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THE COALGEBRAIC STRUCTURE OF CELL COMPLEXES

THOMAS ATHORNE

Abstract. The relative cell complexes with respect to a generating set of cofibrations
are an important class of morphisms in any model structure. In the particular case of
the standard (algebraic) model structure on Top, we give a new expression of these mor-
phisms by defining a category of relative cell complexes, which has a forgetful functor to
the arrow category. This allows us to prove a conjecture of Richard Garner: considering
the algebraic weak factorisation system given in that algebraic model structure between
cofibrations and trivial fibrations, we show that the category of relative cell complexes
is equivalent to the category of coalgebras.

1. Introduction

The aim of this paper is the proof of a conjecture of Richard Garner, which describes how
the recent and categorically motivated concept of an algebraic weak factorisation system
is deeply connected, in the specific case of topological spaces, to the more established and
well understood idea of relative cell complexes. Specifically, we will prove that the left
map structures (coalgebra structures) of the canonical algebraic weak factorisation system
on Top are exactly the relative cell complexes. A relative cell complex is a morphism
with a property : it can be expressed as a transfinite composite of pushouts of coproducts
of sphere inclusions. The left map structures, on the other hand, specify an explicit choice
of such an expression. We will spend some of the paper making this notion of a relative
cell complex structure precise.

The notion of an algebraic weak factorisation system (which we will write as ‘awfs’—
both singular and plural) was introduced by Grandis and Tholen [Grandis, Tholen, 2008]
as a way to make the notion of a weak factorisation system more amenable to study
using the techniques of category theory. Weak factorisation systems are fundamental to
homotopy theory; they are the main component of model category structures. However,
they have some drawbacks: most important for Grandis and Tholen was the fact that the
classes of left and right maps are not closed under colimits and limits. The definition of
an awfs involves a functorial factorisation of which the left functor is a comonad and the
right functor is a monad. The notions of left and right maps are naturally replaced with
the coalgebras and algebras, meaning that colimits and limits are automatically available.

Another possible disadvantage of weak factorisation systems is the standard method
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of constructing them: the small object argument. This is a transfinite induction which
does the job well enough for many purposes, but which seems at odds with what should
be a very natural concept in category theory; it relies on terminating a sequence at some
arbitrary choice of ordinal because it won’t converge, it has no universal property and it
cannot be considered as an instance of any other transfinite categorical construction. In
his paper [Garner, 2009], Richard Garner demonstrates that this can be cured; there is
a very natural variant of the small object argument for awfs which does converge, does
have a nice universal property, and can be considered as an instance of generating a free
monoid in a monoidal category. This puts the small object argument firmly in the context
of well understood categorical algebra.

This discovery of Garner’s has demonstrated the value of awfs as a much neater struc-
ture than weak factorisation systems. Emily Riehl has since gone on to adapt the defini-
tion of model category to that of an algebraic model category, using awfs in place of weak
factorisation systems, and this work can be found in [Riehl, 2011a], [Riehl, 2011b] and
[Riehl, 2011c]. At the same time Garner has been applying awfs in helping to understand
higher categories, using them to classify homomorphisms between weak n-categories—see
[Garner, 2008].

Throughout the work of Riehl there is an emphasis on the right maps—the algebras—
of a given awfs. There was a good reason for this; Garner proved (in [Garner, 2009])
a theorem that characterised the right maps in any cofibrantly generated awfs—a right
map structure on a morphism is precisely a choice of solution for every lifting problem
with a generating left map. Unfortunately, there was no such easy description of left map
structures. It was clear that any relative cell complex had a left map structure and that
any left map was at least a retract of a relative cell complex; Garner’s conjecture, which
we attack in this paper, was that the left maps are exactly the relative cell complexes (in
the specific case of Top with the standard awfs).

This result will allow us to access the left maps too. What is more, the left maps—as
cell complexes—are in many ways much more accessible and understandable than the
right maps. It is hard to give an example of a right map structure that is neither trivial
nor very complex, because of the infinite number of liftings that must be specified. But
to give a simple, finite, example of a left map structure is very easy! The left maps have
a constructive flavour that makes them, in the author’s opinion, easier to work with. The
result will also establish an important link between awfs and the homotopy theory which
is already understood. The relative cell complexes are a class of maps that have been
around for a long time, and they are fundamental to model categories; in a sense, it is
important to check that they are indeed the left maps of the awfs in order to make sure
that the awfs fits properly into the existing theory.

While this paper’s result is restricted to one particular awfs, the technique used should
easily generalise to many other examples. In this case, there are potential applications to
higher category theory: in the case of weak n-categories, the relative cell complexes are
very closely connected to the idea of computads. This potential for generalisation will be
discussed further in Section 10.
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The approach. We will prove the theorem by first considering the existing definition of
relative cell complex, which gives a class of morphisms in Top. In Section 4 we adjust
this definition in order to obtain a category CellCx which has a natural forgetful functor
U to Top2. After making sure that this category defines a sensible notion of ‘cell complex
structure’ on a map, we exhibit a right adjoint to U , in Section 5. This adjunction can
be thought of as a nice concrete expression of the small object argument; the universal
property of a free cell complex is exactly analogous to the lifting property the small
object argument is designed to obtain. The smallness condition, which we expect to find
somewhere, appears sooner than you might expect—it is required for composition to be
defined on cell complexes, in Section 4.

In Section 6 we demonstrate that the adjunction is comonadic, so cell complexes are
coalgebras for the comonad UK. In Section 7 we will see how UK is the left hand side of
an awfs, and in Section 8 we describe the universal property that CellCx satisfies. This
allows us, in the remaining Section 9, to prove that UK is isomorphic as a comonad to L,
the left hand functor of the awfs we are interested in. This proves our main result: that
our notion of cell complex structure is equivalent to the left map structures.

Acknowledgements. The author would first of all like to thank his PhD supervisor
Nick Gurski, as well as the other members of the Sheffield Category Theory Seminar for
providing a stimulating environment. He is also grateful for useful discussions he had
with both Richard Garner and Emily Riehl in their recent visits to Sheffield. Thanks are
also due to the EPSRC for funding.

2. Background

Any functorial factorisation on a category C can be described as a pair (L,R) of a co-
pointed endofunctor and a pointed endofunctor on C2 (the category of arrows in C), with
the following properties:

� L is domain preserving,

� R is codomain preserving,

� the functors cod ◦ L and dom ◦R are equal,

� Rf ◦ Lf = f for any f .

It is useful to give the functor cod ◦ L, or equivalently dom ◦ R, a name; we will call it
the central functor of (L,R), and generally write it as M : C2 → C.

In an algebraic weak factorisation system, we simply ask that L be a comonad and
R be a monad. This turns out to be essentially the same as making a choice of solution
for every lifting problem between a coalgebra and an algebra. We should note that the
original name was natural weak factorisation system; we follow the name adopted by
[Riehl, 2011a].
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2.1. Definition. An algebraic weak factorisation system on a category C is a pair (L,R)

where L = (L,~ε, ~δ) is a comonad on C2, R = (R, ~η, ~µ) is a monad on C2, the copointed
endofunctor (L,~ε) together with the pointed endofunctor (R, ~η) make up the data of a
single functorial factorisation, and the pair satisfies the distributivity axiom, explained
below.

The final condition will ensure that the monad and comonad behave properly with
respect to one another. It follows from the monad laws that ~δ must have trivial domain
component and ~µ must have trivial codomain component, so their components take the
forms (1, δf ) and (µf , 1):

•
Lf

��
~δf

•
LLf

��

MRf
µf //

RRf

��
~µf

f

Rf

��
Mf

δf
//MLf • •

for some δf and µf . Then we can define a natural transformation ∆: LR → RL with
components given by (δf , µf ). The distributivity axiom says that this is a distributive
law of the comonad over the monad, meaning that it commutes with the unit, counit,
multiplication and comultiplication transformations.

