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MODEL-CATEGORIES OF COALGEBRAS OVER OPERADS

JUSTIN R. SMITH

Abstract. This paper constructs model structures on the categories of coalgebras
and pointed irreducible coalgebras over an operad whose components are projective,
finitely generated in each dimension, and satisfy a condition that allows one to take
tensor products with a unit interval. The underlying chain-complex is assumed to be
unbounded and the results for bounded coalgebras over an operad are derived from the
unbounded case.
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1. Introduction

Although the literature contains several papers on homotopy theories for algebras over
operads—see [15], [18], and [19]—it is more sparse when one pursues similar results for
coalgebras. In [21], Quillen developed a model structure on the category of 2-connected
cocommutative coalgebras over the rational numbers. V. Hinich extended this in [14] to
coalgebras whose underlying chain-complexes were unbounded (i.e., extended into nega-
tive dimensions). Expanding on Hinich’s methods, K. Lefvre derived a model structure on
the category of coassociative coalgebras—see [16]. In general, these authors use indirect
methods, relating coalgebra categories to other categories with known model structures.

Our paper finds model structures for coalgebras over any operad fulfilling a basic
requirement (condition 4.3). Since operads uniformly encode many diverse coalgebra
structures (coassociative-, Lie-, Gerstenhaber-coalgebras, etc.), our results have wide ap-
plicability.
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The author’s intended application involves investigating the extent to which Quillen’s
results in rational homotopy theory ([21]) can be generalized to integral homotopy theory.

Several unique problems arise that require special techniques. For instance, construct-
ing injective resolutions of coalgebras naturally leads into infinitely many negative dimen-
sions. The resulting model structure—and even that on the underlying chain-complexes—
fails to be cofibrantly generated (see [6]). Consequently, we cannot easily use it to induce
a model structure on the category of coalgebras.

We develop the general theory for unbounded coalgebras, and derive the bounded
results by applying a truncation functor.

In § 2, we define operads and coalgebras over operads. We also give a basic condition
(see 4.3) on the operad under consideration that we assume to hold throughout the paper.
Cofibrant operads always satisfy this condition and every operad is weakly equivalent to
one that satisfies this condition.

In § 3, we briefly recall the notion of model structure on a category and give an example
of a model structure on the category of unbounded chain-complexes.

In § 4, we define a model structure on categories of coalgebras over operads. When
the operad is projective and finitely-generated in all dimensions, we verify that nearly free
coalgebras satisfy Quillen’s axioms of a model structure (see [20] or [12]).

Section 4.1 describes our model-structure —classes of cofibrations, fibrations and weak
equivalences. Section 4.12 proves the first few axioms of a model-structure (CM 1 through
CM 3, in Quillen’s notation). Section 4.13 proves axiom CM 5, and section 4.22 proves
CM 4.

A key step involves proving the existence of cofibrant and fibrant replacements for
objects. In our model structure, all coalgebras are cofibrant (solving this half of the
problem) and the hard part of is to find fibrant replacements.

We develop resolutions of coalgebras by cofree coalgebras—our so-called rug-resolutions—
that solves the problem: see lemma 4.19 and corollary 4.20. This construction naturally
leads into infinitely many negative dimensions and was the motivation for assuming
underlying chain-complexes are unbounded.

All coalgebras are cofibrant and fibrant coalgebras are characterized as retracts of
canonical resolutions called rug-resolutions (see corollary 4.21 and corollary 4.21)—an
analogue to total spaces of Postnikov towers.

In the cocommutative case over the rational numbers, the model structure that we get
is not equivalent to that of Hinich in [14]. He gives an example (9.1.2) of a coalgebra that
is acyclic but not contractible. In our theory it would be contractible, since it is over the
rational numbers and bounded.

In § 4.25, we discuss the (minor) changes to the methods in § 4 to handle coalgebras
that are bounded from below. This involves replacing the cofree coalgebras by their
truncated versions.

In § 5, we consider two examples over the rational numbers. In the rational, 2-
connected, cocommutative, coassociative case, we recover the model structure Quillen
defined in [21] —see example 5.2.
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In appendix A, we study nearly free Z-modules. These are modules whose countable
submodules are all Z-free. They take the place of free modules in our work, since the
cofree coalgebra on a free modules is not free (but is nearly free).

In appendix B, we develop essential category-theoretic constructions, including equal-
izers (§ B.9), products and fibered products (§ B.14), and colimits and limits (§ B.21).
The construction of limits in § B.21 was this project’s most challenging aspect and con-
sumed the bulk of the time spent on it. This section’s key results are corollary B.28,
which allows computation of inverse limits of coalgebras and theorem B.30, which shows
that these inverse limits share a basic property with those of chain-complexes.

I am indebted to Professor Bernard Keller for several useful discussions.

2. Notation and conventions

Throughout this paper, R will denote a field or Z.

2.1. Definition. An R-module M will be called nearly free if every countable submodule
is R-free.

Remark. This condition is automatically satisfied unless R = Z.
Clearly, any Z-free module is also nearly free. The Baer-Specker group, Zℵ0 , is a well-

known example of a nearly free Z-module that is not free—see [11], [1], and [24]. Compare
this with the notion of ℵ1-free groups—see [5].

By abuse of notation, we will often call chain-complexes nearly free if their underlying
modules are (ignoring grading).

Nearly free Z-modules enjoy useful properties that free modules do not. For instance,
in many interesting cases, the cofree coalgebra of a nearly free chain-complex is nearly
free.

2.2. Definition. We will denote the closed symmetric monoidal category of unbounded,
nearly free R-chain-complexes with R-tensor products by Ch. We will denote the category
of R-free chain chain-complexes that are bounded from below in dimension 0 by Ch0.

The chain-complexes of Ch are allowed to extend into arbitrarily many negative di-
mensions and have underlying graded R-modules that are

• arbitrary if R is a field (but they will be free)

• nearly free, in the sense of definition 2.1, if R = Z.

We make extensive use of the Koszul Convention (see [13]) regarding signs in homological
calculations:

2.3. Definition. If f :C1 → D1, g:C2 → D2 are maps, and a⊗ b ∈ C1⊗C2 (where a is
a homogeneous element), then (f ⊗ g)(a⊗ b) is defined to be (−1)deg(g)·deg(a)f(a)⊗ g(b).
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2.4. Remark. If fi, gi are maps, it isn’t hard to verify that the Koszul convention implies
that (f1 ⊗ g1) ◦ (f2 ⊗ g2) = (−1)deg(f2)·deg(g1)(f1 ◦ f2 ⊗ g1 ◦ g2).

2.5. Definition. The symbol I will denote the unit interval, a chain-complex given by

I0 = R · p0 ⊕R · p1

I1 = R · q
Ik = 0 if k 6= 0, 1

∂q = p1 − p0

Given A ∈ Ch, we can define
A⊗ I

and
Cone(A) = A⊗ I/A⊗ p1

The set of morphisms of chain-complexes is itself a chain complex:

2.6. Definition. Given chain-complexes A,B ∈ Ch define

HomR(A,B)

to be the chain-complex of graded R-morphisms where the degree of an element x ∈
HomR(A,B) is its degree as a map and with differential

∂f = f ◦ ∂A − (−1)deg f∂B ◦ f

As a R-module HomR(A,B)k =
∏

j HomR(Aj, Bj+k).

Remark. Given A,B ∈ ChSn , we can define HomRSn(A,B) in a corresponding way.

2.7. Definition. If G is a discrete group, let ChG0 denote the category of chain-complexes
equipped with a right G-action. This is again a closed symmetric monoidal category and
the forgetful functor ChG0 → Ch0 has a left adjoint, (−)[G]. This applies to the symmetric
groups, Sn, where we regard S1 and S0 as the trivial group. The category of collections is
defined to be the product

Coll(Ch0) =
∏
n≥0

ChSn
0

Its objects are written V = {V(n)}n≥0. Each collection induces an endofunctor (also
denoted V) V:Ch0 → Ch0

V(X) =
⊕
n≥0

V(n)⊗RSn X
⊗n

where X⊗n = X ⊗ · · · ⊗X and Sn acts on X⊗n by permuting factors. This endofunctor
is a monad if the defining collection has the structure of an operad, which means that V
has a unit η:R→ V(1) and structure maps

γk1,...,kn :V(n)⊗ V(k1)⊗ · · · ⊗ V(kn)→ V(k1 + · · ·+ kn)
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satisfying well-known equivariance, associativity, and unit conditions —see [23], [15].
We will call the operad V = {V(n)} Σ-cofibrant if V(n) is RSn-projective for all n ≥ 0.

Remark. The operads we consider here correspond to symmetric operads in [23].
The term “unital operad” is used in different ways by different authors. We use it in

the sense of Kriz and May in [15], meaning the operad has a 0-component that acts like
an arity-lowering augmentation under compositions. Here V(0) = R.

The term Σ-cofibrant first appeared in [3]. A simple example of an operad is:

2.8. Example. For each n ≥ 0, C(n) = ZSn, with structure-map induced by

γα1,...,αn :Sn × Sα1 × · · · × Sαn → Sα1+···+αn

defined by regarding each of the Sαi
as permuting elements within the subsequence {α1 +

· · · + αi−1 + 1, . . . , α1 + · · · + αi} of the sequence {1, . . . , α1 + · · · + αn} and making Sn
permute these n-blocks. This operad is denoted S0. In other notation, its nth component
is the symmetric group-ring ZSn. See [22] for explicit formulas.

Another important operad is:

2.9. Example. The Barratt-Eccles operad, S, is given by S(n) = {C∗(K̃(Sn, 1)} —

where C∗(K̃(Sn, 1) is the normalized chain complex of the universal cover of the Eilenberg-
Mac Lane space K(Sn, 1). This is well-known (see [2] or [22]) to be a Hopf-operad, i.e.
equipped with an operad morphism

δ:S→ S⊗S

and is important in topological applications. See [22] for formulas for the structure maps.

For the purposes of this paper, the main example of an operad is

2.10. Definition. Given any C ∈ Ch, the associated coendomorphism operad, CoEnd(C)
is defined by

CoEnd(C)(n) = HomR(C,C⊗n)

Its structure map

γα1,...,αn : HomR(C,C⊗n)⊗ HomR(C,C⊗α1)⊗ · · · ⊗ HomR(C,C⊗αn)→

HomR(C,C⊗α1+···+αn)

simply composes a map in HomR(C,C⊗n) with maps of each of the n factors of C.
This is a non-unital operad, but if C ∈ Ch has an augmentation map ε:C → R then

we can regard ε as the generator of CoEnd(C)(0) = R·ε ⊂ HomR(C,C⊗0) = HomR(C,R).
Given C ∈ Ch with subcomplexes {D1, . . . , Dk}, the relative coendomorphism operad

CoEnd(C; {Di}) is defined to be the sub-operad of CoEnd(C) consisting of maps f ∈
HomR(C,C⊗n) such that f(Dj) ⊆ D⊗nj ⊆ C⊗n for all j.

We use the coendomorphism operad to define the main object of this paper:
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2.11. Definition. A coalgebra over an operad V is a chain-complex C ∈ Ch with an
operad morphism α:V → CoEnd(C), called its structure map. We will sometimes want
to define coalgebras using the adjoint structure map

α:C →
∏
n≥0

HomRSn(V(n), C⊗n)

(in Ch) or even the set of chain-maps

αn:C → HomRSn(V(n), C⊗n)

for all n ≥ 0.

We will sometimes want to focus on a particular class of V-coalgebras: the pointed,
irreducible coalgebras. We define this concept in a way that extends the conventional
definition in [25]:

2.12. Definition. Given a coalgebra over a unital operad V with adjoint structure-map

αn:C → HomRSn(V(n), C⊗n)

an element c ∈ C is called group-like if αn(c) = fn(c⊗n) for all n > 0. Here c⊗n ∈ C⊗n is
the n-fold R-tensor product,

fn = HomR(εn, 1): HomR(R,C⊗n) = C⊗n → HomRSn(V(n), C⊗n)

and εn:V(n)→ V(0) = R is the augmentation (which is n-fold composition with V(0)).
A coalgebra C over an operad V is called pointed if it has a unique group-like element

(denoted 1), and pointed irreducible if the intersection of any two sub-coalgebras contains
this unique group-like element.

