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SYMMETRY AND CAUCHY COMPLETION
OF QUANTALOID-ENRICHED CATEGORIES

HANS HEYMANS AND ISAR STUBBE

Abstract. We formulate an elementary condition on an involutive quantaloidQ under
which there is a distributive law from the Cauchy completion monad over the symmetri-
sation comonad on the category of Q-enriched categories. For such quantaloids, which
we call Cauchy-bilateral quantaloids, it follows that the Cauchy completion of any sym-
metric Q-enriched category is again symmetric. Examples include Lawvere’s quantale
of non-negative real numbers and Walters’ small quantaloids of closed cribles.

1. Introduction

A quantaloid Q is a category enriched in the symmetric monoidal closed category Sup of
complete lattices and supremum-preserving functions. Viewing Q as a bicategory, it is
natural to study categories, functors and distributors enriched in Q. If Q comes equipped
with an involution, it makes sense to consider symmetric Q-enriched categories. An
important application of quantaloid-enriched categories was discovered by R.F.C. Walters
[1981, 1982]: he proved that the topos of sheaves on a small site (C, J) is equivalent to
the category of symmetric and Cauchy complete categories enriched in a suitable “small
quantaloid of closed cribles” R(C, J). A decade earlier, F.W. Lawvere [1973] had already
pointed out that the category of generalised metric spaces and non-expansive maps is
equivalent to the category of categories enriched in the quantale (that is, a one-object
quantaloid) ([0,∞],

∧
,+, 0) of extended non-negative real numbers. This is a symmetric

quantale, hence it is trivially involutive; and here too the symmetric and Cauchy complete
[0,∞]-enriched categories are important, if only to connect with the classical theory of
metric spaces. Crucial in both examples is thus the use of categories enriched in an
involutive quantaloid Q which are both symmetric and Cauchy complete. R. Betti and
R.F.C. Walters [1982] therefore raised the question “whether the Cauchy completion of a
symmetric [quantaloid-enriched] category is again symmetric”. That is to say, they ask
whether it is possible to restrict the Cauchy completion functor (−)cc:Cat(Q) //Cat(Q)
along the embedding SymCat(Q) //Cat(Q) of symmetric Q-categories. They show that
the answer to their question is affirmative for both R(C, J) and [0,∞], by giving an ad
hoc proof in each case; they also give an example of an involutive quantale for which the
answer to their question is negative. Thus, it depends on the base quantaloid Q whether
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or not the Cauchy completion of a symmetric Q-category is again symmetric.
In this paper we address this issue in a slightly different manner to produce a sin-

gle, simple argument for both Walters’ small quantaloids of closed cribles and Lawvere’s
quantale of non-negative real numbers, thus giving perhaps a more decisive answer to
Betti and Walters’ question. The embedding SymCat(Q) //Cat(Q) has a right adjoint
(−)s:Cat(Q) // SymCat(Q), which we call ‘symmetrisation’. We aim to extend the Cauchy
completion functor along the symmetrisation functor. To wit, we define an obvious ‘sym-
metric completion’ (−)sc: SymCat(Q) // SymCat(Q) (Proposition 3.3) which, by construc-
tion, comes with a natural transformation

Cat(Q)
(−)cc

// Cat(Q)

SymCat(Q)
(−)sc

//

incl.

OO

SymCat(Q)

incl.

OO

K=⇒

whose components KA:Asc
//Acc are full embeddings. Considering its mate

Cat(Q)
(−)cc

//

(−)s

��

Cat(Q)

(−)s

��

SymCat(Q)
(−)sc

// SymCat(Q)

L
=⇒

we formulate an elementary necessary-and-sufficient condition on Q under which L is a
natural isomorphism (Theorem 3.7); in that case, we say that Q is a Cauchy-bilateral
quantaloid (Definition 3.8). If Q is Cauchy-bilateral, then K is in fact the identity trans-
formation, thus in particular is the Cauchy completion of any symmetricQ-category again
symmetric. And moreover, as a corollary, we obtain a distributive law of the Cauchy com-
pletion monad over the symmetrisation comonad on Cat(Q) (Corollary 3.9). In a separate
section we point out a number of examples, including Walters’ small quantaloids of closed
cribles and Lawvere’s quantale of non-negative real numbers.

For an overview of the theory of quantaloid-enriched categories, and a list of appro-
priate historical references, we refer to [Stubbe, 2005], whose notations we adopt.

2. Symmetric quantaloid-enriched categories

In this section, after quickly recalling the notion of involutive quantaloid Q, we give
the obvious definition of symmetric Q-category and explain how any Q-category can be
symmetrised. Examples are postponed to Section 4.
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2.1. Definition.A quantaloid is a Sup-enriched category. An involution on a quantaloid
Q is a Sup-functor (−)o:Qop //Q which is the identity on objects and satisfies foo = f for
any morphism f in Q. The pair (Q, (−)o) is then said to form an involutive quantaloid.

We shall often simply speak of “an involutive quantaloid Q”, leaving the notation for
the involution understood. Note that the above definition is equivalent to an apparently
weaker condition: in fact, any function f 7→ f o on the morphisms of a quantaloid Q such
that f ≤ g implies f o ≤ go, (g ◦ f)o = fo ◦ go, and f oo = f , is an involution. It is
furthermore clear that an involution is an isomorphism between Q and Qop.

Whenever a morphism f :A //B in a quantaloid (or in a locally ordered category, for
that matter) is supposed to be a left adjoint, we write f ∗ for its right adjoint. In many
examples there is a big difference between the involute f o and the adjoint f ∗ of a given
morphism f , so morphisms for which involute and adjoint coincide, deserve a name:

2.2. Definition. In a quantaloid Q with involution f 7→ f o, an o-symmetric left adjoint
(or simply symmetric left adjoint if the context makes the involution clear) is a left adjoint
whose right adjoint is its involute.

Precisely as we write Map(Q) for the category of left adjoints in Q (this notation being
motivated by the widespread use of the word “map” synonymously with “left adjoint”),
we shall write SymMap(Q) for the category of symmetric left adjoints.