The best notions of left map and right map are now given to us by the algebraic
structure. Let L-Map be the category of coalgebras for the comonad L and let R-Map
be the category of algebras for the monad R. What exactly does a left map structure on a
morphism in M look like? As always, a coalgebra is an object f : A→ B equipped with
a structure map f → Lf , which appears in this case as map α:

A
Lf
//Mf

Rf
// B

α
xx

a kind of ‘partial inverse’ to f . The coalgebra axioms translate into very natural properties
for α; in particular α ◦ f = Lf and Rf ◦ α = 1B. They also force the domain part of
the structure map to be the identity on A—this is why we can represent the left map
structure with just one morphism in Top.

In his paper [Garner, 2009] Garner introduces a revised version of the small object
argument. This allows us to take any category I over C2 (assuming some smallness
conditions similar to those for the original small object argument) and produce an awfs
for which the category I is naturally a subcategory of the left map category. The argument
is a transfinite iteration where a single step performed on f : A→ B involves considering
the set of commutative squares

X //

i
��

A

f
��

Y // B
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where i is in the category I, and then forming the pushout of A with many copies of
each i ∈ I, one for each of the squares. This can be visualised as ‘gluing’ many cells
onto A—one for every way such a cell can be included in B via f . When we iterate,
we are essentially adding layer after layer of cells in this way. In Garner’s small object
argument, there is a mechanism to prevent us from adding superfluous cells, and as a
result the sequence converges. We obtain a factorisation of f : A→Mf → B, where any
cell complex in B can be lifted to Mf .

We now consider the set of morphisms in Top, given by the the inclusion Sn−1 →
Dn for all n ≥ 0, where S−1 is considered to be the empty space and S0 the pair of
endpoints for D1. We call this J and will treat it as a discrete category over Top2.
Applying the small object argument to J produces an awfs on Top which is arguably the
most fundamental interesting example for homotopy theory; it is very close to the weak
factorisation system between cofibrations and trivial Serre fibrations that appears in the
standard model category structure on Top. For the rest of this paper we will write it as
(L,R); this is the awfs for which we prove our result.

3. Strata

The class of morphisms in Top which we write as J -cell and call the relative J -cell
complexes is usually defined to be the smallest class containing J which is closed under
coproducts, pushouts and transfinite composition. Starting with this notion, we seek to
define a category of relative J -cell complexes, which we will call CellCx. There will be
a forgetful functor U : CellCx→ Top2 whose image is precisely J -cell. In other words,
every morphism in J -cell will have one or more cell complex structure. We’ll introduce
some helpful notation at this point. If A is a relative cell complex, we will generally write
UA as ∂A→ A, and we’ll call ∂A the boundary or base space of A, and A the body of A.

In our definition, cell complexes will be formed as sequences of layers which we call
strata. Each stratum is the pushout of a coproduct of single cells.

3.1. Definition. A stratum (X,S) consists of the following data: a topological space X,
a set of cells S, and for each s ∈ S a choice of κs ∈ J and a continuous map bs : ∂κs → X.

The boundary of the stratum is X, and the body is given by the following pushout
square: ∐

s∈S ∂κs

∐
s∈S Uκs //

〈bs〉s∈S
��

∐
s∈S κs

��

X // (X,S)

So we can consider a stratum as a special sort of relative cell complex, for which U(X,S)
is the bottom arrow of the diagram. We will later define general relative cell complexes
as sequences of strata satisfying certain properties; first we will consider some properties
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of the category of strata. To work with the category Strata we must first define the
morphisms.

3.2. Definition. Let (X,S) and (Y, T ) be any two strata. A morphism of strata
(f, p) : (X,S) → (Y, T ) is a continuous function f : X → Y and a function p : S → T ,
satisfying the requirement that for every s ∈ S, κs = κp(s) and f ◦ bs = bp(s).

Composition is the obvious thing: (f, p) ◦ (f ′, p′) = (f ◦ f ′, p ◦ p′). The functor
U : Strata→ Top2 is defined as one would expect; ∂(f, p) is just f , and (f, p) : (X,S)→
(Y, T ) is the unique map making the various diagrams commute.

The first thing we note about Strata is that each object J of J has a canonical strata-
structure, (∂J, {∗}) where κ∗ = J and b∗ = 1∂J . Secondly, we note that strata-structures
can be transferred along pushout: if f : X → Y has a strata-structure (X,S) then in the
pushout

X
f //

g

��

Y

��
Z // Z

∐
X Y

the bottom map has a canonical strata-structure, given in the following definition.

3.3. Definition. Given any stratum (X,S) and map g : X → Z, the pushforward of
(X,S) along g, which we write g∗(X,S), is the stratum (Z, S) with each κs the same as
in the original stratum and each bs given by the original bs composed with g.

We can see that Z
∐

X Y is the body of (Z, S) by commutativity of pushouts. Next
we will consider colimits in Strata.

3.4. Proposition. The category Strata has all small colimits, and the functor
U : Strata→ Top2 preserves them.

Proof. We check coproducts and then coequalisers. Let (Xa, Sa) be a set of strata
indexed by A. We claim that∐

a∈A

(Xa, Sa) = (
∐
a∈A

Xa,
∐
a∈A

Sa)

where each κs is the same as its original on the left, and each bs is given by composition of
its original with the inclusion map. Given a set of strata morphisms (λa, ρa) : (Xa, Sa)→
(Y, T ) there is a unique pair (f, p) making the following diagrams commute:

(Xa, Sa) //

(λa,ρa) ((RRRRRRRRRRRRRR
(
∐

a∈AXa,
∐

a∈A Sa)

(f,p)

��
(Y, T )
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We must merely check that this (f, p) is a strata morphism; given s ∈ Sa, κs = κρa(s) =
κp(s), and bp(s) = λa ◦ bs = f ◦ ia ◦ bs where ia is the inclusion Xa →

∐
Xa. We see that

U preserves this coproduct because pushouts and coproducts commute.
As for coequalisers, consider a pair of strata morphisms (f, p) and (g, q) between

(X,S) and (Y, T ). We claim their coequaliser is the strata formed by the coequaliser of
f and g and the coequaliser of p and q, which we will write as (Z,U). Each u ∈ U is
an equivalence class of elements of T , all of which must have the same κt, giving us κu.
They don’t necessarily all have the same bt. However, we know the equivalence relation
is generated by p(s) ∼ q(s). Since bp(s) = f ◦ bs and bq(s) = g ◦ bs when we compose them
with the coequaliser map Y → Z we get a unique definition of bu, which makes the map
(l,m) below into a strata morphism.

(X,S)
(f,p) //

(g,q)
// (Y, T )

(l,m) //

(h,r) $$IIIIIIIII
(Z,U)

(k,s)

��
(A, V )

To check the coequaliser property, let (h, r) coequalise (f, p) and (g, q). We get a
unique pair (k, s) making the diagrams commute; as before we must simply check this is
a strata morphism. For u ∈ U , κs(u) = κr(t) = κt = κu, using any t in the equivalence
class of u. Also, bs(u) = h ◦ bt = k ◦ l ◦ bt = k ◦ bu. Finally, we must check U preserves this
coequaliser; clearly

∐
κu is the coequaliser of the two maps

∐
κs →

∐
κt given by p and

q, so the result follows because coequalisers commute with pushouts.

Finally we prove a useful lemma about morphisms of strata.

3.5. Lemma. [Pullback Lemma for Strata] Let (f, p) : (X,S) → (Y, T ) be any strata
morphism. The commutative square defined by U(f, p) is a pullback square.