Remark. Note that a group-like element generates a sub V-coalgebra of C and must lie
in dimension 0.

Although this definition seems contrived, it arises in “nature”: The chain-complex
of a pointed, simply-connected reduced simplicial set is naturally a pointed irreducible

coalgebra over the Barratt-Eccles operad, S = {C(K̃(Sn, 1))} (see [22]). In this case, the
operad action encodes the chain-level effect of Steenrod operations.

2.13. Definition. We denote the category of nearly free coalgebras over V by S0. The
terminal object in this category is 0, the null coalgebra.

The category of nearly free pointed irreducible coalgebras over V is denoted I0—this
is only defined if V is unital. Its terminal object is the coalgebra whose underlying chain
complex is R concentrated in dimension 0 with coproduct that sends 1 ∈ R to 1⊗n ∈ R⊗n.

It is not hard to see that these terminal objects are also the initial objects of their
respective categories.

We also need:
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2.14. Definition. If A ∈ C = I0 or S0, then dAe denotes the underlying chain-complex
in Ch of

kerA→ •
where • denotes the terminal object in C — see definition 2.13. We will call d∗e the
forgetful functor from C to Ch.

We can also define the analogue of an ideal:

2.15. Definition. Let C be a coalgebra over the operad U with adjoint structure map

α:C →
∏
n≥0

HomRSn(U(n), C⊗n)

and let D ⊆ dCe be a sub-chain complex that is a direct summand. Then D will be called
a coideal of C if the composite

α|D:D →
∏
n≥0

HomRSn(U(n), C⊗n)
HomR(1U,p

⊗)−−−−−−−−→
∏
n≥0

HomRSn(U(n), (C/D)⊗n)

vanishes, where p:C → C/D is the projection to the quotient (in Ch).

Remark. Note that it is easier for a sub-chain-complex to be a coideal of a coalgebra
than to be an ideal of an algebra. For instance, all sub-coalgebras of a coalgebra are
also coideals. Consequently it is easy to form quotients of coalgebras and hard to form
sub-coalgebras. This is dual to what occurs for algebras. We will use the concept of
cofree coalgebra cogenerated by a chain complex:

2.16. Definition. Let C ∈ Ch and let V be an operad. Then a V-coalgebra G will be
called the cofree coalgebra cogenerated by C if

1. there exists a morphism of chain-complexes ε:G→ C

2. given any V-coalgebra D and any morphism of DG-modules f : dDe → C, there
exists a unique morphism of V-coalgebras, f̂ :D → G, that makes the diagram (of
underlying chain-complexes)

D
f̂
//

f
  

@@@@@@@ G

ε

��

C

commute.

This universal property of cofree coalgebras implies that they are unique up to iso-
morphism if they exist.

The paper [23] gives a constructive proof of their existence in great generality (under
the unnecessary assumption that chain-complexes are R-free). In particular, this paper
defines cofree coalgebras LVC and pointed irreducible cofree coalgebras PVC cogenerated
by a chain-complex C. There are several ways to define them:
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1. LVC is essentially the largest submodule of

C ⊕
∞∏
k=1

HomRSk
(V(k), C⊗k)

on which the coproduct defined by the dual of the composition-operations of V is
well-defined.

2. If C is a coalgebra over V, its image under the structure map

C → C ⊕
∞∏
k=1

HomRSk
(V(k), C⊗k)

turns out to be a sub-coalgebra of the target—with a coalgebra structure that van-
ishes on the left summand (C) and is the dual of the structure-map of V on the right.
We may define LVC to be the sum of all coalgebras in C⊕

∏∞
k=1 HomRSk

(V(k), C⊗k)
formed in this way. The classifying map of a coalgebra

C → LVC

is just the structure map of the coalgebra structure.

The paper also defines the bounded cofree coalgebras:

• MVC is essentially the largest sub-coalgebra of LVC that is concentrated in nonneg-
ative dimensions.

• FVC is the largest pointed irreducible sub-coalgebra of PVC that is concentrated in
nonnegative dimensions.

3. Model categories

We recall the concept of a model structure on a category G. This involves defining
specialized classes of morphisms called cofibrations, fibrations, and weak equivalences (see
[20] and [12]). The category and these classes of morphisms must satisfy the conditions:

CM 1 G is closed under all finite limits and colimits

CM 2 Suppose the following diagram commutes in G:

X
g

//

h
  

@@@@@@@ Y

Z
f

??~~~~~~~

If any two of f, g, h are weak equivalences, so is the third.
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CM 3 These classes of morphisms are closed under formation of retracts: Given a com-
mutative diagram

A //

f

��

B //

g

��

A

f

��

C // D // C

whose horizontal composites are the identity map, if g is a weak equivalence, fibra-
tion, or cofibration, then so is f .

CM 4 Given a commutative solid arrow diagram

U //

i
��

A

p

��

W //

>>

B

where i is a cofibration and p is a fibration, the dotted arrow exists whenever i or p
are trivial.

CM 5 Any morphism f :X → Y in G may be factored:

1. f = p ◦ i, where p is a fibration and i is a trivial cofibration

2. f = q ◦ j, where q is a trivial fibration and j is a cofibration

We also assume that these factorizations are functorial— see [10].

3.1. Definition. An object, X, for which the map • → X is a cofibration, is called
cofibrant. An object, Y , for which the map Y → • is a fibration, is called fibrant.

The properties of a model category immediately imply that:

3.2. A model-category of chain-complexes Let Ch denote the category of un-
bounded chain-complexes over the ring R. The absolute model structure of Christensen
and Hovey in [9], and Cole in [7] is defined via:

1. Weak equivalences are chain-homotopy equivalences: two chain-complexes C and
D are weakly equivalent if there exist chain-maps: f :C → D and g:D → C and
chain-homotopies ϕ1:C → C and ϕ2:D → D such that dϕ1 = g ◦ f − 1 and
dϕ2 = f ◦ g − 1.

2. Fibrations are surjections of chain-complexes that are split (as maps of graded R-
modules).

3. Cofibrations are injections of chain-complexes that are split (as maps of graded
R-modules).
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Remark. All chain complexes are fibrant and cofibrant in this model.
In this model structure, a quasi-isomorphism may fail to be a weak equivalence. It is

well-known not to be cofibrantly generated (see [9]).
Since all chain-complexes are cofibrant, the properties of a model-category imply that

all trivial fibrations are split as chain-maps. We will need this fact in somewhat more
detail:

3.3. Lemma. Let f :C → D be a trivial fibration of chain-complexes. Then there exists
a chain-map `:D → C and a chain-homotopy ϕ:C → C such that

1. f ◦ ` = 1:D → D

2. ` ◦ f − 1 = ∂ϕ

Remark. See definition 2.6 for the notation ∂ϕ.

Proof. The hypotheses imply that there exist chain-maps

1. f :C → D, g:D → C with f ◦ g − 1 = ∂Φ1, g ◦ f − 1 = ∂Φ2

2. f is split surjective, as a morphism of graded modules. This means that there exists
a module morphism

v:D → C

not necessarily a chain-map, such that f ◦ v = 1:D → D.

Now set
` = g − ∂(v ◦ Φ1)

This is a chain-map, and if we compose it with f , we get

f ◦ ` = f ◦ g − f ◦ ∂(v ◦ Φ1)

= f ◦ g − ∂(f ◦ v ◦ Φ1)

= f ◦ g − ∂Φ1

= 1

Furthermore

` ◦ f = g ◦ f − ∂(v ◦ Φ1) ◦ f
= g ◦ f − ∂(v ◦ Φ1 ◦ f)

= 1 + ∂(Φ2)− ∂(v ◦ Φ1 ◦ f)

= 1 + ∂(Φ2 − v ◦ Φ1 ◦ f)

so we can set
ϕ = Φ2 − v ◦ Φ1 ◦ f
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We will need the following relative version of lemma 3.3 in the sequel:

3.4. Lemma. Let

A
u //

f

��

B

g

��

C v
// D

be a commutative diagram in Ch such that

• f and g are trivial fibrations

• v is a cofibration

Then there exists maps `:C → A and m:D → B such that

1. f ◦ ` = 1:C → C, g ◦m = 1:D → D

2. the diagram

A
u // B

C v
//

`

OO

D

m

OO

commutes.

If u is injective and split, there exist homotopies ϕ1:A ⊗ I → A from 1 to ` ◦ f and
ϕ2:B ⊗ I → B from 1 to m ◦ g, respectively, such that the diagram

A⊗ I
ϕ1

��

u⊗1
// B ⊗ I

ϕ2

��

A u
// B

commutes.

Proof. We construct ` exactly as in lemma 3.3 and use it to create a commutative
diagram

C
u◦` //

v

��

B

g

��

D D

Property CM 4 implies that we can complete this to a commutative diagram

C
u◦` //

v

��

B

g

��

D

m
>>

D

Let ϕ′1:A⊗ I → A and ϕ′2:B ⊗ I → B be any homotopies from the identity map to ` ◦ f
and m ◦ g, respectively. If there exists a chain-map p:B → A p ◦ u = 1:A → A then
ϕ1 = ϕ′1 and ϕ2 = u ◦ ϕ′1 ◦ (p⊗ 1) + ϕ′2 ◦ (1− (u ◦ p)⊗ 1) have the required properties.
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We will also need one final property of cofibrations:

3.5. Lemma. Let {pi:Ci+1 → Ci} be an infinite sequence of chain-maps of chain-
complexes and let

fi:A→ Ci

be cofibrations such that
Ci+1

pi

��

A
fi
//

fi+1

=={{{{{{{{
Ci

commutes for all i ≥ 0. Then
lim←− fi:A→ lim←− Ci

is a cofibration.

Proof. Since f0:A→ C0 is a cofibration, there exists a map

`0:C0 → A

of graded modules such that `0 ◦ f0 = 1:A→ A. Now define `i = `0 ◦ p0 ◦ · · · ◦ pi−1. Since
pi| imA = 1: imA→ imA,

`i ◦ fi = 1

and we get a morphism of graded modules

lim←− `i: lim←− Ci → A

that splits lim←− fi.

4. Model-categories of coalgebras

4.1. Description of the model-structure We will base our model-structure on
that of the underlying chain-complexes in Ch. Definition 4.5 and definition 4.6 describe
how we define cofibrations, fibrations, and weak equivalences.

We must allow non-R-free chain-complexes (when R = Z) because the underlying
chain complexes of the cofree coalgebras PV(∗) and LV(∗) are not known to be R-free.
They certainly are if R is a field, but if R = Z their underlying abelian groups are
subgroups of the Baer-Specker group, Zℵ0 , which is Z-torsion free but well-known not to
be a free abelian group (see [24], [4] or the survey [8]).

4.2. Proposition. The forgetful functor (defined in definition 2.14) and cofree coalgebra
functors define adjoint pairs

PV(∗):Ch � I0: d∗e
LV(∗):Ch � S0: d∗e
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Remark. The adjointness of the functors follows from the universal property of cofree
coalgebras—see [23].

4.3. Condition. Throughout the rest of this paper, we assume that V is an operad
equipped with a morphism of operads

δ:V→ V⊗S

—where S is the Barratt-Eccles operad (see example 2.9 —that makes the diagram

V
δ //

FFFFFFFFFF

FFFFFFFFFF V⊗S

��

V

commute. Here, the operad structure on V ⊗ S is just the tensor product of the operad
structures of V and S, and the vertical map is projection:e

V⊗S
1⊗ε̂−−→ V⊗ T = V

where T is the operad that is R in all arities and ε̂:S→ T is defined by the augmentations:

εn: RSn → R

In addition, we assume that, for each n ≥ 0, {V(n)} is an RSn-projective chain-
complex of finite type.

