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A LOGIC FOR CATEGORIES

CLAUDIO PISANI

Abstract. We present a doctrinal approach to category theory, obtained by abstract-
ing from the indexed inclusion (via discrete fibrations and opfibrations) of left and of
right actions of X ∈ Cat in categories over X. Namely, a “weak temporal doctrine”
consists essentially of two indexed functors with the same codomain such that the in-
duced functors have both left and right adjoints satisfying some exactness conditions, in
the spirit of categorical logic.

The derived logical rules include some adjunction-like laws involving the truth-values-
enriched hom and tensor functors, which condense several basic categorical properties
and display a nice symmetry. The symmetry becomes more apparent in the slightly
stronger context of “temporal doctrines”, which we initially treat and which include as
an instance the inclusion of lower and upper sets in the parts of a poset, as well as the
inclusion of left and right actions of a graph in the graphs over it.

1. Introduction

Let X be a set endowed with an equivalence relation ∼, and let VX be the poset of
closed parts, that is those subsets V of X such that x ∈ V and x ∼ y implies y ∈ V .
A part P ∈ PX has both a “closure” ♦P and an “interior” 2P , that is the inclusion
i : VX → PX has both a left and a right adjoint:

♦ a i a 2 : PX → VX

Thus the (co)reflection maps (inclusions) εP : i2P → P and ηP : P → i♦P induce
bijections (between 0-elements or 1-elements sets):

PX(iV, i2P )

PX(iV, P )
;

PX(i♦P, iV )

PX(P, iV )

By taking 2(P ⇒ Q) as a VX-enrichment of PX(P,Q), it turns out that the above
adjunctions are also enriched in VX giving isomorphisms:

2(iV ⇒ i2P )

2(iV ⇒ P )
;

2(i♦P ⇒ iV )

2(P ⇒ iV )
(1)
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We also have the related laws:

i♦(iV × iW )

iV × iW
;

i2(iV ⇒ iW )

iV ⇒ iW
;

♦(i♦P × iV )

♦(P × iV )
(2)

the first two of them saying roughly that closed parts are closed with respect to product
(intersection) and exponentiation (implication). Given a groupoid X, the same laws hold
for the inclusion of the actions of X in the groupoids over X (via “covering groupoids”).
The above situation will be placed in the proper general context in sections 2 and 3,
where we develop some technical tools concerning enriched adjunctions and apply them
to hyperdoctrines [Lawvere, 1970].

Now, let us drop the symmetry condition on ∼, that is suppose that X is a poset; then
we have the poset of lower-closed parts LX and that of upper-closed parts RX. Again,
the inclusions i` : LX → PX and ir : RX → PX have both a left and a right adjoint:

♦` a i` a 2` : PX → LX ; ♦r a ir a 2r : PX → RX

While the first ones of (1) and (2) hold “on each side”:

2`(i`V ⇒ i`2`P )

2`(i`V ⇒ P )
;

2r(irV ⇒ ir2rP )

2r(irV ⇒ P )
(3)

i`♦`(i`V × i`W )

i`V × i`W
;

ir♦r(irV × irW )

irV × irW
(4)

the other ones hold only in a mixed way:

2r(i`♦`P ⇒ i`V )

2r(P ⇒ i`V )
;

2`(ir♦rP ⇒ irV )

2`(P ⇒ irV )
(5)

i`2`(irV ⇒ i`W )

irV ⇒ i`W
;

ir2r(i`V ⇒ irW )

i`V ⇒ irW
(6)

♦`(i`♦`P × irV )

♦`(P × irV )
;

♦r(ir♦rP × i`V )

♦r(P × i`V )
(7)

The laws (3) through (7) hold also for the inclusion of the left and the right actions of a
category (or a reflexive graph [Lawvere, 1989]) X in categories (or graphs) over X (via
discrete fibrations and opfibrations):

i` : SetX
op → Cat/X ; ir : SetX → Cat/X
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and, when they make sense, also for the inclusion of open and closed parts in the parts
of a topological space (or, more generally, of local homeomorphisms and proper maps to
a space X in spaces over X; see [Pisani, 2009]).

Abstracting from these situations, we may define a “temporal algebra” as a cartesian
closed category with two reflective and coreflective full subcategories satisfying the above
laws (in fact, it is enough to assume either (5) or (6) or (7)). A “temporal doctrine” is
then essentially an indexed temporal algebra 〈i`X : LX → PX ← RX : irX ; X ∈ C〉
such that the inclusions i`1 and ir1 over the terminal object 1 ∈ C are isomorphic and
each substitution functor f ∗ : PY → PX has a left adjoint Σf and a right adjoint Πf .
Temporal doctrines and their basic properties are presented in sections 4 and 5.

In Section 6 we show how the “truth-values” L1 ∼= R1 serve as values for an enriching
of PX, LX and RX in which the adjunctions

Σf a f ∗ a Πf : PX → PY

♦`
X a i`X a 2`

X : PX → LX ; ♦r
X a irX a 2r

X : PX → RX

∃`f a f ` a ∀`f : LX → LY ; ∃rf a f r a ∀rf : RX → RY (8)

are also enriched (where, for f : X → Y in C, ∃`fM and ∀`fM can be obtained as♦`
Y Σf i

`
XM

and 2`
Y Πf i

`
XM respectively). For example, the temporal doctrine of posets is two-valued

while that of reflexive graphs is set-valued, by identifying sets with discrete graphs.
If C = Cat, the functors Πf are not always available, and the above mentioned enrich-

ment is only partially defined. This weaker situation will be axiomatized in Section 10,
where we will see that (8) can be still enriched giving:

nat`X(L, f `M)

nat`Y (∃`fL,M)
;

nat`X(f `M,L)

nat`Y (M, ∀`fL)
(9)

where
nat`X(L,M) := endX(i`XL⇒ i`XM) := ∀`X2`

X(i`XL⇒ i`XM)

(and similarly for “right actions” or “right closed parts” in R). In a somewhat dual way
one also obtains:

tenX(f `M,N)

tenY (M, ∃rfN)
;

tenX(L, f rN)

tenY (∃`fL,N)
(10)

where one defines the tensor product by

tenX(M,N) := coendX(i`XM × irXN) := ∃`X♦`
X(i`XM × irXN) ∼= ∃rX♦r

X(i`XM × irXN)

(where the last isomorphism is mediated by L1 ∼= R1).
In Section 7 we show how the laws (9) and (10) allow one to derive in an effective and

transparent way several basic facts of category theory, in particular concerning (co)limits,
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the Yoneda lemma, Kan extensions and final functors. In sections 8 and 9 other “classical”
properties are obtained exploiting also a “comprehension” axiom, relating PX and C/X.

This approach also offers a new perspective on duality: we do not assume the coex-
istence of a (generalized) category X and its dual Xop (which in fact is not so obvious
as it may seem at a first sight). Rather, we capture the interplay between left and right
“actions” or “parts” of a category or “space” X by the above-sketched axioms concerning
the inclusion of both of them in a category of more general “labellings” or “parts”.