Proof. We are considering the square

X //

f

��

(X,S)

(f,p)
��

Y // (Y, T )

which we can demonstrate to be a pullback square using our understanding of limits and
colimits in Top.

Firstly, we know that X is a subspace of (X,S). Given a point x ∈ (X,S), assume it
is not in X. Then it must be in some cell s ∈ S: it is a point in κs, and not a point of the
boundary ∂κs. So its image under (f, p) is in the same position in the corresponding cell
p(s) ∈ T , and hence not in Y . This demonstrates that as a point set, X is the pullback;
since it is a subspace of X, and this determines its open sets, it is also the pullback as a
space.
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4. Cell complexes

Now we understand the category of strata, we will move on to general cell complexes.
These are defined as infinite sequences of strata satisfying two important properties. The
first property says that the strata link together correctly, while the second is a kind of
normal form property: it says that every cell appears in the lowest possible stratum.

4.1. Definition. An infinite sequence of strata is connected if the boundary of each
stratum is equal to the body of the previous stratum.

4.2. Definition. An infinite sequence of strata, (Xn, Sn)N, is proper if there is no s ∈ Sn
for any n such that bs can be factored through the boundary of a lower stratum.

4.3. Definition. A relative cell complex is a proper connected sequence of strata. The
image under U of such a relative cell complex is the transfinite composite in Top of all the
U(Xn, Sn). Again we will talk about the boundary ∂(Xn, Sn)N and the body (Xn, Sn)N.

A relative cell complex has infinite height if no Sn is empty. Alternatively it has
height n if Sn+1 is the first empty set of cells. Clearly (because of the required property
of properness) if Sn is empty, then so is Sm for all m > n. The trivial cell complex on
X is the unique height 0 cell complex with boundary X. We define a morphism of cell
complexes by similarly extending the definition for morphisms of strata.

4.4. Definition. Given any two relative cell complexes (Xn, Sn)N and (Yn, Tn)N, a rela-
tive cell complex morphism between them is a sequence of morphisms of strata,
(fn, pn)N : (Xn, Sn)N → (Yn, Tn)N, satisfying the coherence condition—that fn+1 = (fn, pn)
for all n ≥ 0. The image under U appears as

X0
//

f0

��

X1
//

f1

��

X2
//

f2

��

. . . // (Xn, Sn)N

(fn,pn)N
��

Y0 // Y1 // Y2 // . . . // (Yn, Tn)N

where (fn, pn)N is the unique map that makes the diagram commute.

We will write CellCx for the category whose objects are relative cell complexes and
whose morphisms are relative cell complex morphisms. Strata embeds in CellCx as the
subcategory of complexes with height less than or equal to one.

We must check a few important facts about CellCx. Firstly, we want to extend
the result about colimits from Strata to CellCx. Secondly, we look at some other
constructions that can be made in the category. Finally, to make sure it is a good
candidate for a ‘category of relative cell complexes’, we show that the image of U in
Top2 is exactly the class J -cell.

4.5. Proposition. The category CellCx has all small colimits, and the functor U pre-
serves them.
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Proof. In fact, the colimits of CellCx can be computed component-wise; so given a
diagram of cell complexes the colimit is given by taking a colimit of strata for each
natural number n. This defines a sequence of strata, and a sequence of strata morphisms.
We must check these are connected, proper and coherent. We will need some notation;
let the diagram consist of (Xdn, Sdn)N for d ranging over the objects of the diagram
category, let the proposed colimit be (Zn, Un)N and let the colimit cocone morphisms be
(fdn, pdn)N : (Xdn, Sdn)N → (Zn, Un)N.

By connectedness, each (Xdn, Sdn) = Xd(n+1). Since U preserves the colimits of strata,

(Zn, Un) is the colimit of the (Xdn, Sdn), meaning that we can choose it to be equal to
Zn+1. This shows our proposed colimit cell complex is connected. By the same argument
fd(n+1) = (fdn, pdn); so we’ve also shown that the (fdn, pdn)N are all coherent.

Properness is harder to show; we will use the Pullback Lemma for strata. Assume
the proposed colimit is improper: let u ∈ Un with bu factorable through Zn−1 as in the
diagram.

∂κu //

bs

++

b′u
&&

bu

))SSSSSSSSSSSSSSSSSSSSSSSSSSS Xd(n−1) //

fd(n−1)

��

Xdn

fdn

��
Zn−1 // Zn

Now let s ∈ Sdn be some cell with the property that pdn(s) = u; such a cell must exist
by the definition of Un as a colimit. Thus the map bu can also be factorised through Xdn

using bs. Using the pullback square we get a factorisation of bs through Xd(n−1), yeilding
a contradiction because the objects in the diagram are assumed to be cell complexes, and
hence proper.

We also need to check the colimit property. Given a cocone of morphisms (Xdn, Sdn)N →
(Yn, Tn)N, there is a unique candidate sequence of strata morphisms (gn, qn)N : (Zn, Un)N →
(Yn, Tn)N given by each individual colimit property in Strata. We just have to check this
sequence is coherent; this follows easily from the fact that each sequence of strata is
connected and that U preserves colimits of strata. Finally, since U of a cell complex is
defined by transfinite composition, we can see that U preserves colimits using the fact
that transfinite composition commutes with other colimits.

Now recall the definition of pushforwards in the category Strata; this can be extended
to CellCx. We construct the pushforward of each stratum in turn and because of the
connectedness property there is only one way this can be done.

4.6. Definition. Given any cell complex (Xn, Sn)N and any map g : X0 → Z, the push-
forward of (Xn, Sn)N along g, which we write as g∗(Xn, Sn)N, is the following (Zn, Sn)N.
Firstly, Z0 = Z and (Z0, S0) is the stratum g∗(X0, S0). There is then a map (X0, S0) →
(Z0, S0) which we call g1; (Z1, S1) is defined to be the stratum (g1)∗(X1, S1). Continuing
in this manner we construct each stratum of (Zn, Sn)N, and we obtain a morphism of
cell complexes where each commutative square in the sequence is a pushout square. It
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is a trivial equivalence of two colimits to see that then Ug∗(Xn, Sn)N is the pushout of
U(Xn, Sn)N along g.

A new construction that we can perform in CellCx, which was not possible in Strata,
is that of composition. Suppose we are given two cell complexes, with the boundary of the
second equal to the body of the first. Because of some smallness conditions satisfied by
the maps of J in Top, we can combine the two into a single complex, whose underlying
map is the composite in Top of the underlying maps of the two original complexes. This
construction expresses the intuition that cell complexes can be glued onto one another to
make larger complexes.

To define the composite of two cell complexes in general, we will start with a simple
case. Let (Xn, Sn)N be any cell complex and (Y, T ) be a stratum, which we consider as
a height one cell complex. Also let Y = (Xn, Sn)N, so that composition makes sense.
We define the composite, which we will write as (Zn, Un)N, as follows. First, we use the
standard result (see, for example, Proposition 2.4.2 in [Hovey, 1999]) that compact spaces
are finite relative to closed T1 inclusions. Each map Xn → Xn+1 is a closed T1 inclusion,
and the boundary of every cell is compact—hence for every t ∈ T there is a smallest nt
such that bt factors through Xnt . This partitions T into a sequence of sets, (Tn)N.

Now let Z0 = X0 and let U0 = S0 +T0. Thereafter, we let each Zn = (Zn−1, Un−1) and
each Un = Sn + Tn, where all the bs and bt are defined in the obvious way. A straight-
forward equivalence of two colimits shows that the underlying map of the composite is
the composite of the underlying maps. It is also important to note that there is a canon-
ical cell complex morphism (Xn, Sn)N → (Zn, Un)N, with (1X0 , U(Y, T )) as its underlying
morphism in Top2:

X0

U(Xn,Sn)N // Y

U(Y,T )
��

X0 U(Zn,Un)N

// (Y, T ).