Recall that a category A enriched in a quantaloidQ consists of a set A0 of objects, each
x ∈ A0 having a type ta ∈ Q0, and for any x, y ∈ A0 there is a hom-arrow A(y, x): tx // ty
in Q, subject to associativity and unit requirements: A(z, y) ◦ A(y, x) ≤ A(z, x) and
1tx ≤ A(x, x) for all x, y, z ∈ A0. A functor F :A //B between such Q-categories is an
object-map x 7→ Fx such that tx = t(Fx) and A(y, x) ≤ B(Fy, Fx) for all x, y ∈ A.
Such a functor is smaller than a functor G:A //B if 1tx ≤ B(Fx,Gx) for every x ∈ A.
With obvious composition one gets a locally ordered 2-category Cat(Q) of Q-categories
and functors.

For two objects x, y ∈ A, the hom-arrows A(y, x) and A(x, y) thus go in opposite
directions. Hence, to formulate a notion of “symmetry” for Q-categories, it is far too
strong to require A(y, x) = A(x, y). Instead, at least for involutive quantaloids, we better
do as follows [Betti and Walters, 1982]:

2.3. Definition. Let Q be a small involutive quantaloid, with involution f 7→ f o. A
Q-category A is o-symmetric (or symmetric if there is no confusion about the involved
involution) when A(x, y) = A(y, x)o for every two objects x, y ∈ A.

We shall write SymCat(Q) for the full sub-2-category of Cat(Q) determined by the
symmetric Q-categories; it is easy to see that the local order in SymCat(Q) is in fact
symmetric (but not anti-symmetric). The full embedding SymCat(Q) ↪→ Cat(Q) has a
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right adjoint functor1:

SymCat(Q) ⊥
incl.

((

(−)s

hh Cat(Q). (1)

This ‘symmetrisation’ sends a Q-category A to the symmetric Q-category As whose ob-
jects (and types) are those of A, but for any two objects x, y the hom-arrow is

As(y, x) := A(y, x) ∧ A(x, y)o.

A functor F :A //B is sent to Fs:As
//Bs: a 7→ Fa. Quite obviously, the counit of this

adjunction has components SA:As
//A: a 7→ a.

Recall that a distributor Φ:A c //B between Q-categories consists of a family arrows
Φ(y, x): tx // ty in Q, one for each (x, y) ∈ A0×B0, subject to B(y′, y)◦Φ(y, x) ≤ Φ(y′, x)
and Φ(y, x) ◦ A(x, x′) ≤ Φ(y, x′) for all y, y′ ∈ B0 and x, x′ ∈ A0. The composite of such
a distributor with another Ψ:B c //C is written as Ψ ⊗ Φ:A c //C, and its elements are
computed with a “matrix formula”: for x ∈ A0 and z ∈ C0,

(Ψ⊗ Φ)(z, x) =
∨
y∈B0

Ψ(z, y) ◦ Φ(y, x).

Parallel distributors can be compared elementwise, and in fact one gets a (large) quan-
taloid Dist(Q) of Q-categories and distributors. Each functor F :A //B determines an ad-
joint pair of distributors: B(−, F−):A c //B, with elements B(y, Fx) for (x, y) ∈ A0 ×B0,
is left adjoint to B(F−,−):B c //A in the quantaloid Dist(Q). These distributors are said
to be ‘represented by F ’. (More generally, a (necessarily left adjoint) distributor Φ:A c //B
is ‘representable’ if there exists a (necessarily essentially unique) functor F :A //B such
that Φ = B(−, F−).) This amounts to a 2-functor

Cat(Q) //Map(Dist(Q)):
(
F :A //B

)
7→

(
B(−, F−):A c //B

)
. (2)

We shall write SymDist(Q) for the full subquantaloid of Dist(Q) determined by the
symmetric Q-categories. It is easily verified that the involution f 7→ f o on the base quan-
taloid Q extends to the quantaloid SymDist(Q): explicitly, if Φ:A c //B is a distributor
between symmetric Q-categories, then so is Φo:B c //A, with elements Φo(a, b) := Φ(b, a)o.
And if F :A //B is a functor between symmetric Q-categories, then the left adjoint dis-
tributor represented by F has the particular feature that it is a symmetric left adjoint in
SymDist(Q) (in the sense of Definition 2.2). That is to say, the functor in (2) restricts to
the symmetric situation as

SymCat(Q) // SymMap(SymDist(Q)):
(
F :A //B

)
7→

(
B(−, F−):A c //B

)
, (3)

1But the right adjoint is not a 2-functor, for this would imply the local order in Cat(Q) to be symmetric,
so this is not a 2-adjunction.
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obviously giving a commutative diagram

Cat(Q) // Map(Dist(Q))

SymCat(Q) //

incl.

OO

SymMap(SymDist(Q))

incl.

OO

(4)

3. Cauchy completion and symmetric completion

A Q-category A is said to be ‘Cauchy complete’ when each left adjoint distributor with
codomain A is represented by a functor [Lawvere, 1973], that is, when for each Q-category
B the functor in (2) determines an equivalence

Cat(Q)(B,A) ≃ Map(Dist(Q))(B,A).

It is equivalent to require this only for left adjoint presheaves2 on A. The full inclusion
of the Cauchy complete Q-categories in Cat(Q) admits a left adjoint:

Catcc(Q) ⊥
full incl.

66

(−)cc
vv

Cat(Q). (5)

That is to say, each Q-category A has a Cauchy completion Acc, which can be com-
puted explicitly as follows: objects are the left adjoint presheaves on A, the type of
such a left adjoint ϕ: ∗X c //A is X ∈ Q, and for another such ψ: ∗Y c //A the hom-arrow
Acc(ψ, ϕ):X //Y in Q is the single element of the composite distributor ψ∗ ⊗ ϕ (where
ψ ⊣ ψ∗). The component at A ∈ Cat(Q) of the unit of this adjunction is a suitable core-
striction of the Yoneda embedding: YA:A //Acc:x 7→ A(−, x). It is straightforward that
(−)cc:Cat(Q) //Cat(Q) sends a functor F :A //B to Fcc:Acc

//Bcc:ϕ 7→ B(−, F−)⊗ ϕ.
(For details, see e.g. [Stubbe, 2005, Section 7].)

The Cauchy completion can of course be applied to a symmetric Q-category, but the
resulting Cauchy complete category need not be symmetric anymore (see Example 4.7)!
That is to say, the functor (−)cc:Cat(Q) //Cat(Q) does not restrict to SymCat(Q) in
general. However, its very definition suggests the following modification:

3.1. Definition. Let Q be a small involutive quantaloid. A symmetric Q-category A is
symmetrically complete if, for any symmetric Q-category B, the functor in (3) determines
an equivalence

SymCat(Q)(B,A) ≃ SymMap(SymDist(Q))(B,A).

