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STRICTIFICATION OF CATEGORIES WEAKLY ENRICHED IN
SYMMETRIC MONOIDAL CATEGORIES

BERTRAND J. GUILLOU

Abstract. We show that categories weakly enriched over symmetric monoidal cate-
gories can be strictified to categories enriched in permutative categories. This is a “many
0-cells” version of the strictification of bimonoidal categories to strict ones.

1. Introduction

Categories with additional structure play an important role in homotopy theory. The
classifying space BC of a symmetric monoidal category C has a product which is associa-
tive and commutative up to all possible higher homotopies, making it an E∞ space. Up
to a group completion, BC is thus the zeroth space of a spectrum, called the K-theory
spectrum of C . By Mac Lane’s coherence theorem [M], any (symmetric) monoidal cate-
gory is equivalent to one in which the monoidal product is strictly associative and unital,
and it is convenient to replace a symmetric monoidal C by a strict one in order to build
the spectrum K(C ).

In cases of interest, such as the categories of finite sets or finitely generated projective
modules over a commutative ring, the symmetric monoidal category C has a second
monoidal structure, which is to be thought of as multiplicative. The resulting structure is
called a bimonoidal category, and again any bimonoidal category is equivalent to a strict
one [MQRT, §6.3]. Using a K-theory functor that has good multiplicative properties, as
in [EM], the K-theory spectrum K(C ) of a (strict) bimonoidal category C inherits the
structure of a ring spectrum. In the case that the multiplicative monoidal structure is
further equipped with a symmetry, K(C ) becomes an E∞ ring spectrum.

It is then natural to ask for structure on a (strict) symmetric monoidal D that will
make K(D) a module over K(C ) for (strict) bimonoidal C ; this question has been studied
in [EM], even in the more difficult case of a symmetric bimonoidal C .

There is another way to think about rings and modules, through the language of en-
riched categories. Recall that a (small) spectral category B has a set of objects {a, b, . . . }.
For every pair of objects a and b, there is a spectrum B(a, b), and for every triple of objects
a, b, c one has a composition pairing

B(b, c) ∧ B(a, b) −→ B(a, c).
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Finally, for every a there is a unit map

S0 −→ B(a, a),

and the composition is associative and unital. Thus, each B(a, a) is a ring spectrum, and
each B(a, b) is a B(b, b)-B(a, a)-bimodule.

One may ask what categorical structure, when fed into a nice K-theory machine,
will produce a spectral category, and again an answer is provided by the work of [EM].
The input is a 2-category C, together with a strict symmetric monoidal structure on
each C(c, c′), such that the composition maps are bilinear. This is essentially a category
enriched in the category of permutative categories (i.e. symmetric strict monoidal cate-
gories). Following the convention of writing V-category for “category enriched in V”, we
call such a structure a PermCat-category, or PC-category for short, and the work of [EM]
provides the following result:

1.1. Theorem. If C is a PC-category, then K(C) is a spectral category.

The structures one encounters in practice, however, are not typically PC-categories
but rather the less strict version that we call weak SymMonCat-categories, or SMC-
categories for short. Rather than a 2-category one has a weak 2-category, or bicategory,
and the monoidal structure on each C(c, c′) is not strict. As suggested in the title, one can
think of this structure as a category weakly enriched in symmetric monoidal categories.
More precisely, the relevant structure is that of a bicategory enriched, in the sense of [C],
in the monoidal bicategory of symmetric monoidal categories (see [HP] for discussion of
this monoidal bicategory structure). We do not emphasize this point of view but rather
give an axiomatic definition.

As one might expect, a weak structure of the above sort can be rigidified into a strict
structure, and this is our main result.

1.2. Theorem. Any SMC-category is biequivalent to a PC-category via a map of
SMC-categories.

Thus the structures that arise in nature can be suitably perturbed to structures that
feed naturally into a K-theory machine to produce a spectral category. We offer two
proofs of Theorem 1.2. The first, more explicit, argument is given in §5 and generalizes
in a straightforward way the arguments of [MQRT, VI.3.5]. The second proof, given in
§7, follows the Yoneda approach to coherence ([Le],[GPS]). The final §8 discusses the
strictification of §7 for bimonoidal categories.

We use the language of bicategories throughout and suggest [Le] as a quick introduction
to the relevant terminology.