We also assume that the arity-1 component of V is equal to R, generated by the unit.

4.4. Remark. Free and cofibrant operads (with each component of finite type) satisfy
this condition. The condition that the chain-complexes are projective corresponds to the
Berger and Moerdijk’s condition of Σ-cofibrancy in [3].

Now we define our model structure on the categories I0 and S0.

4.5. Definition. A morphism f :A→ B in C = S0 or I0 will be called

1. a weak equivalence if dfe: dAe → dBe is a chain-homotopy equivalence in Ch. An
object A will be called contractible if the augmentation map

A→ •

is a weak equivalence, where • denotes the terminal object in C —see definition 2.13.

2. a cofibration if dfe is a cofibration in Ch.

3. a trivial cofibration if it is a weak equivalence and a cofibration.
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Remark. A morphism is a cofibration if it is a degreewise split monomorphism of chain-
complexes. Note that all objects of C are cofibrant.

Our definition makes f :A→ B a weak equivalence if and only if dfe: dAe → dBe is a
weak equivalence in Ch.

4.6. Definition. A morphism f :A→ B in S0 or I0 will be called

1. a fibration if the dotted arrow exists in every diagram of the form

U //

i
��

A

f

��

W //

>>

B

in which i:U → W is a trivial cofibration.

2. a trivial fibration if it is a fibration and a weak equivalence.

Definition 4.5 explicitly described cofibrations and definition 4.6 defined fibrations in
terms of them. We will verify the axioms for a model category (part of CM 4 and CM 5)
and characterize fibrations.

We will occasionally need a stronger form of equivalence:

4.7. Definition. Let f, g:A→ B be a pair of morphisms in S0 or I0. A strict homo-
topy between them is a coalgebra-morphism (where A⊗I has the coalgebra structure defined
in condition 4.3)

F :A⊗ I → B

such that F |A⊗p0 = f :A⊗p0 → B and F |A⊗p1 = g:A⊗p01 → B. A strict equivalence
between two coalgebras A and B is a pair of coalgebra-morphisms

f :A → B

g:B → A

and strict homotopies from f ◦ g to the identity of B and from g ◦ f to the identity map
of A.

Remark. Strict equivalence is a direct translation of the definition of weak equivalence
in Ch into the realm of coalgebras. Strict equivalences are weak equivalences but the
converse is not true.

The reader may wonder why we didn’t use strict equivalence in place of what is defined
in definition 4.5. It turns out that in we are only able to prove CM 5 with the weaker
notion of equivalence used here. In a few simple cases, describing fibrations is easy:
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4.8. Proposition. Let
f :A→ B

be a fibration in Ch. Then the induced morphisms

PVf :PVA → PVB

LVf :LVA → LVB

are fibrations in I0 and S0, respectively.

Proof. Consider the diagram

U //

��

PVA

PVf

��

V //

==

PVB

where U → V is a trivial cofibration—i.e., dUe → dV e is a trivial cofibration of chain-
complexes. Then the dotted map exists by the the defining property of cofree coalgebras
and by the existence of the lifting map in the diagram

dUe //

��

A

f

��

dV e //

>>

B

of chain-complexes.

4.9. Corollary. All cofree coalgebras are fibrant.

4.10. Proposition. Let C and D be objects of Ch and let

f1, f2:C → D

be chain-homotopic morphisms via a chain-homotopy

F :C ⊗ I → D (1)

Then the induced maps

PVfi:PVC → PVD

LVfi:LVC → LVD

i = 1, 2, are left-homotopic in I0 and S0, respectively via a strict chain homotopy

F ′:PVfi: (PVC)⊗ I → PVD
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If C and D are coalgebras over V and we equip C ⊗ I with a coalgebra structure using
condition 4.3 and if F in 1 is strict then the diagram

C ⊗ I F //

αC⊗1
��

D

αD

��

PV(dCe)⊗ I
F ′
// PV(dDe)

commutes in the pointed irreducible case and the diagram

C ⊗ I F //

αC⊗1
��

D

αD

��

LV(C)⊗ I
F ′
// LVD

commutes in the general case. Here αC and αD are classifying maps of coalgebra struc-
tures.

Remark. In other words, the cofree coalgebra functors map homotopies and weak equiv-
alences in Ch to strict homotopies and strict equivalences, respectively, in I0 and S0.

If the homotopy in Ch was the result of applying the forgetful functor to a strict
homotopy, then the generated strict homotopy is compatible with it.

Proof. We will prove this in the pointed irreducible case. The general case follows by a
similar argument. The chain-homotopy between the fi induces

PVF :PV(C ⊗ I)→ PVD

Now we construct the map

H: (PVC)⊗ I → PV(C ⊗ I)

using the universal property of a cofree coalgebra and the fact that the coalgebra structure
of (PVC)⊗ I extends that of PVC on both ends by condition 4.3. Clearly

PVF ◦H: (PVC)⊗ I → PVD

is the required left-homotopy.
Now suppose C and D are coalgebras. If we define a coalgebra structure on C ⊗ I

using condition 4.3, we get a diagram

C ⊗ I
αC⊗1

��

C ⊗ I F //

αC⊗I

��

D

αD

��

PV(dCe)⊗ I
εC⊗1

��

H // PV(dC ⊗ Ie)
PVF

//

εC⊗I

��

PVdDe

C ⊗ I C ⊗ I
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where αC⊗I is the classifying map for the coalgebra structure on C ⊗ I.
We claim that this diagram commutes. The fact that F is a coalgebra morphism

implies that the upper right square commutes. The large square on the left (bordered
by C ⊗ I on all four corners) commutes by the property of co-generating maps (of cofree
coalgebras) and classifying maps. The two smaller squares on the left (i.e., the large square
with the map H added to it) commute by the universal properties of cofree coalgebras
(which imply that induced maps to cofree coalgebras are uniquely determined by their
composites with co-generating maps). The diagram in the statement of the result is just
the outer upper square of this diagram, so we have proved the claim.

This result implies a homotopy invariance property of the categorical product, A0�A1,
defined explicitly in definition B.15 of appendix B.

4.11. Lemma. Let g:B → C be a fibration in I0 and let f :A → C be a morphism in
I0. Then the projection

A�C B → A

is a fibration.

Remark. The notation A �C B denotes a fibered product—see definition B.18 in ap-
pendix B.14 for the precise definition. In other words, pullbacks of fibrations are fibra-
tions.

Proof. Consider the diagram

U
u //

i
��

A�C B

pA

��

V v
//

::

A

(2)

where U → V is a trivial cofibration. The defining property of a categorical product
implies that any map to A �C B ⊆ A � B is determined by its composites with the
projections

pA:A�B → A

pB:A�B → B

Consider the composite pB◦u:U → B. The commutativity of the solid arrows in diagram 2
implies that the diagram

U
pB◦u //

pA◦u

��
@@@@@@@

i
��

B

g

��

V v
// A

f
// C

commutes and this implies that the solid arrows in the diagram

U
pB◦u //

i
��

B

g

��

V
f◦v
//

>>

C

(3)
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commute. The fact that g:B → C is a fibration implies that the dotted arrow exists in
diagram 3, which implies the existence of a map V → A � B whose composites with f
and g agree. This defines a map V → A�C B that makes all of diagram 2 commute. The
conclusion follows.

4.12. Proof of CM 1 through CM 3 CM 1 asserts that our categories have all finite
limits and colimits.

The results of appendix B prove that all countable limits and colimits exist—see the-
orem B.3 and theorem B.7.

CM 2 follows from the fact that we define weak equivalence the same was it is defined in
Ch—so the model structure on Ch implies that this condition is satisfies on our categories
of coalgebras. A similar argument verifies condition CM 3.

4.13. Proof of CM 5 We begin with:

4.14. Corollary. Let A ∈ I0 be fibrant and let B ∈ I0. Then the projection

A�B → B

is a fibration.

This allows us to verify CM 5, statement 2:

4.15. Corollary. Let f :A→ B be a morphism in C = I0 or S0, and let

Z =

{
PVCone(dAe) �B when C = I0

LVCone(dAe) �B when C = S0

Then f factors as
A→ Z → B

where

1. Cone(dAe) is the cone on dAe (see definition 2.5) with the canonical inclusion
i: dAe → Cone(dAe)

2. the morphism i� f :A→ Z is a cofibration

3. the morphism Z → B is projection to the second factor and is a fibration (by corol-
lary 4.14).

Proof. We focus on the pointed irreducible case. The general case follows by essentially
the same argument. The existence of the (injective) morphism A → PVCone(dAe) �
B follows from the definition of �. We claim that its image is a direct summand of
PVCone(dAe) � B as a graded R-module (which implies that i� f is a cofibration). We
clearly get a projection

PVCone(dAe) �B → PVCone(dAe)
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and the composite of this with the co-generating map dPVCone(dAe)e → Cone(dAe) gives
rise a a morphism of chain-complexes

dPVCone(dAe) �Be → Cone(dAe) (4)

Now note the existence of a splitting map

Cone(dAe)→ dAe

of graded R-modules (not coalgebras or even chain-complexes). Combined with the map
in equation 4, we conclude that A→ PVCone(dAe) �B is a cofibration.

There is a weak equivalence c: Cone(dAe)→ • in Ch, and 4.10 implies that it induces
a strict equivalence PVc:PVCone(dAe)→ •. Proposition B.17 implies that

c� 1:PVCone(dAe) �B → •�B = B

is a strict equivalence.

The first part of CM 5 will be considerably more difficult to prove.

4.16. Definition. Let pro-I0 and pro-S0 be the categories of inverse systems of objects
of I0 and S0, respectively and let ind-I0 and ind-S0 be corresponding categories of direct
systems. Morphisms are defined in the obvious way.

Now we define the rug-resolution of a cofibration:

4.17. Definition. Let V = {V(n)} be a Σ-cofibrant (see definition 2.7) operad such that
V(n) is of finite type for all n ≥ 0. If f :C → D is a cofibration in I0 or S0, define

G0 = D

f0 = f :C → G0

Gn+1 = Gn �
LVdHne LVH̄n

pn+1:Gn+1 → Gn

for all n, where

1. ε:C → • is the unique morphism.

2. Hn is the cofiber of fn in the push-out

C
ε //

fn
��

•

��

Gn
// Hn
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3. Gn → LVdHne is the composite of the classifying map

Gn → LVdGne

with the map
LVdGne → LVdHne

4. H̄n = Σ−1Cone(dHne)—where Σ−1 denotes desuspension (in Ch). It is contractible
and comes with a canonical Ch-fibration

vn: H̄n → dHne (5)

inducing the fibration
LVvn:LVH̄n → LVdHne (6)

5. pn+1:Gn+1 = Gn �LVdHne LVH̄n → Gn is projection to the first factor,

6. The map fn+1:C → Gn �LVdHne LVH̄n is the unique morphism that makes the
diagram

Gn � LVH̄n

yyssssssssss

&&MMMMMMMMMM

Gn LVH̄n

C

fn

eeLLLLLLLLLLLL
ε

88pppppppppppp

fn+1

OO

commute (see lemma B.16), where the downwards maps are projections to factors.
The map ε:C → LVH̄n is

(a) the map to the basepoint if the category is I0 (and LVH̄n is replaced by PVH̄n),

(b) the zero-map if the category is S0.

The commutativity of the diagram

LVHn

Gn

<<xxxxxxxxx
LVH̄n

ddIIIIIIIII

C

fn

ccFFFFFFFFF ε

::uuuuuuuuuu

implies that the image of fn+1 actually lies in the fibered product, Gn�LVdHneLVH̄n.

The rug-resolution of f :C → D is the map of inverse systems {fi}: {C} → {Gi} → D,
where {C} denotes the constant inverse system.
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Remark. Very roughly speaking, this produces something like a “Postnikov resolution”
for f :C → D. Whereas a Postnikov resolution’s stages “push the trash upstairs,” this
one’s “push the trash horizontally” or “under the rug”—something feasible because one
has an infinite supply of rugs.