2A ‘presheaf’ on A is a distributor into A whose domain is a one-object category with an identity
hom-arrow. Writing ∗X for the one-object Q-category whose single object ∗ has type X ∈ Q0 and whose
single hom-arrow is the identity 1X , a presheaf is then typically written as ϕ: ∗X c // A. (These are really
the contravariant presheaves on A; the covariant presheaves are the distributors from A to ∗X . In this
paper, however, we shall only consider contravariant presheaves.)
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In analogy with the notion of Cauchy completeness of a Q-category, it is straightfor-
ward to check the following equivalent expressions:

3.2. Proposition. Let Q be a small involutive quantaloid. For a symmetric Q-category
A, the following conditions are equivalent:

1. A is symmetrically complete,

2. for any symmetric Q-category B, every symmetric left adjoint distributor Φ:B c //A
is representable,

3. for any X ∈ Q, every symmetric left adjoint presheaf ϕ: ∗X c //A is representable.

And precisely as the Cauchy completion of a Q-category can be computed explicitly
with left adjoint presheaves, we can do as follows for the symmetric completion of a
symmetric Q-category:

3.3. Proposition. Let Q be a small involutive quantaloid. The full embedding of the
symmetrically complete symmetric Q-categories in SymCat(Q) admits a left adjoint:

SymCatsc(Q) ⊥
full incl.

66

(−)sc
vv

SymCat(Q). (6)

Explicitly, for a symmetric Q-category A, its symmetric completion Asc is the full sub-
category of Acc determined by the symmetric left adjoint presheaves. The component at
A ∈ SymCat(Q) of the unit of this adjunction is a corestriction of the Yoneda embedding:
YA:A //Asc:x 7→ A(−, x).

Note that (−)sc: SymCat(Q) // SymCat(Q) sends a functor F :A //B between symmet-
ric Q-categories to Fsc:Asc

//Bsc:ϕ 7→ B(−, F−) ⊗ ϕ. Indeed, because B is symmetric,
the distributor B(−, F−) is a symmetric left adjoint, hence its composition with ϕ ∈ Asc

gives an object of Bsc.
All this now raises a natural question: given anyQ-category A, how does the symmetri-

sation of its Cauchy completion relate to the symmetric completion of its symmetrisation?
It is clear that there is a natural transformation

Cat(Q)
(−)cc

// Cat(Q)

SymCat(Q)
(−)sc

//

incl.

OO

SymCat(Q)

incl.

OO

K=⇒ (7)

whose components are the full embeddings KA:Asc
//Acc:ϕ 7→ ϕ of which the construc-

tion, in Proposition 3.3, of the symmetric completion speaks. From the calculus of mates
[Kelly and Street, 1974] at least part of the following statement is then straightforward:
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3.4. Proposition. Let Q be an involutive quantaloid. There is a natural transformation

Cat(Q)
(−)cc

//

(−)s

��

Cat(Q)

(−)s

��

SymCat(Q)
(−)sc

// SymCat(Q)

L
=⇒ (8)

whose component at A in Cat(Q) is the full embedding3

LA: (As)sc // (Acc)s:ϕ 7→ A(−, SA−)⊗ ϕ.

Moreover, each (Acc)s is symmetrically complete.

Proof. It is straightforward to check that the explicit definition of L is indeed obtained
as the mate of the natural transformation in diagram (7).

Given ϕ, ψ ∈ (As)sc, consider the distributors

∗X cϕ // As

cA(−, SA−)

��

cAs

�� cψo
// ∗Y

A

cA(SA−,−)

OO

of which we know that As = A(SA−, SA−) ∧ A(SA−, SA−)o, and compute that

ψo ⊗ ϕ = ψo ⊗ As ⊗ ϕ

= ψo ⊗ (A(SA−, SA−) ∧ A(SA−, SA−)o)⊗ ϕ

= (ψo ⊗ A(SA−, SA−)⊗ ϕ) ∧ (ψo ⊗ A(SA−, SA−)o ⊗ ϕ)

= (ψo ⊗ A(SA−, SA−)⊗ ϕ) ∧ (ϕo ⊗ A(SA−, SA−)⊗ ψ)o

= (ψo ⊗ A(SA−,−)⊗ A(−, SA−)⊗ ϕ) ∧ (ϕo ⊗ A(SA−,−)⊗ A(−, SA−)⊗ ψ)o

= (LA(ψ)
∗ ⊗ LA(ϕ)) ∧ (LA(ϕ)

∗ ⊗ LA(ψ))
o

which asserts precisely the fully faithfulness of LA. (To pass from the second to the third
line, we use that ψo ⊗−⊗ ϕ preserves infima, due to ψ ⊣ ψo and ϕ ⊣ ϕo. From the third
to the fourth line we use the involution on SymDist(Q) provided by the involution on Q.
And from line four to line five we use that A(SA−, SA−) = A(SA−,−)⊗ A(−, SA−).)

3Recall that SA:As
// A: a 7→ a is the counit of the adjunction in diagram (1). Trivial as it may seem,

it plays a crucial role throughout this section.
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For any a ∈ (As)0 it is straightforward that LA(As(−, a)) = A(−, SAa). Putting
ψ = As(−, a) in the previous calculation, we thus find for any ϕ ∈ (As)sc that

As(a,−)⊗ ϕ =
(
A(SAa,−)⊗ LA(ϕ)

)
∧
(
LA(ϕ)

∗ ⊗ A(−, SAa)
)o

.

Letting a vary in As, this shows that

ϕ =
(
A(SA−,−)⊗ LA(ϕ)

)
∧
(
LA(ϕ)

∗ ⊗ A(−, SA−)
)o

(9)

which implies that LA is injective on objects.
As for the final part of the proposition, suppose that C is a Cauchy complete Q-

category and that ϕ: ∗X c //Cs is a symmetric left adjoint. Then there exists a c ∈ C0 such
that LC(ϕ) = C(−, c) and we use the formula in (9) to compute that

ϕ =
(
C(SC−,−)⊗LC(ϕ)

)
∧
(
LC(ϕ)

∗⊗C(−, SC−)
)o

= C(SC−, c)∧C(c, SC−)o = Cs(−, c).