It is remarkable that while (6) is equivalent to (5) and to (7), they underlie seemingly
unrelated items. On the one hand, for a truth value V in L1 ∼= R1 the “V−complement”
of M ∈ LX

¬(M,V ) := i`XM ⇒ irXX
rV

“is valued” in RX, that is factors by (6) through irX (and conversely). This generalizes
the open-closed duality via complementation in topology (and in particular the upper-
lower-sets duality for a poset) which is given by ¬(M, 0), for the initial truth value 0.

On the other hand, if we denote by {x} := Σx1 the “part” in Cat/X corresponding
to the object x : 1→ X, then ♦`

X{x} = X/x corresponds to the presheaf represented by
x and for N ∈ RX we can prove that tenX(X/x,M) ∼= xrN using (7) as follows:

tenX(X/x,N) ∼= ∃rX♦r
X(i`X♦`

X{x} ×X irXN) ∼= ∃rX♦r
X({x} ×X irXN) ∼=

∼= ♦r
1ΣX(ΣX1×X irXN) ∼= ♦r

1ΣXΣx(1× x∗irXN) ∼= ♦r
1i

r
1(x

rN) ∼= xrN

While in any temporal doctrine we can similarly derive homX(X/x,M) ∼= x`M using (5),
in Cat such a proof of the Yoneda lemma stumbles against the lack of Πx and the related
non-exponentiability of {x} (whenever x is a non-trivial retract in X). In this case, or in
any (weak) temporal doctrine, one can use directly the first of (9):

nat`X(X/x,M) ∼= nat`X(∃`x1,M) ∼= nat`1(1, x
`M) ∼= x`M

Similarly, using (10) one gets again:

tenX(N,X/x) ∼= tenX(N,∃`x1) ∼= ten1(x
rN, 1) ∼= xrN

The present paper is a development of previous works on “balanced category theory”
(see in particular [Pisani, 2008] and [Pisani, 2009]); the doctrinal approach adopted here
emphasizes the logical aspects and suggests a wider range of applications.

2. Enriching adjunctions

In this section, we make some remarks that will be used in the sequel. Along with ordinary
adjunctions, Kan defined and studied what are now known as adjunctions with parameter
and enriched adjunctions. In particular, we will use the following result from [Kan, 1958]:
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2.1. Lemma. Given functors F, F ′ : C × P → V and R,R′ : Pop × V → C such that
there are adjunctions, for any P ∈ P,

F (−, P ) a R(P,−) ; F ′(−, P ) a R′(P,−)

the natural transformations F → F ′ correspond bijectively to the ones R′ → R, and this
correspondence restricts to natural isomorphisms. In particular F ∼= F ′ iff R ∼= R′.

The next proposition implies that a geometric morphism is naturally enriched in its
codomain:

2.2. Proposition. Let F a R : C → V be an adjunction between cartesian closed
categories, with F preserving finite products. Then C is enriched in V via

homVC (X, Y ) := R(X ⇒C Y ) (11)

and there are natural isomorphisms:

homVC (FV,X) ∼= homV(V,RX) (12)

(where homV(V,W ) := V ⇒V W is the internal hom of V) that is the adjunction F a R
is itself enriched in V. Furthermore, the natural transformations given by the arrow
mappings of F and R are also enriched:

homV(V,W )→ homVC (FV, FW ) ; homVC (X, Y )→ homV(RX,RY )

Proof. For the first part, we have

V(1, R(X ⇒ Y )) ∼= C(F1, X ⇒ Y ) ∼= C(1, X ⇒ Y ) ∼= C(X, Y )

(In fact, more generally, R transfers any enriching in C to an enriching in V .) For the
second part, since F (V ×W ) ∼= FV ×FW , we can apply Lemma 2.1 to the adjunctions:

F (−×W ) a W ⇒ R(−) ; F (−)× FW a R(FW ⇒ −)

For the third part, the chain of natural transformations:

V(U, V ⇒ W ) ∼= V(U × V,W )→ C(F (U × V ), FW ) ∼=
∼= C(FU × FV, FW ) ∼= C(FU, FV ⇒ FW ) ∼= V(U,R(FV ⇒ FW ))

yields the desired natural transformation, which is easily seen to enrich the arrow mapping
of F . For R we similarly have:

V(U,R(X ⇒ Y )) ∼= C(FU,X ⇒ Y ) ∼= C(FU ×X, Y )→

→ C(F (U ×RX), Y ) ∼= V(U ×RX,RY ) ∼= V(U,RX ⇒ RY )

where the non-isomorphic step is induced by the canonical

〈Fp, εFq〉 : F (U ×RX)→ FU ×X (13)

Thus, R is fully faithful, also as an enriched functor, iff (13) is an iso, that is F a R
satisfies the Frobenius law. Since here we have not used the fact that F preserves all
finite products, but only the terminal object (in order to obtain an enrichment of R) we
get in particular a proof of Corollary 1.5.9 (i) in [Johnstone, 2002].
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If F has a further left adjoint L : C → V , then it is left exact and the above proposition
applies. We now show that in this case the adjunction L a F is also enriched in V iff it
satisfies the Frobenius reciprocity law:

2.3. Proposition. Suppose that C and V are cartesian closed and that

L a F a R : C → V

Then the existence of the following natural isomorphisms are equivalent:

1. LX ×V V ∼= L(X ×C FV )

2. F (V ⇒V W ) ∼= FV ⇒C FW

3. homVC (X,FV ) ∼= homV(LX, V )

Proof. By applying Lemma 2.1 to the adjunctions:

L(−)× V a F (V ⇒ −) ; L(−× FV ) a FV ⇒ F (−)

one gets the well-known equivalence of 1) and 2) (see [Lawvere, 1970] or [Johnstone,
2002]); similarly, the adjunctions:

LX ×− a LX ⇒ − ; L(X × F (−)) a R(X ⇒ F (−))

give the equivalence of 1) and 3).

2.4. Remark. It is well known that given adjunctions L a F a R : C → V , with F fully
faithful, if C is cartesian closed then so is also V ; in fact, products in V can be calculated
by

1V := R1C ; V ×V W := R(FV ×C FW )

or also by
1V := L1C ; V ×V W := L(FV ×C FW )

and exponentials by
V ⇒V W := R(FV ⇒C FW ) (14)

Note that, following Proposition 2.2, (14) can be written

homV(V,W ) ∼= homVC (FV, FW )

indicating that F is fully faithful as an enriched functor, so that (12) becomes

homVC (FV,X) ∼= homVC (FV, FRX) (15)

Note also that, in this case, the equivalent conditions of Proposition 2.3 can be rewritten
as follows:

L(X × FV ) ∼= L(FLX × FV ) (16)

FV ⇒ FW ∼= FR(FV ⇒ FW ) (17)

homVC (X,FV ) ∼= homVC (FLX,FV ) (18)

where the isomorphisms are induced by the unit of L a F (the first and the third ones)
and by the counit of F a R (the second one).
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3. The logic of hyperdoctrines

We now show how some of the results of Section 2 apply to hyperdoctrines [Lawvere,
1970], giving interesting consequences. Recall that a hyperdoctrine is an indexed category
〈PX ; X ∈ C〉 such that C and all the categories PX are cartesian closed, and such that
each substitution functor f ∗ : PY → PX has both a left and a right adjoint Σf a f ∗ a Πf

for any f : X → Y in C. The logical significance of hyperdoctrines, and in particular the
role of the adjoints to the substitution functors as existential and universal quantification,
and that of P1 as “sentences” or “truth values”, are clearly illustrated in [Lawvere, 1970]
and in other papers by the same author.

