has a left adjoint in the 2-category DoubOplaxN. The I-colimits are strong if ∆ has a left
adjoint in Doub. A dual definition gives lax and strong I-limits.

3.29. Theorem. If A has I-colimits then SpanA has oplax I-colimits. If the I-colimits
commute with pullbacks in A then SpanA has strong I-colimits. If A has I-limits, then
SpanA has strong I-limits.

Proof. If A has I-colimits we obtain a functor lim
→

: AI → A which is left adjoint to

∆: A → AI in pbCat and Span: pbCat → DoubOplaxN preserves this adjunction. As
Span(AI) ∼= Span(A)I we see that SpanA has oplax I-colimits.

If I-colimits commute with pullbacks in A, the adjunction lim
→
⊣ ∆ lives in PBCat

and Span maps PBCat to BCDoub. The arrows of BCDoub are strong morphisms,
so SpanA has strong I-colimits.

The result for I-limits follows from the fact that the adjunction ∆ ⊣ lim
←

is always in

PBCat.
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3.30. Remarks.

1. This proposition extends our result about pullbacks in the previous subsection to
arbitrary small limits. Another important special case occurs when A has products.
It is well-known that products in A give rise to a tensor structure on Span(A).
However, in Span(A) they give rise to vertical products with a universal property.

2. The fact that Span of a left adjoint in Cat only gives rise to an oplax morphism of
double categories fits in the general theory of adjunctions between double categories
as developed by Grandis and Paré in [18]; generally, left adjoints are oplax whereas
right adjoints are lax.

3. There are important cases when the colimit functor preserves pullbacks and thus
these vertical limits in SpanA will be strong. A category A is lextensive if it has
finite limits and finite coproducts with the property that the coproduct functor

+: A/I ×A/J → A/(I + J)

is an equivalence (and also A/0 ≃ 1). Thus, + preserves pullbacks so that SpanA
has strong finite coproducts.

In a similar vein, if A is a Grothendieck topos, the double category SpanA will
have arbitrary strong coproducts. In fact, disjoint and universal coproducts suffice.

If A is locally finitely presentable, then filtered colimits commute with finite limits,
so SpanA has strong filtered colimits.

3.31. Equipments. A different way to make the Span construction 2-functorial was
presented in [7]. This paper makes a very careful study of the types of morphisms one
may want to consider between categories of spans. The spn construction of [7] produces
what is called a pointed, starred equipment. An equipment has objects, scalar arrows,
vector arrows, and vector transformations. The objects and vector arrows form a category,
and for any pair of objects A and B, there is a category with the vector arrows from A to B
as objects and the vector transformations between them as morphisms. Finally, the scalar
arrows act on the vector arrows and vector transformations from both the left and the
right in such a way that if k : K → K ′ and l : L→ L′ are scalar arrows, µ, ν : K + // L
are vector arrows, and and Φ: µ → ν is a vector transformation, then there are vector
transformations Φk : µk → νk and lΦ: lµ → lν, and these actions are functorial in Φ,
strictly unitary, and coherently associative in all three possible senses.

An equipment is called starred if for each scalar k the action (−)k has a left adjoint,
denoted by (−)k∗ and for each scalar l, the action l(−) has a right adjoint, denoted by
l∗(−), and these actions need to satisfy a Beck-Chevalley type of condition.

An equipment is called pointed if it comes a with a family of distinguished vector arrows

ιK : K + // K for each object K and an invertible vector transformation fιK
≃ // ιLf

for each scalar f : K → L, such that ( 1ιK
≃ // ιK1 ) = 1ιK .
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In order to compare gregarious double categories to equipments, we note that analo-
gously to the case of adjunctions, companions can also be characterized by the following
universal properties:

3.32. Lemma. For a vertical arrow A •
v //B in a double category the following are

equivalent:

1. v is a companion;

2. For each horizontal arrow X
f //A, there is a horizontal arrow X

v∗f // B and a
cell

X
f //

ψv,f

A

•v

��
X

v∗f
// B

which is initial in the sense that for each cell α as in (21) there is a unique cell α:

•x

��

α

f //

•v

��
ψv,f

f //

•v

��

•w

��

=

•x

��

v∗f //

α •w

��
y

//
y

//

(21)

3. For each horizontal arrow B
g //Y there is a horizontal arrow A

g∗v // Y and a
cell

A

•v

��

g∗v //

χv,g

Y

B g
// Y

which is terminal in the the sense that for each cell β as in the following diagram
there is a unique cell β̃:

•u

��

z //

β •x

��

•u

��

z //

β̃ •x

��

•v

��

=

•v

��

g∗v
//

χv,g

g
//

g
//
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Proof. To show that 1 implies 2, let v have a horizontal companion v∗ with binding cells
ψv and χv, and let f be as in 2. Then take v ∗ f := v∗f and the cell

f //

ψv,f :=
f //

ψv •v
��

f
//

v∗
// .

For any cell α as in (21) the induced cell α is

•x

��

α

f // v∗ //
χv•v

��

•w
��

•w
��

y
// .

It is clear that this is the unique cell that fits in the diagram (21).
To show that 2 implies 1, let v be a vertical arrow with the property described in 2.

Define the horizontal companion of v to be v∗ := v ∗ 1A, with binding cells ψv = v and
χv = 1v, where 1v is the unique cell such that

•v

��

1v •v

��

ψv,1A •v

��=

•v

��

v∗1A
//

1v

,

as in (21). This establishes right away that these binding cells satisfy the second binding
cell identity in Definition 3.4. To prove that they also satisfy the first one, note that

ψv,1A •v

��
ψv,1A •v

��

ψv,1A •v

��

ψv,1A •v

��

v∗1A //

1v

= =
v∗1A //

idv∗1A
v∗1A // v∗1A // v∗1A // .

By the uniqueness of α in (21) we conclude that 1vψv,1A = idv∗1A .
The proof that 1 is equivalent to 3 is dual to the one that 1 is equivalent to 2 and left

for the reader.

By duality, conjoints can be characterized in the following way:
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3.33. Lemma. For a vertical arrow A •
v //B in a double category the following are

equivalent:

1. v is a conjoint;

2. For each horizontal arrow A
f //X , there is a horizontal arrow B

f⋆v // X and a
cell

A
f //

•v

��
αv,f

X

B
f⋆v

// X

which is initial in the sense that for each cell ζ as in Figure 1 there is a unique cell
ζ as in Figure 1.

•v

��
ζ

f //

•x

��

•v

��
αv,f

f //

•w

��

=

•w

��

f⋆v //

ζ •x

��
y

//
y

//

Figure 1: For any cell ζ there is an induced cell ζ.

3. For each horizontal arrow Y
g //B there is a horizontal arrow Y

v⋆g // A and a
cell

Y
v⋆g //

βv,g

A

•v

��
Y g

// B

which is terminal in the the sense that for each cell θ as in Figure 2 there is a unique
cell θ̃ as in Figure 2.

•x

��

z //

θ

•u

��
•x

��

z //

θ̃ •u

��

•v

��

=
v⋆g

//

βv,g •v

��
g

//
g

//

Figure 2: For any cell θ there is an induced cell θ̃.
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Given a double category with companions, one can construct a pointed equipment
by using the same objects, defining the scalar arrows to be the vertical arrows of the
double category, the vector arrows to be the horizontal arrows of the double category, and
the vector transformations correspond to special cells (where the horizontal domain and
codomain are identity arrows). Composition is defined as in the double category, and the
action of the scalar arrows is defined using companions and horizontal composition. With
the notation as above, lµ := l∗µ (where the concatenation on the left-hand side stands
for horizontal composition), µk := µk∗, and lΦ := idl∗Φ and Φk := Φidk∗ . The pointing is
defined by the horizontal identity arrows (the universal properties in Lemma 3.32 imply
the existence of a canonical vertically invertible special cell from v ∗ 1A to 1B ∗ v for any
vertical arrow v : A • // B ).

For a Beck-Chevalley double category this construction can be extended to obtain a
starred pointed equipment. Oplax normal morphisms between double categories give rise
to right homomorphisms of equipments under this construction.

However, since equipments do not have a notion of horizontal composition, we cannot
reverse this operation to create a double category out of an equipment. The best we
could hope for is an oplax double category and we will return to this question in the next
section.

4. Spans without pullbacks

Notice that Theorem 2.8 gives a characterization of SpanA that does not refer to pull-
backs, and Theorem 3.15 gives a similar characterization for SpanA. So we might use
these universal properties to define SpanA and SpanA for general categories. This would
be useful as we could then apply the results of [12] to SpanA and SpanA for further
study of the Π2-construction.

Of course, pullbacks are necessary in the composition of spans and so we take the
drastic step of discarding composition. There are several justifications for such an action.
The most immediate is that without pullbacks the composites just are not there, but
there is sufficient extra structure at the 2-dimensional level to salvage a good part of what
composition does for us. Another consideration is that the universal property expressed
in Theorem 2.8 refers to oplax morphisms out of SpanA, and if the relevant morphisms
do not preserve composition, we should not require it to be there. Of course, oplax
morphisms do involve composition and the 2-dimensional structure referred to before is
exactly what is needed to express this.