2. SMC-categories

In this section, we introduce the main object of study and give a number of examples.
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2.1. Definition. An SMC-category is a bicategory B together with, for each pair
a, b of 0-cells, a symmetric monoidal structure on the category B(a, b). These monoidal
structures must be compatible in the following sense: for each triple a, b, c of 0-cells, we
ask that the composition functors

◦ : B(b, c)×B(a, b)→ B(a, c)

be bilinear, in the sense that the adjoints

B(b, c)
−◦(−)−−−→ CAT(B(a, b),B(a, c))

and

B(a, b)
(−)◦−−−−→ CAT(B(b, c),B(a, c))

are equipped with symmetric strong monoidal structures (the functor categories inherit
monoidal structures from B(a, c)). These conditions encode natural distributivity isomor-
phisms as well as natural isomorphisms exhibiting the monoidal unit objects as null objects
for composition. Finally, the above data must satisfy the following conditions:

1. The isomorphisms (f ⊕ g) ◦ − ∼= (f ◦ −)⊕ (g ◦ −), − ◦ (f ⊕ g) ∼= (− ◦ f)⊕ (− ◦ g),
0 ◦ − ∼= 0, and − ◦ 0 ∼= 0 are isomorphisms of monoidal functors

2. The isomorphisms f◦(g ◦−) ∼= (f◦g)◦−, (−◦f)◦g ∼= −◦(f◦g), f◦(−◦g) ∼= (f◦−)◦g,
− ◦ 1 ∼= id, and 1 ◦ − ∼= id are isomorphisms of monoidal functors.

2.2. Remark. The above definition can alternatively be given as follows: an SMC-
category is a bicategory B with symmetric monoidal structures on each B(a, b) such that

1. The adjoints to the composition functors factor through symmetric strong monoidal
functors

B(b, c)→ SymMon(B(a, b),B(a, c))

and
B(a, b)→ SymMon(B(b, c),B(a, c)),

where SymMon(C,D) denotes the category of symmetric strong monoidal functors
and monoidal transformations. The above specifies two monoidal structures on each
of the functors f ◦ (−) and (−) ◦ f , and these are required to coincide.

2. The associativity and unit constraints for the bicategory structure are monoidal
transformations, as in condition (2) of Definition 2.1.

2.3. Example. We think of the notion of a SMC-category as a categorified semiring
with many 0-cells, and certainly any ordinary ring or semiring R, considered as a 2-
category with a single 0-cell and only identity 2-cells, is an SMC-category.
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2.4. Example. In general, SMC-categories with a single 0-cell are bimonoidal cat-
egories, though not in the sense of Laplaza ([La]). Laplaza takes the multiplicative
monoidal structure to be symmetric, so we shall refer to Laplaza’s bimonoidal categories
as symmetric bimonoidal categories, and our bimonoidal categories do not in general give
examples of symmetric bimonoidal categories. On the other hand, Laplaza does not take
his distributivity maps to be isomorphisms, so Laplaza’s symmetric bimonoidal categories
do not generally give bimonoidal categories in our sense.

Symmetric bimonoidal categories as redefined in [MQRT, §6.3] do give bimonoidal
categories in our sense.