4.18. Proposition. Following all of the definitions of 4.17 above, the diagrams

Gn+1

pn+1

��

C

fn+1

==zzzzzzzz

fn
// Gn

commute and induce maps Hn+1

p′n+1−−→ Hn that fit into commutative diagrams of chain-
complexes

H̄n

en

��

Hn+1

un
<<yyyyyyyy

p′n+1

// Hn

It follows that the maps p′n+1 are nullhomotopic for all n.

Proof. Commutativity is clear from the definition of fn+1 in terms of fn above.
To see that the induced maps are nullhomotopic, consider the diagram

Gn �LVdHne LVH̄n
//

pn+1

��

LVH̄n
ε //

LVvn
��

H̄n

vn

��

Gn
// Hn α

// LVHn ε
// Hn

where vn is defined in equation 5, both ε-maps are cogenerating maps—see definition 2.16
—and α:Hn → LVHn is the classifying map.

The left square commutes by the definition of the fibered product, Gn �LVdHne LVH̄n

—see definition B.18. The right square commutes by the naturality of cogenerating maps.
Now, note that the composite Hn

α−→ LVHn
ε−→ Hn is the identity map (a universal

property of classifying maps of coalgebras). It follows that, as a chain-map, the composite

Gn �
LVdHne LVH̄n

pn+1−−→ Gn → Hn

coincides with a chain-map that factors through the contractible chain-complex H̄n.

Our main result is:

4.19. Lemma. Let f :C → D be a cofibration as in definition 4.17 with rug-resolution
{fi}: {C} → {Gi} → D. Then

f∞ = lim←− fn:C → lim←− Gn

is a trivial cofibration.
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Proof. We make extensive use of the material in appendix B.21 to show that the cofiber
of

f∞:C → lim←− Gn

is contractible. We focus on the category S0—the argument in I0 is very similar. In
this case, the cofiber is simply the quotient. We will consistently use the notation H̄n =
Σ−1Cone(dHne)

First, note that the maps
Gn+1 → Gn

induce compatible maps

LVdHn+1e → LVdHne
LVH̄n+1 → LVH̄n

so proposition B.22 implies that

lim←− Gn = (lim←− Gn) �(lim←− LVdHne) (lim←− LVH̄n)

and theorem B.3 implies that

lim←− LVdHne = LV(lim←−dHie)
lim←− LVH̄n = LV(lim←− H̄i) = LV(Σ−1Cone(lim←−dHie))

from which we conclude

lim←− Gn = (lim←− Gn) �LV(lim←− dHie) LV(Σ−1Cone(lim←−dHie))

We claim that the projection

h: (lim←− Gn) �LV(lim←− dHie) LV(Σ−1Cone(lim←−dHie))→ lim←− Gn (7)

is split by a coalgebra morphism. To see this, first note that, by proposition 4.18, each of
the maps

Hn+1 � Hn

is nullhomotopic via a nullhomotopy compatible with the maps in the inverse system
{Hn}. This implies that

lim←−dHne

—the inverse limit of chain complexes—is contractible. It follows that the projection

Σ−1Cone(lim←−dHne) � lim←−dHne

is a trivial fibration in Ch, hence split by a map

j: lim←−dHne → Σ−1Cone(lim←−dHne) (8)
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This, in turn, induces a coalgebra morphism

LVj:LV(lim←−dHne)→ LV(Σ−1Cone(lim←−dHne))

splitting the canonical surjection

LV(Σ−1Cone(lim←−dHne)) � LV(lim←−dHne)

and induces a map, g

lim←− Gn = (lim←− Gn) �LV(lim←− dHie) LV(lim←−dHie)

1�LVj−−−−→ (lim←− Gn) �LV(lim←− dHie) LV(Σ−1Cone(lim←−dHie))

splitting the projection in formula 7. Since the image of f∞(C) vanishes in LV(lim←−dHie),
it is not hard to see that 1 � LVj is compatible with the inclusion of C in lim←− Gi.

Now consider the diagram

(lim←− Gn)/f∞(C)
g
//

(
(lim←− Gn) �LV(lim←− dHie) LV(Σ−1Cone(lim←−dHie))

)
/f∞(C)

q

��

(lim←− Gn)/f∞(C) �LV(lim←− dHie) LV(Σ−1Cone(lim←−dHie))

(lim←− Gn/fn(C)) �LV(lim←− dHie) LV(Σ−1Cone(lim←−dHie))

(lim←− Hn) �LV(lim←− dHie) LV(Σ−1Cone(lim←−dHie))

p

��

(lim←− Gn)/f∞(C) lim←− Hn

where:

1. The map

q:
(

(lim←− Gn) �LV(lim←− dHie) LV(Σ−1Cone(lim←−dHie))
)
/f∞(C)

→ (lim←− Gn)/f∞(C) �LV(lim←− dHie) LV(Σ−1Cone(lim←−dHie))
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is induced by the projections

lim←− Gn

(lim←− Gn) �LV(lim←− dHie) LV(Σ−1Cone(lim←−dHie))

55kkkkkkkkkkkkkkk

))SSSSSSSSSSSSSS

LV(Σ−1Cone(lim←−dHie))

the fact that the image of f∞ is effectively only in the factor lim←− Gn, and the defining
property of fibered products.

2. The equivalence
lim←− Gn/f∞(C) = lim←− Gn/fn(C)

follows from theorem B.30.

3. The vertical map on the left is the identity map because g splits the map h in
formula 7.

We claim that the map (projection to the left factor)

dpe: d(lim←− Hn) �LV(lim←− dHie) LV(Σ−1Cone(lim←−dHie))e → dlim←− Hne

is nullhomotopic (as a Ch-morphism). This follows immediately from the fact that

lim←− Hn ↪→ LV(lim←−dHne)

by corollary B.29, so that

(lim←− Hn) �LV(lim←− dHie) LV(Σ−1Cone(lim←−dHie))

⊆ LV(lim←−dHie) �LV(lim←− dHie) LV(Σ−1Cone(lim←−dHie))

= LV(Σ−1Cone(lim←−dHie))

and LV(Σ−1Cone(lim←−dHie)) is contractible, by proposition 4.10 and the contractibility of
Σ−1Cone(lim←−dHie).

We conclude that
(lim←− Gn)/f∞(C)

id−→ (lim←− Gn)/f∞(C)

is nullhomotopic so (lim←− Gn)/f∞(C) is contractible and

df∞e: dCe → dlim←− Gne

is a weak equivalence in Ch, hence (by definition 4.5) f∞ is a weak equivalence.
The map f∞ is a cofibration due to the final statement of Theorem B.30.
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4.20. Corollary. Let V = {V(n)} be a Σ-cofibrant operad such that V(n) is of finite
type for all n ≥ 0. Let

f :A→ B

be a morphism in C = S0 or I0. Then there exists a functorial factorization of f

A→ Z(f)→ B

where
A→ Z(f)

is a trivial cofibration and
Z(f)→ B

is a fibration.

Remark. This is condition CM5, statement 1 in the definition of a model category at
the beginning of this section. It, therefore, proves that the model structure described in
4.5 and 4.6 is well-defined.

By abuse of notation, we will call the {fi}: {A} → {Gi} → LV(dAe) � B → B the
rug-resolution of the morphism A→ B (see the proof below), where {fi}: {A} → {Gi} →
LV(dAe) �B is the rug-resolution of the cofibration A→ LV(dAe) �B.

See proposition B.3 and corollary B.25 for the definition of inverse limit in the category
C = S0 or I0 .

Proof. Simply apply definition 4.17 and lemma 4.19 to the cofibration

A→ LV(dAe) �B

and project to the second factor.

We can characterize fibrations now:

4.21. Corollary. If V = {V(n)} is a Σ-cofibrant operad such that V(n) is of finite type
for all n ≥ 0, then all fibrations are retracts of their rug-resolutions.

Remark. This shows that rug-resolutions of maps contain canonical fibrations and all
others are retracts of them.

Proof. Suppose p:A → B is some fibration. We apply corollary 4.20 to it to get a
commutative diagram

A

i
��

Ā a∞
// B
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where i:A → Ā is a trivial cofibration and a∞: Ā → B is a fibration. We can complete
this to get the diagram

A

i
��

A

p

��

Ā a∞
//

??

B

The fact that p:A→ B is a fibration and definition 4.6 imply the existence of the dotted
arrow making the whole diagram commute. But this splits the inclusion i:A → Ā and
implies the result.

The rest of this section will be spent on trivial fibrations —with a mind to proving
the second statement in CM 4 in theorem 4.24. Recall that the first statement was a
consequence of our definition of fibrations in S0 and I0.

4.22. Proof of CM 4 The first part of CM 4 is trivial: we have defined fibrations as
morphisms that satisfy it—see definition 4.6. The proof of the second statement of CM 4
is more difficult and makes extensive use of the Rug Resolution defined in definition 4.17.

We begin by showing that a fibration of coalgebras becomes a fibration in Ch under
the forgetful functor:

4.23. Proposition. Let p:A→ B be a fibration in C = I0 or S0. Then

dpe: dAe → dBe

is a fibration in Ch+ or Ch, respectively.

Proof. In the light of corollary 4.21, it suffices to prove this for rug-resolutions of fibra-
tions.

Since they are iterated pullbacks of fibrations with contractible total spaces, it suffices
to prove the result for something of the form

A�LVB LV(Σ−1Cone(B))→ A

where f :A → LVB is some morphism. The fact that all morphisms are coalgebra mor-
phisms implies the existence of a coalgebra structure on

Z = dAe ⊕dLVBe dLV(Σ−1Cone(B))e ⊂ dA� LV(Σ−1Cone(B))e⇒ dLVBe

where dAe⊕dLVBedLV(Σ−1Cone(B))e is the fibered product in Ch. Since LV(Σ−1Cone(B))→
LVB is surjective, (because it is induced by the surjection, ΣCone(B)) → B) it follows
that the equalizer

dA� LV(Σ−1Cone(B))e⇒ dLVBe

surjects onto dAe. Since Z has a coalgebra structure, it is contained in the core,〈
dA� LV(Σ−1Cone(B))e⇒ dLVBe

〉
= A�LVB LV(Σ−1Cone(B))
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which also surjects onto A—so the projection

dA�LVB LV(Σ−1Cone(B))e → dAe

is surjective and—as a map of graded R-modules—split. This is the definition of a fibra-
tion in Ch.

We are now in a position to prove the second part of CM 4:

4.24. Theorem. Given a commutative solid arrow diagram

U
f
//

i
��

A

p

��

W g
//

>>

B

where i is a any cofibration and p is a trivial fibration, the dotted arrow exists.

Proof. Because of corollary 4.21, it suffices to prove the result for the rug-resolution of
the trivial fibration p:A→ B. We begin by considering the diagram

dUe dfe
//

die
��

dAe
dpe
��

dW e
dge
//

`
<<

dBe

Because of proposition 4.23, dpe is a trivial fibration and the dotted arrow exists in Ch.
If α:A→ LVA is the classifying map of A, ˆ̀:W → LVA is induced by `: dW e → dAe,

and p2:LVA�B → B is projection to the second factor, we get a commutative diagram

U
(α◦f)�(p◦f)

//

i
��

LVA�B

p2

��

W g
//

ˆ̀�g

55

B

(9)

It will be useful to build the rug-resolutions of A→ LVA�B = G0 andB → LVB�B =
G̃0 in parallel —denoted {Gn} and {G̃n}, respectively. Clearly the vertical morphisms in

A
f0

//

p

��

LVA�B

q0
��

B
f̄0

// LVB �B

(10)

are trivial fibrations and q0 is a trivial fibration via a strict homotopy—see proposi-
tions 4.10 and B.17.