Along the same lines, for categories A and B with pullbacks and a functor F : A→ B
that does not preserve them, Span(F ) : SpanA→ SpanB is only oplax. Clearly, we are in
need of oplax bicategories or some such concept. There exist two notions which might serve
in this capacity, the dual of Hermida’s bicategory with several objects [21] and the dual
of Leinster’s fc-multicategory [26]. Both Hermida and Leinster use spans in a category
without pullbacks as a basic example. It is our contention that the second notion is the
most useful one, at least for the work that follows. Leinster’s fc-multicategories can also be
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viewed as Burroni’s T-multicategories in Set•⇒•, where T is the free category monad [5],
or as the 2-dimensional truncation of Hermida’s multicategories in ω-graphs, introduced
in Section 10.2 of [22]. Hermida defines a notion of representability for composites which
differs a bit from ours, as we will discuss in Section 4.6.

In [12], we called fc-multicategories lax double categories. We showed that lax mor-
phisms of double categories are the Kleisli morphisms for the comonad Path on the 2-
category Doub of double categories with double functors and vertical transformations,
and that the Eilenberg-Moore algebras are precisely the lax double categories. (The
anonymous referee has made the interesting suggestion that this result follows from The-
orem 6.1 in [22].) We took this fact as justification that lax double categories are the
right structure for discussing lax morphisms.

4.1. Oplax double categories. Recall from [12] that an oplax double category has
objects, horizontal and vertical arrows, and cells. There are two differences with double
categories. The first is that there is no composition given for horizontal arrows. This is
somewhat compensated for by the fact that cells are more general. They have vertical ar-
rows as horizontal domain and codomain and although the vertical domain is a horizontal
arrow, the vertical codomain is a finite string of compatible horizontal arrows (possibly
of length 0). So a cell is of the form

A

•|
||

|
v

~~|||
| α

f // B

•
BBB

B
w

!!B
BBB

C0 g1
// C1 g2

// C2 g3
//

gn
// Cn.

(22)

Vertical arrows compose and form a category. There are identity cells

A

idf

f // B

A
f

// B

and cells compose vertically in the way that functions of several variables do. To be
precise, given cells

Ci−1
gi //

•y
yyyxi−1

||yyy
y βi

Ci

•
DD

DD
xi

!!D
DDD

Di0
// Di1

// // Dimi

for i = 1, . . . , n, we can compose them with α in (22) to obtain a cell

A
f //

(β1,...,βn)·α
x0·v

•y
yyy

||yyy
y

B

•
FFFF
xn·w

""FF
FF

D10
// D11

// // Dnmn .
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Note that there are n + 1 vertical arrows xi and n cells βi involved in such a composite,
so when n = 0 our composite looks like

A

•
>>>

>

v ��>
>>

f //

α

B

•�
���

w����
�

C0

•x0
��

D10 .

This composition is unitary and associative in the obvious sense.
A morphism of oplax double categories is a map that preserves all the structure (on

the nose).
Every double category A gives rise to a canonical oplax double category OplaxA

with the same objects and horizontal and vertical arrows, but where a cell α as in (22)
corresponds to a cell

A

•v
��

f //

α

B

•w
��

C0 gngn−1···g1
// Cn

in A. Then morphisms of oplax double categories OplaxA → OplaxB correspond pre-
cisely to oplax morphisms A→ B. All of this is explained in full detail in [12].

An oplax bicategory is an oplax double category where all the vertical arrows are
identities. Lax double categories and lax bicategories are defined dually.

4.2. Definition. Let A be an arbitrary category. Then SpanA is the oplax double
category whose objects and vertical arrows are the objects and arrows of A, respectively.
The horizontal arrows of SpanA are spans in A and its cells are commutative diagrams
of the form

A
f

vvnnnnnnnnnnnnnnnn S
poo p′ //

x1

vvnnnnnnnnnnnnnnnn

x2
��

xn

**VVVVVVVVVVVVVVVVVVVVVVVVVV A′

f ′

++VVVVVVVVVVVVVVVVVVVVVVVVVV

B0 T1oo // B1 T2oo // B2 Bn−1 Tn //oo Bn

(23)

4.3. Proposition. With the above arrows and cells, SpanA can be made into an oplax
double category.

Proof. Identities are given by

A Soo // A′

A S //oo A′
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and composition is defined as follows. Suppose we are given n cells

Bi−1
gi−1

vvmmmmmmmmmmmmmmmm Tioo //

yi1

vvllllllllllllllllll

yi2

��

yimi

((QQQQQQQQQQQQQQQQ Bi

gi

))RRRRRRRRRRRRRRRRR

Ci,0 Ui1oo // Ci,1 Ui2oo // Uimi
// Ci,mi

,

with Ci,0 = Ci−1,mi−1
, the composite with the cell (23) above is

A
g0f

xxqqqqqqqqqqqqq Soo //

yijxi
��

A′

gnf ′

''OOOOOOOOOOOOO

C10
oo Uijoo // // Cn,mn .

Verification of associativity is straightforward.

Let F : A→ B be a functor. We get a morphism of oplax double categories,

Span(F ) : SpanA→ SpanB,

simply by applying F to each of the components of arrows or cells. So, for example,

Span(F ) applied to the span A
p←− S

p′−→ A′ gives the span FA
Fp←− FS

Fp′−→ FA′, and
so on.

For a natural transformation t : F → G we get a vertical transformation

Span t : SpanF → SpanG,

defined by

FA

• tA

��

(Span t)A :=

GA

FA

•tA

��

FS
Fpoo

•tS

��

Fp′ // FA′

• tA′

��

(Span t)S :=

GA GS
Gp

oo
Gp′

// GA.

We have the following result.

4.4. Proposition. Let Oplax be the 2-category of oplax double categories, oplax mor-
phisms and vertical transformations. Then Span: Cat→ Oplax is a locally fully faithful
2-functor.
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Proof. The fact that Span is a 2-functor can be verified by a straightforward calculation.
(See [12], following Theorem 2.1 for the definition of vertical transformation.) Local
faithfulness is also obvious. To check that Span is locally full, let τ : SpanF → SpanG be
any vertical transformation, where F,G : A ⇒ B are functors. Let τ(p,q) be of the form

FA

τA
��

FS
Fpoo Fq //

τ(p,q)

��

FB

τB
��

GA GS
Gp

oo
Gq

// GB

We want to show that τ(p,q) = τS. First note that τ(1S ,1S) = τS. Now consider the 2-cell

S

p

��

S
1oo 1 //

1
��

S

q

��
A Sp

oo
q

// B

in SpanA. By vertical naturality of τ , we have that

FS

Fp

��

FS
F1oo

F1
��

F1 // FS

Fq

��

FS

τS
��

FS
F1oo F1 //

τ(1,1)=τS

��

FS

τS
��

F

τA
��

FS

τ(p,q)

��

Fq // FB

τB
��

= GS

Gp

��

GS
G1

oo
G1

//

G1
��

GS

Gq

��
GA GS

Gp
oo

Gq
// GB GA GS

Gp
oo

Gq
// GB .

We conclude that τ(p,q) = τS, as required.

4.5. Proposition. The inclusion A ↪→ SpanA as vertical arrows is locally full and
faithful.

Proof. Given f, g : A⇒ B in A, there is at most one cell

A

f
��

A

��

A

g

��
B B B

and there is one if and only if f = g.

4.6. Oplax normal double categories. Not much can be done with oplax mor-
phisms that are not normal, and the more interesting construction of [12] was Path∗ for
oplax normal double categories. This leads us to consider the notions of (strong) rep-
resentability of composites and identities in oplax double categories. The definition of
strongly representable composites in lax double categories was given in [12], Definition
2.7. We will give the oplax version here for convenience:
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4.7. Definition. Let A be an oplax double category and

A0
f1 // A1

f2 // fn // An

a path of horizontal arrows of A. We say that the composite of this path is strongly
representable if there is an arrow f : A0 → An and a cell

A0
f //

η⟨fn,...,f1⟩

An

A0
f1 // A1

f2 // fn // An

such that for any paths ⟨x1, . . . , xm⟩, and ⟨yp, . . . , y1⟩, and cell α as below

B
g //

•v
��

α

C

•w
��

Xm
xm // // X1

x1 // A0
f1 // A1

f2 // fn // An
y1 // Y1

y2 // yp // Yp

there is a unique cell α

B
g //

•v
��

α

C

•w
��

Xm
xm // // X1

x1 // A0
f // An

y1 // Y1
y2 // // Yp

such that the composition of

B
g //

•v
��

α

C

•w
��

Xm
xm //

id

Xm−1
xm−1 // X1

x1 //

id

A0
f //

η⟨fm,...,f1⟩

An
y1 //

id

Y1
y2 // yp // Yp

Xm
xm // Xm−1

xm−1 // X1
x1 // A0

f1 // A1
f2 // fn // An

y1 // Y1
y2 // yp // Yp

is equal to α.
We say that the composite of the path ⟨fn, . . . , f1⟩ is representable if we require the

above condition only in the case where m = p = 0, i.e., when there are no x’s or y’s.