2.5. Example. Recall that in any category C a “span” E from an object X to an object
Y is an object with a pair of maps

E
u

~~~~
~~

~~
~~ v

  A
AA

AA
AA

X Y.

If C has pullbacks, a span E from X to Y can be “composed” with a span F from Y
to Z by forming the pullback E ×Y F to produce a span from X to Z. This forms a
bicategory B = Span(C ) of spans in C . Suppose that C has finite coproducts and that
pullbacks in C preserve coproducts, as is the case in the category of sets or G-sets. Then
Span(C ) is an example of an SMC-category. The additional monoidal structure comes
from coproducts.

2.6. Example. Let Mod denote the bicategory whose 0-cells are rings, whose 1-cells
are bimodules, and whose 2-cells are bimodule maps. The horizontal composition is given
by tensor products. Since tensor products preserve sums, this is an example of an SMC-
category.

2.7. Example. Let SymMon denote the 2-category of symmetric monoidal categories,
symmetric strong monoidal functors, and monoidal transformations. For symmetric
monoidal categories C and D , the functor category SymMon(C ,D) inherits a monoidal
structure from D : the sum of strong monoidal functors F,G : C → D is defined on c ∈ C
by

(F ⊕G)(c) = F (c)⊕G(c),
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and the unit object is the constant functor at the unit of D . Note that F ⊕ G is a
symmetric strong monoidal functor: for instance, the structure morphism is given by

(F ⊕G)(c1)⊕ (F ⊕G)(c2) =
(
F (c1)⊕G(c1)

)
⊕
(
F (c2)⊕G(c2)

)
(assoc.) ∼= F (c1)⊕

((
G(c1)⊕ F (c2)

)
⊕G(c2)

)
(comm.) ∼= F (c1)⊕

((
F (c2)⊕G(c1)

)
⊕G(c2)

)
(assoc.) ∼=

(
F (c1)⊕ F (c2)

)
⊕
(
G(c1)⊕G(c2)

)
(F,G strong monoidal) ∼= F (c1 ⊕ c2)⊕G(c1 ⊕ c2) = (F ⊕G)(c1 ⊕ c2).

This structure makes SymMon into an SMC-category.

2.8. Example. Let Perm denote the full sub-2-category of SymMon consisting of
permutative categories, symmetric strong monoidal functors, and monoidal transforma-
tions. This is again an SMC-category. Note that for each pair P1, P2 of permutative
categories, the category Perm(P1,P2) is permutative.

2.9. Example. Let Permu denote the locally full sub-2-category of Perm consisting
of permutative categories, symmetric strong monoidal functors that are strictly unital,
and monoidal transformations. This is again an SMC-category. The essential point is
that if F,G : P1 →P2 are strictly unital, symmetric strong monoidal functors, then so
is F ⊕G:

(F ⊕G)(u1) = F (u1)⊕G(u1) = u2 ⊕ u2 = u2

since P2 is permutative.

2.10. Remark. One can also consider the sub-2-category Permstrict ⊂ Perm consisting
of permutative categories, symmetric strict monoidal functors, and monoidal transforma-
tions. This 2-category, however, does not give an example of an SMC-category since
there is no canonical monoidal structure on the categories Permstrict(P1,P2): the sum
of symmetric strict monoidal functors is only symmetric strong monoidal in general, as in
order to identify

(F ⊕G)(x)⊕ (F ⊕G)(y) = F (x)⊕G(x)⊕ F (y)⊕G(y)

with
(F ⊕G)(x⊕ y) = F (x⊕ y)⊕G(x⊕ y) = F (x)⊕ F (y)⊕G(x)⊕G(y)

one must use a commutativity isomorphism.

We close this section with a construction that will be needed in §7. Recall that if B
is a bicategory, there is an opposite bicategory Bop in which the composition of 1-cells is
reversed. The 0-cells of Bop are those of B, and

Bop(a, b) = B(b, a).

Composition is defined using the isomorphism of categories

B(c, b)×B(b, a) ∼= B(b, a)×B(c, b).
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2.11. Proposition. If B has the structure of an SMC-category, the bicategory Bop

inherits the structure of SMC-category.

3. PC-categories

Here we introduce the strict versions of SMC-categories and give a few examples.

3.1. Definition. A PC-category is a 2-category C together with, for each pair c, d
of 0-cells, a structure of permutative category on C(c, d). The functors

C(b, c)