We prove the result by an induction that:
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1. lifts the map ˆ̀
1 = ˆ̀� g:W → LVA � B to morphisms ˆ̀

k:W → Gk to successively
higher stages of the rug-resolution of p. Diagram 10 implies the base case.

2. establishes that the vertical morphisms in

A
fn

//

p

��

Gn

qn
��

B
f̄n

// G̃n

are trivial fibrations for all n, where the qn are trivial via strict homotopies.

Lemma 3.4 implies that we can find splitting maps u and v such that

dAe fn
// dGne

dBe
f̄n

//

u

OO

dG̃ne

v

OO
(11)

p ◦ u = 1: dBe → dBe, qn ◦ v: dḠne → dḠne and contracting homotopies Φ1 and Φ2 such
that

dAe ⊗ I fn⊗1
//

Φ1

��

dGne ⊗ I
Φ2

��

dAe
fn

// dGne

(12)

commutes, where dΦ1 = u ◦ p − 1, and dΦ2 = v ◦ qn − 1 —where Φ1 can be specified
beforehand. Forming quotients gives rise to a commutative diagram

dAe fn
//

p

��

dGne
qn
��

// Hn

q̂n
��

dBe
f̄n

// dG̃ne // H̃n

Furthermore the commutativity of diagrams 11 and 12 implies that v induces a splitting
map w: H̃n → Hn and Φ2 induces a homotopy Ξ:Hn⊗ I → Hn with dΞ = w ◦ q̂n− 1— so
q̂n is a weak equivalence in Ch— even a trivial fibration.

If we assume that the lifting has been carried out to the nth stage, we have a map

`n:W → Gn

making

dW e `n //

g

��

dGne
qn
��

// Hn

q̂n
��

dBe
f̄n

// dG̃ne // H̃n
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commute. Since the image of B in H̃n vanishes (by the way Hn and H̃n are constructed—
see statement 2 in definition 4.17), it follows that the image of W in Hn lies in the
kernel of q̂n— a trivial fibration in Ch. We conclude that the inclusion of W in Hn is
null-homotopic, hence lifts to H̄n = Σ−1(Cone(Hn)) in such a way that

H̄n

��

dW e `n //

g

��

r
00

dGne
qn
��

t // Hn

q̂n
��

dBe
f̄n

// dG̃ne // H̃n

commutes—as a diagram of chain-complexes. Now note that Gn+1 is the fibered product
Gn�LV(Gn/A)LV(Σ−1(Cone(Gn/A))) —and that the chain-maps r and t◦`n induce coalgebra
morphisms making the diagram

H̄n

��

W

`n
((QQQQQQQQQQQQQQQQ

LVr

66nnnnnnnnnnnnnnnn
Hn

Gn

LVt

OO

commute—thereby inducing a coalgebra-morphism

`n+1:W → Gn �
LV(Hn) LVΣ−1Cone(Hn) = Gn+1

that makes the diagram
Gn+1

pn+1

��

W
`n

//

`n+1

66mmmmmmmmmmmmmmmm
Gn

commute (see statement 5 of definition 4.17). This proves assertion 1 in the induction
step.

To prove assertion 2 in our induction hypothesis, note that the natural homotopy in
diagram 12 induces (by passage to the quotient) a natural homotopy, Φ′, that makes the
diagram of chain-complexes

dGne ⊗ I
Φ2

��

t⊗1
// Hn ⊗ I

Φ′

��

dGne t
// Hn
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commute. This can be expanded to a commutative diagram

dGne ⊗ I
Φ2

��

t⊗1
// Hn ⊗ I

Φ′

��

H̄n ⊗ I
Φ̄
��

oo

dGne t
// Hn H̄n

oo

The conclusion follows from the fact that Φ′ and Φ̄ induce strict homotopies (see defini-
tion 4.7) after the cofree coalgebra-functor is applied (see proposition 4.10) and proposi-
tion B.19.

We conclude that Gn+1 → G̃n+1 is a trivial fibration.
Induction shows that we can define a lifting

`∞:W → lim←− Gn

that makes the diagram

U
ι◦f

//

i

��

lim←− Gn

p∞

��

W g
//

`∞

66

B

commute.

4.25. The bounded case In this section, we develop a model structure on a category
of coalgebras whose underlying chain-complexes are bounded from below.

4.26. Definition. Let:

1. Ch0 denote the subcategory of Ch bounded at dimension 1. If A ∈ Ch0, then Ai = 0
for i < 1.

2. I +
0 denote the category of pointed irreducible coalgebras, C, over V such that dCe ∈

Ch0. This means that Ci = 0, i < 1. Note, from the definition of dCe as the kernel
of the augmentation map, that the underlying chain-complex of C is equal to R in
dimension 0.

There is clearly an inclusion of categories

ι:Ch0 → Ch

compatible with model structures.
Now we define our model structure on I +

0 :
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4.27. Definition. A morphism f :A→ B in I +
0 will be called

1. a weak equivalence if dfe: dAe → dBe is a weak equivalence in Ch0 (i.e., a chain
homotopy equivalence). An object A will be called contractible if the augmentation
map

A→ R

is a weak equivalence.

2. a cofibration if dfe is a cofibration in Ch0.

3. a trivial cofibration if it is a weak equivalence and a cofibration.

Remark. A morphism is a cofibration if it is a degreewise split monomorphism of chain-
complexes. Note that all objects of I +

0 are cofibrant.
If R is a field, all modules are vector spaces therefore free. Homology equivalences of

bounded free chain-complexes induce chain-homotopy equivalence, so our notion of weak
equivalence becomes the same as homology equivalence (or quasi-isomorphism).

4.28. Definition. A morphism f :A→ B in I +
0 will be called

1. a fibration if the dotted arrow exists in every diagram of the form

U //

i
��

A

f

��

W //

66

B

in which i:U → W is a trivial cofibration.

2. a trivial fibration if it is a fibration and a weak equivalence.

4.29. Corollary. If V = {V(n)} is an operad satisfying condition 4.3, the description
of cofibrations, fibrations, and weak equivalences given in definitions 4.27 and 4.28 satisfy
the axioms for a model structure on I +

0 .

Proof. We carry out all of the constructions of § 4 and appendix B while consistently
replacing cofree coalgebras by their truncated versions (see [23]). This involves substitut-
ing MV(∗) for LV(∗) and FV(∗) for PV(∗) .

5. Examples

We will give a few examples of the model structure developed here. In all cases, we will
make the simplifying assumption that R is a field (this is not to say that interesting
applications only occur when R is a field). We begin with coassociative coalgebras over
the rationals:
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5.1. Example. Let V be the operad with component n equal to QSn with the obvious Sn-
action —and we consider the category of pointed, irreducible coalgebras, I0. Coalgebras
over this V are coassociative coalgebras. In this case PVC = T (C), the graded tensor
algebra with coproduct

c1 ⊗ · · · ⊗ cn 7→
n∑
k=0

(c1 ⊗ · · · ⊗ ck)⊗ (ck+1 ⊗ · · · ⊗ cn) (13)

where c1 ⊗ · · · ⊗ c0 = cn+1 ⊗ · · · ⊗ cn = 1 ∈ C0 = Q. The n-fold coproducts are just
composites of this 2-fold coproduct and the “higher” coproducts vanish identically. We
claim that this makes

A�B = A⊗B (14)

This is due to the well-known identity T (dAe⊕dBe) = T (dAe)⊗T (dBe). The category I +
0

is a category of 1-connected coassociative coalgebras where weak equivalence is equivalent
to homology equivalence.

If we assume coalgebras to be cocommutative we get:

5.2. Example. Suppose R = Q and V is the operad with all components equal to Q,
concentrated in dimension 0, and equipped with trivial symmetric group actions. Coal-
gebras over V are just cocommutative, coassociative coalgebras and I +

0 is a category of
1-connected coalgebras similar to the one Quillen considered in [21]. Consequently, our
model structure for I +

0 induces the model structure defined by Quillen in [21] on the
subcategory of 2-connected coalgebras.

In this case, PVC is defined by

PVC =
⊕
n≥0

(C⊗n)Sn

where (C⊗n)Sn is the submodule of

C ⊗ · · · ⊗ C︸ ︷︷ ︸
n factors

invariant under the Sn-action. The assumption that the base-ring is Q implies a canonical
isomorphism

PVC =
⊕
n≥0

(C⊗n)Sn ∼= S(C)

Since S(dAe ⊕ dBe) ∼= S(dAe)⊗ S(dBe), we again get A�B = A⊗B.

A. Nearly free modules

In this section, we will explore the class of nearly free Z-modules —see definition 2.1.
We show that this is closed under the operations of taking direct sums, tensor products,
countable products and cofree coalgebras. It appears to be fairly large, then, and it would
be interesting to have a direct algebraic characterization.
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A.1. Remark. A module must be torsion-free (hence flat) to be nearly free. The converse
is not true, however: Q is flat but not nearly free.

The definition immediately implies that:

A.2. Proposition. Any submodule of a nearly free module is nearly free.

Nearly free modules are closed under operations that preserve free modules:

A.3. Proposition. Let M and N be Z-modules. If they are nearly free, then so are
M ⊕N and M ⊗N .

Infinite direct sums of nearly free modules are nearly free.

Proof. If F ⊆ M ⊕ N is countable, so are its projections to M and N , which are free
by hypothesis. It follows that F is a countable submodule of a free module.

The case where F ⊆ M ⊗ N follows by a similar argument: The elements of F are
finite linear combinations of monomials {mα ⊗ nα} —the set of which is countable. Let

A ⊆ M

B ⊆ N

be the submodules generated, respectively, by the {mα} and {nα}. These will be countable
modules, hence Z-free. It follows that

F ⊆ A⊗B

is a free module.
Similar reasoning proves the last statement, using the fact that any direct sum of free

modules is free.

A.4. Proposition. Let {Fn} be a countable collection of Z-free modules. Then

∞∏
n=1

Fn

is nearly free.

Proof. In the case where Fn = Z for all n

B =
∞∏
n=1

Z

is the Baer-Specker group, which is well-known to be nearly free— see [1], [11, vol. 1, p.
94 Theorem 19.2], and [5]. It is also well-known not to be Z-free—see [24] or the survey
[8].

First suppose each of the Fn are countably generated. Then

Fn ⊆ B
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and ∏
Fn ⊆

∏
B = B

which is nearly-free.
In the general case, any countable submodule, C, of

∏
Fn projects to a countably-

generated submodule, An, of Fn under all of the projections∏
Fn → Fn

and, so is contained in ∏
An

which is nearly free, so C must be Z-free.

A.5. Corollary. Let {Nk} be a countable set of nearly free modules. Then

∞∏
k=1

Nk

is also nearly free.

Proof. Let

F ⊂
∞∏
k=1

Nk

be countable. If Fk is its projection to factor Nk, then Fkwill be countable, hence free. It
follows that

F ⊂
∞∏
k=1

Fk

and the conclusion follows from proposition A.4.

A.6. Corollary. Let A be nearly free and let F be Z-free of countable rank. Then

HomZ(F,A)

is nearly free.

Proof. This follows from corollary A.5 and the fact that

HomZ(F,A) ∼=
rank(F )∏
k=1

A
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A.7. Corollary. Let {Fn} be a sequence of countably-generated ZSn-projective modules
and and let A be nearly free. Then

∞∏
n=1

HomZSn(Fn, A
⊗n)

is nearly free.

Proof. This is a direct application of the results of this section and the fact that

HomZSn(Fn, A
⊗n) ⊆ HomZ(Fn, A

⊗n) ⊆ HomZ(F̂n, A
⊗n)

where F̂n is a ZSn-free module of which Fn is a direct summand.

A.8. Theorem. Let C be a nearly free Z-module and let V = {V(n)} be a Σ-finite operad
with V(n) of finite type for all n ≥ 0. Then

dLVCe
dMVCe
dPVCe
dFVCe

are all nearly free.