This definition was originally given by Lambek [25] for multicategories and by Hermida
[21] for lax bicategories (there called multicategories with several objects) and by Lein-
ster [26] for lax double categories (there called fc-multicategories). A different approach is
given in Penon’s article [29] describing and extending Burroni’s work [5] on T -categories.
Hermida’s work on representable multicategories [22] gives a more general notion of rep-
resentability where the universal cell is not required to be special. However, since we want
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to think of the domain of the universal cell as the composite of its codomain sequence
of composable arrows, we require the cells to be special. If vertical isomorphisms have
both companions and conjoints, the two definitions are equivalent. It can also be verified
that if all n-tuple composites are representable and the structure cells are closed under
composition as required in [22], then all these composites are strongly representable.

When the composite of a string A0
f1 // A1

// fn // An is strongly repre-
sentable we will choose a representing morphism and call it fnfn−1 · · · f1. We will also say
that the composite exists in this case. The representing cell is denoted

A0
fn···f1 //

ιfn,fn−1,...,f1

An

A0 f1
// A1 f2

// //
fn

// An.

For n = 0, the composite, when it exists, will be denoted by 1A and we say that the
identity on A exists or is strongly representable. The universal cell is denoted

A
1A //

@@
@@

@@
@

@@
@@

@@
@

ιA

A

��
��

��
�

��
��

��
�

A .

As is historically the case, we are mostly interested in identities and composites of two
arrows.

The following proposition is due to Hermida [21], Theorem 11.6, although it is stated
for oplax bicategories in that paper.

4.8. Proposition. SpanA has all composites if and only if A has pullbacks.

We shall need refinements of this result for categories which may not have all pullbacks.

4.9. Proposition. For any A, horizontal identities exist in SpanA. Moreover, for
any functor F : A→ B, the functor Span (F ) preserves these identities.

Proof. It is easily verified that the cell

A

@@
@@

@@
@

@@
@@

@@
@ A
1Aoo 1A // A

��
��

��
�

��
��

��
�

A

has the required universal property.
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Following Definition 3.15 of [12] we say that an oplax double category is normal if
all identities exist and an oplax morphism is normal if it preserves these identities in the
sense that

FA
F1A //

FFFF
FFFF

FFF
FFFF

F

FιA

FA

xxx
xx

xx
x

xxx
xxx

xx

FA

has the universal property making F1A an identity on FA. Thus, SpanA and Span (F )
are normal.

4.10. Proposition. Let A
s1←− S

s2−→ B and B
t1←− T

t2−→ C be spans in A. Then the
following are equivalent.

1. TS is representable;

2. TS is strongly representable;

3. The pullback P
s
��~~

~~ t
��@

@@
@

S

s2 ��@
@@

@ T

t1��~~
~~

B

exists.

Furthermore, Span (F ) : SpanA→ SpanB preserves the composite TS if F preserves the
pullback S ×B T .

Proof. To prove the implication (1)⇒(3), suppose that TS is representable with universal
cell ι as in the diagram

A P
s

����
��

��
�

t

��@
@@

@@
@@

o o // C

A Ss1
oo

s2
// B Tt1

oo
t2

// C .