−◦(−)−−−→ CAT(C(a, b),C(a, c))

and

C(a, b)
(−)◦−−−−→ CAT(C(b, c),C(a, c))

are functors between permutative categories, and we require a symmetric strict monoidal
structure on the functor − ◦ (−) and a symmetric strong monoidal, but strictly unital,
structure on the functor (−) ◦ −. The coherence conditions (1) and (2) of Definition 2.1
are again required to hold.

Since many of the structure maps are now identities, a number of the coherence con-
ditions hold automatically. Letting δ : f ◦ (g⊕ h) ∼= f ◦ g⊕ f ◦ h be the left distributivity
isomorphism, the conditions that are not automatic are as follows:

(i) For any f1, f2, g1, and g2, the following diagram commutes

(f1 ⊕ f2) ◦ (g1 ⊕ g2)

δ
��

(f1 ◦ (g1 ⊕ g2))⊕ (f2 ◦ (g1 ⊕ g2))

δ⊕δ
��(

(f1 ⊕ f2) ◦ g1

)
⊕

(
(f1 ⊕ f2) ◦ g2

)
QQQQQQQQQQQQQ

QQQQQQQQQQQQQ
(f1 ◦ g1)⊕ (f1 ◦ g2)⊕ (f2 ◦ g1)⊕ (f2 ◦ g2)

1⊕γ⊕1
uujjjjjjjjjjjjjjj

(f1 ◦ g1)⊕ (f2 ◦ g1)⊕ (f1 ◦ g2)⊕ (f2 ◦ g2)

(ii) For any f and g, the isomorphism δ : 0 ◦ (f ⊕ g) ∼= 0 ◦ f ⊕ 0 ◦ g is the identity map
of 0

(iii) For any f , g, h1, and h2, the following diagram commutes

f ◦ g ◦ (h1 ⊕ h2) δ //

1·δ ))TTTTTTTTTTTTTTT
f ◦ g ◦ h1 ⊕ f ◦ g ◦ h2

f ◦ (g ◦ h1 ⊕ g ◦ h2)

δ

44iiiiiiiiiiiiiiiii



570 BERTRAND J. GUILLOU

(iv) For any f , g1, g2, and h, the following diagram commutes

f ◦ (g1 ⊕ g2) ◦ h

δ·1
��

f ◦ (g1 ◦ h⊕ g2 ◦ h)

δ
��

(f ◦ g1 ⊕ f ◦ g2) ◦ h f ◦ g1 ◦ h⊕ f ◦ g2 ◦ h

(v) For any f and g, the isomorphism δ : 1 ◦ (f ⊕ g) ∼= 1 ◦ f ⊕ 1 ◦ g is the identity map
of f ⊕ g.

As in the theory of bipermutative categories, the diagram in condition (i) above shows
that it is unreasonable to take both distributivity conditions to hold strictly unless com-
mutativity also holds strictly.

3.2. Example. Any ring R, considered as a 2-category as in Example 2.3, gives an
example of a PC-category. Indeed, the only 2-cells are identity maps, and so all conditions
are trivially satisfied.

3.3. Example. Bipermutative categories, as specified originally in [MQRT], are exam-
ples of single 0-cell PC-categories, although the multiplicative structure is assumed to be
commutative. The version of bipermutative categories specified in [EM, Definition 3.6]
do not give single 0-cell PC-categories as those authors do not require the distributivity
maps to be isomorphisms. The ring categories of [EM, Definition 3.3] are closer to single
0-cell PC-categories, although again the authors do not take the distributivity maps to
be isomorphisms. Single 0-cell PC-categories thus give examples of ring categories, but
not conversely.

3.4. Example. The 2-category Permu of Example 2.9 is a PC-category. For any

functors P1
F //P2

G //

H
//P3 , we have

((H ⊕G) ◦ F )(x) = HF (x)⊕GF (x) = (HF ⊕HG)(x)

and
(u3 ◦ F )(x) = u3,

so −◦ (−) is strict symmetric monoidal. On the other hand, given P1

F //

G
//P2

H //P3

with H strong monoidal and strictly unital, we have

(H ◦ (F ⊕G))(x) = H(F (x)⊕G(x)) ∼= HF (x)⊕HG(x) = (HF ⊕HG)(x)

and
(H ◦ u2)(x) = H(u2) = u3,

so (−) ◦ − is strictly unital and strong monoidal. The coherence conditions are easily
verified. Although the choice of which distributivity law to make strict is arbitrary, this
example provides a good reason for the choice taken here (and in [MQRT]).
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4. The bicategory of SMC-functors

In order to give the approach to coherence via the Yoneda embedding in §7, we must first
describe morphisms of SMC-categories.

4.1. Definition. Let B and C be SMC-categories. An SMC-functor F : B→ C is
a homomorphism of bicategories such that each functor F : B(a, b) → C(F (a), F (b)) is
strong symmetric monoidal. Moreover, the natural transformations

B(b, c)
−◦(−) //

F
��

CAT(B(a, b),B(a, c)) F◦ //

⇓

CAT(B(a, b),C(Fa, Fc))

C(Fb, Fc)
−◦(−)

// CAT(C(Fa, Fb),C(Fa, Fc))

◦F

OO

and

B(a, b)
(−)◦− //

F
��

CAT(B(b, c),B(a, c)) F◦ //

⇓

CAT(B(b, c),C(Fa, Fc))