4.7. Definition. Given any two cell complexes A and B, such that the body of A is the
boundary of B, we define the composite B ∗ A by repeating the above construction for
each stratum in B. This gives a sequence of cell complexes An, where each An is A with
the first n strata of B composed onto it. Because we have all small colimits in CellCx,
we can define B ∗A as the colimit of this sequence, and because U preserves colimits, this
has the correct composite as its underlying map.

We note here that this definition of composite can be extended easily to composing
a transfinite sequence of cell complexes, using exactly the same technique—any ordinal
sequence of cell complexes gives an ordinal sequence of strata which we add one by one,
taking the colimit at each limit ordinal. Another very important observation is the fol-
lowing:

4.8. Proposition. Given a pair of cell complex morphisms φ : A→ A′ and ψ : B → B′,
if A and B are composable, A′ and B′ are composable, and ∂ψ = φ, then they give rise
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to a new cell complex morphism ψ ∗ φ : B ∗ A → B′ ∗ A′, such that U(ψ ∗ φ) = (∂φ, ψ).
We call it the horizontal composite of the two cell complex morphisms.

Proof. Consider the case where B and B′ are height one, write B = (Y, T ) and B′ =
(Y ′, T ′), and let ψ = (g, q): we must check that q respects the partitioning of T and
T ′ into (Tn)N and (T ′n)N; that is, for each u ∈ U , we want nu = nq(u). But nq(u) ≤ nu
follows from the fact that (g, q) is a strata morphism, and the pullback lemma ensures
that nu ≤ nq(u). Now an induction argument on the height of B will show that ψ ∗ φ is
well defined.

It is worth noting that we have now defined a double category whose objects are
spaces, whose vertical morphisms are continuous functions, whose horizontal morphisms
are cell complexes and whose 2-cells are cell complex morphisms.

4.9. Proposition. The image of the functor U : CellCx→ Top2 is exactly the class of
morphisms J -cell.

Proof. Firstly, the definition of U(Xn, Sn)N is as a transfinite composite of pushouts of
coproducts of elements of J , so the image is certainly a subclass of J -cell. To show the
opposite inclusion, since it is clear that each element of J has a CellCx structure, we
need only check that the image of U is closed under coproducts, pushouts and transfinite
composites. We have just proved that all colimits exist in CellCx and are preserved by
U , and we have just defined pushforwards of cell complexes. We have also just defined
composites, and as we pointed out these are easily extended to transfinite composites.

Finally, there’s also a pullback lemma for cell complexes.

4.10. Lemma. [Pullback Lemma for Cell Complexes] Given any morphism of cell com-
plexes, its image under U , when viewed as a commutative square in Top, is a pullback
square.

Proof. Let (fn, pn)N : (Xn, Sn)N → (Yn, Tn)N be a cell complex morphism. Any map from
the one point space to (Xn, Sn)N must factor through some Xn, because the one point
space is compact. Thus, given a point in Y0 and a point in (Xn, Sn)N with the same image
in (Yn, Tn)N, a finite number of applications of the pullback lemma for strata will give a
unique point in X0, and this shows that as a set at least, X0 is the pullback we want it
to be. But its open subsets are determined by the subspace inclusion into (Xn, Sn)N, and
this shows that it is indeed the pullback.

4.11. Remark. This result is really a little stronger than stated; it implies that given
any morphism of cell complexes one can remove any finite number of strata from the
beginning and the remaining square is also a pullback in Top—simply because it is also
a morphism of cell complexes. This fact will be vital in Section 6.
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5. The adjunction

We now examine some more properties of the category of cell complexes; they will let us
see that it is a category of left maps, and in fact one with a useful universal property with
respect to J . First we show that there is a right adjoint to U , which makes an adjunction
that will turn out to be comonadic. In order to construct this right adjoint K, we will
first restrict our attention to Strata, and then consider the whole of CellCx. It is worth
bearing in mind that the construction in this section is very closely analogous to the small
object argument; the first proposition gives a single step, the second proposition iterates
it.

5.1. Proposition. The functor U : Strata→ Top2 has a right adjoint K1.

Proof. Let f : A → B be any continuous function between topological spaces; in other
words, any object of Top2. Let S be the set of all morphisms to f of the form

∂j

Uj
��

// A

f

��
j // B

in Top2, for any j ∈ J . Notice that any element s ∈ S comes with a canonical choice of
κs ∈ J and bs : ∂κs → A. This means that (A, S) is a stratum. It also comes with a canon-
ical morphism (1A, E1f) : U(A, S)→ f in Top2, whose codomain part E1f : (A, S)→ B
is determined by the pushout property of (A, S), using f and the codomain part of each
s ∈ S. We claim that we have just constructed K1f , and that (1A, E1f) is the counit of
the adjunction.

Suppose (X,T ) is any stratum and (g, h) : U(X,T )→ f a morphism of Top2. Because
of the pushout definition of (X,T ), the function h is determined by g and a morphism
ht : Uκt → f in Top2 for each t ∈ T ; this is all the information that makes up (g, h). But
each ht gives an element s ∈ S, so this information also exactly defines a morphism of
strata, (g, t 7→ ht) : (X,T )→ (A, S), and factors (g, h) through (1A, E1f). The factorisa-
tion is unique because E1f is epic; we have demonstrated the correspondence necessary
for K1 to be the right adjoint of U .

The construction in this proof of E1f and UK1f is a functorial factorisation of f—
exactly the factorisation produced by the first step of either small object argument (Gar-
ner’s or Quillen’s). In the next proposition we extend the right adjoint to CellCx, iter-
ating in precisely the manner of Garner’s small object argument.

5.2. Proposition. The functor U : CellCx→ Top2 has a right adjoint K.

Proof. In the proof of the previous proposition, we constructed a right adjoint to
K1 : Top2 → Strata for U in the case of strata. We also defined a functor E1 : Top2 →
Top2 which appeared in the counit of the adjunction and which will prove rather useful.
Again, consider f : A → B, any object of Top2. Apply K1 to f to obtain the stratum
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(A, S) and the function E1f : (A, S)→ B. Then apply K1 again, this time to E1f , to get
another stratum whose boundary is (A, S). This also gives another new function E1E1f ,
to which we apply K1 in turn. Continuing this process gives a connected sequence of
strata, which would be a good candidate for Kf , except for one problem: the sequence is
not proper.

A similar approach does work, however (with a little bit more work) if we deliberately
omit the improper cells at each stage. Let A0 = A and S0 = S as defined above; there
are no improper cells in the first stratum, so (A0, S0) is the first stratum of Kf . We let
A1 = (A0, S0) and define S1 to be the set of morphisms Uj → E1f in Top2, for any j ∈ J ,
satisfying the additional condition that their boundary maps do not factor through A0.
As before, (A1, S1) is clearly a stratum and we get a new morphism E2f : (A1, S1) → B.
We can continue in this fashion, defining An to be (An−1, Sn−1) and Sn to be the set of
morphisms Uj → Enf whose boundary maps do not factor through An−1. This produces
a connected sequence of strata which is this time proper by construction. Furthermore,
there is an unique map Ef : (An, Sn)N → B which commutes with all the Enf .