For a commutative square X
x
~~~~

~~ y

  A
AA

A

S

s2   @
@@

@ T

t1~~}}
}}

B

we get a cell

A X
s1xoo t2y //

x

��~~
~~

~~
~ y

  @
@@

@@
@@

C

A Ss1
oo

s2
// B Tt1

oo
t2

// C

(24)
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which must factor uniquely through ι, i.e., there is a unique z such that

A Xoo //

z

��

C

A Poo //

s

��~~
~~

~~
~

t

  @
@@

@@
@@

C

A Ss1
oo

s2
// B Tt1

oo
t2

// C

is equal to (24). Thus, P
s
��~~

~~ t
  @

@@
@

S

s2 ��@
@@

@ T

t1��~~
~~

B

is a pullback.

The implication (3)⇒(2) is immediate from the universal property of pullbacks, and
the implication (2)⇒(1) is obvious.

Finally, that SpanF preserves the composite TS when F preserves the pullback in
Condition (3) is also obvious.

4.11. Corollary.

1. If g : B → C is an arrow in A, then g∗S is strongly representable in SpanA.

2. If f : B → A is an arrow in A, then Tf ∗ is strongly representable in SpanA.

3. For any functor F : A → B, the induced morphism Span (F ) preserves composites
of the form g∗S and Tf ∗.

Proof. The arrow g∗ is the span B
1B←− B

g−→ C and f ∗ is the span A
f←− B

1B−→ B. In
either case, the pullback of Condition (3) in Proposition 4.10 is of the form

X

1X
��

// B

1B
��

X // B ,

which always exists for trivial reasons and is preserved by any functor.

4.12. Corollary. The composites 1BS and S1A exist and are canonically isomorphic
to S.

We conclude that for any category A, the oplax double category SpanA is normal
and for any functor F , Span (F ) is normal. Moreover, SpanA has composites of the form
f∗S and Tf ∗ and Span (F ) preserves them. If we want to extend the universal properties
of Theorems 2.8 and 3.15 to oplax bicategories and double categories, representability
of such composites has to be considered. For this we need a notion of gregarious oplax
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double category. There is a very natural extension of the notion of being gregarious to
oplax normal double categories in terms of companions and conjoints. However, in order
to be able to talk about companions and conjoints in oplax normal double categories we
first need to consider composition of cells in more detail.

4.13. Composition of cells. We begin with a couple of results on composition of
horizontal arrows.

4.14. Proposition. Let A be an oplax double category and A
f //B

g //C
h //D hor-

izontal arrows in A.

1. If gf and hg are strongly representable, the following are equivalent:

(a) h(gf) is strongly representable;

(b) (hg)f is strongly representable;

(c) hgf is strongly representable.

Furthermore, if any one of these is strongly representable, then we have h(gf) ∼=
(hg)f ∼= hgf by vertically invertible special cells.

2. If 1B is strongly representable, then so are the composites 1Bf and g1B. Moreover,
1Bf ∼= f and g1B ∼= g.

3. If any oplax morphism preserves 1B then it preserves the composites 1Bf and g1B.

Proof. These are all more or less standard representability results. Let us first show
(1a)⇔ (1c). Assume that gf , gh, and h(gf) are strongly representable with universal
cells

A
gf //

ιg,f

		
		

		

		
		

		
C

66
66

66

66
66

66
B

hg //

ιh,g

��
��

��

��
��

��
D

66
66

66

66
66

66
A

h(gf) //

ιh,gf

		
		

		

		
		

		
C

77
77

77
7

77
77

77
7

A
f

// B g
// C , B g

// C
h

// D , A
gf

// C
h

// D.

Define ιh,g,f to be the composite

A

��
��

��

��
��

��

h(gf) //

ιh,gf

D

66
66

66

66
66

66

A

		
		

		

		
		

		

gf //

ιg,f

C

66
66

66

66
66

66
h //

idh

D

88
88

88
8

88
88

88
8

A
f

// B g
// C

h
// D.

The universal property of ιh,g,f is easily checked, but note that strong representability of
gf is needed, even if we only want mere representability of hgf . So we see that h(gf)
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strongly represents hgf . By the universal property for representability, if we had chosen
any other arrow hgf to represent this composite, we conclude that h(gf) ∼= hgf by a
vertically invertible special cell.

Assume now that gf , hg, and hgf are strongly representable. Strong representability
of gf tells us that there is a unique cell ιh,gf such that

A

��
��

��

��
��

��

hgf //

ιh,gf

D

66
66

66

66
66

66

A

		
		

		

		
		

		

gf //

ιg,f

C

66
66

66

66
66

66
h //

idh

D

66
66

66

66
66

66

=

A

		
		

		

		
		

		

hgf //

ιh,g,f

D

88
88

88
8

88
88

88
8

A
f

// B g
// C

h
// D A

f
// B g

// C
h

// D.

It is again straightforward to check that ιh,gf has the universal property making h(gf)
strongly represented by hgf , and h(gf) ∼= hgf . The rest of (1) follows by duality.

For (2), assume that 1B is strongly representable with universal cell

B
1B //

@@
@@

@@
@

@@
@@

@@
@

ιB

B

~~
~~

~~
~

~~
~~

~~
~

B .

Then there is a unique cell ιg,1B such that

B

��
��
��
��
�

��
��
��
��
�

ιg,1B

g // C

00
00

00
00

0

00
00

00
00

0

B

idg

g // C

B
1B //

00
00

00
00

0

00
00

00
00

0
ιB

B

��
��
��
��
�

��
��
��
��
�

idg

g // C

��
��
��
��
�

��
��
��
��
�

=

B g
// C.

B g
// C

It is easily seen that ιg,1B has the universal property which makes g1B strongly represented
by g. The proof of the fact that 1Bf is strongly representable is dual to this.

For (3), assume that F preserves 1B. Then

FB
F1B //

BB
BB

BB
BB

BB
BB

BB
BB

FιB

FB

||
||

||
||

||
||

||
||

FB
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strongly represents the horizontal identity on FB. So there is a unique cell ιFg,F1B such
that

FB

��
��

��
��

��

��
��

��
��

��

ιFg,F1B

Fg // FC

55
55

55
55

55

55
55

55
55

55

FB

idFg

Fg // FC

FB
F1B //

66
66

66
66

66

66
66

66
66

66 FιB

FB

��
��

��
��

��

��
��

��
��

��

idFg

Fg // FC

		
		

		
		

		

		
		

		
		

		
=

FB
Fg

// FC.

FB
Fg

// FC

Just as in the proof of the previous part, it is easily seen that ιFg,F1B has the universal
property which makes FgF1B strongly represented by Fg. The proof for the preservation
of 1Bf is dual to this one.

Note that the above proof shows that h(gf) satisfies the universal property of hgf , so
we could choose hgf to be h(gf). However, we cannot choose it to be (hg)f at the same
time. It is best to make an independent choice of hgf . Then we get a unique isomorphism
κ : h(gf)→ hgf satisfying

A
h(gf) //

κ

D A

��
��

��

��
��

��
ιh,gf

h(gf) // D

66
66

66

66
66

66

A

		
		

		

		
		

		
ιh,g,f

hgf // D

66
66

66

66
66

66
= A

		
		

		

		
		

		
ιg,f

gf // C

66
66

66

66
66

66
h // D

idh 88
88

88
8

88
88

88
8

A
f

// B g
// C

h
// D A

f
// B g

// C
h

// D.

The horizontal composition of arrows in an oplax double category requires the solu-
tion of a universal mapping problem, and when it does exist associativity and the unit
laws only hold up to comparison cells which are vertical isomorphisms if we have strong
representability. However, we will see that horizontal composition of cells works perfectly
well provided that the horizontal composites of the relevant domains and codomains exist.
All reasonable laws hold on the nose once the canonical isomorphisms are factored in.

There are two ways we might define horizontal composition of cells in an oplax double
category. The first is more general and a graded kind of composition.

Given cells α and β as below

A

•{
{{

{

}}{{{
{ α

f // B

•

��
β

g // C

•
BB

BB

!!B
BBB

X0
// X1

// Xk
// // Xn,
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where gf is strongly representable, the horizontal composite β ∗ α is defined to be the
vertical composite (β, α) · ιg,f ,

A

		
		

		

		
		

		
ιg,f

gf // C

66
66

66

66
66

66

A

•�
��

����
�

f //

α

B
g //

•
��

β

C

•
99

9

��9
99

X0
// // Xk

// // Xn.

Similarly, given a vertical arrow v : A • //X , where 1A is strongly representable, the
horizontal identity cell 1∗v is defined to be the composite

A

@@
@@

@@
@

@@
@@

@@
@

//

ιA

A

~~
~~

~~
~

~~
~~

~~
~