Therefore Cs is symmetrically complete. This of course applies to Acc. 2

Whereas the previous proposition establishes a comparison between (As)sc and (Acc)s,
we shall now study when these two constructions coincide. This is related with the
symmetrisation not only of Q-categories and functors, but also of left adjoint distributors.
We start by putting the formula in (9) in a broader context:

3.5. Lemma. If Ψ:A c //B is a left adjoint distributor between categories enriched in a
small involutive quantaloid Q, then the distributor

Ψs :=
(
B(SB−,−)⊗Ψ⊗ A(−, SA−)

)
∧
(
A(SA−,−)⊗Ψ∗ ⊗ B(−, SB−)

)o

:As
c //Bs

satisfies Ψs⊗(Ψs)
o ≤ Bs. Thus Ψs is a symmetric left adjoint if and only if As ≤ (Ψs)

o⊗Ψs,
and if this is the case then it follows that Ψ = B(−, SB−)⊗Ψs ⊗ A(SA−,−).

Proof. It is clear that Ψs:As
c //Bs is a distributor: it is the infimum of two distribu-

tors, the first term of which is a composite of three distributors, and the second term
is the involute of a composite of three distributors (which makes sense because domain
and codomain of this composite are symmetric Q-categories). Precisely because Ψs is a
distributor between symmetric Q-categories, it makes sense to speak of its involute (Ψs)

o,
and it is straightforward to compute that

Ψs ⊗ (Ψs)
o ≤

(
B(SB−,−)⊗Ψ⊗ A(−, SA−)

)
⊗
(
A(SA−,−)⊗Ψ∗ ⊗ B(−, SB−)

)oo

≤ B(SB−,−)⊗Ψ⊗ A(−,−)⊗Ψ∗ ⊗ B(−, SB−)

≤ B(SB−,−)⊗ B(−,−)⊗ B(−, SB−)

= B(SB−, SB−)

and therefore, by involution, also Ψs ⊗ (Ψs)
o ≤ B(SB−, SB−)o holds, from which we can

conclude that Ψs ⊗ (Ψs)
o ≤ B(SB−, SB−) ∧ B(SB−, SB−)o = Bs(−,−) as claimed.
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Now Ψs is a symmetric left adjoint if and only if Ψs ⊣ (Ψs)
o, and because the counit

inequality of this adjunction always holds, this adjunction is equivalent to the truth of
the unit inequality As ≤ (Ψs)

o ⊗ Ψs. Suppose that this is indeed the case, then we can
compute that

Ψ = Ψ⊗ A(−, SA−)⊗ As(−,−)⊗ A(SA−,−)

≤ Ψ⊗ A(−, SA−)⊗ (Ψs)
o ⊗Ψs ⊗ A(SA−,−)

≤ Ψ⊗ A(−, SA−)⊗
(
A(SA−,−)⊗Ψ∗ ⊗ B(−, SB−)

)oo

⊗Ψs ⊗ A(SA−,−)

≤ Ψ⊗ A(−,−)⊗Ψ∗ ⊗ B(−, SB−)⊗Ψs ⊗ A(SA−,−)

≤ B⊗ B(−, SB−)⊗Ψs ⊗ A(SA−,−)

≤ B(−, SB−)⊗
(
B(SB−,−)⊗Ψ⊗ A(−, SA−)

)
⊗ A(SA−,−)

≤ B(−,−)⊗Ψ⊗ A(−,−)

= Ψ

which means that Ψ = B(−, SB−)⊗Ψs ⊗ A(SA−,−) as claimed. 2

The notation introduced in the previous lemma will be used in the remainder of this
section. In particular shall we use it in the next proposition.

3.6. Proposition. For a category A enriched in a small involutive quantaloid Q, the
following conditions are equivalent:

1. the functor LA: (As)sc // (Acc)s from Proposition 3.4 is surjective on objects (and
therefore an isomorphism, with inverse ψ 7→ ψs),

2. for every left adjoint presheaf ψ: ∗X c //A, the presheaf ψs: ∗X c //As is a symmetric
left adjoint,

3. for every left adjoint distributor Ψ:X c //A, the distributor Ψs:Xs
c //As is a sym-

metric left adjoint.

Proof. (1 ⇔ 2) From (the proof of) Proposition 3.4 we know that LA is injective on
objects, and that ϕ = (LA(ϕ))s for any symmetric left adjoint ϕ: ∗X c //As (this is the
formula in (9) rewritten with the notation introduced in Lemma 3.5, taking into account
that the domain of ϕ is the symmetric Q-category ∗X , so that S∗X is the identity on ∗X).
To say that LA is surjective on objects thus means that for any left adjoint ψ: ∗X c //A
there exists a (necessarily unique) symmetric left adjoint ϕ: ∗X c //As such that LA(ϕ) = ψ.
Thus indeed ψs = ϕ is a symmetric left adjoint. Conversely, if we assume that for every
left adjoint presheaf ψ: ∗X c //A the presheaf ψs: ∗X c //As is a symmetric left adjoint, then
Lemma 3.5 implies L(ψs) = ψ so that LA is surjective on objects.

(3 ⇔ 2) One implication is trivial. For the other, by Lemma 3.5 we only need to prove
that

Xs(y, x) ≤ (Ψs)
o(y,−)⊗Ψs(−, x)
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for every left adjoint Ψ:X c //A and every x, y ∈ (Xs)0. But for every x ∈ X0 we have
a left adjoint presheaf Ψ(−, x): ∗tx c //A and by hypothesis thus also a symmetric left
adjoint presheaf Ψ(−, x)s: ∗tx c //As. Because Ψ(−, x)s = Ψs(−, x) and (Ψs)

o(y,−) =
(Ψs(−, y))o = (Ψ(−, y)s)o, the sought-after inequation is equivalent to

Xs(y, x) ≤ (Ψ(−, y)s)o ⊗Ψ(−, x)s.

Using the adjunction Ψ(−, x)s ⊣ (Ψ(−, x)s)o this is in turn equivalent to

Xs(y, x)⊗ (Ψ(−, x)s)o ≤ (Ψ(−, y)s)o

which is an instance of the action inequality Xs ⊗ (Ψs)
o ≤ (Ψs)

o for (Ψs)
o:As

c //Xs. 2

Now we have everything in place to prove our main theorem, establishing in particular
an elementary necessary-and-sufficient condition on the base quantaloid Q under which
(As)sc ∼= (Acc)s holds for every Q-category A.