Proof. This follows from theorem B.8 which states that all of these are submodules of∏
n≥0

(V(n), A⊗n)

and the fact that near-freeness is inherited by submodules.

B. Category-theoretic constructions

In this section, we will study general properties of coalgebras over an operad. Some of
the results will require coalgebras to be pointed irreducible. We begin by recalling the
structure of cofree coalgebras over operads in the pointed irreducible case.

B.1. Cofree-coalgebras We will make extensive use of cofree coalgebras over an op-
erad in this section—see definition 2.16.

If they exist, it is not hard to see that cofree coalgebras must be unique up to an
isomorphism.

The paper [23] gave an explicit construction of LVC when C was an R-free chain
complex. When R is a field, all chain-complexes are R-free, so the results of the present
paper are already true in that case.

Consequently, we will restrict ourselves to the case where R = Z.
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B.2. Proposition. The forgetful functor (defined in definition 2.14) and cofree coalgebra
functors define adjoint pairs

PV(∗):Ch � I0: d∗e
LV(∗):Ch � S0: d∗e

Remark. The adjointness of the functors follows from the universal property of cofree
coalgebras—see [23]. The Adjoints and Limits Theorem in [17] implies that:

B.3. Theorem. If {Ai} ∈ ind-Ch and {Ci} ∈ ind-I0 or ind-S0 then

lim←− PV(Ai) = PV(lim←− Ai)

lim←− LV(Ai) = LV(lim←− Ai)

dlim−→ Cie = lim−→dCie
Remark. This implies that colimits in I0 or S0 are the same as colimits of underlying
chain-complexes.

B.4. Proposition. If C ∈ Ch, let G (C) denote the lattice of countable subcomplexes of
C. Then

C = lim−→ G (C)

Proof. Clearly lim−→ G (C) ⊆ C since all of the canonical maps to C are inclusions. Equal-
ity follows from every element x ∈ Ck being contained in a finitely generated subcomplex,
Cx, defined by

(Cx)i =


R · x if i = k

R · ∂x if i = k − 1

0 otherwise

B.5. Lemma. Let n > 1 be an integer, let F be a finitely-generated projective (non-graded)
RSn-module, and let {Cα} a direct system of modules. Then the natural map

lim−→ HomRSn(F,Cα)→ HomRSn(F, lim−→ Cα)

is an isomorphism.
If F and the {Cα} are graded, the corresponding statement is true if F is finitely-

generated and RSn-projective in each dimension.

Proof. We will only prove the non-graded case. The graded case follows from the fact
that the maps of the {Cα} preserve grade.

In the non-graded case, finite generation of F implies that the natural map⊕
α

HomRSn(F,Cα)→ HomRSn(F,
⊕
α

Cα)

is an isomorphism, where α runs over any indexing set. The projectivity of F implies
that HomRSn(F, ∗) is exact, so the short exact sequence defining the filtered colimit is
preserved.



MODEL-CATEGORIES OF COALGEBRAS OVER OPERADS 225

B.6. Proposition. Let V = {V(n)} be an operad satisfying condition 4.3, and let C be a
chain-complex with G (C) = {Cα} a family of flat subcomplexes ordered by inclusion that
is closed under countable sums. In addition, suppose

C = lim−→ Cα

Then ∏
n≥0

HomRSn(V(n), C⊗n) = lim−→
∏
n≥0

HomRSn(V(n), C⊗nα )

Proof. Note that C, as the limit of flat modules, it itself flat.
The Z-flatness of C implies that any y ∈ C⊗n is in the image of

C⊗nα ↪→ C⊗n

for some Cα ∈ G (C) and any n ≥ 0. The finite generation and projectivity of the {V(n)}
in every dimension implies that any map

xi ∈ HomRSn(V(n), C⊗n)j

lies in the image of

HomRSn(V(n), C⊗nαi
) ↪→ HomRSn(V(n), C⊗n)

for some Cαi
∈ G (C). This implies that

x ∈ HomRSn(V(n), C⊗n)

lies in the image of

HomRSn(V(n), C⊗nα ) ↪→ HomRSn(V(n), C⊗n)

where Cα =
∑∞

i=0 Cαi
, which is still a subcomplex of the lattice G (C).

If
x =

∏
xn ∈

∏
n≥0

HomRSn(V(n), C⊗n)

then each xn lies in the image of

HomRSn(V(n), C⊗nαn
) ↪→ HomRSn(V(n), C⊗n)

where Cαn ∈ G (C) and x lies in the image of∏
n≥0

HomRSn(V(n), C⊗nα ) ↪→
∏
n≥0

HomRSn(V(n), C⊗n)

where Cα =
∑

n≥0Cαn is countable.
The upshot is that∏

n≥0

HomRSn(V(n), C⊗n) = lim−→
∏
n≥0

HomRSn(V(n), C⊗nα )

as Cα runs over all subcomplexes of the lattice G (C).
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B.7. Theorem. Let V = {V(n)} be an operad satisfying condition 4.3.
If C is a V-coalgebra whose underlying chain-complex is nearly free, then

C = lim−→ Cα

where {Cα} ranges over all the countable sub-coalgebras of C.

Proof. To prove the statement, we show that every

x ∈ C

is contained in a countable sub-coalgebra of C.
Let

a:C →
∏
n≥0

HomRSn(V(n), C⊗n)

be the adjoint structure-map of C, and let x ∈ C1, where C1 is a countable sub-chain-
complex of dCe.

Then a(C1) is a countable subset of
∏

n≥0 HomRSn(V(n), C⊗n), each element of which
is defined by its value on the countable set of RSn-projective generators of {Vn} for all
n > 0. It follows that the targets of these projective generators are a countable set of
elements

{xj ∈ C⊗n}

for n > 0. If we enumerate all of the ci,j in xj = c1,j ⊗ · · · ⊗ cn,j and their differentials, we
still get a countable set. Let

C2 = C1 +
∑
i,j

R · ci,j

This will be a countable sub-chain-complex of dCe that contains x. By an easy induction,
we can continue this process, getting a sequence {Cn} of countable sub-chain-complexes
of dCe with the property

a(Ci) ⊆
∏
n≥0

HomRSn(V(n), C⊗ni+1)

arriving at a countable sub-chain-complex of dCe

C∞ =
∞⋃
i=1

Ci

that is closed under the coproduct of C. It is not hard to see that the induced coproduct
on C∞ will inherit the identities that make it a V-coalgebra.
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B.8. Corollary. Let V = {V(n)} be a Σ-cofibrant operad such that V(n) is of finite
type for all n ≥ 0. If C is nearly-free, then the cofree coalgebras

LVC, PVC, MVC, FVC

are well-defined and

LVC = lim−→ LVCα
PVC = lim−→ PVCα
MVC = lim−→ MVCα
FVC = lim−→ FVCα

 ⊆
∏
n≥0

HomRSn(V(n), C⊗n)

where Cα ranges over the countable sub-chain-complexes of C.

Proof. The near-freeness of C implies that the Cα are all Z-free when R = Z, so the
construction in [23] gives cofree coalgebras LVCα.

Since (by theorem B.7)
C = lim−→ Cα

where Cα ranges over countable sub-coalgebras of C, we get coalgebra morphisms

bα:Cα → LVdCαe

inducing a coalgebra morphism

b:C → lim−→ LVdCαe

We claim that LVdCe = lim−→ LVdCαe. We first note that lim−→ LVdCαe depends only
on dCe and not on C . If D is a V-coalgebra with dCe = dDe then, by theorem B.7,
D = lim−→ Dβ where the Dβ are the countable sub-coalgebras of D.

We also know that, in the poset of sub-chain-complexes of dCe = dDe, {dCαe} and
{dDβe} are both cofinal. This implies the cofinality of {LVdCαe} and {LVdDβe}, hence

lim−→ LVdCαe = lim−→ LVdDβe

This unique V-coalgebra has all the categorical properties of the cofree-coalgebra

LVdCe

which proves the first part of the result.
The statement that

LVdCe ⊆
∏
n≥0

HomRSn(V(n), C⊗n)

follows from
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1. The canonical inclusion

LVCα ⊆
∏
n≥0

HomRSn(V(n), C⊗nα )

in [23], and

2. the fact that the hypotheses imply that∏
n≥0

HomRSn(V(n), C⊗n) = lim−→
∏
n≥0

HomRSn(V(n), C⊗nα )

—see proposition B.6.

Similar reasoning applies to PVC, MVC, FVC.

B.9. Core of a module

B.10. Lemma. Let A,B ⊆ C be sub-coalgebras of C ∈ C = S0 or I0. Then A+B ⊆ C
is also a sub-coalgebra of C.

In particular, given any sub-DG-module

M ⊆ dCe

there exists a maximal sub-coalgebra 〈M〉—called the core of M—with the universal prop-
erty that any sub-coalgebra A ⊆ C with dAe ⊆M is a sub-coalgebra of 〈M〉.

This is given by
α(〈M〉) = α(C) ∩ PVM ⊆ PVC

where
α:C → PVC

is the classifying morphism of C.

Proof. The first claim is clear—A + B is clearly closed under the coproduct structure.
This implies the second claim because we can always form the sum of any set of sub-
coalgebras contained in M .

The second claim follows from:
The fact that

〈M〉 = α−1(α(C) ∩ PVM)

implies that it is the inverse image of a coalgebra (the intersection of two coalgebras)
under an injective map (α), so it is a subcoalgebra of C with d〈M〉e ⊆M .

Given any subcoalgebra A ⊆ C with dAe ⊆M , the diagram

A
� � // C

α //

QQQQQQQQQQQQQQQQQ

QQQQQQQQQQQQQQQQQ PVC

ε

��

C
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where ε:PVC → C is the cogeneration map, implies that

α(A) ⊆ α(C)

ε(α(A)) ⊆ ε(PVM)

which implies that A ⊆ 〈M〉, so 〈M〉 has the required universal property.

B.11. Corollary. Let C ∈ C = S0 or I0 and M ⊆ dCe a sub-DG-module and suppose

Φ:C ⊗ I → C

is a coalgebra morphism with the property that Φ(M ⊗ I) ⊆M . Then

Φ(〈M〉 ⊗ I) ⊆ 〈M〉
Proof. The hypotheses imply that the diagrams

C ⊗ I α⊗1
//// (LVC)⊗ I

��

C ⊗ I
Φ

��

// LV(C ⊗ I)

LVΦ

��

C α
// LVC

and
(LVM)⊗ I //

��

(LVC)⊗ I

��

LV(M ⊗ I) //

LV(Φ|M⊗I)
��

LV(C ⊗ I
LVΦ

��

LVM // LVC

commute. Lemma B.10 implies the result.

This allows us to construct equalizers in categories of coalgebras over operads:

B.12. Corollary. If
fi:A→ B

with i running over some index set, is a set of morphisms in C = S0 or S0, then the
equalizer of the {fi} is

〈M〉 ⊆ A

where M is the equalizer of dfie: dAe → dBe in Ch.

Remark. Roughly speaking, it is easy to construct coequalizers of coalgebra morphisms
and hard to construct equalizers—since the kernel of a morphism is not necessarily a
sub-coalgebra. This is dual to what holds for algebras over operads.

Proof. Clearly fi| 〈M〉 = fj| 〈M〉 for all i, j. On the other hand, any sub-DG-algebra
with this property is contained in 〈M〉 so the conclusion follows.
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B.13. Proposition. Let C ∈ I0 and let {Ai}, i ≥ 0 be a descending sequence of sub-
chain-complexes of dCe—i.e., Ai+1 ⊆ Ai for all i ≥ 0. Then〈

∞⋂
i=0

Ai

〉
=
∞⋂
i=0

〈Ai〉

Proof. Clearly, any intersection of coalgebras is a coalgebra, so

∞⋂
i=0

〈Ai〉 ⊆

〈
∞⋂
i=0

Ai

〉
On the other hand

d

〈
∞⋂
i=0

Ai

〉
e ⊆

∞⋂
i=0

Ai ⊆ An

for any n > 0. Since 〈
⋂∞
i=0Ai〉 is a coalgebra whose underlying chain complex is contained

in An, we must actually have

d

〈
∞⋂
i=0

Ai

〉
e ⊆ d〈An〉e

which implies that 〈
∞⋂
i=0

Ai

〉
⊆
∞⋂
i=0

〈Ai〉

and the conclusion follows.