A

•v

��
X .

4.15. Proposition.

1. Given cells α, and β as above and a further one

C
h //

γ•}
}}}

~~}}}
}

D

•
CC

CC

!!C
CCC

Xn
// // Xm,

such that gf , hg, and hgf are strongly representable, then γ ∗ (β ∗ α) = (γ ∗ β) ∗ α,
in the sense that

A
hgf //

∥≀

D A
hgf //

∥≀

D

A

•}
}}}

~~}}
}

h(gf)
//

γ∗(β∗α)

D

•
CCC

C

!!C
CCC

= A

•}
}}}

~~}}
}

(hg)f
//

(γ∗β)∗α

D

•
CCC

C

!!C
CCC

X0
// // Xm X0

// // Xm

where the top cells are the canonical isomorphisms mentioned in Proposition 4.14.

2. If 1B is strongly representable, then 1∗v ∗α = α and β ∗1∗v = β, modulo the canonical
isomorphisms 1Bf ∼= f and g1B ∼= g as in Part (1).
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3. With cells α and β as above, and gf representable, there is also an interchange law.
Given cells

Xi−1

•x
xx

x

{{xxx
x

//

ξi

Xi

•
BB

BB

  B
BBB

Yji−1
// // Yji ,

we have

[(ξn, ξn−1, . . . , ξk) · β] ∗ [(ξk, . . . , ξ1) · α] = (ξn, . . . , ξ1) · (β ∗ α).

Proof. Straightforward. (The proof of Part (3) is easiest, being nothing but associativity
of vertical composition in A.)

There is another more special kind of horizontal composition on cells with a square
boundary, i.e., for which the vertical codomain has length 1. This notion of composition
is the one which is more useful for us.

Given cells α and β as in

A
f //

α•u

��

B

•v

��

B

•v

��

g //

β

C

•w

��
X

f ′
// Y Y

g′
// Z

such that gf and g′f ′ are strongly representable, the horizontal composite βα is the unique
cell such that

A
gf //

•u

��
βα

C

•w

��

A

��
��

��

��
��

��

gf //

ιg,f

C

77
77

77
7

77
77

77
7

X

��
��

��
�

��
��

��
� g′f ′

//

ιg′,f ′

Z

55
55

55
5

55
55

55
5

= A

•u

��

f //

α

B

•v

��
β

g // C

•w
��

X
f ′

// Y
g′

// Z X
f ′

// Y
g′

// Z,

(25)

i.e., ι · (βα) = β ∗ α.
Also, given a vertical arrow v : B • //Y , for which 1B and 1Y are both strongly

representable, we define the horizontal identity cell 1v to be the unique cell such that

B

•v

��

1B //

1v

B

•v

��

B
1B //

@@
@@

@@
@

@@
@@

@@
@

ιB

B

~~
~~

~~
~

~~
~~

~~
~

Y
1Y //

@@
@@

@@
@

@@
@@

@@
@

ιY

Y

~~
~~

~~
~

~~
~~

~~
~

= B

•v

��
Y Y .
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4.16. Proposition.

1. Given cells α and β as above, and a further one

C

•w

��

h //

γ

D

•r

��
Z

h′
//W

for which gf , hg, hgf , g′f ′, h′g′, and h′g′f ′ are all strongly representable, then
γ(βα) = (γβ)α (modulo the canonical isomorphisms).

2. If 1B and 1Y are strongly representable, then 1vα = α and β1v = β.

3. (The Interchange Law) If we also have cells

X

•u′

��

f ′ //

α′

Y

•v′

��
and

Y

•v′

��

g′ //

β′

Z

•w′

��
A′

f ′′
// B′ B′

g′′
// C ′,

and gf , g′f ′, and g′′f ′′ are all strongly representable, then

(β′α′) · (βα) = (β′ · β)(α′ · α).

Proof. There is a triple horizontal composite of cells γβα defined to be the unique cell
such that

A

•

��
γβα

hgf // D

•

��

A

}}
}}

}}
}

}}
}}

}}
}

ιf,g,h

hgf // D

BB
BB

BB
BB

BB
BB

BB
BB

X
h′g′f ′

//

ιf ′,g′,h′

}}
}}

}}
}}

}}
}}

}}
}}

W

BB
BB

BB
BB

BB
BB

BB
BB

= A

•

��
α

f // B

•

��
β

g // C

•

��
γ

h // D

•

��
X

f ′
// Y

g′
// Z

h′
//W X

f ′
// Y

g′
// Z

h′
//W.

We will show that γ(βα) = γβα in the sense that

A

•

��
γ(βα)

h(gf) // D

•

��

A

κ

h(gf) // D

X

κ

h′(g′f ′)
//W = A

hgf //

•

��
γβα

D

•

��
X

h′g′f ′
//W X

h′g′f ′
//W.
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Then the result will follow by duality. These cells will be equal if they are equal when
composed (vertically) with ιh′,g′,f ′ . Consider the following diagrams whose composites are
all equal.

A

•

��
γ(βα)

h(gf) // D

•

��

A

•

��
γ(βα)

h(gf) // D

•

��
X

κ

h′(g′f ′)
//W

=

X

��
��
��
�

��
��
��
� h′(g′f ′)

//

ιh′,g′f ′

W

99
99

99
9

99
99

99
9

X

uuuuuuuuuu

uuuuuuuuuu h′g′f ′
//

ιh′,g′,f ′

W

KKKKKKKKKK

KKKKKKKKKK X

��
��
��
�

��
��
��
�

ιg′,f ′

g′f ′
// Z

77
77

77
7

77
77

77
7 h′

//W

idh′ 99
99

99
9

99
99

99
9

X
f ′

// Y
g′

// Z
h′

//W X
f ′

// Y
g′

// Z
h′

//W

A

��
��
��
�

��
��
��
�

h(gf) //

ιh,gf

D

99
99

99
9

99
99

99
9 A

��
��
��
�

��
��
��
�

ιh,gf

h(gf) // D

99
99

99
9

99
99

99
9

=

A

•

��

gf //

αβ

C

•

��
γ

h // D

•

��
=

A

��
��
��
�

��
��
��
�

gf //

ιg,f

C

77
77

77
7

77
77

77
7

h // D

idh 99
99

99
9

99
99

99
9

X
g′f ′

//

��
��
��
�

��
��
��
�

ιg′,f ′

Z

77
77

77
7

77
77

77
7 h′

//W

idh′ 99
99

99
9

99
99

99
9 A

•

��

f //

α

B

•

��

g //

β

C

•

��

h //

γ

D

•

��
X

f ′
// Y

g′
// Z

h′
//W X

f ′
// Y

g′
// Z

h′
//W

A
h(gf) //

κ

D A
h(gf) //

κ

D

= A
hgf

//

ιh,g,f

uuuuuuuuuuu

uuuuuuuuuuu D

KKKKKKKKKKK

KKKKKKKKKKK = A

•

��
γβα

hgf // D

•

��
A

•

��

f //

α

B

•

��
β

g // C

•

��
γ

h // D

•

��

X

uuuuuuuuuu

uuuuuuuuuu h′g′f ′
//

ιh′,g′,f ′

W

KKKKKKKKKK

KKKKKKKKKK

X
f ′

// Y
g′

// Z
h′

//W X
f ′

// Y
g′

// Z
h′

//W.

This proves Part (1).
The proof of Part (2) is similar and left as an exercise.
We give the proof of Part (3) which is a bit different. The cells (β′α′) · (βα) and

(β′ · β)(α′ · α) are equal if they are equal when composed with ιg′,f ′ . This is indeed the
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case, as the following sequence of diagrams with equal composites shows.

A //

•

��

//

(β′α′)·(βα)

C

•

��

A //

•

��
βα

C

•

��

A //

•

��
βα

C

•

��
A′

		
		

		

		
		

		
ι

// C ′

55
55

55

55
55

55
= X

•





��



 β′α′

// Z

•
44

4

��4
44

= X






















ι

// Z

44
44

44

44
44

44
=

A′ // B′ // C ′ A′ // B′ // C ′ X

•

��
α′

// Y //

•

��
β′

Z

•

��
A′ // B′ // C ′

A






















ι

// C

44
44

44

44
44

44
A






















ι

// C

44
44

44

44
44

44
A

•

��
(β′·β)(α′·α)

// C

•

��
A

•

��
α

// B

•

��
β

// C

•

��

= A

•

��
α′·α

// B

•

��

//

β′·β

C

•

��

= A′

		
		

		

		
		

		
//

ι

C ′

77
77

77
7

77
77

77
7

X

•

��
α′

// Y

•

��
β′

// Z

•

��

A′ // B′ // C ′ A′ // B′ // C ′.

A′ // B′ // C ′

4.17. Corollary. If in any oplax double category all composites and all identities are
strongly representable, the square cells (with vertical codomains of length one) form a
(weak) double category.

4.18. Gregarious oplax double categories. For an oplax normal double category
the definitions of companions and conjoints given in Definition 3.4 for double categories
still make sense:

4.19. Definition. Let B be an oplax normal double category. We say that a horizontal
arrow f : A //B and a vertical arrow v : A • //B in B are companions if there are
binding cells

A
IA //

ψ

A

•v

��
and

A

•v

��

f //

χ

B

A
f

// B B
IB

// B,
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such that

A
IA //

ψ

A

•v

��

A
IA //

ψ

A

•v

��
χ

f // B

= idf

A

•v

��
χ

f
// B = 1v and A

f
// B

IB
// B

B
IB

// B ,

(26)

i.e., χ · ψ = 1v and χψ = idf .
Dually, we say that a horizontal arrow u : B //A and a vertical arrow v : A • //B

are conjoints if there are binding cells

A

•v

��
α

IA // A

and

B
u //

β

A

•v
��

B u
// A B

IB
// B,

such that

A

•v

��

IA //

α

A B
u //

β

A

•v

��
α

IA // A

= idf

B

β

u
// A

•v

��

= 1v and B
IB // B u

// A

B
IB

// B ,

i.e., β · α = 1v and αβ = idf .

Note that these definitions only use composites of two horizontal arrows in which one
is an identity and these exist by Proposition 4.14 Part (2). They also use horizontal
composition of cells and horizontal identities which exist and have the required properties
by Proposition 4.16. Note however, that the definition of adjoint given in Definition 3.4
does not carry over to the present context as it uses the triple composites fuf and ufu.

To illustrate how the special horizontal composition of cells works here, we spell out
what is meant by the equations in (26). The left-hand equation means that

I //

ψ •v

�� 77
77

77