C(Fa, Fb)
−◦(−)

// CAT(C(Fb, Fc),C(Fa, Fc))

◦F

OO

are required to be monoidal transformations.

4.2. Definition. Given SMC-categories B and C and SMC-functors F,G : B→ C,
a (strong) monoidal transformation η : F ⇒ G is a (strong) transformation in the
sense of bicategories such that for each a, b ∈ B, the natural transformation

C(Ga,Gb)
◦ηa
**TTTTTTT

⇓ηB(a, b)

G 55kkkkkkk

F ))SSSSSSS C(Fa,Gb)

C(Fa, Fb)
ηb◦
44jjjjjjj

is a monoidal transformation in the usual sense.

4.3. Example. Let R and S be rings, considered as SMC-categories as in Example 2.3.
Then SMC-functors F : R → S correspond to ring homomorphisms. Given two such F
and G, a monoidal transformation η : F ⇒ G is given by an element s ∈ S such that
sF (r) = G(r)s for all r ∈ R. In particular, monoidal transformations F ⇒ F correspond
to centralizers of F (R) in S.

4.4. Definition. Given SMC-categories B and C, SMC-functors F,G : B → C,
and monoidal transformations η, σ : F ⇒ G, a modification M : η V σ is simply a
modification in the sense of bicategories.

4.5. Definition. Given SMC-categories B and C, denote by SMC-Cat(B,C) the
bicategory of SMC-functors, strong monoidal transformations, and modifications.

For any SMC-categories B and C, there is a canonical functor of bicategories

SMC-Cat(B,C) −→ Bicat(B,C),
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which is locally full and faithful.

4.6. Definition. Let B and C be SMC-categories. A biequivalence from B to C
consists of a pair of SMC-functors F : B� C : G together with an equivalence FG ' 1C

in SMC-Cat(C,C) and an equivalence 1B ' GF in SMC-Cat(B,B).

As one might expect, there is the following alternative characterization of biequiva-
lences.

4.7. Proposition. An SMC-functor F : B→ C of SMC-categories is a biequivalence
if and only if it is a local equivalence and is surjective-up-to-equivalence on 0-cells, meaning
that every 0-cell in C is equivalent to some 0-cell F (b).

5. Coherence for SMC-categories, version I

The first proof of Theorem 1.2 we offer is a many-0-cell version of the argument in Propo-
sition VI.3.5 of [MQRT], dropping multiplicative commutativity.

Proof of Theorem 1.2, version I. Let B be an SMC-category. The first step is
to rigidify the multiplicative structure, using the standard rigidification of bicategories to
2-categories ([MP]). Define a 2-category B′ to have the same 0-cells as those of B. The
1-cells in B′(a, b) are defined to be formal strings

fn · fn−1 · · · · · f1

of composable 1-cells in B(a, b) such that the source of f1 is a and the target of fn is b.
In the case that a = b, we allow empty strings as well, denoted 1a, to serve as strict units
for horizontal composition. There is a surjective function π from the 1-cells of B′(a, b) to
those of B(a, b) defined by

π(fn · fn−1 · · · · · f1) = fn ◦ (fn−1 ◦ (fn−2 ◦ (· · · ◦ (f2 ◦ f1) . . . ))), π(1a) = 1a.

One then defines the 2-cells in B′ so that this function extends to an equivalence

π : B′(a, b)
∼−→ B(a, b).

Concatenation of strings makes B′ into a 2-category, and π : B′ → B is a biequivalence.
Note that there is also a canonical functor of bicategories η : B → B′ which is the
identity on 0-cells and sends a 1-cell of B to the singleton string in B′. Then πη = 1B

and ηπ ' 1B′ , so that η is a quasi-inverse to π.
Each category B′(a, b) inherits a symmetric monoidal structure from that in B(a, b).

Given a pair f, g ∈ B′(a, b) of 1-cells, we simply define f ⊕ g := π(f) ⊕ π(g), considered
as a singleton string. Moreover, B′ becomes an SMC-category, and η is a biequivalence
of SMC-categories.
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We can now perform Mac Lane’s rigidification construction to each monoidal category
B′(a, b). Call the resulting permutative category B (a, b). A typical object of B (a, b) is
a (possibly empty) formal sum

f1n1 · · · f11 + f2n2 · · · f21 + · · ·+ fknk