Here we also assume that the adjunctions Σf a f ∗ satisfy the Frobenius reciprocity
law, that is that (13) is an iso. On the other hand, we do not need to assume that C is
cartesian closed but only that it has a terminal object.

3.1. Corollary. Let 〈PX ; X ∈ C〉 be a hyperdoctrine and define

homX(P,Q) := ΠX(P ⇒ Q) : (PX)op × PX → P1

meetsX(P,Q) := ΣX(P ×Q) : PX × PX → P1

where the quantification indexes denote the map X → 1. Then homX enriches PX in
P1 and, for any map f : X → Y , there are natural isomorphisms:

homX(f ∗Q,P ) ∼= homY (Q,ΠfP ) ; homX(P, f ∗Q) ∼= homY (ΣfP,Q)

meetsX(f ∗Q,P ) ∼= meetsY (Q,ΣfP ) ; meetsX(P, f ∗Q) ∼= meetsY (ΣfP,Q)

Proof. Propositions 2.2 and 2.3 (applied to Σf a f ∗ a Πf ) and the Frobenius law itself
respectively give:

ΠX(f ∗Q⇒ P ) ∼= ΠY Πf (f ∗Q⇒ P ) ∼= ΠY (Q⇒ ΠfP )

ΠX(P ⇒ f ∗Q) ∼= ΠY Πf (P ⇒ f ∗Q) ∼= ΠY (ΣfP ⇒ Q)

ΣX(P × f ∗Q) ∼= ΣY Σf (P × f ∗Q) ∼= ΣY (ΣfP ×Q)

Say that a map f : X → Y is “surjective” if Σf>X
∼= >Y , where >X denotes a

terminal object of PX.

3.2. Corollary. If f : X → Y is surjective map then

ΠX(f ∗Q) ∼= ΠYQ ; ΣX(f ∗Q) ∼= ΣYQ

Proof. For the first one we have:

ΠX(f ∗Q) ∼= homX(>X , f
∗Q) ∼= homY (Σf>X , Q) ∼= homY (>Y , Q) ∼= ΠYQ

The proof of the second one follows the same pattern:

ΣX(f ∗Q) ∼= meetsX(>X , f
∗Q) ∼= meetsY (Σf>X , Q) ∼= meetsY (>Y , Q) ∼= ΣYQ
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Note that for 〈PX ; X ∈ Set〉 , Corollary 3.2 becomes the fact that the inverse image
functor along a surjective mapping f : X → Y preserves non-emptiness and reflects
maximality: if P ⊆ Y is non-empty so it is f−1P and if f−1P = X then P = Y .

There are three canonical ways to get a “truth value” in P1 from P ∈ PX, namely
quantifications along X : X → 1 and evaluation at a point x : 1→ X:

ΠXP ; ΣXP ; x∗P

In the proof of Corollary 3.2 we have used the fact that quantifications along X are
“represented” (by >X):

ΠXP ∼= homX(>X , P ) ; ΣXP ∼= meetsX(>X , P )

Now we show that the same is true for evaluation; namely, evaluation at x is “represented”
by the “singleton”:

{x} := Σx>1

3.3. Corollary. Given a point x : 1→ X there are isomorphisms

x∗P ∼= homX({x}, P ) ; x∗P ∼= meetsX({x}, P )

natural in P ∈ PX.

Proof. homX(Σx>1, P ) ∼= hom1(>1, x
∗P ) ∼= Π1(x

∗P ) ∼= x∗P

meetsX(Σx>1, P ) ∼= meets1(>1, x
∗P ) ∼= Σ1(x

∗P ) ∼= x∗P

(Note that the quantification index 1 is the identity on 1 ∈ C.)

3.4. Remark. Suppose that C has pullbacks, so that we also have the doctrine 〈C/X ; X ∈
C〉 , with f! a f−1 : C/Y → C/X for f : X → Y . Suppose also that 〈PX ; X ∈ C〉 satisfies
the comprehension axiom [Lawvere, 1970] cX a kX : PX → C/X. Then the set-valued
“external evaluation” of P ∈ PX at x : 1→ X can be expressed in various ways:

P1(>1, x
−1P ) ∼= PX({x}, P ) ∼= PX(cXx, P ) ∼=

∼= C/X(x, kXP ) ∼= C/X(x!1, kXP ) ∼= C(1, x−1kXP )

3.5. Corollary. [formulas for quantifications] Given P ∈ PX, a map f : X → Y and
a point y : 1→ Y , there are isomorphisms

y∗ΠfP ∼= homX(f ∗{x}, P ) ; y∗ΣfP ∼= meetsX(f ∗{x}, P )

natural in P ∈ PX.

Proof. y∗ΠfP ∼= homY ({y},ΠfP ) ∼= homX(f ∗{y}, P )

y∗ΣfP ∼= meetsY ({y},ΣfP ) ∼= meetsX(f ∗{y}, P )
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Note that for 〈PX ; X ∈ Set〉 , Corollary 3.5 gives the classical formula for the coim-
age of a part along a mapping f , and a (less classical) formula for the image: y is in the
image ΣfP iff its inverse image meets P .

4. Temporal doctrines

A temporal doctrine 〈i`X : LX → PX ← RX : irX ; X ∈ C〉 consists of two indexed
functors with the same codomain, satisfying the axioms listed below.

We denote the substitution functors along a map f : X → Y in C by

f ` : LY → LX ; f r : RY → RX ; f ∗ : PY → PX

Thus we have (coherent) isomorphisms:

(gf)` ∼= f `g` ; (gf)r ∼= f rgr ; (gf)∗ ∼= f ∗g∗

(and similarly for identities) and also

i`Xf
` ∼= f ∗i`Y ; irXf

r ∼= f ∗irY

We denote by BX the indexed pullback LX×PXRX, by j`X and jrX its indexed projections
to LX and RX respectively, and

bX := i`Xj
`
X = irXj

r
X : BX → PX

The first group of axioms requires the existence of some adjoint functors:

1. The indexing category has a terminal object: 1 ∈ C.

2. The categories of PX are cartesian closed. Thus, for any X ∈ C, we have a terminal
object 1X ∈ PX, products P ×X Q and exponentials P ⇒X Q.

3. The substitution functors f ∗ : PY → PX have both left and right adjoints:

Σf a f ∗ a Πf

4. The functors i`X : LX → PX and irX : RX → PX have both left and right adjoints:

♦`
X a i`X a 2`

X ; ♦r
X a irX a 2r

X

5. The doctrine PX satisfies the comprehension axiom [Lawvere, 1970]: the canonical
functors cX : C/X → PX (sending f : T → X to Σf1T ) have right adjoints:

cX a kX : PX → C/X

The second group of axioms imposes some exactness condition on these functors:
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1. The functors i`X and irX are fully faithful:

♦`
Xi

`
X
∼= idLX ; 2`

Xi
`
X
∼= idLX

(and similarly for irX).