7

77
77

77
7

I //

ι

��
��

��
�

��
��

��
�

•v

��

f //

χ

=

•v

��

88
88

88
8

88
88

88
8

I //

ι

��
��

��
�

��
��

��
�
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whereas the right-hand equation means that

��
��

��
�

��
��

��
�

f //

ιf,I
77

77
77

7

77
77

77
7

f //

idf

ψ
I

//

•v

��
χ
f

// =

��
��

��
�

��
��

��
� f

//

ιI,f
77

77
77

7

77
77

77
7

f
//

I
//

f
//

I
//

We derive from this that

��
��

��
�

��
��

��
�

f //

ιf,I
88

88
88

8

88
88

88
8

I //

ψ •v

��
χ

f //

= idf

f //

88
88

88
8

88
88

88
8

f
//

I
//

88
88

88
8

88
88

88
8

ι

��
��

��
�

��
��

��
� f

//

f
//

(27)

The following properties of conjoints and companions hold in any oplax normal double
category.

1. If h and h′ are both companions to v then h ∼= h′ by a special vertical isomorphism.

2. If h is companion to v and v′ then v ∼= v′ by a special horizontal isomorphism.

3. If A •
v // B •

w // C are vertical morphisms with companions h and k respectively,
then w · v has a companion if and only if the composite kh is strongly representable
and that composite is the companion of w · v.

4. The vertical arrow idA has the horizontal arrow 1A as companion.

5. Any morphism of oplax normal double categories preserves companions.

6. Dual statements hold for conjoints.

We are now ready to introduce gregarious oplax double categories and discuss the
universal properties of SpanA for an arbitrary category A.

4.20. Definition. An oplax double category is gregarious if it satisfies the following
conditions.

1. It is normal.

2. Every vertical arrow v has a horizontal companion v∗ and a horizontal conjoint v∗.
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3. For each span of vertical arrows A B
voo w //C , the composite w∗v

∗ is strongly
representable.

We write GregOplax for the 2-category of gregarious oplax double categories, normal
morphisms and vertical transformations.

4.21. Example. For any category A, the oplax double category SpanA is gregarious.
Also, for any functor F : A→ B, the induced functor Span (F ) of oplax double categories
is a normal morphism, as was shown above.

The morphisms between gregarious oplax double categories are not explicitly required
to preserve the composites of the form w∗v

∗, because normal morphisms will do this
automatically.

4.22. Proposition. A normal morphism F : C→ D between oplax normal double cat-
egories preserves all composites of the forms w∗x and yw∗ that exist in C.

Proof. We will show that F preserves the composites of the form w∗x that exist in C.
The dual of this proof shows that F also preserves the composites of the form yw∗ that
exist in C. Let

��
��

��
�

��
��

��
�

w∗x //

ιw∗,x 88
88

88
8

88
88

88
8

x
//

w∗
//

be a universal cell with the strong representability property in C for the composite w∗x.
We will now show that

��
��

��
�

��
��

��
�

F (w∗x) //

Fιw∗,x 88
88

88
8

88
88

88
8

Fx
//

Fw∗
//

has the strong representability property in D.
Let

mmmmmmmmmmmmmmm

mmmmmmmmmmmmmmm
g //

β

QQQQQQQQQQQQQQQ

QQQQQQQQQQQQQQQ

a1
// · · · an

//
Fx

//
Fw∗

//
b1

// · · ·
bm

//

be any cell in D. We need to show that there is a unique cell β̄ such that β is the
composite,

mmmmmmmmmmmmmmm

mmmmmmmmmmmmmmm
g //

β̄
QQQQQQQQQQQQQQQ

QQQQQQQQQQQQQQQ

a1
// · · · an

//

Fιw∗,x

F (w∗x)
//

b1
// · · ·

bm
//

a1
// · · · an

//
Fx

//
Fw∗

//
b1

// · · ·
bm

// .

(28)
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For the sake of space, we will from now on abbreviate the path a1
// · · · an

// by
(ai)

//

(and analogously for the (bj) path.) We define β̄ to be the composite of

oooooooooooo

oooooooooooo
g //

β
OOOOOOOOOOOO

OOOOOOOOOOOO

(ai)
//

F (ψwidx)

Fx //

•Fw
��

Fχw

Fw∗ //
(bj)

//

(ai)
//

F (w∗x)
//

NNNNNNNNNNNN

NNNNNNNNNNNN
FI //
Fι

(bj)
//

(ai)
//

F (w∗x)
//

(bj)
// .

Recall that the cell ψwidx is defined as the unique cell such that

��
��

��
�

��
��

��
�

x //

ιI,x
77

77
77

7

77
77

77
7

x //

ψwidx •w

��

idx

x
//

ψw

I
//

•w

��

=

��
��

��
�

��
��

��
� w∗x

//

ιw∗,x
66

66
66

6

66
66

66
6

x
//

w∗
//

x
//

w∗
// .

(29)

We will now calculate the composite (28) and show that it is indeed equal to β.

tttttttttt

tttttttttt
g //

β̄
JJJJJJJJJJ

JJJJJJJJJJ

tttttttttt

tttttttttt
g //

β
JJJJJJJJJJ

JJJJJJJJJJ

(ai)
//

Fιw∗,x
F (w∗x)

//
(bj)

// =
(ai)

// Fx //

F (ψwidx) •Fw
��

Fw∗ //
Fχw

(bj)
//

(ai)
//

Fx
//

Fw∗
//

(bj)
//

(ai)
//

F (w∗x)
//

id
JJJJJJJJJJ

JJJJJJJJJJ
FI //
Fι (bj)

//

(ai)
//

F (w∗x)
//

Fιw∗,x
(bj)

//

(ai)
//

Fx
//

Fw∗
//

(bj)
// .

By the associativity and identity properties of the composition of cells in an oplax double
category, this is equal to

oooooooooooo

oooooooooooo
g //

β
OOOOOOOOOOOO

OOOOOOOOOOOO

(ai)
// Fx //

F (ψwidx) •Fw
��

Fχw

Fw∗ //
(bj)

//

(ai)
// F (w∗x) //

Fιw∗,x
NNNNNNNNNNNN

NNNNNNNNNNNN
FI //

Fι (bj)
//

(ai)
//

Fx
//

Fw∗
//

(bj)
// .
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By (29) this is equal to

oooooooooooo

oooooooooooo
g //

β
OOOOOOOOOOOO

OOOOOOOOOOOO

(ai) // Fx //

FιI,x

Fw∗ // (bj) //

(ai) // Fx // FI //

Fψw •Fw
��

Fχw

Fw∗ // (bj) //

(ai) // Fx //
Fw∗

//

NNNNNNNNNNNN

NNNNNNNNNNNN
FI //

Fι

(bj) //

(ai) // Fx //
Fw∗

// (bj) // .

By the universal property of
FI //

==
==

==
==

==
==

==
==

Fι

��
��

��
��

��
��

��
��

,

this is equal to

oooooooooooo

oooooooooooo
g //

β
OOOOOOOOOOOO

OOOOOOOOOOOO

(ai) // Fx // Fw∗ //

Fιw∗,I

(bj) //

(ai) // Fx // FI //

Fψw •Fw
��

Fχw

Fw∗ // (bj) //

(ai) // Fx //
Fw∗

//

NNNNNNNNNNNN

NNNNNNNNNNNN
FI //

Fι

(bj) //

(ai) // Fx //
Fw∗

// (bj) // .

By (27) this is equal to β.
It remains to be shown that β̄ is unique with this property. So suppose that γ is a cell

satisfying

��
��

��
�

��
��

��
�

g //

γ
>>

>>
>>

>

>>
>>

>>
>

=
��

��
��

�

��
��

��
�

g //

β
>>

>>
>>

>

>>
>>

>>
>

(ai)
// F (w∗x) //

Fιw∗,x
(bj)

//
(ai)

//
Fx

//
Fw∗

//
(bj)

// .

(ai)
//

Fx
//
Fw∗

//
(bj)

//

(30)
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This implies that β̄ is equal to the composite

oooooooooooo

oooooooooooo
g //

γ
OOOOOOOOOOOO

OOOOOOOOOOOO

(ai)
// F (w∗x) //

Fιw∗,x
(bj)

//

(ai)
// Fx //

F (ψv idx) •Fw
��

Fχw

Fw∗ //
(bj)

//

(ai)
//

F (w∗x)
//

NNNNNNNNNNNN

NNNNNNNNNNNN
FI //

Fι (bj)
//

(ai)
//

F (w∗x)
//

(bj)
// .

(31)

Now consider the following composite in C:

w∗x //

ιw∗,x

x //

ιI,x

w∗ //

x // I //

ψw •w

��
χw

w∗ //

x //
w∗

//

MMMMMMMMMMM

MMMMMMMMMMM
I //

ι

x
//

w∗
// .

(32)

By coherence and (27) this is equal to

w∗x //

ιw∗,x

x // w∗ //

ιw∗,I

=
w∗x //

ιw∗,x

x // I //

ψw •w

��

w∗ //

χw

x
//

w∗
//

x //
w∗

//

MMMMMMMMMMM

MMMMMMMMMMM
I

//

x
//

w∗
// .
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By (29) the composite (32) is also equal to

w∗x //

ιw∗,x

w∗x //

ιw∗,x

x //

ψwidx •v

��
χw

w∗ //

=

x //

ψwidx •v

��
χw

w∗ //

w∗x
//

ιw∗,x

I //

MMMMMMMMMMM

MMMMMMMMMMM
ι w∗x

//

MMMMMMMMMMM

MMMMMMMMMMM
I //

ι

x
//

w∗
//

w∗x
//

ιw∗,x

x
//

w∗
// .

By the universal property of

w∗x
//

ιw∗,x

x
//

w∗
//

this implies that
w∗x //

ιw∗,x

x //

ψwidx •v

��
χw

w∗ //

=

w∗x //

id

w∗x
//

MMMMMMMMMMM

MMMMMMMMMMM
I //

ι w∗x
//

w∗x
// .

Substituting the image under F of this into (31), we get that that composite is equal to
γ. So we conclude that β̄ = γ as desired.

4.23. Corollary. Any normal morphism between gregarious oplax double categories
preserves all composites of the form w∗v

∗ for vertical arrows w and v with a common
domain.

4.24. The Main Theorem. We will now show that SpanA is the universal gregarious
oplax double category in the following sense.

4.25. Theorem. Let B be a gregarious oplax double category. Composition with the
vertical inclusion A ↪→ SpanA induces an equivalence of categories between the category
of normal morphisms SpanA → B and (vertical) transformations and the category of