· · · fk1.

Again, there is a surjective function π from the 1-cells of B (a, b) to the 1-cells of B′(a, b)
defined by

π (g1 + g2 + · · ·+ gn) = g1 ⊕ (g2 ⊕ · · · ⊕ (gn−1 ⊕ gn) . . . ), π (a∅b) = aub

for gi ∈ B′(a, b), and this is used to define the 2-cells of B (a, b). The function π then
extends to a strong symmetric monoidal functor π : B (a, b)→ B′(a, b).

We claim that B is a PC-category (the 0-cells are the same as those of B and B′).
By construction, each B (a, b) is a permutative category. The composition functor

◦ : B (b, c)× B (a, b)→ B (a, c)

is defined on 1-cells by

(f1n1 · · · f11 + f2n2 · · · f21 + · · ·+ fknk
· · · fk1) ◦

(g1m1 · · · g11 + g2m2 · · · g21 + · · ·+ glml
· · · gl1) :=

f1n1 · · · f11g1m1 · · · g11 + f1n1 · · · f11g2m2 · · · g21 + · · ·+ fknk
· · · fk1glml

· · · gl1,
b∅c ◦ α := a∅c, β ◦ b∅a := c∅a.

Finally, the isomorphisms

π
(
(g1 + · · ·+ gn)◦ (f1 + · · ·+ fk)

) ∼= π (g1 + · · ·+ gn) ◦ π (f1 + · · ·+ fk)

are used to define ◦ on the level of 2-cells (if one of the source or target 1-cells is of the
form ∅, then the nullity isomorphism buc ◦ π(f) ∼= auc must be used).

We leave it to the reader to verify the desired properties of the composition functors
− ◦ (−) and (−) ◦ − but mention that the failure of left distributivity to be strict comes
from the use of a commutativity isomorphism in B (a, b).

The functor π : B → B′ is a biequivalence of SMC-categories with quasi-inverse η ,
where η is the identity on 0-cells and sends a 1-cell to itself, considered as a singleton
sum. We then have biequivalences of SMC-categories

B
η //

B′
π

oo
η
//
B .

π
oo

This completes our first proof of coherence for SMC-categories.



574 BERTRAND J. GUILLOU

6. Coherence for symmetric monoidal categories

The classical strictification of (symmetric) monoidal categories fits into our picture as the
following result, which will be needed later.

6.1. Proposition. The inclusion SMC-functor ι : Perm ↪→ SymMon is a biequiva-
lence of SMC-categories.

Proof. Given P1,P2 ∈ Perm, we have Perm(P1,P2) = SymMon(ιP1, ιP2), so it
remains to show that every C ∈ SymMon is equivalent (in SymMon) to some ι(P). But
this is precisely Mac Lane’s result that every symmetric monoidal category is monoidally
equivalent to a permutative category.

6.2. Proposition. The inclusion SMC-functor Permu ↪→ Perm is a biequivalence of
SMC-categories.

Proof. The inclusion is locally full and faithful and is a bijection on 0-cells, so it remains
only to show that it is locally essentially surjective. This is well-known (e.g. [LP, 5.2]).

Combining these two results gives the following.

6.3. Corollary. The inclusion SMC-functor Permu ↪→ SymMon is a biequivalence
of SMC-categories.

7. Coherence for SMC-categories, version II

7.1. Proposition. Let B be a bicategory and C be an SMC-category. Then the bi-
category Hom(B,C) of homomorphisms, strong transformations, and modifications is an
SMC-category. If C is moreover a PC-category, then so is Hom(B,C)

Proof. Let us write HomB,C for Hom(B,C). For each pair F,G : B→ C of homomor-
phisms of bicategories, we must provide a symmetric monoidal structure on the category
HomB,C(F,G). Let η, σ : F ⇒ G be strong transformations. For every 1-cell f : b → c
in B, we define (η ⊕ σ)b = ηb ⊕ σb and set

(η ⊕ σ)f : Gf ◦ (η ⊕ σ)b ⇒ (η ⊕ σ)c ◦ Ff

to be the composite

Gf ◦ (η ⊕ σ)b Gf ◦ ηb ⊕Gf ◦ σb
∼=ks

ηf⊕σf +3 ηc ◦ Ff ⊕ σc ◦ Ff
∼= +3 (η ⊕ σ)c ◦ Ff .

The unit transformation is defined on 0-cells b by 0b = F (b)0G(b) and on 1-cells f : b → c
by the composition of nullity isomorphisms

Gf ◦ 0b = Gf ◦ F (b)0G(b)
∼= F (b)0G(c)

∼= F (c)0G(c) ◦ Ff = 0c ◦ Ff.
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That the above, together with the associativity, unit, and symmetry isomorphisms inher-
ited from C(Fb,Gb), defines a symmetric monoidal category structure on HomB,C(F,G)
follows since C(Fb,Gb) is symmetric monoidal.