2. The doctrine PX satisfies the Frobenius law:

ΣfP ×Y Q ∼= Σf (P ×X f ∗Q) (19)

for any f : X → Y (naturally in P ∈ PX and Q ∈ PY ).

3. The adjunctions ♦`
X a i`X and ♦r

X a irX satisfy the “mixed Frobenius laws”, that is
their units induce isomorphisms

♦`
X(P ×X irXN) ∼= ♦`

X(i`X♦`
XP ×X irXN) (20)

♦r
X(P ×X i`XM) ∼= ♦r

X(irX♦r
XP ×X i`XM) (21)

(natural in P ∈ PX, N ∈ RX and M ∈ LX).

4. The projections j`1 : B1→ L1 and jr1 : B1→ R1 are isomorphisms.

5. The comprehension functors kX : PX → C/X are fully faithful:

cXkXP = ΣkXP1X!(kXP )
∼= P (22)

(where we use the notations of Remark 3.4, so that X! is the domain projection
C/X → C. Note that the index kXP of Σ is an object of C/X, so that it should
be more exactly be replaced by X!(kXP ), where now kXP denote the map to the
terminal in C/X).

4.1. Examples.

1. Any hyperdoctrine 〈PX ; X ∈ C〉 (see Section 3) with a fully faithful comprehension
functor gives rise to a (rather trivial) temporal doctrine:

〈 id : PX → PX ← PX : id ; X ∈ C 〉

Thus the results of Section 3 can be seen as particular cases of those we will obtain
for temporal doctrines.

2. 〈i`X : LX → PX ← RX : irX ; X ∈ Pos〉 , where 〈PX ; X ∈ Pos〉 is the doctrine
of all the parts of a poset, while LX and RX are the subdoctrines of lower-closed
and upper-closed parts of X.

3. 〈i`X : LX → Grph/X ← RX : irX ; X ∈ Grph〉 , where Grph is the category of
reflexive graphs, while LX and RX are the categories of left and right actions of X
(or of the free category generated by it; see [Lawvere, 1989]).
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4. Sets endowed with an equivalence relation give rise, as sketched in the introduction,
to a “symmetrical” temporal doctrine: all the projections j`X and jrX are isomor-
phisms (so that LX ∼= RX ∼= BX as subobjects of PX). Note that, since the
axioms are symmetrical, each temporal doctrine has a dual obtained by exchanging
the left and the right side (that is i` and ir); while a symmetrical temporal doctrine
is clearly self-dual (that is isomorphic to its own dual) the same is true also for
Grph, via the “opposite” functor Grph→ Grph.

5. Any strong balanced factorization category 〈 C ; E ,M ; E ′,M′〉 (see [Pisani, 2008]
and [Pisani, 2009]) such that C is locally cartesian closed andM/X andM′/X are
coreflective in C/X, gives rise to the temporal doctrine

〈i`X :M/X → C/X ←M′/X : irX ; X ∈ C〉

6. Given a temporal doctrine on a category C and any subcategory C ′ of C such that
1 ∈ C ′, one gets by restriction another temporal doctrine on C ′.

4.2. Remark. The name “temporal doctrine” is clearly suggested by the functors ♦`,
2`, ♦r and 2r, which can be seen as modal operators acting in the two directions of time.

A categorical approach to modal and tense logic was developed in the eighties by Ghi-
lardi and Meloni and independently by Reyes et al. Not being here specifically concerned
with these logics, we just note that the temporal doctrine of posets mentioned in the ex-
amples above is also an instance of temporal doctrine in the sense of [Ghilardi & Meloni,
1991].

Let me also acknowledge that it was Prof. Giancarlo Meloni, the supervisor of my
PhD thesis, who introduced me to categorical logic showing in particular how adjunctions
can be an effective tool for doing calculations.

5. Basic properties

5.1. terminology. Since a (weaker form of) temporal doctrine is mainly intended to
model the situation 〈SetXop → Cat/X ← SetX ; X ∈ Cat〉, the objects of C should be
thought of as generalized categories. In fact in the sequel we will freely borrow terminology
from category theory, whenever opportune. However, the interior (2` and 2r) and closure
(♦` and ♦r) operators suggest that it also make sense to consider the objects of C as a
sort of spaces, so that we will also borrow some terminology from topology; in fact, the
links with that subject can be taken quite seriously as sketched in [Pisani, 2009], where
it is discussed also the significance of the “closure” reflection in “open parts” (or “local
homeomorphisms”). Anyway, if X is a topological space and i`X and irX are the inclusion of
open and closed parts respectively in PX, the mixed Frobenius laws (and their equivalent
ones in Proposition 5.2 below) hold true when they make sense, that is when only the
operators 2`

X and ♦r
X are involved.

Thus we sometimes refer to objects and arrows of C as “spaces” and “maps”; to
the objects of PX as “parts” of X and to those of LX and RX as “left closed” and
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“right closed” parts of X, respectively. The reflections ♦`
X and ♦r

X are the “left” and
“right” closure operators respectively, while 2`

X and 2r
X are the “left” and “right” interior

operators.
To summarize the definition, apart from the axioms concerning the comprehension

adjunctions, a temporal doctrine is a hyperdoctrine PX (in the sense of Section 3) with
two reflective and coreflective indexed subcategories LX and RX such that L1 and R1
are isomorphic as subcategories of P1; furthermore, and most importantly, we assume
the mixed Frobenius laws (20) and (21), which are rich of important consequences. The
reason of their name follows by Remark 2.4: they look like the Frobenius laws for ♦`

X a i`X
and ♦r

X a irX , except that i`X and irX are exchanged in the second factors. In fact, we have
the corresponding mixed equivalent conditions:

5.2. Proposition. The following laws hold in a temporal doctrine, and each of them
can be used in the definition in place of (20) and (21):

irXN ⇒ i`XM
∼= i`X2

`
X(irXN ⇒ i`XM) ; i`XM ⇒ irXN

∼= irX2
r
X(i`XM ⇒ irXN) (23)

2r
X(P ⇒ i`XM) ∼= 2r

X(i`X♦`
XP ⇒ i`XM) ; 2`

X(P ⇒ irXN) ∼= 2X(irX♦r
XP ⇒ irXN)

(24)
Furthermore

2`
X(i`XM ⇒ P ) ∼= 2`

X(i`XM ⇒ i`X2
`
XP ) ; 2r

X(irXN ⇒ P ) ∼= 2r
X(irXN ⇒ irX2

r
XP )

Proof. The isomorphism (20) induce two families of natural isomorphisms,

♦`
X(−×X irXN) ∼= ♦`

X(i`X♦`
X(−)×X irXN) : PX → LX (25)

♦`
X(P ×X irX(−)) ∼= ♦`

X(i`X♦`
XP ×X irX(−)) : RX → LX (26)

Then, as in Proposition 2.3, their right adjoint with parameter give the first ones
of (23) and (24); the other ones clearly follow symmetrically from (21). For the last
statement, recall (15).