functors A→ VrtB and natural transformations,

GregOplax(SpanA,B) ≃ Cat (A,VrtB).
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Before we prove this theorem we want to introduce the canonical cells associated with
a commutative square of vertical arrows

x //

u

��
v

��
y

//

in a gregarious oplax double category. We first reintroduce some of the cells from (9).
Note that both ζ(x, u, v, y) and ξ(x, u, v, y) can be defined using the special horizontal
composition of square cells defined in (25):

ζ(x, v, u, y) = (αy · 1u)(1v · βx) and ξ(x, v, u, y) = (1y · χu)(ψv · 1x).

In addition to these cells, we will need the cells

vvvvvvvvv

vvvvvvvvv
ι

HHHHHHHHH

HHHHHHHHH

•x

��

•x

��

•u

��

•u

��Λ(x, u, v, y) :=

ψv •v

��

•y

��

αy

v∗
//

y∗
// .

Note that for any commutative diagram of vertical arrows

u1
��

x //

u2
��

v1
��

y
//

v2
��

z
//

we have that
ζ(y, v1, v2, z) · ζ(x, u1, u2, y) = ζ(x, v1 · u1, v2 · u2, z), (33)

and
ξ(y, v1, v2, z) · ξ(x, u1, u2, y) = ξ(x, v1 · u1, v2 · u2, z). (34)

Also, for a commutative diagram of vertical arrows

u

��

x //

v

��

r //

w

��
t
��

y
//

s
��?

??
??

??

z
//

it is straightforward to check that

(ζ(y, t, s, z), ξ(v, s, r, w)) · Λ(x, u, v, y) = Λ(r · x, t · u,w, z). (35)
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Proof. (of Theorem 4.25) Since B is gregarious, start by choosing companions and
conjoints with their binding cells for all vertical arrows. For vertical identities choose
(idA)

∗ = 1A = (idA)∗ with ιA as binding cells. Also choose the composites w∗v
∗ for all

spans of vertical arrows.
To show that the functor defined by composition is essentially surjective, let F : A→

Vrt B be any functor. We will now construct its extension to a normal morphism of oplax
double categories F̃ : SpanA → B. Obviously, on objects and vertical arrows F̃ has the
same values as F .

On horizontal arrows, F̃
(

qoo p //
)

= (Fp)∗(Fq)
∗ (the chosen representative for

this strongly representable horizontal composition).
The image F̃ (µ) of a cell

µ =

A
u

vvnnnnnnnnnnnnnnnn S
qoo p //

v1

ttiiiiiiiiiiiiiiiiiiiiiiii

v2~~||
||

||
||

vm
**TTTTTTTTTTTTTTTTTTTTT B

w

((QQQQQQQQQQQQQQQQ

C0 S1q1
oo

p1
// C1 S2q2

oo
p2

// C2 Smqm
oo

pm
// Cm

(36)

under F̃ is defined as

oooooooooooooooooo

oooooooooooooooooo
(Fp)∗(Fq)∗ //

ι

OOOOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOOOO

•Fu

��

(Fq)∗
//

ζ •Fv1

��

Λ •Fv2

��

•Fvm−1

��

Λ •Fvm

��

(Fp)∗
//

ξ •Fw

��
(Fq1)∗

//
(Fp1)∗

//
(Fq2)∗

//
(Fpm)∗

//
(Fqm)∗

//
(Fpm)∗

// .

It is straightforward to check that F̃ is normal.
It is obvious that composition with the inclusion of A into SpanA defines a faithful

functorGregOplax(SpanA,B)→ Cat (A,VrtB). To show that it is also full, let γ : F →
G be a natural transformation. We will now construct its extension γ̃ : F̃ → G̃. For objects

A in SpanA, γ̃A = γA, taken as a vertical arrow. For a span A S
qoo p //B , define

γ̃(q,S,p) = ξ(Fp, γS, γB, Gp)ζ(Fq, γS, γA, Gq),

i.e., the special horizontal composition of

FA

•γA
��

ζ

(Fq)∗ // FS

•γS
��

(Fp)∗ //

ξ

FB

•γB
��

GA
(Gq)∗

// GS
(Gp)∗

// GB .

To verify vertical naturality of γ̃, we need to show that

G̃(µ) · γ̃(q,S,p) = (γ̃(qm,Sm,pm), · · · , γ̃(q1,S1.p1)) · F̃ (µ) (37)
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for any cell µ as in (36). The left-hand side of this equation is the following cell:

•γ̃A
��

(Fp)∗(Fq)∗ //

ξζ • γ̃B
��

kkkkkkkkkkkkkkkkk

kkkkkkkkkkkkkkkkk
(Gp)∗(Gq)∗

//

ι
SSSSSSSSSSSSSSSSS

SSSSSSSSSSSSSSSSS

•Gu
��

(Gq)∗
//

ζ •Gv1
��

Λ •Gv2
��

•Gvm−1

��
Λ •Gvm

��
ξ

(Gp)∗
//

•Gw
��

(Gq1)∗
//

(Gp1)∗
//

(Gq2)∗
//

(Gpm−1)∗
//

(Gqm)∗
//

(Gpm)∗
// .

By the definition of special horizontal composition in (25), this can be rewritten as

oooooooooooooooooo

oooooooooooooooooo
(Fp)∗(Fq)∗ //

ι

OOOOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOOOO

•γ̃A

��

ζ

(Fq)∗
//

• γ̃S

��

• γ̃S

��

• γ̃S

��

• γ̃S

��

ξ

(Fp)∗
//

• γ̃B

��

•Gu

��

ζ

(Gq)∗
//

•Gv1

��

Λ •Gv2

��

•Gvm−1

��

Λ •Gvm

��

ξ

(Gp)∗
//

•Gw

��
(Gq1)∗

//
(Gp1)∗

//
(Gq2)∗

//
(Gpm−1)∗

//
(Gqm)∗

//
(Gpm)∗

// .

(38)

Note that

Λ(Gvi, Gvi+1, Gpi, Gqi+1) · 1γ̃S = Λ(Gvi · γ̃S, Gvi+1 · γ̃S, Gpi, Gqi+1).

Using this result, together with (33) and (34), we can rewrite (38) as

oooooooooooooooooo

oooooooooooooooooo
(Fp)∗(Fq)∗ //

ι

OOOOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOOOO

•γ̃A

��
ζ

(Fq)∗
//

• γ̃S

��
Λ

• γ̃S

��

• γ̃S

��
Λ

• γ̃S

��
ξ

(Fp)∗
//

• γ̃B

��

•Gu

��

•Gv1

��

•Gv2

��

•Gvm−1

��

•Gvm

��

•Gw

��
(Gq1)∗

//
(Gp1)∗

//
(Gq2)∗

//
(Gpm−1)∗

//
(Gqm)∗

//
(Gpm)∗

// .

Since Gu · γ̃A = γ̃C0 · FU , Gw · γ̃B = γ̃Cm · Fw, and

Λ(Gvi · γ̃S, Gvi+1 · γ̃S, Gpi, Gqi+1) = Λ(γ̃Si
· Fvi, γ̃S · Fvi+1, Gpi, Gqi+1)
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we can further rewrite this as

oooooooooooooooooo

oooooooooooooooooo
(Fp)∗(Fq)∗ //

ι

OOOOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOOOO

•Fu

��
ζ

(Fq)∗
//

•Fv1

��
Λ

•Fv2

��

•Fvm−1

��
Λ

•Fvm

��
ξ

(Fp)∗
//

•Fw

��

•γ̃C0

��

• γ̃S1

��

•γ̃S2

��

• γ̃Sm−1

��

•γ̃Sm

��

• γ̃Cm

��
(Gq1)∗

//
(Gp1)∗

//
(Gq2)∗

//
(Gpm−1)∗

//
(Gqm)∗

//
(Gpm)∗

// .

(39)

Now we use (35) for the commutative diagram

•Fvi+1

��

•
Fvi //

•Fpi
��

•
γ̃Si //

•Gpi

��
•γ̃Si+1

��

•
Fqi+1

//

•
HHHH

γ̃Ci ##H
HHH

•
Gqi+1

//

together with (33) and (34) to rewrite (39) as

kkkkkkkkkkkkkkkkkkkkkk

kkkkkkkkkkkkkkkkkkkkkk
(Fp)∗(Fq)∗ //

ι

SSSSSSSSSSSSSSSSSSSSSS

SSSSSSSSSSSSSSSSSSSSSS

•Fu

��

ζ

(Fq)∗
//

•Fv1

��

Λ •Fv2

��

•Fvm−1

��

Λ •Fvm

��

ξ

(Fp)∗
//

•Fw

��

•
γ̃C0

��

(Fq1)∗
//

ζ •
γ̃S1

��

(Fp1)∗
//

ξ •
γ̃C1

��

(Fq2)∗
//

ζ •
γ̃S2

��

•
γ̃Sm−1

��

(Fpm−1)∗
//

ξ •
γ̃Cm−1

��

ζ

(Fqm)∗
//

•
γ̃Sm

��

(Fpm)∗
//

ξ •
γ̃Cm
��

(Gq1)∗
//

(Gp1)∗
//

(Gq2)∗
//

(Gpm−1)∗
//

(Gqm)∗
//

(Gpm)∗
// ,

and this is the cell on the right-hand side of (37). So γ̃ forms a vertical natural transfor-
mation from F̃ to G̃. This concludes the proof of Theorem 4.25.

4.26. Corollary. Span: Cat→ GregOplax is locally fully faithful.

4.27. Observation. Since the embedding GregDoubOplaxN ↪→ GregOplax is 2-full
and faithful, we can also view Theorem 3.15 as a corollary of Theorem 4.25. This gives
us an alternative proof for Theorem 3.15, although at the cost of introducing additional
concepts which are not needed in the context of that proof.
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4.28. Free Adjoints Revisited. In this section we combine our Span construction
with the Path∗ construction of [12] to get a double category version of the Π2 construction
of [14]. It will be important to distinguish between strict double categories and weak
double categories and between strict and strong morphisms of double categories. The
universal properties of Path and Path∗ are with respect to strict double categories and
strict morphisms between them, whereas the universal property of Span is of necessity
the weak version. To combine the two constructions they should be of the same type.
However, the strong version does not follow from the weak one and neither does the weak
property automatically follow from the strong one.

In order to get the weak property from the strong one, we will use two strictification
results. The first is a variation on the coherence theorem for bicategories [27]. Let B be a
weak double category and define B̄, the strictification of B, to have the same objects and
vertical arrows as B, but with paths of horizontal arrows in B as its horizontal arrows. A
cell

B0

•x

��
α

b1 // B1
b2 // B2

b3 // · · · bn // Bn

•y

��
C0 c1

// C1 c2
// C2 c3

// · · · cm
// Cm

is a cell in B of the form

B0

•x

��
α

∏
bi // Bn

•y

��
C0 ∏

cj

// Cm ,

where
n∏
i=1

bi =


1B0 if n = 0
b1 if n = 1

bn
(∏n−1

i=1 bi
)

if n > 1.

So
∏n

i=1 bi = bn(· · · (b3(b2b1) · · · ), i.e., all brackets are at the right. Vertical composition