A0

f //

// A1

E1f

**

// A2

E2f

  AAAAAAAA
// . . . // (An, Sn)N

Efuu
B

Let (Xn, Tn)N be any cell complex and (g, h) : U(Xn, Tn)N → f a map of Top2. The
first thing we note is that the map h corresponds to an infinite sequence of maps, one from
eachXn; we call this hn : Xn → B. Now (g, h1) is a map in Top2 from U(X0, T0) to f , so by
the adjunction between Strata and Top2 we obtain a strata morphism (g, p0) : (X0, T0)→
(A0, S0). Say g0 = g, and g1 = (g0, p0). Then (g1, h2) is a map in Top2 from U(X1, T1) to
E1f ; this induces a strata morphism (g1, p1) : (X1, T1)→ (A1, S1)—use the same argument
as to construct the morphism (X1, T1) → K1E1f , and note that each of the cells in the
image is proper. If some cell t ∈ T1 were to have bp1(t) that could factor through X0, then
by the Pullback Lemma bt would factor through X0 which is impossible.

Now we repeat the construction of (g1, p1) to define a sequence of strata morphisms
(gn, pn)N : (Xn, Tn)N → (An, Sn)N which is automatically coherent. Since Enf ◦ gn = hn
for each n, we have Ef ◦ (gn, pn)N = h and we have factored (g, h) through (1A, Ef). The
factorisation is unique, again because Ef can be seen to be epimorphic. This demonstrates
the correspondence that makes K the right adjoint of U .

It is useful to note that the construction we made in the first paragraph of the proof,
before we insisted that the sequence be proper, is effectively Quillen’s small object argu-
ment. When we altered the construction to ensure a proper sequence, we missed out the
superfluous cells; the distinction between the ‘improper’ sequence construction and the
proper sequence construction that follows it is precisely the distinction between Quillen’s
and Garner’s small object arguments.
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6. Comonadicity

Two lemmas will be sufficient for us to prove that the adjunction is comonadic; we’ll use
the standard result known as Beck’s Monadicity Theorem, which can be found in [Mac
Lane, 1998] and many other places besides.

6.1. Lemma. The category CellCx has all equalisers, and the functor U preserves all
equalisers.

Proof. We start by showing this result for Strata. Let (f, p) and (g, q) be two strata
morphisms from (X,S) to (Y, T ). Now let e : E → X be the equaliser of f and g in Top,
and let r : L→ S be the equaliser of p and q in Set. We claim that (e, r) : (E,L)→ (X,S)
is the equaliser we are looking for in Strata. Firstly, we must check it is actually a
stratum; given l ∈ L, because p(r(l)) = q(r(l)) we have f ◦ br(l) = g ◦ br(l) so there’s a
unique map ∂κr(l) → E which we use to define bl. This definition of κl and bl makes (e, r)
automatically a strata morphism; we must just check the limit property. Given a stratum
morphism (h,m) : (Z,W )→ (X,S) which also equalises (f, p) and (g, q), we get a unique
pair (k, n) : (Z,W )→ (E,L), shown by the dotted arrow:

(Z,W )

(k,n)

��

(h,m)

$$JJJJJJJJJ

(E,L)
(e,r)

// (X,S)
(f,p) //

(g,q)
// (Y, T )

This (k, n) is a strata morphism: it is clear that for any w ∈ W , κw = κn(w) and e◦k◦bw =
h ◦ bw = bm(w) = e ◦ bn(w), which implies k ◦ bw = bn(w) because e is monic. Furthermore,
U preserves this equaliser: consider its image under U—firstly, the boundary E is by
definition the equaliser we want. Secondly, a point in (X,S) has the same image under f
and g iff it is either in E ⊂ X or in a cell s ∈ S such that p(s) = q(s); hence as a point
set, (E,U) is the equaliser. As a space, its topology is determined by it being a subspace
of (X,S), so we are done.

To extend to CellCx, we use a very similar argument to that in Proposition 4.5;
we claim the equaliser of a pair of cell complex morphisms is given as the sequence
of equalisers of strata. This sequence is connected, and the sequence of morphisms is
coherent, by exactly the same reasoning as in Proposition 4.5. To show it is proper is in
fact much easier here, because the equaliser is a subcomplex of the first cell complex—the
equaliser map is a sequence of strata inclusions. We also check the limit property; this
follows from the same argument as in Proposition 4.5. Finally, consider the image under
U . Using the result for Strata, the boundary of each stratum in the equaliser is the
correct equaliser in Top. Then, because every point in the body appears in the boundary
of some stratum (since the one point space is compact) the image under U is correct as
a function of sets. It then follows it is correct as a continuous function between spaces,
again by considering subspace inclusions which determine its topology.
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6.2. Lemma. The functor U is conservative.

Proof. As usual, we prove this for Strata and then extend the result to CellCx. Let
(f, p) : (X,S)→ (Y, T ) be a strata morphism and assume that U(f, p) is an isomorphism
in Top2. We consider the inverse of U(f, p) in Top2, which we will write (g, h). The
function h is determined by g and a morphism ht : κt → U(X,S) for each t ∈ T ; and
U(f, p) ◦ ht is the canonical inclusion of κt into U(Y, T ). This means that each ht makes
a choice of h′(t) ∈ S such that p(h′(t)) = t and h′(p(s)) = s. This shows that (g, h) has a
strata morphism structure given by (g, h′), and this strata morphism is an inverse to (f, p),
showing that it is an isomorphism, and hence that U : Strata→ Top2 is conservative.

Consider a morphism of cell complexes, (fn, pn)N : (Xn, Sn)N → (Yn, Tn)N, and assume
its image under U is an isomorphism. This immediately shows that f0 is an isomorphism.
Using the remark following the pullback lemma for cell complexes, each fn is a pullback
of (fn, pn)N, and since the pullback of an isomorphism is an isomorphism, all the fn are
isomorphisms. Now use the result on Strata to see that all the strata morphisms (fn, pn)
are individually isomorphisms; hence, (fn, pn)N is an isomorphism and we are done.

6.3. Corollary. Since U is conservative, CellCx has and U preserves all equalisers,
the dual of Beck’s monadicity theorem implies that the adjunction between U and K is
comonadic.

7. The awfs

At this stage it follows directly from a result of Garner (the dual of Theorem 4.9 in
[Barthel, Riehl, 2012]) that, since we have a comonad UK whose category of coalgebras
admits a composition law, it must appear as part of an awfs whose monad part is given
by the counit. However, in the interests of clarity we will spend some time proving this
fact explicitly.

From now on we will observe the notational convention of writing morphisms in Top2

and CellCx vertically (as squares where the source and target morphisms are horizontal).
This seems to make the diagrams clearer, and is appropriate if one considers the double
category point of view. In some of the diagrams we will also use a notational shorthand
where instead of explicitly writing a map and its factorisation, we draw arrows going to
and from the middle of an arrow to mean morphisms to and from the central object of
that arrow’s factorisation. Thus a left map will be drawn as

A
f

// B

α

��

and the image of a morphism (a, b) in Top2 under the factorisation will be drawn as

A

a

��

f //

K(a,b)

��

B

b
��

C g
// D.
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Arrows to and from the one quarter point or three quarters point of an arrow mean the
obvious thing, where the left or right part of a factorisation has been factorised again.

7.1. Proposition. The endofunctor E on Top2, which was defined in Proposition 5.2,
is a monad.

Proof. In Definition 4.7 and Proposition 4.8 we showed how cell complex structures can
be composed; this will provide us with the multiplication for the monad E. Firstly, the
unit ~η : 1→ E is given by ~ηf = (UKf, 1B) where f : A→ B. Now, KEf is a cell complex
which can be composed with Kf ; we write the composite KEf ∗Kf . There is a morphism
in Top2 given by (1A, EEf) : U(KEf ∗Kf)→ f , hence by the adjunction there is a cell
complex morphism φ : KEf ∗Kf → Kf . We define µf to be the codomain part of Uφ,
and claim that η and ~µ = (µ, 1) make E into a monad.