From (23) we immediately get:

5.3. Corollary. If the part P ∈ PX is left closed and Q ∈ PX is right closed (that
is P ∼= i`XM and Q ∼= irXN) then P ⇒ Q is itself right closed.

As already mentioned in the Introduction, we so have an “explanation” of the fact
that the complement of an upper-closed part of a poset is lower-closed (and conversely).

5.4. Corollary. The categories BX are themselves cartesian closed, with the “same”
exponential as PX:

bXB ⇒ bXC ∼= bX(B ⇒BX C)
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5.5. Proposition. 〈LX ; X ∈ C〉 and 〈RX ; X ∈ C〉 are themselves hyperdoctrines,
with a fully faithful comprehension adjoint.

Proof.

1. As in Remark 2.4, the categories LX andRX are cartesian closed, with exponentials
given by

2`
X(i`XL⇒ i`XM) ; 2r

X(irXN ⇒ irXO)

We denote products in LX and RX by

>`
X ; L ∧`X M ; >r

X ; N ∧rX O

2. The substitution functors for left and right closed parts have both left and right
adjoints:

∃`f a f ` a ∀`f ; ∃rf a f r a ∀rf
where

∃`f ∼= ♦`
Y Σf i

`
X ; ∀`f ∼= 2`

Y Πf i
`
X (27)

(and similarly for ∃rf and ∀rf ). Note that these satisfy:

∃`f♦`
X
∼= ♦`

Y Σf ; ∀`f2`
X
∼= 2`

Y Πf (28)

(and similarly for ∃rf and ∀rf ).

3. The canonical functors C/X → LX send f : T → X to

∃`f>`
T
∼= ♦`

XΣf i
`
X>`

T
∼= ♦`

XΣf1T
∼= ♦`

XcXf

that is factor through the corresponding ones for PX. Thus, they have the functors
kXi

`
X : LX → C/X as fully faithful right adjoints (and similarly for RX; we leave

it to the reader to check the above factorization for the arrow mapping).

The fact that the adjunctions ♦`
X a i`X and ♦r

X a irX satisfy the mixed Frobenius laws
implies a restricted form of the Frobenius law for each of them and also for ∃`f a f ` and
∃rf a f r, which will be used in the sequel:

5.6. Proposition. [restricted Frobenius laws] For any X ∈ C, there are natural iso-
morphisms:

♦`
X(P ×X i`Xj

`
XB) ∼= ♦`

XP ∧`X j`XB

For any f : X → Y in C, there are natural isomorphisms:

∃`f (M ∧`
X f `j`YB) ∼= ∃`fM ∧`Y j`YB ; ∃rf (N ∧rX f rjrYB) ∼= ∃rfN ∧rY jrYB
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Proof. For the first one, by the mixed Frobenius law we get:

♦`
X(P ×X i`Xj

`
XB) ∼= ♦`

X(P ×X irXj
r
XB) ∼= ♦`

X(i`X♦`
XP ×X irXj

r
XB) ∼=

∼= ♦`
X(i`X♦`

XP ×X i`Xj
`
XB) ∼= ♦`

Xi
`
X(♦`

XP ∧`X j`XB) ∼= ♦`
XP ∧`X j`XB

For the second one, we then have:

∃`f (M ∧`
X f `j`YB) ∼= ♦`

Y Σf i
`
X(M ∧`X f `j`YB) ∼=

∼= ♦`
Y Σf (i`XM ×X i`Xf

`j`YB) ∼= ♦`
Y Σf (i`XM ×X f ∗i`Y j

`
YB) ∼=

∼= ♦`
Y (Σf i

`
XM ×Y i

`
Y j

`
YB) ∼= (♦`

Y Σf i
`
XM) ∧`Y j`YB ∼= ∃`fM ∧`Y j`YB

6. Functors valued in truth values

In the sequel, a major role will be played by the “truth values” category B1. We denote
by true its terminal object, so that

j`1true
∼= >`

1 ; jr1true
∼= >r

1

The functors X∗b1 : B1→ PX can be factorized in various ways:

i`XX
`j`1 = X∗i`1j

`
1 = X∗ir1j

r
1 = irXX

rjr1

(where X denotes also the map X → 1). Thus their left and right adjoints can be
factorized as:

(j`1)
−1∃`X♦`

X
∼= (j`1)

−1♦`
1ΣX

∼= (jr1)−1♦r
1ΣX

∼= (jr1)−1∃rX♦r
X (29)

(j`1)
−1∀`X2`

X
∼= (j`1)

−12`
1ΠX

∼= (jr1)−12r
1ΠX

∼= (jr1)−1∀rX2r
X (30)

We refer to (any one of) these as the “coend” and “end” functors at X, respectively:

coendX a X∗b1 a endX : PX → B1

This terminology is justified by the fact that, for a bifunctor H : Xop × X → Set, one
can easily construct an object h of Cat/X such that endXh gives the usual end of H,
while coendXh gives the coend of H in the sense of strong dinaturality, which in most
relevant cases reduces to the usual one as well (see [Pisani, 2007]).

Next we define the functors

meetsX : PX × PX → B1 ; homX : (PX)op × PX → B1

meetsX(P,Q) := coendX(P ×Q) ; homX(P,Q) := endX(P ⇒ Q)
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and their restrictions
tenX : RX × LX → B1

nat`X : (LX)op × LX → B1 ; natrX : (RX)op ×RX → B1

tenX(M,N) := meetsX(i`XM, irXN)

nat`X(L,M) := homX(i`XL, i
`
XM) ; natrX(N,O) := homX(irXN, i

r
XO)

For instance, in the temporal doctrine of posets B1 ∼= P1 ∼= {false ` true} and

meetsX(P,Q) = true

iff P and Q have a non-empty intersection (and similarly for tenX(M,N)). Of course,
homX(P,Q) = true iff P ⊆ Q (and similarly for nat`X(L,M) and natrX(N,O)). In
the temporal doctrine of reflexive graphs, P1 ∼= Grph while B1 ∼= Set; the coend of
P : T → X in Grph/X is given by the components of T , while its end is the set of
sections X → T .

Note that while homX and meetsX are valued in B1 rather than in P1 as in Section 3,
the notation becomes consistent for the first example in 4.1.

6.1. The enriched adjunction laws. In the following proposition we show that the
adjunctions which define a temporal doctrine can be internalized, that is they are enriched
in the truth values category B1. Furthermore, some of them have an exact counterpart
in a similar law, with the “meets” or “tensor” functors in place of the “hom” or “nat”
functors; the proofs are also nicely symmetrical.