3.7. Theorem. For a small involutive quantaloid Q, the following conditions are equiv-
alent:

1. each functor LA: (As)sc // (Acc)s as in Proposition 3.4 is an isomorphism (making
diagram (8) commute up to isomorphism),

2. for every left adjoint presheaf ψ: ∗X c //A, the presheaf ψs: ∗X c //As is a symmetric
left adjoint,

3. for each left adjoint distributor Ψ:A c //B, the distributor Ψs:As
c //Bs is a symmetric

left adjoint,

4. the inclusion SymMap(SymDist(Q)) //Map(Dist(Q)) admits a right adjoint making
the following square commute:

Cat(Q) //

(−)s

��

Map(Dist(Q))

��

SymCat(Q) // SymMap(SymDist(Q))

5. for each family (fi:X //Xi, gi:Xi
//X)i∈I of morphisms in Q,

∀j, k ∈ I : fk ◦ gj ◦ fj ≤ fk

∀j, k ∈ I : gj ◦ fj ◦ gk ≤ gk

1X ≤
∨
i∈I

gi ◦ fi

 =⇒ 1X ≤
∨
i∈I

(gi ∧ f o
i ) ◦ (goi ∧ fi).

In fact, the right adjoint of which the fourth statement speaks, is

(−)s:Map(Dist(Q)) // SymMap(SymDist(Q)):
(
Ψ:A c //B

)
7→

(
Ψs:As

c //Bs

)
. (10)
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Proof. (1 ⇔ 2 ⇔ 3) Are taken care of in Proposition 3.6.
(3 ⇒ 4) With the help of Lemma 3.5, it can be checked that the left adjoint distributor

C(−, SC−):Cs
c //C displays Cs as the coreflection of a Q-category C along the inclusion

SymMap(SymDist(Q)) //Map(Dist(Q)): if A is a symmetric Q-category and Ψ:A c //C is
a left adjoint distributor, then by assumption we have that Ψs:A c //Cs is a symmetric left
adjoint distributor such that Ψ = C(−, SC−) ⊗ Ψs; and if Φ:A c //Cs would be another
symmetric left adjoint distributor such that Ψ = C(−, SC−) ⊗ Φ (and therefore also
Ψ∗ = Φo ⊗ C(SC−,−)), then necessarily

Ψs =
(
C(SC−,−)⊗Ψ

)
∧
(
Ψ∗ ⊗ C(−, SC−)

)o

=
(
C(SC−,−)⊗ C(−, SC−)⊗ Φ

)
∧
(
Φo ⊗ C(SC−,−)⊗ C(−, SC−)

)o

=
(
C(SC−, SC−)⊗ Φ

)
∧
(
C(SC−, SC−)o ⊗ Φ

)
=

(
C(SC−, SC−) ∧ C(SC−, SC−)o

)
⊗ Φ

= Cs ⊗ Φ

= Φ

(To pass from the third to the fourth line we use that − ⊗ Φ preserves infima be-
cause Φ is a left adjoint.) By general theory for adjoint functors, these coreflections
C(−, SC−):Cs

c //C determine the right adjoint, which is the functor given in (10).
(4 ⇒ 1) Suppose that G: SymMap(Dist(Q)) //Map(Dist(Q)) is right adjoint to the

inclusion and makes the square commute; thus G necessarily acts on objects as C 7→ Cs.
Writing εC:Cs

c //C for the counit of the adjunction, G(εC) is necessarily the identity
distributor on Cs. But on the other hand, by commutativity of the diagram, G also
sends C(−, SC−):Cs

c //C to the identity distributor on Cs. By general theory for adjoint
functors, G(εC) = G(C(−, SC−)) implies εC = C(−, SC−). Thus C(−, SC−):Cs

c //C
enjoys a universal property, saying in particular that: for every left adjoint ϕ: ∗X c //C
there is a unique symmetric left adjoint ψ: ∗X c //Cs such that C(−, SC−) ⊗ ψ = ϕ. In
other words, LC: (Cs)sc // (Ccc)s:ψ 7→ C(−, SC−)⊗ψ is surjective on objects, and therefore
an isomorphism.

(2 ⇒ 5) Putting A0 = I, ti = Xi and A(j, i) = fj ◦ gj ∨ δij defines a Q-category
A (the “Kronecker delta” δij:Xi

//Xj denotes the identity when i = j and the zero
morphism otherwise), and putting ψ(i) = fi defines a presheaf ψ: ∗X c //A with a right
adjoint ψ∗:A c // ∗X which is given by ψ∗(i) = gi. By hypothesis we infer that ψs: ∗X c //As

is a symmetric left adjoint. This means in particular that 1X ≤ (ψs)
o ⊗ ψs, or in other

terms 1X ≤
∨

i(f
o
i ∧ gi) ◦ (fi ∧ goi ), as wanted.

(5 ⇒ 2) If ψ: ∗X c //A is a left adjoint, the family (ψ(a):X // ta, ψ∗(a): ta //X)a∈A0

of morphisms in Q is easily seen to satisfy the conditions in the hypothesis, thus

1X ≤
∨
a∈A0

(
ψ(a)o ∧ ψ∗(a)

)
◦
(
ψ(a) ∧ ψ∗(a)

)o

.
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The right hand side is exactly ψo
s ⊗ψs so this is equivalent to ψs ⊣ (ψs)

o (cf. Lemma 3.5).
2

For further reference, we give a name to those quantaloids (small or large) that satisfy
the fifth condition in the above Theorem 3.7:

3.8. Definition. A quantaloid Q is Cauchy-bilateral if it is involutive (with involution
f 7→ f o) and for each family (fi:X //Xi, gi:Xi

//X)i∈I of morphisms in Q,

∀j, k ∈ I : fk ◦ gj ◦ fj ≤ fk

∀j, k ∈ I : gj ◦ fj ◦ gk ≤ gk

1X ≤
∨
i∈I

gi ◦ fi

 =⇒ 1X ≤
∨
i∈I

(gi ∧ fo
i ) ◦ (goi ∧ fi).

Thus, a small Cauchy-bilateral quantaloid Q is precisely one that satisfies the equiv-
alent conditions in Theorem 3.7.