The composition of 1-cells in HomB,C is defined from the composition in C, and the
symmetric monoidal structures also come from C. The axioms for a SMC-category for
HomB,C thus follow from those for C.

If C is a PC-category, the PC-category axioms for HomB,C also follow immediately
since HomB,C is already a (strict) 2-category for any 2-category C.

7.2. Corollary. Let B and C be SMC-categories. Then SMC-Cat(B,C) inherits
the structure of an SMC-category. If C is moreover a PC-category, then so is the category
SMC-Cat(B,C).

Proof. The only thing left to check is that the sum of two monoidal transformations is
also monoidal. This uses the fact that the distributivity isomorphisms (in C) are monoidal
isomorphisms.

We are now ready to give our second proof of strictification.

Proof of Theorem 1.2, version II. The idea is that we can use a Yoneda trick:

B ↪→ SMC-Cat(Bop,SymMon)→ SMC-Cat(Bop,Permu).

Recall ([S]) that, for any bicategory B, the Yoneda functor Y : B ↪→ Hom(Bop,CAT)
sends a 0-cell b to the functor

B(−, b) : Bop −→ CAT

it represents. For a 1-cell f : b→ b′ in B, Y (f) : B(−, b)→ B(−, b′) is the transformation
given by composition with f . Similarly, given a 2-cell σ : f ⇒ f ′, Y (σ) is the resulting
modification σ∗ : f ◦ −V f ′ ◦ −.

7.3. Proposition. The Yoneda embedding Y : B ↪→ Hom(Bop,CAT) factors through
a local equivalence of SMC-categories B ↪→ SMC-Cat(Bop,SymMon).

Proof. We prove this using a series of lemmas. In each case, the desired conditions are
built into the definition of an SMC-category.

7.4. Lemma. The Yoneda embedding Y : B ↪→ Hom(Bop,CAT) factors through a
functor of bicategories B ↪→ Hom(Bop,SymMon).

Proof. Fix a 0-cell b0 ∈ B. Then Y (b0)(b) = B(b, b0) ∈ SymMon. Moreover, for any

1-cell f : b→ c, the composition with f functor B(c, b0)
◦f−→ B(b, b0) is strong symmetric

monoidal since B is a SMC-category. Finally, if η : f ⇒ g is a 2-cell in B, we need to
show that the natural transformation (−) ◦ f ⇒ (−) ◦ g : B(c, b0)→ B(b, b0) is monoidal.
But this follows from naturality of the isomorphism h1 ◦ (−)⊕ h2 ◦ (−) ∼= (h1 ⊕ h2) ◦ (−)
of functors B(b, c)→ B(b, b0).
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Fix a 1-cell f0 : b0 → b1 in B. Then for each b ∈ B, the induced functor B(b, b0)
f◦−→

B(b, b1) is strong symmetric monoidal by the definition of a SMC-category. The require-
ment that the associativity isomorphism in B is monoidal makes B(−, f0) a transformation
of functors to SymMon (i.e., the required natural transformations are monoidal).

Fix a 2-cell σ : f0 ⇒ g0 : b0 → b1 in B. Then naturality of the distributivity
isomorphisms in B ensures that for each b ∈ B the natural transformation

σ∗ : (f0◦)⇒ (g0◦) : B(b, b0)→ B(b, b1)

is monoidal.
Finally, we must show that for every b0

f0−→ b1
f1−→ b2 in B, the isomorphisms Y (f1) ◦

Y (f0) ∼= Y (f1 ◦ f0) and 1Y (b0)
∼= Y (1b0) are 2-cells in Hom(Bop,SymMon). But this is

given by the condition that the associativity and unit isomorphisms in B are monoidal.

7.5. Lemma. The functor of bicategories B ↪→ Hom(Bop,SymMon) is an SMC-
functor.

Proof. For each b0, b1 ∈ B, we must show that

Y : B(b0, b1)→ HomBop,SymMon(B(−, b0),B(−, b1))

is strong symmetric monoidal. The desired isomorphism Y (f0) ⊕ Y (f1) ∼= Y (f0 ⊕ f1) is
given by a (right) distributivity isomorphism.

That the natural isomorphism Y (f ◦ g) ∼= Y (f) ◦ Y (g) is monoidal (in f) is given by
the condition that the associativity isomorphism in B is monoidal.

7.6. Lemma. The image of the SMC-functor B ↪→ Hom(Bop,SymMon) lies in the
sub-2-category SMC-Cat(Bop,SymMon).

Proof. Fix a 0-cell b0 ∈ B. We must show that the functor of bicategories Y (b0) : Bop →
SymMon is in fact an SMC-functor. Thus for each b, c ∈ B, the functor

Bop(b, c) = B(c, b)→ SymMon(B(b, b0),B(c, b0))

must be strong symmetric monoidal. But this is part of the definition of an SMC-category.