6.2. Proposition. The functors homX , nat`X and natrX enrich PX, LX and RX
respectively in B1 and, for any space X ∈ C or map f : X → Y , there are natural
isomorphisms:

homX(f ∗Q,P ) ∼= homY (Q,ΠfP ) ; homX(P, f ∗Q) ∼= homY (ΣfP,Q) (31)

meetsX(f ∗Q,P ) ∼= meetsY (Q,ΣfP ) ; meetsX(P, f ∗Q) ∼= meetsY (ΣfP,Q) (32)

nat`X(M,2`
XP ) ∼= homX(i`XM,P ) ; natrX(N,2r

XP ) ∼= homX(irXN,P ) (33)

nat`X(♦`
XP,M) ∼= homX(P, i`XM) ; natrX(♦r

XP,N) ∼= homX(P, irXN) (34)

tenX(♦`
XP,N) ∼= meetsX(P, irXN) ; tenX(M,♦r

XP ) ∼= meetsX(i`XM,P ) (35)

nat`X(f `M,L) ∼= nat`Y (M,∀`fL) ; natrX(f rO,N) ∼= natrY (O, ∀rfN) (36)

nat`X(L, f `M) ∼= nat`Y (∃`fL,M) ; natrX(N, f rO) ∼= natrY (∃rfN,O) (37)

tenX(L, f rN) ∼= tenY (∃`fL,N) ; tenX(f `M,N) ∼= tenY (M,∃rfN) (38)
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Proof. For the first part, see Proposition 2.2. For (31) and (32), recall Corollary 3.1 and
note that the present “hom” and “meets” functors factor through the ones there.

Equations (33), (34) and (35) follow from Proposition 5.2 and the other factorizations
of the coend and the end functors in (29) and (30). Recalling (27), we obtain the remaining
ones by composition of (enriched) adjoints. Alternatively, one can explicitly derive them
as we exemplify for (37) and (38):

(j`1)
−12`

1ΠX(i`XL⇒ i`Xf
`M) ∼= (j`1)

−12`
1ΠY Πf (i`XL⇒ f ∗i`YM)

∼= (j`1)
−12`

1ΠY (Σf i
`
XL⇒ i`YM) ∼= (jr1)−1∀rY2r

Y (Σf iXL⇒ i`YM)

∼= (jr1)−1∀rY2r
Y (i`Y♦`

Y Σf i
`
XL⇒ i`YM)

(j`1)
−1♦`

1ΣX(i`Xf
`M × irXN) ∼= (j`1)

−1♦`
1ΣY Σf (f ∗i`YM × irXN)

∼= (j`1)
−1♦`

1ΣY (i`YM × Σf i
r
XN) ∼= (jr1)−1∃rY♦r

Y (i`YM × Σf i
r
XN)

∼= (jr1)−1∃rY♦r
Y (i`YM × irY♦r

Y Σf i
r
XN)

7. Limits, colimits and Yoneda properties

As we will see in Section 10, the laws in Proposition 6.2 still hold for weak temporal doc-
trines (at least to the extent that hom is defined), which include the motivating instance
〈SetXop → Cat/X ← SetX ; X ∈ Cat〉. Thus, with the same technique exploited in
Section 3, we begin to draw some consequences which in fact hold in the weaker context
as well. Accordingly, we mainly maintain the policy of using terms which reflect the case
C = Cat just mentioned.

We define the (internally enriched) “limit” and “colimit” functors by restricting the
end and the coend functors to (left or right) closed parts:

lim`
X := endXi

`
X
∼= (j`1)

−1∀`X : LX → B1
limr

X := endXi
r
X
∼= (jr1)−1∀rX : RX → B1

colim`
X := coendXi

`
X
∼= (j`1)

−1∃`X : LX → B1
colimr

X := coendXi
r
X
∼= (jr1)−1∃rX : RX → B1

Say that f : X → Y is “final” (resp. “initial”) if ∃`f>`
X
∼= >`

Y (resp. ∃rf>r
X
∼= >r

Y ).

7.1. Corollary. [final maps preserve (co)limits] If f : X → Y is final then

lim`
X(f `M) ∼= lim`

YM ; colimr
X(f rN) ∼= colimr

YN (39)

and if f : X → Y is initial then

colim`
X(f `M) ∼= colim`

YM ; limr
X(f rN) ∼= limr

YN
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Proof. For the first one of (39), using (37) we have:

lim`
X(f `M) ∼= nat`X(>`

X , f
`M) ∼= nat`Y (∃`f>`

X ,M) ∼= nat`Y (>`
Y ,M) ∼= lim`

YM

For the second one of (39), we follow exactly the same pattern using (38) instead:

colimr
X(f rN) ∼= tenX(>`

X , f
rN) ∼= tenY (∃`f>`

X , N) ∼= tenY (>`
Y , N) ∼= colimr

YN

The other ones are proved in the same way.

There are three canonical ways of obtaining a truth value in B1 from a closed part,
namely the limit or the colimit functors and “evaluation” at a point x : 1→ X:

lim`
XM ; colim`

XM ; (j`1)
−1(x`M)

limr
XN ; colimr

XN ; (jr1)−1(xrN)

In the proof of Corollary 7.1 we have used the fact that limits and colimits over X are
“represented” (by >`

X or >r
X). Now we show that the same is true for evaluation; namely,

evaluation at x is “represented” by the left and right “slices”:

X/x := ∃`x>`
1 ; x\X := ∃rx>r

1 (40)

Note that slices can be obtained as the (left or right) closure of the “singletons” {x} =
Σx11 = cXx of Section 3:

X/x = ♦`
X{x} ; x\X = ♦r

X{x}

7.2. Corollary. [Yoneda properties] Given a point x : 1→ X in C, there are isomor-
phisms

(j`1)
−1(x`M) ∼= nat`X(X/x,M) ; (j`1)

−1(x`M) ∼= tenX(M,x\X)

natural in P ∈ PX (and dually for right closed parts).

Proof.

nat`X(∃`x>`
1,M) ∼= nat`1(>`

1, x
`M) ∼= lim`

1(x
`M) ∼= (j`1)

−1∀`1(x`M) ∼= (j`1)
−1(x`M)

tenX(M,∃rx>r
1)
∼= ten1(x

`M,>r
1)
∼= colim`

1(x
`M) ∼= (j`1)

−1∃`1(x`M) ∼= (j`1)
−1(x`M)
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The evaluation at points of quantified parts can be obtained as follows:

7.3. Corollary. [formulas for quantifications, interior and closure] Given a map f :
X → Y and a point y : 1→ Y in C, there are isomorphisms

(j`1)
−1(y`∀`fM) ∼= nat`X(f `Y/y,M) ; (j`1)

−1(y`∃`fM) ∼= tenX(M, f ry\Y )

natural in M ∈ LX (and dually for right closed parts). There are isomorphisms

(j`1)
−1(x`2`

XP ) ∼= homX(i`XX/x, P ) ; (j`1)
−1(x`♦`

XP ) ∼= meetsX(P, irXx\X)

natural in P ∈ PX (and dually for right closure).

Proof. Using Corollary 7.2 and (36), (38), (33) and (35) respectively, we get:
(j`1)

−1(y`∀`fM) ∼= nat`Y (Y/y,∀`fM) ∼= nat`X(f `Y/y,M)

(j`1)
−1(y`∃`fM) ∼= tenY (∃`fM, y\Y ) ∼= tenX(M, f ry\Y,M)

(j`1)
−1(x`2`

XP ) ∼= nat`X(X/x,2`
XP ) ∼= homX(i`XX/x, P )

(j`1)
−1(x`♦`

XP ) ∼= tenX(♦`
XP, x\X) ∼= meetsX(P, irXx\X)

8. Exploiting comprehension

In this section and in the next one we present some consequences of the comprehension
adjunction cX a kX : PX → C/X and of the assumption that it is fully faithful.