To finish this section we explain an important consequence of Theorem 3.7, containing
an answer to R. Betti and R.F.C. Walters’ [1982] question about the symmetry of the
Cauchy completion of a symmetric category:

3.9. Corollary. If Q is a small Cauchy-bilateral quantaloid, then the following dia-
grams commute:

Cat(Q)
(−)cc

// Cat(Q)

SymCat(Q)
(−)cc

//

incl.

OO

SymCat(Q)

incl.

OO
Cat(Q)

(−)s
// Cat(Q)

Catcc(Q)
(−)s

//

incl.

OO

Catcc(Q)

incl.

OO

Proof. Suppose that the equivalent conditions in Theorem 3.7 hold. If ψ: ∗X c //A is
a left adjoint presheaf on a symmetric Q-category, then ψs: ∗X c //A is a symmetric left
adjoint presheaf which satisfies ψ = A(−, SA−)⊗ ψs = ψs (by Lemma 3.5 and symmetry
of A). So ψ is necessarily a symmetric left adjoint. Hence the full embedding Asc ↪→ Acc is
surjective-on-objects, or in other words, Asc = Acc. Therefore the Cauchy completion of a
symmetric Q-category is symmetric, making the first square commute. Now suppose that
C is a Cauchy complete category. In (the proof of) Proposition 3.4 it was stipulated that
Cs is symmetrically complete, so – knowing now that the symmetric completion and the
Cauchy completion of any symmetric Q-category coincide – it follows that Cs is Cauchy
complete too, making the second square commute. 2

This corollary implies that, whenever a small Q is Cauchy-bilateral, there is a distribu-
tive law [Beck, 1969; Street, 1972; Power and Watanabe, 2002] of the Cauchy completion
monad over the symmetrisation comonad on the category Cat(Q). More precisely, the
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reflective subcategory Catcc(Q) //Cat(Q) is the category of algebras of a monad (T , µ, η)
on Cat(Q); and similarly, the coreflective subcategory SymCat(Q) //Cat(Q) is the cate-
gory of coalgebras of a comonad (D, δ, ε) on Cat(Q). (The functors T and D are precisely
(−)cc and (−)s, of course.) As shown in [Power and Watanabe, 2002, Theorems 3.10 and
5.10], the commutativity of the squares in Corollary 3.9 is equivalent to the existence of
a natural transformation λ: T ◦ D +3D ◦ T making the following diagrams commute:

T T DC
µDC

//

T λC
��

T DC

λC

��

T DT C

λT C

��

DC

ηDC

bbFFFFFFFFFFFFFF

DηC
||xx

xx
xx

xx
xx

xx
xx

DT T C DµC
// DT C

T DC
T εC

||xx
xx

xx
xx

xx
xx

xx

T δC //

λC

��

T DDC

λDC

��

T C DT DC

DλC
��

DT C

εT C

bbFFFFFFFFFFFFFF

δT C
// DDT C

This, in turn, says exactly that λ is a distributive law of the monad T over the comonad
D [Power and Watanabe, 2002, Definition 6.1]. Because T and D arise from (co)reflective
subcategories, there is at most one such distributive law; its components are necessarily

λC: (Cs)cc // (Ccc)s:ϕ 7→ C(−, SC−)⊗ ϕ.

(Thus λC is precisely the functor LC of Proposition 3.4, reckoning that – under the con-
ditions of Theorem 3.7 – the symmetric completion of a symmetric Q-category coincides
with its Cauchy completion.) It is a consequence of the general theory of distributive laws
that the monad T restricts to the category of D-coalgebras, that the comonad D restricts
to the category of T -algebras, and that the categories of (co)algebras for these restricted
(co)monads are equivalent to each other and are further equivalent to the category of
so-called λ-bialgebras [Power and Watanabe, 2002, Corollary 6.8]. In the case at hand, a
λ-bialgebra is simply a Q-category which is both symmetric and Cauchy-complete (the
“λ-compatibility” between algebra and coalgebra structure is trivially satisfied), and a
morphism between λ-bialgebras is simply a functor between such Q-categories.

4. Examples

4.1. Example. [Commutative quantales] A quantale is, by definition, a one-object quan-
taloid. (For some authors, a quantale need not be unital, so for them it is not a one-object
quantaloid; but for us, a quantale is always unital.) Put differently, a quantale is a monoid
in the monoidal category Sup (whereas a quantaloid is a Sup-enriched category). Obvi-
ously, a quantale Q is commutative if and only if the identity function 1Q:Q //Q is an
involution.
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As we shall point out below, many an interesting involutive quantaloid Q satisfies the
following condition:

4.2. Definition. A quantaloid Q is strongly Cauchy-bilateral when it is involutive (with
involution f 7→ fo) and for any family (fi:X //Xi, gi:Xi

//X)i∈I of morphisms in Q,

1X ≤
∨
i

gi ◦ fi =⇒ 1X ≤
∨
i

(f o
i ∧ gi) ◦ (fi ∧ goi ).

Obviously, a strongly Cauchy-bilateral Q is Cauchy-bilateral in the sense of Definition
3.8. For a so-called integral quantaloid – that is, when the top element of each Q(X,X)
is 1X – Cauchy-bilaterality and strong Cauchy-bilaterality are equivalent notions, but in
general the latter is strictly stronger than the former:

4.3. Example. We take an example of an involutive quantale from [Resende, 2007, Ex-
ample 3.18]: the complete lattice with Hesse diagram

⊤
1

tt

a

9999

b
0

JJJ
����

together with the commutative multiplication defined by a ◦ ⊤ = ⊤, a ◦ a = b and
a ◦ b = a. This gives a quantale which we can equip with the identity involution. It is
straightforward to check that this quantale is Cauchy-bilateral, but not strongly so.

4.4. Example. [Generalised metric spaces] The condition for strong Cauchy-bilaterality
is satisfied by the integral and commutative quantale Q = ([0,∞],

∧
,+, 0) with its trivial

involution: for any family (ai, bi)i∈I of pairs of elements of [0,∞], if
∧

i(ai + bi) ≤ 0 is
assumed then∧

i

(max{ai, bi}+max{ai, bi}) = 2 ·
∧
i

max{ai, bi} ≤ 2 ·
∧
i

(ai + bi) ≤ 0.

This “explains” the well known fact that the Cauchy completion of a symmetric gener-
alised metric space [Lawvere, 1973] is again symmetric.