First we check that ~µ is a natural transformation (this is clear in the case of ~η).
Consider (a, b) : f → g any morphism of Top2; in the diagram

A

a

��

f //

K(a,b)

��

K(K(a,b),b)

��

µf
{{

B

b

��
C g

//

µg

cc D

we wish to compare the two sides of the naturality square which are K(a, b) ◦ µf and

µg ◦ K(K(a, b), b). Because these are both the body maps of cell complex morphisms
whose boundary maps are a, we can use the adjunction between U and K. It’s a quick
diagram chase to see that either side when composed with Eg gives b◦EEf , which means,
by the adjunction, that they are equal and ~µ is natural.

To check the monad laws, we use a similar method: Ef ◦ µf ◦ UKEf = EEf ◦
UKEf = Ef immediately shows that ~µ ◦ UKη = 1, and the other unit law follows
from Ef ◦ µf ◦ K(UKf, 1B) = EEf ◦ K(UKf, 1B) = Ef . Finally, to demonstrate the
multiplication law, we wish to show that the diagram

A
f //

µf

�����������������

µEf

~~

K(µf ,1)

�������������� B

A
f

//

µf

ff B
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commutes. By the diagram chase

Ef ◦ µf ◦ µEf = EEEf

= EEf ◦K(µf , 1)

= Ef ◦ µf ◦K(µf , 1)

and the fact that the two maps we are comparing are both the body maps of cell complex
morphisms, we can use the adjunction again and the multiplication law holds.

7.2. Proposition. The pair (UK,E) is an algebraic weak factorisation system.

Proof. We have seen already that UK is a comonad, E is a monad and that they fit
together to form a functorial factorisation system. This is almost all that is required to
make (UK,E) an awfs; the only remaining thing to check is the distributivity axiom.
There is a natural transformation ∆: UKE ⇒ EUK with components given by the
square

Kf
UKEf //

δf
��

KEf

µf

��

KUKf
EUKf

// Kf

where δf is the codomain part of the comultiplication of UK. This ∆ is required to be
what is called a distributive law of UK over E; this means it must satisfy four commu-
tative diagrams, basically saying it commutes with the unit, counit, multiplication and
comultiplication of UK and E. When we translate these commutative diagrams into com-
ponents in Top2, they become eight identities in Top. Upon examination, six of these
identities are immediately true: four of them from the comonad and monad laws, and two
of them simply by definition of µ and δ.

The final two identities are in fact the same, and this single identity is shown in the
diagram

A
f //

µUKf

``

δf

{{

K(δf ,µf )

cc

µf

{{

δEf

`` B.

We’ll use a similar argument to those in Proposition 7.1. We have

EUKf ◦ µUKf ◦K(δf , µf ) ◦ δEf = EEUKf ◦K(δf , µf ) ◦ δEf
= µf ◦ EUKEf ◦ δEf
= µf

= EUKf ◦ δf ◦ µf

and the maps we are comparing appear as cell complex morphisms, so we are done.
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Simply knowing how UK appears as the comonad part of an awfs is not enough;
we have also defined pushforward and composition structures on CellCx and we need
to check that these are compatible with the awfs (UK,E). First, we note the general
definition of pushforward and composition for the left maps of any awfs; then we will
check they agree on CellCx. First of all, composition of left maps has been defined by
Riehl (see [Riehl, 2011a]) as follows:

7.3. Definition. Given a pair of left maps (f, α) and (g, β) where f and g are compos-
able. Then gf has the composite left map structure shown by the dotted arrows in the
following diagram

A
gf //

µgf

zz
C

A
f

//

M(1,g)

NN

B
α

dd
g

//

M(M(1,g)◦α,1)

OO

C
β

ee

where M is the central functor of the awfs. We will write the composite left map structure
as (gf, β • α).

It is straightforward to check that this (β • α) satisfies the coalgebra axioms; more
details can be found in [Riehl, 2011a]. There is also the following natural definition of
pushforward. Note that we will begin using the notation [a, b] : A+B → X for the unique
map satisfying [a, b] ◦ iA = a and [a, b] ◦ iB = b, where iA and iB are the inclusion maps
of the coproduct, and similarly for maps out of pushout objects.

7.4. Definition. Given a map f : A → B with a left map structure α for some awfs
(L,R), and a map g : A→ C. Then the pushout of f along g, which we write as g∗f , has
a canonical left map structure called the pushforward of α along g and written as g∗α. It
is given by considering

A
f //

g

��
M(g,f∗g)

��

zz
α

B

f∗g
��

C
g∗f

//dd

g∗α

B
∐

AC

and specifying the structure map g∗α as [Lg∗f,M(g, f∗g) ◦ α].

Again, checking the coalgebra axioms is very straightforward. Now, as a rather im-
portant sanity check before we continue, we check the two definitions of composites and
pushforwards agree in CellCx.

7.5. Proposition. The definition of composition in CellCx given in Definition 4.7 is
the same as the general definition applied to CellCx as the category of left maps for the
awfs (UK,E).
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Proof. Given two cell complexes, considered as left maps (f, α) and (g, β), it is enough
to check that (1A, β • α) is a cell complex morphism (g, β) ∗ (f, α) → K(gf). Then by
the adjunction between U and K, the fact that E(gf) ◦ (β • α) = 1C (which is one of the
coalgebra axioms) implies that the left map structure is the correct one. To show it is a
cell complex morphism, factorise it as

A
f // B

g // C

β
��

A
f // B

UKg //

α

��

Kg

K(K(1,g)◦α,1)

��

A
UKf // Kf

K(1,g)
��

A
UK(gf) // K(gf)

UKE(gf) // KE(gf)

µgf

��

A
UK(gf) // K(gf),

where every square is a cell complex morphism: some are images under K of morphisms
in Top2, others like (1, α) and (1, β) are cell complex morphisms by definition. The very
bottom square is the cell complex morphism referred to as φ in Proposition 7.1. We can
compose the whole diagram together, using both vertical and horizontal composition of
cell complex morphisms (see Proposition 4.8), to demonstrate that (1A, β • α) does have
the structure of a cell complex morphism.

7.6. Proposition. The definition of pushforward given in Definition 4.6 is the same as
the general definition applied to CellCx as the category of left maps for the awfs (UK,E).

Proof. Let (f, α) be a cell complex, and write (g∗f, g∗α) for the pushforward given
by the general definition. Write β for the structure map of the cell complex given by
Definition 4.6; we need to show that β = g∗α. Firstly, it is clear that g∗α◦g∗f = β ◦g∗f—
this is one half of the neccessary identity. Also, it is clear from the definition of β that
(g, f∗g) has a cell complex morphism structure. This means that

g∗α ◦ f∗g = K(g, f∗g) ◦ α
= β ◦ f∗g,

which is the other half of the identity.

8. The universal property

We now have an awfs (UK,E) which we wish to compare with the awfs produced by
the small object argument. One could take the approach of directly examining the two
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comonads; if you draw pictures of both it becomes clear they are essentially the same.
However, in the remainder of this paper we will use a different approach in which we ex-
hibit a universal property of CellCx and compare it to the universal property established
by Garner for the small object argument. The author feels that this approach—while
less efficient—is more illuminating, as it expresses the universality of the cell complex
category construction and thus helps us to see why it is a natural way to build an awfs.

There is a canonical functor η : J → CellCx over Top2, given by assigning each map
in J its canonical height one, single-cell complex structure. The pair of CellCx and η
is universal among functors from J to categories of left maps over Top2, with respect
to the composition preserving functors between left map categories (which are exactly
morphisms of awfs—see [Garner, 2009]). To make this work, we need to be sure that
composition in an arbitrary left map category is sufficiently well behaved; we begin by
proving two lemmas that express this.