B.14. Categorical products We can use cofree coalgebras to explicitly construct the
categorical product in I0 or S0:

B.15. Definition. Let Ai, i = 0, 1 be objects of C = S0 or I0. Then

A0 � A1 = 〈M0 ∩M1〉 ⊆ Z =

{
LV(dA0e ⊕ dA1e) if C = S0

PV(dA0e ⊕ dA1e) if C = I0

where
Mi = p−1

i (dimAie)
under the projections

pi:Z →

{
LV(dAie) if C = S0

PV(dAie) if C = I0

induced by the canonical maps dA0e ⊕ dA1e → dAie. The imAi are images under the
canonical morphisms

Ai →
{

LVdAie if C = S0

PV(dAie) if C = I0

}
→ Z

classifying coalgebra structures—see definition 2.16.
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Remark. By identifying the Ai with their canonical images in Z, we get canonical pro-
jections to the factors

A0 � A1 → Ai

B.16. Lemma. The operation, �, defined above is a categorical product in C = S0 or
I0. In other words, morphisms fi:C → Ai, i = 0, 1 in C induce a unique morphism
f̄ :C → A0 � A1 that makes the diagram

A0

C
f̄

//

f0
@@�������

f1 ��
======= A0 � A1

ccGGGGGGGGG

{{wwwwwwwww

A1

commute.

Proof. The morphisms fi induce morphisms dfie: dCe → dCie which in turn induce a
morphism

df0e ⊕ df1e: dCe → dA0e ⊕ dA1e

This induces a unique coalgebra morphism

C → LV(dA0e ⊕ dA1e)

(when C = S0) and the diagram

A0
� � // LVdA0e

C
f̄

//

f0

AA��������

f1
��

<<<<<<<< LV(dA0e ⊕ dA1e)

ggPPPPPPPPPPPP

wwnnnnnnnnnnnn

A1
� � // LVdA1e

shows that its image actually lies in A0 �A1 ⊆ LV(dA0e⊕dA1e). The case where C = I0

is entirely analogous.

B.17. Proposition. Let F :A ⊗ I → A and G:B ⊗ I → B be strict homotopies in
C = I0 or S0 (see definition 4.7). Then there is a strict homotopy

(A�B)⊗ I F �̂G−−−→ A�B
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that makes the diagrams

(A�B)⊗ I

��

F �̂G // A�B

��

A⊗ I
F

// A

(15)

and

(A�B)⊗ I

��

F �̂G // A�B

��

B ⊗ I
G

// B

(16)

commute. If

f1, f2:A → A′

g1, g2:B → B′

are strictly homotopic morphisms with respective strict homotopies

F :A⊗ I → A′

G:B ⊗ I → B′

then F �̂G is a strict homotopy between f1 � g1 and f2 � g2.
Consequently, if f :A→ A′ and g:B → B′ are strict equivalences, then

f � g:A�B → A′ �B′

is a strict equivalence.

Proof. The projections

A�B

��

// B

A

induce projections
(A�B)⊗ I

��

// B ⊗ I

A⊗ I
and the composite

(A�B)⊗ I → (A⊗ I) � (B ⊗ I)
F�G−−−→ A�B

satisfies the first part of the statement.
Note that diagrams 15 and 16 —and the fact that maps to A′ � B′ are uniquely

determined by their composites with the projections A′ � B′ ⇒ A′, B′ (the defining
universal property of �)—implies that F �̂G is a strict homotopy between f1 � g1 and
f2 � g2. The final statement is also clear.
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In like fashion, we can define categorical fibered products of coalgebras:

B.18. Definition. Let

F //

i
��

A

f

��

B // C

be a diagram in S0 or I0. Then the fibered product with respect to this diagram, A�C B ,
is defined to be the equalizer

F → A�B ⇒ C

by the maps induced by the projections A � B → A and A � B → B composed with the
maps in the diagram.

We have an analogue to proposition B.17:

B.19. Proposition. Let A
f−→ B

g←− C, A′
f ′−→ B′

g′←− C ′ be diagrams in C = I0 or S0

and let

A⊗ I f⊗1
//

HA

��

B ⊗ I
HB

��

C ⊗ Ig⊗1
oo

HC

��

A′
f ′

// B′ C
g′

oo

commute, where the Hα are strict homotopies. Then there exists a strict homotopy

(A�B C)⊗ I HA�̂
HBHC−−−−−−→ A′ �B′ C ′

between the morphisms

(HA|A⊗ pi) � (HC ⊗ pi):A�B C → A′ �B′ C ′

for i = 0, 1.

Proof. The morphism HA�̂
HB
HC is constructed exactly as in proposition B.17. The

conclusion follows by the same reasoning used to prove the final statement of that result.

B.20. Proposition. Let U, V and W be objects of Ch and let Z be the fibered product
of

V

g

��

U
f
//W

in Ch—i.e., Z is the equalizer
Z → U ⊕ V ⇒ W
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in Ch. Then PVZ is the fibered product of

PVV

PVg

��

PVU PVf
// PVW

(17)

in I0 and LVZ is the fibered product of

LVV

LVg

��

LVU LVf
// LVW

(18)

in S0.

Proof. We prove this in the pointed irreducible case. The other case follows by an
analogous argument.

The universal properties of cofree coalgebras imply that PV(U ⊕ V ) = PVU � PVV .
Suppose F is the fibered product of diagram 17. Then

PVZ ⊆ F

On the other hand, the composite

F → PVU � PVV = PV(U ⊕ V )→ U ⊕ V

where the rightmost map is the co-generating map, has composites with f and g that are
equal to each other—so it lies in Z ⊆ U ⊕ V . This induces a unique coalgebra morphism

j:F → PVZ

left-inverse to the inclusion
i:PVZ ⊆ F

The uniqueness of induced maps to cofree coalgebras implies that j ◦ i = i ◦ j = 1.

B.21. Limits and colimits We can use cofree coalgebras and adjointness to the for-
getful functors to define categorical limits and colimits in I0 and S0.

Categorical reasoning implies that

B.22. Proposition. Let
{Bi}

bi
��

{Ai} ai
// {Ci}
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be a diagram in pro-I0 or pro-S0. Then

lim←− (Ai �
Ci Bi) = (lim←− Ai) �

(lim←− Ci) (lim←− Bi)

See definition B.18 for the fibered product notation.

Theorem B.3 implies that colimits in I0 or S0 are the same as colimits of underlying
chain-complexes. The corresponding statement for limits is not true except in a special
case:

B.23. Proposition. Let {Ci} ∈ pro-I0 or pro-S0 and suppose that all of its morphisms
are injective. Then

dlim←− Cie = lim←−dCie

Remark. In this case, the limit is an intersection of coalgebras. This result says that to
get the limit of {Ci}, one

1. forms the limit of the underlying chain-complexes (i.e., the intersection) and

2. equips that with the coalgebra structure in induced by its inclusion into any of the
Ci

That this constructs the limit follows from the uniqueness of limits.

B.24. Definition. Let A = {Ai} ∈ pro-I0. Then define the normalization of A, denoted
Â = {Âi}, as follows:

1. Let V = PV(lim←−dAie) with canonical maps

qn:PV(lim←−dAie)→ PV(dAne)

for all n > 0.

2. Let fn:An → PV(dAne) be the coalgebra classifying map—see definition 2.16.

Then Ân = 〈q−1
n (fn(An))〉, and Ân+1 ⊆ Ân for all n > 0. Define Â = {Ân}, with the

injective structure maps defined by inclusion.
If A = {Ai} ∈ pro-S0 then the corresponding construction holds, where we consistently

replace PV(∗) by LV(∗).

Normalization reduces the general case to the case dealt with in proposition B.23.

B.25. Corollary. Let C = {gi:Ci → Ci−1} in pro-I0 or pro-S0. Then

lim←− Ci = lim←− Ĉi

where {Ĉi} is the normalization of {Ci}. In particular, if C is in I0

lim←− Ci =

〈
∞⋂
i=0

dpie−1dαie(dCie)

〉
⊆ PV(lim←−dCie)

where pn:PV(lim←−dCie)→ PV(dCne) and αn:Cn → PV(dCne) are as in definition B.24, and
the corresponding statement holds if C is in pro-S0 with PV(∗) replaced by LV(∗) .
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Proof. Assume the notation of definition B.24. Let

fi:Ci →
{
PV(dCie)
LVdCie

}
be the classifying maps in I0 or S0, respectively —see definition 2.16. We deal with the
case of the category I0—the other case is entirely analogous. Let

qn:PV(lim←−dCie)→ PV(dCne)

be induced by the canonical maps lim←−dCie → dCne.
We verify that

X =

〈
∞⋂
i=0

dqie−1dfie(dCie)

〉
= lim←− Ĉi

has the category-theoretic properties of an inverse limit. We must have morphisms

pi:X → Ci

making the diagrams

X
pi //

pi−1
  

AAAAAAAA Ci

gi
��

Ci−1

(19)

commute for all i > 0. Define pi = f−1
i ◦ qi:X → Ci —using the fact that the classi-

fying maps fi:Ci → PVdCie are always injective (see [23] and the definition 2.16). The
commutative diagrams

Ci

gi

��

αi // PVdCie
PVdgie
��

Ci−1 αi−1

// PVdCi−1e

and
lim←− PVdCie

pi //

pi−1
&&MMMMMMMMMM
PVdCie

PVdgie
��

PVdCi−1e

together imply the commutativity of the diagram with the diagrams 19. Consequently,
X is a candidate for being the inverse limit, lim←− Ci.

We must show that any other candidate Y possesses a unique morphism Y → X,
making appropriate diagrams commute. Let Y be such a candidate. The morphism of
inverse systems defined by classifying maps (see definition 2.16)

Ci → PV(dCie)
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implies the existence of a unique morphism

Y → lim←− PVdCie = PV lim←−dCie

The commutativity of the diagrams

Y //

��

PV lim←−dCie
pi

��

Ci αi

// PVdCie

for all i ≥ 0 implies that dimY e ⊆ dpie−1dαie(dCie). Consequently

dimY e ⊆
∞⋂
i=0

dpie−1dαie(dCie)

Since Y is a coalgebra, its image must lie within the maximal sub-coalgebra contained
within

⋂∞
i=0dpie−1dαie(dCie), namely X = 〈

⋂∞
i=0dpie−1dαie(dCie)〉. This proves the first

claim. Proposition B.13 implies that X =
⋂∞
i=0 Ĉi = lim←− Ĉi.

B.26. Lemma. Let {gi:Ci → Ci−1} be an inverse system in Ch. If n > 0 is an integer,
then the natural map (

lim←− Ci
)⊗n → lim←− C⊗ni

is injective.

Proof. Let A = lim←− Ci and pi:A→ Ci be the natural projections. If

Wk = ker p⊗nk :
(
lim←− Ci

)⊗n → C⊗nk

we will show that
∞⋂
k=1

Wk = 0

If Ki = ker pi, then
∞⋂
i=1

Ki = 0

and

Wi =
n∑
j=1

A⊗ · · · ⊗Ki ⊗ · · · ⊗ A︸ ︷︷ ︸
jth position

Since all modules are nearly-free, hence, flat (see remark A.1), we have

Wk+1 ⊆ Wk



238 JUSTIN R. SMITH

for all k, and
m⋂
i=1

Wi =
n∑
j=1

A⊗ · · · ⊗

(
m⋂
i=1

Ki

)
⊗ · · · ⊗ A︸ ︷︷ ︸

jth position

from which the conclusion follows.