8.1. The components functor. We define the “components” functor π0 : C → B1
by:

π0X := coendX1X = colim`
X>`

X = colimr
X>r

X

8.2. Remarks. Note that X is connected, that is π0X ∼= true, iff X → 1 is final (or
initial). Note also that the components functor

π0X = coendX1X = (j`1)
−1♦`

1ΣX1X = (j`1)
−1♦`

1c1X = (jr1)−1♦r
1c1X

is left adjoint to the full inclusion k1b1 : B1→ C. Coherently, we say that a space X ∈ C is
“discrete” if X ∼= k1b1V , for a truth value V ∈ B1, so that π0 yields in fact the reflection
in discrete spaces.

Conversely, the coend functor can be reduced to components or to a colimit by

coendXP ∼= π0X!kXP ∼= colim`
X!kXP>`

X!kXP (41)

Indeed we have:

coendXP ∼= (j`1)
−1♦`

1ΣXP ∼= (j`1)
−1♦`

1ΣXcXkXP ∼= (j`1)
−1♦`

1ΣXΣkXP1X!kXP
∼=

∼= (j`1)
−1♦`

1ΣX!kXP1X!kXP
∼= coendX!kXP1X!kXP

∼= π0X!kXP
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8.3. The limit and colimit formulas for nat and ten. Since coendX can be
reduced to a colimit by (41), the same is true for the functors meetsX and tenX . In fact
we can do better, by reducing tenX(M,N) to a colimit over the space corresponding to
irXN (or to i`XM), rather than to irXN×X i

`
XM ; similarly, natX can be reduced to a limit:

8.4. Proposition. [(co)limit formulas for ten and nat]

meetsX(P,Q) ∼= coendX!kXQ(kXQ)∗P ∼= coendX!kXP (kXP )∗Q (42)

tenX(M,N) ∼= colim`
X!kX irXN(kXi

r
XN)`M ∼= colimr

X!kX i`XM(kXi
`
XM)rN (43)

homX(P,Q) ∼= endX!kXQ(kXQ)∗P ∼= endX!kXP (kXP )∗Q (44)

nat`X(L,M) ∼= lim`
X!kX i`XL(kXi

`
XL)`M ; natrX(N,O) ∼= limr

X!kX irXN(kXi
r
XN)rO (45)

Proof. For (42), by applying (32) of Proposition 6.2 we get

meetsX(P,Q) ∼= meetsX(P,ΣkXQ1X!kXQ) ∼=
∼= meetsX!kXQ((kXQ)∗P, 1X!kXQ) ∼= coendX!kXQ(kXQ)∗P

For (43), recalling Proposition 5.5 and using (38) of Proposition 6.2 we get:

tenX(M,N) ∼= tenX(M,∃kX irXN>X!kX irXN) ∼=
∼= tenX((kXi

r
XN)`M,>X!kX irXN) ∼= colim`

X!kX irXN(kXi
r
XN)`M

Similarly, the last two equations are obtained by applying (31) and (37):

homX(P,Q) ∼= homX(ΣkXP1X!kXP , Q) ∼=
∼= homX!kXP (1X!kXP , (kXP )∗Q) ∼= endX!kXP (kXP )∗Q

nat`X(L,M) ∼= nat`X(∃kX i`XL>X!kX i`XL,M) ∼=
∼= nat`X(>X!kX i`XL, (kXi

`
XL)`M) ∼= lim`

X!kX i`XL(kXi
`
XL)`M

By applying (43) or (45) to the formulas for quantifications along a map f : X → Y
of Corollary 7.3, we obtain a colimit and a limit formula for evaluation at y : 1 → Y of
∃`fM (or ∃rfN) and ∀`fM (or ∀rfN), respectively.

Say that a part P ∈ PX is “left dense” if its left closure is terminal: ♦`
XP
∼= >`

X ;
right density is of course defined dually.

8.5. Proposition. A part P ∈ PX is left dense iff kXP is final. A map f : X → Y
in C is final iff cY f is left dense in Y . A space X ∈ C is connected iff ΣX1X is dense.

Proof. (Note that we implicitly use the canonical bijection between the objects of C/X
and maps in C with codomain X.) For the first one we have:

♦`
XP
∼= ♦`

XΣkXP1X!kXP
∼= ♦`

XΣkXP i
`
X!kXP>`

X!kXP
∼= ∃`kXP>`

X!kXP

and for the second one: ∃`f>`
X
∼= ♦`

Y Σf1X
∼= ♦`

Y cY f
For the last one, see Remarks 8.2.
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9. The sup and inf reflections

For X ∈ C, let X
`

(resp. X
r
) be the full subcategory of LX (resp. RX) generated by

the left (resp. right) slices (40), and denote the inclusion functors by

h`X : X
` → LX ; hrX : X

r → RX

The partially defined left adjoints to i`Xh
`
X , irXh

r
X , kXi

`
Xh

`
X and kXi

r
Xh

r
X are denoted

respectively by:

supX : PX → X
`

; infX : PX → X
r

; SupX : C/X → X
`

; InfX : C/X → X
r

9.1. Remark. Of course, SupXf exists iff supXcXf does, and in that case they are the
same. Note also that the sup (resp. inf) of a part depends only on its left (resp. right)

closure: supXP exists iff ♦`
XP has a reflection in X

`
.

9.2. Proposition. The following are equivalent for a space X ∈ C:

1. X has a final point x : 1→ X;

2. there is a left dense part of X with a sup;

3. there is a final map T → X with a Sup;

4. idX : X → X has a Sup.

Proof. By Proposition 8.5 and Remark 9.1, the last three conditions are equivalent.
Since any point x : 1→ X has the slice X/x as its Sup, 1) implies 3).

Suppose conversely that a left dense part P ∈ PX has a sup; then by Remark 9.1

♦`
XP
∼= >`

X has a reflection X/x in X
`
. By general well-known facts about reflections,

it follows that also X/x ∼= >`
X , that is the point x : 1→ X is final.

9.3. Proposition. [final maps preserve sups] Let t : S → T be a final map in C; then
f : T → X has a Sup iff ft : S → X does, and in that case they coincide.

Proof. By Remark 9.1, it is enough to show that ♦`
XcXft

∼= ♦`
XcXf :

♦`
XcXft

∼= ∃`ft>`
S
∼= ∃`f∃`t>`

S
∼= ∃`f>`

T
∼= ♦`

XcXf
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10. The logic of categories

Now we weaken the axioms for temporal doctrines so to include the motivating instance

〈SetXop → Cat/X ← SetX ; X ∈ Cat〉

and show that most of the laws in Proposition 6.2 still hold. By restricting to groupoids
we get another important instance of (symmetrical) weak temporal doctrine.

10.1. Weak temporal doctrines. Weak temporal doctrines are defined as temporal
doctrines except that:

1. We do not require the existence of the Πf , right adjoint to f ∗; instead we do require,
for any map f : X → Y , the existence of

∀`f : LX → LY ; ∀rf : RX → RY

right adjoint to f ` and f r respectively.