8.1. Lemma. For any awfs (L,R), the composition rule in L-Map is strictly associative.

Proof. Given three composable left maps, (f, α), (g, β) and (h, γ), we obtain two left
map structures on hgf given by the two ways of composing, namely γ • (β • α) and
(γ • β) • α. The structure maps for these are both shown, using dotted arrows, in the
following diagram:

A

A

A

D

D

D

B C

hgf //

hgf
//

f // g // h //

hg

''OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

gf

''OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

α
xx

β

ff

γ

xx

µhgf

{{
µR(hgf)

zz

µhgf

cc
µR(hgf)

dd

µhgqq

µgf

XX

OO

M(M(1,h)◦β,1)

��

M(1,g)

MM

M(1,h)

==

M(1,hg)

��

M(1,h)

��

M(M(1,hg)◦α,1)

�� ��

M(M(1,h),h)

== OO

ψ

OO

�

�

Using two naturality squares for µ (marked by the little squares in the diagram) and
the multiplication law, we can factor both structure maps through MRR(hgf), and hence
reduce the problem to that of comparing the map

M(M(M(1, h), h) ◦M(M(1, g) ◦ α, 1) ◦ β, 1)
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(which is marked in the diagram as ψ) with the composite

M(M(M(1, hg) ◦ α, 1), 1) ◦M(M(1, h) ◦ β, 1).

By the functoriality of M , this reduces to considering

M(M(1, h), h) ◦M(M(1, g) ◦ α, 1) = M(M(1, hg) ◦ α, h)

= M(M(1, hg) ◦ α, 1) ◦M(M(1, h))

and the two dotted composites in the diagram are the same.

The second lemma will prove what we will call the stacking property of left maps; it
is absolutely vital in what follows because it justifies the requirement for cell complexes
to be proper sequences. Stacking allows you to take a left map which is defined as a
composite of colimits and move the individual elements of the colimits about without
altering the left map structure. Since a cell complex is essentially defined as a composite
of colimits, this says we can move cells in between strata freely; hence every potential cell
complex can be reordered to make it proper—and properness defines a natural normal
form for cell complexes which hugely simplifies the definition.

8.2. Lemma. For any awfs (L,R), the composition rule in L-Map is well behaved with
respect to coproducts and pushforwards in the following way: given f : A→ A′ and g : B →
B′ equipped with left map structures α and β, and maps a : A→ X and b : B → X, there
is an isomorphism of left maps

([a, b]∗(f + g), [a, b]∗(α + β)) ∼= (((a∗f) ◦ b)∗g, ((a∗f) ◦ b)∗β) • (a∗f, a∗α).

8.3. Remark. The proposition basically says that f and g can be ‘glued on’ to X in any
order, or simultaneously by taking a coproduct first, and it makes no difference to the
resulting left map. In the form of a picture:

•
•

•
•

_ _ _�
�
�
�
�
�

�
�
�
�
�
�

_ _ _

oo

oo

oo

oo

X A′ +B′

[a,b] ∼= •
•

•
•

_ _ _ _ _ _ _ _�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�_ _ _ _ _ _ _ _

oo

oo

oo

oo

X
A′

B′

a

(α∗f)◦b

Proof. The left map on the left hand side is constructed using the pushout square

X Y

A+B A′ +B′

[a,b]∗(f+g)
//

[a,b]
��

[a,b]′

��

f+g //
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while the left map on the right hand side is constructed using the two pushout squares in
the diagram

A A′

X Z W

B B′

f //

a
��

a′

��a∗f //

b

ggOOOOOOOOOOOOO
(a∗f)◦b
OO

((a∗f)◦b)∗g //

g
//

b′

OO

and then composing.
The first thing to note is that Y and W have exactly the same universal property; we

are thus able to choose pushouts in such a way that Y = W . Furthermore, if we make
this choice, the underlying maps of the left maps we are comparing are identical. So if we
check that the structure maps are equal, with this choice of pushout objects, then for any
other choice the left maps we obtain will be isomorphic. We will now write h : X → W
for the underlying map; we have two structure maps W →Mh and we wish to show they
are equal.

Using the universal property of W , it is sufficient to show the maps X → Mh, A′ →
Mh and B′ → Mh that make up these structure maps agree. The X → Mh parts are
both just Lh, so they are easy. Showing that the other two parts agree can be done
with two simple diagram chases. First, to simplify notation, we will start writing g′ for
((a∗f) ◦ b)∗g, and f ′ for a∗f ; we will also write α′ for the pushforward structure map on
f ′ and β′ for the one on g′. Next, we note that the map [a, b]′ can be written as [g′a′, b′],
using the universal property of W . Now consider the diagram

X
h //

µh

dd W

X
f ′ //

M(1,g′)

NN

Z

α′

zz g′ //

M(M(1,g′)◦α′,1)

OO

W

β′

zz

A

a

CC����������

f
//

CC�������������
A′

a′

CC����������

α

dd B

f ′◦b

[[6666666666

g
//

[[7777777777777
B′.

b′

\\99999999999

β

dd

Two straightforward chases show that (β′ • α′) ◦ g′ ◦ a′ = M(a, g′a′) ◦ α and that
(β′ • α′) ◦ b′ = M(b, b′) ◦ β. We then factor M(a, g′a′) through M(iA, i

′
A) and factor

M(b, b′) through M(iB, i
′
B), the two inclusion maps to the coproduct. Then using the fact

that, by definition of (α, β), M(iA, i
′
A) ◦ α = (α+ β) ◦ i′A and M(iB, i

′
B) ◦ β = (α, β) ◦ i′B,

it is clear that (β′ • α′) and [a, b]∗(α + β) agree on both A′ and B′.

The universal property of CellCx with respect to J now follows without too much
difficulty.
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8.4. Proposition. For any awfs (L,R) and functor F : J → L-Map over Top2, there
is a unique F ′ : CellCx → L-Map over Top2 which satisfies F = F ′ ◦ η and preserves
composition.

Proof. What can we say about such a map? Firstly, it automatically preserves colimits;
this follows from a standard argument, based on the fact that the forgetful functors are
conservative and preserve colimits themselves. Secondly, we claim that it automatically
preserves pushforwards, meaning that for any cell complex (f, α) and appropriate g, we
have F ′(g∗f, g∗α) = g∗F

′(f, α). Since (g, f∗g) is a the underlying map of a cell complex
morphism, by functoriality of F ′ it is a morphism of coalgebras for L. This means that
F ′(g∗α) ◦ f∗g = M(g, f∗g) ◦ F ′α, and we know the latter is g∗(F

′α) ◦ f∗g; this shows the
two morphisms from the codomain of f to M(g∗f) are equal. It is trivial to show the two
morphisms from the codomain of g to M(g∗f) are equal, so by the pushout property, the
two left map structures are equal.

These properties allow us to see that for any stratum (X,S), the image F ′(X,S) is
determined entirely, since a stratum is just a pushforward of a coproduct of objects of J ,
and F ′ must take the objects of J , considered as cell complexes, to their images under F .
Furthermore, any cell complex is the composite of all its strata; thus if F ′ is to preserve
composition it will be determined completely by F . So we have essentially constructed
a single possible candidate F ′; now we must check that it preserves all composites, not
just the ones given by proper connected sequences of strata. But using Lemma 8.1 and
Lemma 8.2, we can take any composite of cell complexes and move the individual cells
between strata without effecting the image of the composite under F ′; therefore F ′ does
indeed preserve composition and we are done.