That the natural isomorphism(

Y (b0)(f)
)
◦
(
Y (b0)(−)

) ∼= Y (b0)
(
f ◦ −

)
is monoidal in f follows from the fact that the associativity isomorphisms in B are
monoidal.

Fix a 1-cell f0 : b0 → b1 in B. We must show that Y (f0) : Y (b0)⇒ Y (b1) is a monoidal
transformation. This follows from the condition that the associativity isomorphism (f0 ◦
h) ◦ − ∼= f0 ◦ (h ◦ −) is monoidal.

The sub-2-category SMC-Cat(Bop,SymMon) ⊂ Hom(Bop,SymMon) is locally
full, so there is no condition to check for 2-cells.
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Finally, we must verify that Y : B → SMC-Cat(Bop,SymMon) is a local equiva-
lence. In other words, we must show that for every pair of 0-cells b0, b1 ∈ B, the strong
symmetric monoidal functor Y : B(b0, b1) → SMC-CatBop,SymMon(Y (b0), Y (b1)) is an
equivalence.

But we know already that the composite

B(b0, b1)→ SMC-CatBop,SymMon(Y (b0), Y (b1))→ HomBop,CAT(Y (b0), Y (b1))

is an equivalence, and the second functor is full and faithful (§4). It follows that both
functors in this composition are equivalences.

7.7. Lemma. Let B, C, and D be SMC-categories. Any biequivalence J : C→ D in-
duces a biequivalence J∗ : SMC-Cat(B,C)→ SMC-Cat(B,D).

Combining these two results with a quasi-inverse J to the biequivalence Permu ↪→
SymMon gives a local equivalence

Y : B→ SMC-Cat(Bop,Permu)

that is injective on 0-cells. Since SMC-Cat(Bop,Perm) is a PC-category, the full sub-
2-category containing only 0-cells in the image of Y is a PC-category equipped with a
biequivalence from B.

8. The single 0-cell case

As we have discussed above, a single 0-cell SMC-category is a bimonoidal category,
and a single 0-cell PC-category is a strict bimonoidal category, a strong form of the
ring categories of [EM]. In this final section, we discuss the strictification of bimonoidal
categories given in §7.

Thus let M be a bimonoidal category, thought of as a single 0-cell SMC-category BM.
The strictification of M outlined above is the endomorphism (strict monoidal) category
of the SMC-functor

BMop Y(∗)−−→ SymMon
J−→ Permu.

Thus the objects of the strictification P of M (really the 1-cells of the strictification of
BM) are the strong monoidal transformations JY(∗) ⇒ JY(∗). Such a transformation
consists of a strong monoidal, strictly unital functor Φ : J(M) → J(M) and, for each
m ∈M, an isomorphism

ΛΦ
m : Φ ◦ J(−⊗m) ∼= J(−⊗m) ◦ Φ

that is natural and monoidal in m.
The morphisms (Φ,ΛΦ) → (Ψ,ΛΨ) of P (2-cells of the strictification of BM) are

modifications. This consists of a monoidal transformation σ : Φ ⇒ Ψ such that for each
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m ∈M, the diagram

Φ ◦ J(−⊗m) σ◦1 //

ΛΦ
m

��

Ψ ◦ J(−⊗m)

ΛΨ
m

��
J(−⊗m) ◦ Φ

1◦σ
// J(−⊗m) ◦Ψ

commutes.
The additive monoidal structure is given by taking sums of strong monoidal, strictly

unital functors, as in Example 2.9. The unit for this monoidal structure is the constant
functor at 0 ∈ J(M). The multiplicative monoidal structure is given by composition, and
the unit for this monoidal structure is the identity functor of J(M).

In case the additive monoidal structure on M is already strict, the effect of J is simply
to make the right multiplication functors −⊗m strictly unital. Let us write (−⊗̃m) for
J(−⊗m). That is,

n⊗̃m =

{
n⊗m n 6= 0

0 n = 0.

Then for Φ : M → M strong monoidal and strictly unital as above, the data of isomor-
phisms

ΛΦ
m : Φ ◦ (−⊗̃m) ∼= (−⊗̃m) ◦ Φ

for all m is equivalent to a single isomorphism

λΦ : Φ ∼= Φ(1)⊗̃− =

{
Φ(1)⊗− Φ(1) 6= 0

0 Φ(1) = 0.

Morphisms σ : (Φ, λΦ)⇒ (Ψ, λΨ) must make the diagram

Φ(n)
σn //

λΦ
n
��

Ψ(n)

λΨ
n
��

Φ(1)⊗̃n
σ1⊗1

// Ψ(1)⊗̃n

commute and are therefore determined by their value at 1. From this it follows that the
evaluation at 1 functor ev1 : P →M is an equivalence of bimonoidal categories.
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