2. We do not assume that the categories of parts PX are cartesian closed, but only
that they are cartesian and that the left or right closed parts are exponentiable
therein, that is

i`XM ⇒ P ; irXN ⇒ P

always exist in PX.

In a weak temporal doctrine we still have the coendX and endX functors as in Section 6,
left and right adjoint to:

i`XX
`j`1 = X∗i`1j

`
1 = X∗ir1j

r
1 = irXX

rjr1

with the difference that, among the factorizatons of endX in (30), only

(j`1)
−1∀`X2`

X
∼= (jr1)−1∀rX2r

X : PX → B1 (46)

are always available. We also define

meetsX : PX × PX → B1 ; homX : (PX)op × PX → B1

tenX : LX ×RX → B1

nat`X : (LX)op × LX → B1 ; natrX : (RX)op ×RX → B1

as in Section 6, but now the homX may be only partially defined, depending on whether
the exponential P ⇒ Q exists or does not exist. On the contrary, the above axiom on
exponentials assures that the natX are always defined.

The functors lim`
X , limr

X , colim`
X and colimr

X are defined as in Section 7, and supX ,
SupX , infX and InfX as in Section 9.

That 〈Cat/X;X ∈ Cat〉, with the subdoctrines of discrete fibrations and discrete
opfibrations (or, equivalently, of left and right actions), form indeed a weak temporal
doctrine follows in particular from the following facts:
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• Discrete (op)fibrations over X ∈ Cat are both reflective and coreflective in Cat/X
(see [Pisani, 2007]).

• The reflections satisfy the mixed Frobenius laws, as a consequence of the reciprocal
stability of the comprehensive factorization systems (as explained in [Pisani, 2008]
and [Pisani, 2009]).

In this case, the sup (resp. inf) reflections give the colimit (resp. limit) of the corre-
sponding functor. Thus Proposition 9.3 can be seen as the “external” correspective of
Corollary 7.1.

10.2. Proposition. The functors nat`X and natrX enrich LX and RX respectively in
B1 and, for any space X ∈ C or map f : X → Y , there are natural isomorphisms:

meetsX(f ∗Q,P ) ∼= meetsY (Q,ΣfP ) ; meetsX(P, f ∗Q) ∼= meetsY (ΣfP,Q) (47)

nat`X(M,2`
XP ) ∼= homX(i`XM,P ) ; natrX(N,2r

XP ) ∼= homX(irXN,P ) (48)

tenX(♦`
XP,N) ∼= meetsX(P, irXN) ; tenX(M,♦r

XP ) ∼= meetsX(i`XM,P ) (49)

nat`X(f `M,L) ∼= nat`Y (M,∀`fL) ; natrX(f rO,N) ∼= natrY (O, ∀rfN) (50)

nat`X(L, f `M) ∼= nat`Y (∃`fL,M) ; natrX(N, f rO) ∼= natrY (∃rfN,O) (51)

tenX(L, f rN) ∼= tenY (∃`fL,N) ; tenX(f `M,N) ∼= tenY (M,∃rfN) (52)

Proof. The proofs of (47), (48), (49) and (52) are as in Proposition 6.2. For the other
ones one can not use the technique of Proposition 6.2, since the functors Πf are not
always available. We get (50) by applying Proposition 2.2 to f ` a ∀`f and recalling that

exponentials in LX are given by 2`
X(i`XL⇒ i`XM):

nat`X(f `M,L) ∼= endX(i`Xf
`M ⇒ i`XL) ∼= (j`1)

−1∀`X2`
X(i`Xf

`M ⇒ i`XL) ∼=

∼= (j`1)
−1∀`Y ∀`f2`

X(i`Xf
`M ⇒ i`XL) ∼= (j`1)

−1∀`Y2`
Y (i`YM ⇒ i`Y ∀`fL) ∼= nat`Y (M,∀`fL)

For (51), since we have adjunctions (with parameter L ∈ LX)

∃`f (L ∧`X X`j`1(−)) a nat`X(L, f `(−)) ; ∃`fL ∧`Y Y `j`1(−) a nat`Y (∃`fL,−)

and since, by the restricted Frobenius law of Proposition 5.6,

∃`f (L ∧`
X X`j`1V ) ∼= ∃`f (L ∧`X f `Y `j`1V ) ∼= ∃`fL ∧`Y Y `j`1V

the result follows from Lemma 2.1.
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10.3. Proposition. Whenever they are defined, there are natural isomorphisms:

homX(f ∗Q,P ) ∼= homY (Q,ΠfP ) ; homX(P, f ∗Q) ∼= homY (ΣfP,Q) (53)

nat`X(♦`
XP,M) ∼= homX(P, i`XM) ; natrX(♦r

XP,N) ∼= homX(P, irXN) (54)

Proof. We proceed as for (51), by showing that their left adjoints are isomorphic; for
instance, for the second one of (53) we have adjunctions (with parameter P ∈ PX):

Σf (P×i`XX`j`1(−)) a (j`1)
−1∀`X2`

X(P ⇒ f ∗(−)) ; ΣfP×i`Y Y `j`1(−) a (j`1)
−1∀`Y2`

Y (ΣfP ⇒ −)

and using the Frobenius law:

Σf (P × i`XX`j`1V ) ∼= Σf (P ×X∗i`1j`1V ) ∼= Σf (P × f ∗Y ∗i`1j`1V ) ∼= ΣfP × i`Y Y `j`1V

Similarly, for (54) one uses the restricted Frobenius law.

10.4. Conclusions. All we have proved in sections 7, 8 and 9 depended only on the
comprehension axiom and on the laws in Proposition 6.2. In propositions 10.2 and 10.3
we have seen that the same laws hold for weak temporal doctrines as well, as far as the
functors homX involved are defined.

Thus, except for (44) of Proposition 8.4, in which homX(P,Q) may be not defined,
those results hold in any weak temporal doctrine. (Note that the hom in the interior
formula of Corollary 7.3 do exist, since the required exponentials are provided by the
axioms for weak temporal doctrines).

In particular we get, for “generalized categories”, the Yoneda properties, the formulas
for quantifications (or “Kan extensions”), the formulas for the (co)reflection in (left or
right) “closed parts” (or “actions”), and the properties of final or initial maps with respect
to (co)limits, both “internally” (Corollary 7.1) and “externally” (Proposition 9.3).

Thus we maintain that the logic of weak temporal doctrines well deserves to be called
“a logic for categories”, in fact

1. being summarized by a few adjunction-like laws, it lends itself to effective and
transparent calculations; furthermore, along with the obvious “left-right” symmetry,
there is a far more interesting sort of duality: in many cases laws and proofs on the
“hom-side” correspond exactly to those on the “tensor-side”;

2. this calculus allows one to easily derive some basic non-trivial categorical facts;

3. it is “autonomous”, providing its own truth values;

4. suitable natural strengthenings or weakenings can be considered, so to obtain more
refined properties or a wider range of applications; some of them will be considered
in a forthcoming work.
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