4.5. Example. [Locales] Any locale (L,
∨
,∧,⊤) is a commutative (hence trivially in-

volutive) and integral quantale; it is easily checked that L is strongly Cauchy-bilateral.
Splitting the idempotents of the Sup-monoid (L,∧,⊤) gives an integral quantaloid with
an obvious involution; it too is strongly Cauchy-bilateral.

4.6. Example. [Groupoid-quantaloids with canonical involution] For a category C, let
Q(C) be the quantaloid with the same objects as C but where Q(C)(X,Y ) is the complete
lattice of subsets of C(X,Y ), composition is done “pointwise” (for S ⊆ C(X, Y ) and
T ⊆ C(Y, Z) let T ◦ S := {t ◦ s | t ∈ T, s ∈ S}) and the identity on an object X is the
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singleton {1X}. With local suprema in Q(C) given by union, it is straightforward to check
that Q(C) is a quantaloid; it is the free quantaloid on the category C.

If G is a groupoid, then S 7→ So := {s−1 | s ∈ S} is the canonical involution on Q(G).
For any family (Ti ⊆ G(X,Xi), Si ⊆ G(Xi, X))i∈I we can prove that

1X ∈
∪
i

Si ◦ Ti =⇒ 1X ∈
∪
i

(So
i ∩ Ti) ◦ (Si ∩ T o

i ).

Indeed, the premise says that there is a i0 ∈ I for which we have x ∈ Si0 and y ∈ Ti0 such
that 1X = x ◦ y in G. But then y ∈ So

i0
∩ Ti0 and x ∈ Si0 ∩ T o

i0
, so that the conclusion

follows. That is to say, Q(G) is strongly Cauchy-bilateral.

4.7. Example. [Commutative group-quantales with trivial involution] For a commuta-
tive group (G, ·, 1), also the group-quantale Q(G) is commutative, and – in contrast with
the above example – it can therefore be equipped with the trivial involution S 7→ So := S.
Betti and Walters [1982] gave a simple example of such a commutative group-quantale
with trivial involution for which the Cauchy completion of a symmetric enriched category
is not necessarily symmetric. We repeat it here: Let G = {1, a, b} be the commutative
group defined by a · a = b, b · b = a and a · b = 1; then Betti and Walters showed that
the Cauchy completion of the (symmetric) singleton Q(G)-category whose hom is {1}, is
not symmetric. In fact, the pair ({a}, {b}) of elements of Q(G) does satisfy the premise
but not the conclusion of the condition in Definition 3.8: thus, in retrospect, Theorem
3.7 predicts that there must exist a symmetric category whose Cauchy completion is no
longer symmetric.

There is a common generalisation of Examples 4.5 and 4.6, due to [Walters, 1982]:
given a small site (C, J), there is an involutive quantaloid R(C, J) such that the category
of symmetric and Cauchy complete R(C, J)-categories is equivalent to Sh(C, J). We shall
spell out this important example, and show that it is strongly Cauchy-bilateral (and thus
also satisfies the equivalent conditions in Theorem 3.7). In retrospect, this proves that
the symmetric and Cauchy complete R(C, J)-categories can be computed as the Cauchy
completions of the symmetric R(C, J)-categories.

4.8. Example. [Quantaloids determined by small sites] If C is a small category, then the
small quantaloid R(C) of cribles in C is the full sub-quantaloid of Rel(SetC

op

) whose objects
are the representable presheaves. It is useful to have an explicit description. We write a
span in C as (f, g):D //C, and intend it to be a pair of arrows with dom(f) = dom(g),
cod(f) = C and cod(g) = D. A crible R:D //C is then a set of spansD //C such that for
any (f, g) ∈ R and any h ∈ C with cod(h) = dom(f), also (f ◦ h, g ◦ h) ∈ R. Composition
in R(C) is obvious: for R:D //C and S:E //D the elements of R ◦ S:E //C are the
spans (f, g) : E //C for which there exists a morphism h ∈ C such that (f, h) ∈ R and
(h, g) ∈ S. The identity crible idC :C //C is the set {(f, f) | cod(f) = C}, and the
supremum of a set of cribles is their union. In fact, R(C) is an involutive quantaloid: the
involute Ro:C //D of a crible R:D //C is obtained by reversing the spans in R.
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If J is a Grothendieck topology on the category C, then there is a locally left exact
nucleus4 j:R(C) //R(C) sending a crible R:D //C to

j(R) := {(f, g):D //C | ∃S ∈ J(dom(f)) : ∀s ∈ S, (g ◦ s, f ◦ s) ∈ R}.

Conversely, if j:R(C) //R(C) is a locally left exact nucleus, then

J(C) := {S is a sieve on C | idC ≤ j({(s, s) |, s ∈ S})}

defines a Grothendieck topology on C. These procedures are each other’s inverse [Betti
and Carboni, 1983; Rosenthal, 1996]. For a small site (C, J) we write, following [Walters,
1982], R(C, J) for the quotient quantaloid R(C)j where j is the nucleus determined by the
Grothendieck topology J ; it is the small quantaloid of closed cribles determined by the site
(C, J). Because every locally left exact nucleus on R(C) preserves the involution, R(C, J)
too is involutive. (Walters [1982] originally called R(C, J) a ‘bicategory of relations’,
wrote it as Rel(C, J), and called its arrows ‘relations’. To avoid confusion with other
constructions that have been called ‘bicategories of relations’ since then, we prefer to
speak of ‘small quantaloids of closed cribles’. For an axiomatic study of these, we refer to
[Heymans and Stubbe, 2011].)

Any locale L can be thought of as a site (C, J), where C is the ordered set L and J
is its so-called canonical topology (so J(u) is the set of all covering families of u ∈ L):
it is easily verified that R(C, J) is then isomorphic (as involutive quantaloid) to the
quantaloid obtained by splitting the idempotents in the Sup-monoid L. And if G is a
small groupoid and J is the smallest Grothendieck topology on G, then the quantaloid of
relations R(G, J) equals the quantaloid of cribles R(G), which in turn is isomorphic (as
involutive quantaloid) to the free quantaloid Q(G) with its canonical involution. Indeed,
any crible R:X //Y in G determines the subset F (R) := {h−1◦g | (g, h) ∈ R} of G(X, Y ).
Conversely, for any subset S of G(X, Y ) let G(S) be the smallest crible containing the
set of spans {(1X , s) | s ∈ S} in G. Then R 7→ F (R) and S 7→ G(S) extend to functors
F :R(G) //Q(G) and G:Q(G) //R(G) which are each other’s inverse and which preserve
the involution. Hence both Examples 4.5 and 4.6 are covered by the construction of the
quantaloid R(C, J) from a small site (C, J).