of cells in B̄ is the same as in B. Horizontal compostion of paths is by concatenation,
whereas horizontal composition of cells uses the associativity isomorphisms of B. The
coherence theorem for bicategories says that there are canonical isomorphisms (special
cells)

φm,n :

(
n+m∏
i=n+1

bi

)(
n∏
i=1

bi

)
→

n+m∏
i=1

bi

which satisfy all reasonable commutation properties, in particular the obvious associativ-
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ity and unit laws. Then the horizontal composition of B̄ is given by

B0

φ−1
m,n

∏
bi // Bm+n

B0

•

��
α

∏
bi // Bn

•

��
α′

∏
bi // Bm+n

•

��
C0 ∏

cj

//

φp,q

Cp ∏
cj

// Cp+q

C0 ∏
cj

// Cp+q .

4.29. Theorem. With these operations, B̄ is a strict double category which is equivalent
to B in the 2-category psDoub of pseudo double categories, pseudo functors and vertical
transformations.

Proof. Vertical composition, being the same as in B, gives no problem. Interchange is
easy - the φp,q and φ−1p,q in the middle cancel. Horizontal composition of arrows, being
concatenation, is strictly associative. The only thing to check are the associativity and
unit laws for horizontal composition of cells. Associativity is represented schematically
by

//

φ−1

//

φ−1

//

φ−1

//

id id

// //

φ−1

α′′(α′α) = •

��

//

α •

��

//

α′ •

��

//

α′′ •

��
= •

��

//

α •

��

//

α′ •

��

//

α′′ •

��
= (α′′α′)α .

//

φ

// //

id id

// //

φ

//

//

φ

// //

φ

//

// //

The unit law from B says that

•

��

1 //

1 •

��

//

α •

��

1 //

φ

//

1
//

φ

// =

•

��
α

//

•

��// //
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which implies that
//

φ−1

•

��

1 //

1 •

��

//

α •

��
= •

��

//

α •

��
1

//

φ

// // .

//

There are pseudo functors Φ: B → B̄ and Ψ: B̄ → B which are the identity on objects

and vertical arrows. For a horizontal morphism f : B → B′ in B, Φ(f) = ( B
f // B′ )

the path of length 1. Φ on cells is the identity. Ψ of a path B0
f1 //B1

f2 // · · · fn //Bn is∏
fi : B0 → Bn and Ψ of a cell is the same cell in B now considered as a cell with vertical

domain and codomain
∏
fi and

∏
gj rather than the paths ⟨fi⟩ and ⟨gj⟩.

That Φ and Ψ are pseudo functors is easy to verify. The isomorphisms Φ(f ′f) →
Φ(f ′)Φ(f) and Φ(1B) → 1ΦB are special cells in B̄ coming from identities in B, whereas
the isomorphisms Ψ⟨fi⟩ → Ψ⟨f ′j⟩ → Ψ(⟨fi⟩⟨f ′j⟩) are the φp,q above and 1B → Ψ⟨ ⟩ is the
identity.

The composite ΨΦ is obviously the identity on B but the isomorphism ΦΨ ∼= 1B̄
can use some elaboration. This isomorphism is given by the vertical transformations
t : ΦΨ //1B̄ and u : 1B̄ //ΦΨ, defined by t(B) = idB : B • //B and t(⟨fi⟩) is

B0

∏
fi //

id∏ fi

Bn

B0 f1
// B1 f2

// · · ·
fn

// Bn .

It is straightforward to check that t is a vertical transformation with inverse u defined
analogously.

4.30. Corollary. For any pseudo double category A, Φ and Ψ induce an equivalence
of categories

psDoub(A,B) ≃ psDoub(A, B̄).

4.31. Remarks.

1. B̄ is the object part of a 2-functor (̄ ) : psDoub→ stDoub which is a 2-left adjoint
to the inclusion stDoub → psDoub. It is not, however, a 2-equivalence or even
a biequivalence as one might be tempted to believe. This is because for strict B,
although Φ: B → B̄ is an equivalence, it is not an equivalence in stDoub. On the
other hand, we do get a biequivalence between psDoub and its full sub 2-category
determined by the strict double categories.

2. If B is gregarious then so is B̄.
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PathA, Path∗A, and B̄ all share the property that they are strict double categories
whose horizontal categories are free on a graph. This is at the heart of our next strictifi-
cation result.

4.32. Proposition. Let A and B be strict double categories and assume that the cate-
gory Hor(A) is free on a graph. Then the inclusion

stDoub(A,B) ↪→ psDoub(A,B)

is an equivalence of categories.

Proof. Let F : A→ B be a pseudo double functor. Define F : A→ B to be the same as
F on objects and vertical arrows. A horizontal morphism in A is represented by a unique

path A0
a1 //A1

a2 // an //An of edges in the generating graph. Define F (⟨ai⟩) to be

the composite F (an) · · ·F (a1) in B. This makes F strict at the level of horizontal arrows.
For a cell

A0

α•
��

a1 // A1
a2 // an // An

•
��

A′0 a′1

// A′1 a′2

//
a′m

// A′m ,

define F (α) to be

FA0
Fa1 //

φ

FA1
Fa2 // Fan// FAn

FA0

•
��

Fα

F (an···a1) // FAn

•
��

FA′0

φ−1

F (a′m···a′1) // FA′m

FA′0 Fa′1

// FA′1 Fa′2
//

Fa′m

// FA′m

where φ is the structural isomorphism.
It is straightforward to check that vertical transformations from F to G are in bijective

correspondence with vertical transformations between F and G, since they are completely
determined by their components for the edges of the generating graph.

4.33. Remark. In [16] such double categories were shown to be the flexible algebras for
a 2-monad on Cat(Graph), of internal categories in the category Graph of non-reflexive
directed graphs, whose strict algebras are (strict) double categories. The result above can
also be seen as fitting in with known results about flexible algebras: strict morphisms
from a flexible algebra A to a strict algebra B are in bijective correspondence with pseudo
morphisms from A to B (see also [3]).
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Recall from [12] that the universal properties of Path and Path∗ are given by 2-
adjunctions. Involved in these adjunctions are Oplax, the 2-category of oplax dou-
ble categories, oplax morphisms and vertical transformations, and OplaxN, its locally
full sub 2-category of normal oplax double categories and normal morphisms. Then
Path: Oplax → stDoub is left 2-adjoint to the ‘inclusion’ Oplax: stDoub → Oplax
and Path∗ : OplaxN → stDoub is left 2-adjoint to the ‘inclusion’ Oplax∗ : stDoub →
OplaxN. This means that if A is oplax and B strict we have an isomorphism of categories

stDoub(PathA,B)
∼=−→ Oplax(A,B),

and if A is oplax normal, we have an isomorphism of categories,

stDoub(Path∗A,B)
∼=−→ OplaxN(A,B).

The ‘inclusions’ Oplax and OplaxN extend to psDoub in the obvious way.

4.34. Theorem. The functors Path: Oplax→ psDoub and Path∗ : OplaxN→ psDoub
satisfy the following universal properties. If A is oplax and B is a pseudo double category,
then the morphism A→ PathA induces, by composition, an equivalence of categories

psDoub(PathA,B) ≃−→ Oplax(A,B)

and if A is oplax normal, composition with A → Path∗A induces an equivalence of cate-
gories

psDoub(Path∗A,B)
≃−→ OplaxN(A,B)

Proof. The proofs are similar, so we only do the case of Path∗ as it is the one we will
use. We get the following equivalences

psDoub(Path∗A,B)
≃−→ psDoub(Path∗A,B) by Corollary 4.30
≃−→ stDoub(Path∗A,B) by the univ. prop. of Path∗
≃−→ OplaxN(A,B) by composition with Ψ.

4.35. Theorem. Let A be a category. The composite A → SpanA → Path∗SpanA
induces, by composition, an equivalence of categories,

GregDoub(Path∗SpanA,B)
≃−→ Cat(A,Vrt (B)),

for any gregarious pseudo double category B, i.e., Path∗Span: Cat → GregDoub is a
left biadjoint of Vrt : GregDoub→ Cat.

Proof. By the previous theorem,

psDoub(Path∗SpanA,B)
≃−→ OplaxN(SpanA,B).

The oplax double category SpanA is gregarious and normal morphisms between gregarious
double categories are automatically gregarious, so

OplaxN(SpanA,B) = GregOplax(SpanA,B) ≃−→ Cat(A,Vrt (B)),

by Theorem 4.25.
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We denote the composition of functors Path∗Span by Π2. It is the double category
version of the Π2-construction studied in [14]. When we take the bicategory of horizontal
arrows and special cells in Path∗SpanA we obtain a bicategory which is biequivalent to
Π2A as introduced before.

Acknowledgement. We would like to thank the anonymous referee for various helpful
comments.
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