B.27. Proposition. Let {Ci} ∈ pro-I0, and suppose V = {V(n)} is a Σ-cofibrant operad
with V(n) of finite type for all n ≥ 0. Then the projections

dPV(lim←−dCie)e → dPV(dCne)e

for all n > 0, induce a canonical injection

µ: dPV(lim←−dCie)e ↪→ lim←−dPV(dCie)e

In addition, the fact that the structure maps

αi:Ci → PV(dCie)

of the {Ci} are coalgebra morphisms implies the existence of an injective Ch-morphism

α̂: lim←−dCie ↪→ lim←−dPV(dCie)e

Corresponding statements hold for pro-S0 and the functors LV(∗).

Proof. We must prove that

µ: dPV(lim←−dCie)e → lim←−dPV(dCie)e

is injective. Let K = kerµ. Then

K ⊂ dPV(lim←−dCie)e ⊆
∏
n≥0

HomRSn(V(n), D⊗n)

where D = lim←−dCie (see [23]). If n ≥ 0, let

pn:
∏
n≥0

HomRSn(V(n), D⊗n)→ HomRSn(V(n), D⊗n)

denote the canonical projections. The diagrams

∏
n≥0 HomRSn(V(n), D⊗n)

∏
HomR(1, b⊗nk )

//

pn

��

∏
n≥0

HomRSn(V(n), C⊗nk )

qn

��

HomRSn(V(n), D⊗n)
HomR(1,b⊗n

k )

// HomRSn(V(n), C⊗nk )
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commute for all k and n ≥ 0, where qn is the counterpart of pn and bk: lim←−dCie → dCke
is the canonical map. It follows that

pk(K) ⊆ ker HomR(1, b⊗nk )

for all n ≥ 0, or

pk(K) ⊆
⋂
k>0

ker HomR(1, b⊗nk )

We claim that ⋂
n>0

ker HomR(1, b⊗nk ) = HomR(1,
⋂
k>0

ker b⊗nk ) = 0

The equality on the left follows from the left-exactness of HomR and filtered limits (of
chain-complexes). The equality on the right follows from the fact that

1.
⋂
k>0 ker bk = 0

2. the left exactness of ⊗ for R-flat modules (see remark A.1).

3. Lemma B.26.

It follows that pn(K) = 0 for all n ≥ 0 and K = 0.
The map

α̂: lim←−dCie ↪→ lim←−dPV(dCie)e

is induced by classifying maps of the coalgebras {Ci}, which induce a morphism of limits
because the structure maps Ck → Ck−1 are coalgebra morphisms, making the diagrams

Ck //

��

Ck−1

��

PV(dCke) // PV(dCk−1e)

commute for all k > 0.

B.28. Corollary. Let C = {gi:Ci → Ci−1} ∈ pro-I0, and suppose V = {V(n)} is a
Σ-cofibrant operad with V(n) of finite type for all n ≥ 0. Then

lim←− Ci =
∞⋂
i=1

q−1
i (αi(Ci)) ⊆ LV(lim←−dCie) (20)

with the coproduct induced from LV(lim←−dCie), and where

qi:LV(lim←−dCie)→ LV(dCie)

is the projection and
αi:Ci → LV(dCie) (21)
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is the classifying map, for all i. In addition, the sequence

0→ dlim←− Cie → lim←−dCie
α̂−→

lim←−dLV(dCie)e
µ(dLV(lim←−dCie)e)

→
lim←− (dLV(dCie)/dαi(Ci)ee)

imµ(dLV(lim←−dCie)e)
→ lim←−

1dCie → 0

is exact in Ch, where the injection

dlim←− Cie → lim←−dCie

is induced by the projections
pi: lim←− Ci → Ci

and
α̂: lim←−dCie → lim←−dLV(dCie)e

is induced by the {αi} in equation 21. The map

µ: dLV(lim←−dCiee ↪→ lim←−dLV(dCiee

is constructed in Proposition B.27.
If C ∈ pro-S0, then the corresponding statements apply, where LV(∗) is replaced by

PV(∗).

Remark. The first statement implies that the use of the 〈∗〉-functor in corollary B.25 is
unnecessary—at least if V is projective in the sense defined above.

The remaining statements imply that lim←− Ci is the largest sub-chain-complex of
lim←−dCie upon which one can define a coproduct that is compatible with the maps

lim←− Ci → Ci

Proof. First, consider the projections

qi:LV(lim←−dCie)→ LV(dCie)

The commutativity of the diagram

LV(lim←−dCie)
� � //

qi

��

lim←− LV(Ci)

��

LV(Ci) LV(Ci)

implies that

lim←− ker qi =
∞⋂
i=1

ker qi = 0
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Now, consider the exact sequence

0→ ker qi → q−1
i (αi(Ci))→ dCie → 0

and pass to inverse limits. We get the standard 6-term exact sequence for inverse limits
(of Z-modules):

0→ lim←− ker qi → lim←− q−1
i (αi(dCie))→ lim←−dCie

→ lim←−
1 ker qi → lim←−

1q−1
i (αi(Ci))→ lim←−

1dCie → 0

which, with the fact that lim←− ker qi = 0, implies that

∞⋂
i=1

q−1
i (αi(Ci)) = lim←− q−1

i (αi(Ci)) ↪→ lim←−dCie

The conclusion follows from the fact that

lim←− Ci =

〈
∞⋂
i=1

q−1
i (αi(Ci))

〉
⊆
∞⋂
i=1

q−1
i (αi(Ci))

It remains to prove the claim in equation 20, which amounts to showing that

J =
∞⋂
i=1

q−1
i (αi(Ci)) ⊆ LV(lim←−dCie)

is closed under the coproduct of LV(lim←−dCie) —i.e., it is a coalgebra even without applying
the 〈∗〉-functor. If n ≥ 0, consider the diagram

q−1
j (αj(Cj))� _

��

α−1
j ◦qj

// Cj� _

αj

��

cn,j

zz

LV(lim←−dCie)

δ̂n
��

qj
// LV(dCje)

δj,n
��

HomRSn(V(n), LV(lim←−dCie)
⊗n))

� _

µ̂n
��

rn,j
// HomRSn(V(n), (LV(dCje)⊗n))

HomRSn(V(n), (lim←− LV(dCie))⊗n)
� _

��

HomR(1,p⊗n
j )

33hhhhhhhhhhhhhhhhhhhh

∏
n≥0 HomRSn(V(n), LV(dCie)⊗n)

πj

CC

HomRSn(V(n), C⊗nj )

sn,j

OO

where:
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1. the δi and δ̂-maps are coproducts and the αi are coalgebra morphisms.

2. rn,j = HomR(1, q⊗nj ),

3. The map µ̂n is defined by

µ̂n = HomR(1, µ⊗n): HomRSn(V(n), (LV(lim←−dCie)
⊗n))

↪→ HomRSn(V(n), (lim←− LV(dCie)⊗n)

where µ:LV(lim←−dCie) ↪→ lim←− LV(dCie) is the map defined in Proposition B.27.

4. sn,j = HomR(1, α⊗nj ), and αj:Cj → LV(dCje) is the classifying map.

5. pj: lim←− LV(dCie)→ LV(dCje) is the canonical projection.

6. cn,j:Cj → HomRSn(V(n), C⊗nj ) is the coproduct.

This diagram and the projectivity of {V(n)∗} and the near-freeness of LV(lim←−dCie) (and
flatness: see remark A.1) implies that

δ̂n
(
q−1
j (αj(Cj))

)
⊆ HomRSn(V(n), Ln,j)

where Ln,j = q−1
j (αj(Cj))

⊗n + ker rn,j and

∞⋂
j=1

Ln,j =

(
∞⋂
j=1

q−1
j (αj(Cj))

)⊗n
+ ker µ̂n = J⊗n

so J is closed under the coproduct for LV(lim←−dCie).
Now, we claim that the exact sequence B.28 is just B.21 in another form—we have

expressed the lim←−
1 terms as quotients of limits of other terms.

The exact sequences

0→ ker qk → dLV(lim←−dCie)e
qk−→ dLV(dCke)e → 0

for all k, induces the sequence of limits

0 // lim←− ker qk // dLV(lim←−dCie)e // lim←−dLV(dCie)e // lim←−
1 ker qk // 0

0

which implies that

lim←−
1 ker qk =

lim←−dLV(dCie)e
dLV(lim←−dCie)e
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In like fashion, the exact sequences

0→ q−1
k (αk(Ck))→ dLV(lim←−dCie)e → dLV(dCke)/αk(Ck)e → 0

imply that

lim←−
1q−1
i (αi(Ci)) =

lim←− (dLV(dCie)/dαi(Ci)ee)
imdLV(lim←−dCie)e

B.29. Corollary. Let {Ci} ∈ pro-I0, and suppose V = {V(n)} is a Σ-cofibrant operad
with V(n) of finite type for all n ≥ 0. If

αi:Ci → PV(dCie)

are the classifying maps with

α̂: lim←−dCie → lim←−dPV(dCie)e

the induced map, and if

µ: dPV(lim←−dCie)e → lim←−dPV(dCie)e

is the inclusion defined in proposition B.27, then

µ
(
dlim←− Cie

)
= µ

(
dPV(lim←−dCie)e

)
∩ α̂

(
lim←−dCie

)
⊆ lim←− dPV(dCie)e

A corresponding results holds in the category pro-S0 after consistently replacing the
functor PV(∗) by LV(∗).

Remark. The naive way to construct lim←− Ci is to try to equip lim←−dCie with a coproduct—
a process that fails because we only get a map

lim←−dCie →
∏
n≥0

HomRSn(V(n), lim←− (C⊗ni )) 6=
∏
n≥0

HomRSn(V(n), (lim←− Ci)
⊗n)

which is not a true coalgebra structure.
Corollary B.29 implies that this naive procedure almost works. Its failure is precisely

captured by the degree to which

dPV(lim←−dCie)e 6= lim←− dPV(dCie)e

Proof. This follows immediately from the exact sequence B.28.
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Our main result

B.30. Theorem. Let {fi}: {A} → {Ci} be a morphism in pro-I0 over a Σ-cofibrant
operad V = {V(n)} with V(n) of finite type for all n ≥ 0. Let

1. {A} be the constant object

2. the {fi} be cofibrations for all i

Then {fi} induces a cofibration f = lim←−{fi}:A→ lim←−{Ci} and the sequence

0→ dAe
lim←− fi
−−−→ dlim←− Cie → dlim←− (Ci/A)e → 0

is exact. In particular, if dlim←− (Ci/A)e is contractible, then lim←− fi is a weak equivalence.

Proof. We will consider the case of S0—the other case follows by a similar argument.
The inclusion

dlim←− Cie ⊆ lim←−dCie
from corollary B.28, and the left-exactness of filtered limits in Ch implies the left-
exactness of the filtered limits in pro-I0, and that the inclusion

dAe ↪→ dlim←− Cie

is a cofibration in Ch.
The fact that

dlim←− Cie = d
∞⋂
i=1

q−1
i (αi(Ci))e ⊆ dLV(lim←−dCie)e

from the same corollary and the diagram

q−1
j (αj(Cj))� _

��

h // u−1
j (α′j(Cj/A))

� _

��

LV(lim←−dCie) // //

qj

��

LV(lim←−dCi/Ae)
uj

��

LV(dCje) // // LV(dCj/Ae)

Cj

αj

OO

// // Cj/A

α′j

OO

shows that the map h is surjective.
The final statement follows from Lemma 3.5 and the fact that

dlim←− Cie ⊆ lim←−dCie
(by Corollary B.28) so the splitting map lim←−dCie → dAe induces a splitting map
dlim←− Cie → dAe.

The conclusion follows.
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Jean-Louis Loday, Université de Strasbourg: loday@math.u-strasbg.fr
Ieke Moerdijk, University of Utrecht: moerdijk@math.uu.nl
Susan Niefield, Union College: niefiels@union.edu
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