9. The main result

We are writing (L,R) for the awfs that is generated from J using Richard Garner’s small
object argument. This is the object we really care about; we want to understand the
coalgebras of L. This awfs has a certain universal property with respect to J :

9.1. Definition. Given a small category I over C2, an awfs (L,R) on C is free with
respect to I if there is a morphism η : I → L-Map over C2 such that for any other awfs
(L′, R′) on C and functor F : I → L′-Map over C2, there is a unique awfs morphism
α : (L,R) → (L′, R′) such that F = α∗ ◦ η. (The functor α∗ : L-Map → L′-Map is the
lifting of α, as a comonad morphism, to the categories of coalgebras.)

In his paper [Garner, 2009], Garner both constructs (L,R) and proves that it is indeed
free with respect to J . In this section we will show the same of our awfs (UK,E); then,
since it is a universal property, the two awfs will be shown to be isomorphic. We have
already done the hard work—by the following lemma, the universal property of CellCx
implies that (UK,E) is free with respect to J . We note that this lemma is a special case
of Lemma 6.9 in [Riehl, 2011a].
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9.2. Lemma. Given two awfs, (L,R) and (L′, R′), awfs morphisms (L,R)→ (L′, R′) are
in bijection with functors L-Map → L′-Map over C2 that preserve the composition of
left maps.

Proof. First, assume we have an awfs morphism χ : (L,R)→ (L′, R′). In particular, this
is a comonad morphism L→ L′, and this means it lifts to a functor χ̃ : L-Map→ L′-Map
over C2. If (f, α) is an L-coalgebra, its image under χ̃ is given by (f, χf ◦ α)—this is
the standard way of lifting a comonad morphism to the categories of coalgebras. We
will check that χ̃ preserves composition of coalgebras, that is, that χ̃(f, α) • χ̃(g, β) =
χ̃
(
(f, α) • (g, β)

)
. This is a diagram chase which proceeds as follows:

χgf ◦ µgf ◦M(M(1, g) ◦ α, 1) ◦ β
= µ′gf ◦M ′(χgf , 1) ◦ χR(gf) ◦M(M(1, g) ◦ α, 1) ◦ β
= µ′gf ◦M ′(χgf , 1) ◦M ′(M(1, g) ◦ α, 1) ◦ χg ◦ β
= µ′gf ◦M ′(M ′(1, g) ◦ χf ◦ α, 1) ◦ χg ◦ β

where the first step uses the fact that χ is a comonad morphism, the second step uses
naturality and the third step uses functoriality and naturality.

Now we start with a functor F : L-Map→ L′-Map over C2 and we assume it preserves
composition. We use F to define a natural transformation γ : M → M ′L by writing the
image of the coalgebra (Lf, δf ) as (Lf, γf ). Then we define the natural transformation
χ : M →M ′ by χf = M ′(1, Rf)◦γf . This is the standard way of constructing a comonad
morphism from a functor between the categories of coalgebras; hence (1, χ) is a comonad
morphism L → L′. We will show that at the same time, (χ, 1) is a monad morphism
R→ R′, and that hence χ is an awfs morphism (L,R)→ (L′, R′).

First, it is quick to check that R′f ◦ χf = Rf ; consider

R′f ◦M ′(1, Rf) ◦ γf = Rf ◦R′Lf ◦ γf
= Rf

where the first step follows from the properties of M ′(1, Rf) and the second uses the fact
that γf is the structure map for a coalgebra. The other identity χ must satisfy in order
to be a monad morphism is shown by the following diagram chase:

χf ◦ µf = χf ◦M(1, RRf) ◦ (δRf • δf )
= M ′(1, RRf) ◦ χ(LRf◦Lf) ◦ (δRf • δf )
= M ′(1, RRf) ◦ F (δRf • δf )
= M ′(1, RRf) ◦ (γRf • γf )
= M ′(1, RRf) ◦ µ′(LRf◦Lf) ◦M ′(M ′(1, LRf) ◦ γf , 1) ◦ γRf
= µ′f ◦M ′(M ′(1, RRf), RRf) ◦M ′(M ′(1, LRf) ◦ γf , 1) ◦ γRf
= µ′f ◦M ′(χf , RRf) ◦ γRf
= µ′f ◦M ′(χf , 1) ◦M ′(1, RRf) ◦ γRf
= µ′f ◦M ′(χf , 1) ◦ χRf
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in which we have used the fact that µf = (δRf • δf ) ◦M(1, RRf), the assumption that F
preserves composition, and the definition of composition of L′-maps.

Since the correspondence we have demonstrated between awfs and composition pre-
serving functors is a restriction of the standard natural isomorphism between comonad
maps and functors on coalgebras, it is therefore a bijection and we are done.

9.3. Corollary. The awfs (UK,E) is free with respect to J .

Since they share this universal property, the awfs (UK,E) and (L,R) must be isomor-
phic. Thus we are finally able to prove the main result of the paper.

9.4. Theorem. Every map with a left-map structure with respect to (L,R) is in the class
J -cell.

Proof. The category CellCx which we defined is equivalent over Top2 to the category
of coalgebras for the comonad UK, because the adjunction is comonadic. We have also
shown that (UK,E) and (L,R) are isomorphic as awfs. Hence UK and L are isomorphic
as comonads; so they have equivalent categories of coalgebras.

Thus CellCx is equivalent over Top2 to the category L-Map of left-maps. Since, as
we showed in Proposition 4.9, the image of the functor U is precisely J -cell, every map
with a left-map structure is in J -cell.

10. Further thoughts

What we have done applies only to a single awfs in a single category. Regardless of the fact
that it is arguably the most important awfs under study at the moment, this is still quite a
limitation. However, in proving this result for a very specific case, we have demonstrated
a technique that will, in the author’s view, quite easily extend to many other examples.
There are many parts of the proof where the argument would have worked equally well
for any class of maps in a category with all small limits and colimits.

It seems likely that the construction of CellCx will work for any category J ; to
consider it in a more generalised context we would want to hone in on what it really does.
It seems to consist of three steps: the first is to freely complete J under colimits. This is a
well understood 2-categorical completion which results in the category of presheaves over
J . The second step is free completion under pushforwards, which produces the category
of strata. The third step is then to complete freely under composition, resulting in the
entire category of cell complexes. There is a very close analogy between these three steps
and the three steps of Garner’s small object argument which are outlined in [Garner,
2009].

One important feature of the definition of cell complexes given in this paper is the
fact that they are countable sequences of strata. This is a substantial limitation on the
cardinalities involved, and one that is only possible because of special properties enjoyed
by the category Top and the class of maps J ; they are the same finiteness conditions that
allow the standard small object argument to be terminated within ω steps. In a general
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setting, one would need to check similar conditions, and in some cases the ordinal number
of iterations required may be larger. In these cases, the definition of cell complex will
be slightly more complicated because they will be ordinal sequences of strata with length
greater than ω. However, in the author’s view, this extra complication in the definition
will not be a serious difficulty.

The largest challenges faced by an attempt to generalise this argument will come in the
case where the maps of J are not all strict monomorphisms. Many of the definitions and
propositions above are predicated quite strongly on the assumption that ‘adding cells’ to
a complex is always a matter of ‘adding’; however, if a cell shape in J were not monic, the
pushout we would construct to glue it onto a complex would involve quotienting—adding
a cell could be a reduction. This may seem very counter-intuitive, but there are important
examples of awfs where exactly this behaviour would occur: in particular, most of the
awfs defined on (different strengths of) n-categories have as their highest dimensional
cell shape a non-monic map that identifies two morphisms of the highest dimension. In
this case, the definitions in Section 4 would need to be very carefully reconsidered. For
example, if a cell shape is epimorphic, one could have any number of cells which make
no difference to the underlying morphism—most morphisms would have infinitely many
non-isomorphic cell complex structures. In particular, the forgetful functor U would not
be conservative, and hence the proof would fail as it currently stands.
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