Now we show that R(C, J) is strongly Cauchy-bilateral, as in Definition 4.2. This
claim is equivalent to saying that for any family (Fi:X //Xi, Gi:Xi

//X)i∈I of cribles in
C we have

j(idX) ⊆ j
(∪

i

j
(
j(Gi)◦j(Fi)

))
=⇒ j(idX) ⊆ j

(∪
i

j
(
(j(Fi)

o∩j(Gi)◦(j(Fi)∩j(Gi)
o)
))

in the involutive quantaloid R(C) with left exact nucleus j constructed from J .

4A nucleus j on a quantaloid Q is a lax functor j:Q // Q which is the identity on objects and such
that each j:Q(X,Y ) // Q(X,Y ) is a closure operator; it is locally left exact if it preserves finite infima
of arrows. If j:Q // Q is a nucleus on a quantaloid, then there is a quotient quantaloid Qj of j-closed
morphisms, that is, those f ∈ Q for which j(f) = f .
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Take the left-hand side: it is equivalent (by general computations with the nucleus j)
to idX ⊆ j(

∪
iGi◦Fi) inR(C). By definition this means that, for any morphism x in C with

cod(x) = X, (x, x) ∈ j(
∪

iGi ◦Fi), but because j(
∪

iGi ◦Fi) is a crible, this is equivalent
to requiring simply that (1X , 1X) ∈ j(

∪
iGi ◦ Fi) (and here 1X denotes the identity on X

in C). Spelling out the definition of the nucleus j in terms of the Grothendieck topology
J this means that: there exists a covering sieve S ∈ J(X) such that for all s ∈ S there
exists an is ∈ I satisfying (s, s) ∈ Gis ◦Fis . In a similar fashion the right-hand side can be
seen to say precisely that: there exists a covering sieve S ∈ J(X) such that for all s ∈ S
there exists an is ∈ I satisfying (s, s) ∈ (F o

is ∩ Gis) ◦ (Fis ∩ Go
is). The implication is now

straightforward.

The following example further generalises the previous one.

4.9. Example. [Locally localic and modular quantaloids] Following [Freyd and Scedrov,
1990] we say that a quantaloid Q is locally localic when each Q(X,Y ) is a locale; and
Q is modular if it is involutive and when for any morphisms f :Z //Y, g:Y //X and
h:Z //X in Q we have gf ∧h ≤ g(f ∧ goh) (or equivalently, gf ∧h ≤ (g ∧hf o)f). (Here
we write the composition in Q by juxtaposition to avoid overly bracketed expressions.) In
fact, every locally localic and modular quantaloid Q is strongly Cauchy-bilateral: suppose
that (fi:X //Xi, gi:Xi

//X)i∈I is a family of morphisms in Q such that 1X ≤
∨

i gifi,
then we can compute that:

1X = 1X ∧
∨
i

gifi

=
∨
i

(1X ∧ gifi)

=
∨
i

(1X ∧ (1X ∧ gifi))

≤
∨
i

(1X ∧ gi(goi 1X ∧ fi))

=
∨
i

(1X ∧ gi(goi ∧ fi))

≤
∨
i

(1X(g
o
i ∧ fi)o ∧ gi)(goi ∧ fi)

=
∨
i

(gi ∧ fo
i )(g

o
i ∧ fi).

To pass from the first to the second line we used that Q(X,X) is a locale, and both
inequalities were introduced by use of the modular law.

Any small quantaloid of relations R(C, J) is in fact locally localic and modular, and
thus its strong Cauchy-bilaterality follows from the above computation. But to prove that
R(C, J) is modular, is not simpler than to prove directly that it satisfies the condition in
Definition 4.2, as we did in Example 4.8. (The quantale in Example 4.4 is locally localic
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but not modular, and the quantale in Example 4.3 is neither locally localic nor modular;
but both are Cauchy-bilateral.)

4.10. Example. [Sets and relations] The quantaloid Rel of sets and relations is not small,
but it is involutive (by taking opposites: Ro = {(y, x) | (x, y) ∈ R}) and it is strongly
Cauchy-bilateral. In fact, this holds for any quantaloid Rel(E) of internal relations in a
Grothendieck topos E , because it is modular and locally localic [Freyd and Scedrov, 1990].

There is a subtle difference between Examples 4.8 and 4.10: the former deals with the
small quantaloid R(C, J) built from a small site, the latter deals with the large quantaloid
Rel(Sh(C, J)) of relations between the sheaves on that site. However, both constructions
give rise to a Cauchy-bilateral quantaloid. We shall further analyse the interplay between
these quantaloids in a forthcoming paper.

Finally we mention a difference between “symmetric” and “discrete” Q-categories.

4.11. Example. [Symmetric vs. discrete] In any locally ordered category K, an object D
is said to be discrete when, for any other objectX ∈ K, the order K(X,D) is symmetric. It
is straightforward to verify that, whenever Q is a small Cauchy-bilateral quantaloid, every
symmetric and Cauchy complete Q-category is a discrete object of Catcc(Q). However,
not all discrete objects of Catcc(Q) need to be symmetric, not even when Q is Cauchy-
bilateral! A counterexample can be found in the theory of generalised metric spaces:
Suppose that X is a set and R ⊆ X ×X. For x, y ∈ X, a path from x to y is a sequence
α = (x0, x1, . . . , xn) of elements of X with x0 = x, xn = y and (xi, xi+1) ∈ R for all i < n;
the length l(α) of such a path α is then n. For every x ∈ X, (x) is a path from x to x of
length 0. It is easy to verify that

dR(x, y) :=
∧

{l(α) | α is a path from x to y}

turns X into a generalised metric space. (This infimum is a minimum, except when there
is no path from x to y, in which case dR(x, y) = ∞.) Any such space (X, dR) is Cauchy
complete, as is every generalised metric space with values in N ∪ {∞}. And, in fact, it is
discrete in the sense given above, because x ≤ y if and only if 0 ≥ dR(x, y), so there is a
path with length 0 from x to y, which means that x = y. However, choosing X = {0, 1}
and R = {(0, 1)} gives a non-symmetric example: dR(0, 1) = 1 ̸= ∞ = dR(1, 0).
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