Theory and Applications of Categories, Vol. 27, No. 16, 2013, pp. 393-444.

COMPOSITION OF MODULES FOR LAX FUNCTORS

ROBERT PARE

ABSTRACT. We study the composition of modules between lax functors of weak double
categories. We adapt the bicategorical notion of local cocompleteness to weak double
categories, which the codomain of our lax functors will be assumed to satisfy. We
introduce a notion of factorization of cells, which most weak double categories of interest
possess, and which is sufficient to guarantee the strong representability of composites of
modules between lax functors whose domain satisfies it.

Introduction

We are interested in lax functors between weak double categories. There are several
reasons for this. One is that representables for weak double categories are lax functors
[15]. Another is that V-categories can be viewed as lax functors in various ways [17],
[3]. Monads are lax functors defined on 1. In fact in the first paper on bicategories [1],
lax functors were called “morphisms of bicategories”, thus underlining their fundamental
nature.

The notion of transformation between lax functors is a little less obvious. In [1], lax
and oplax transformations were defined but these present some problems. For one thing,
no notion of transformation made bicategories with lax functors and transformations into
a bicategory or a tricategory, a feature which seemed desirable. It also seemed a bit
mysterious that there was no preferred choice between lax and oplax transformation.
Over the years various other notions of transformation have appeared, for example the
ICONSs of [12], and the modules of [5]. Here we will see how all these notions fit together
to form a virtual double category [6], and under the hypothesis of our main theorem 4.0.1
an actual weak double category, and this not just for bicategories but for weak double
categories too.

In the context of double categories it is natural to look for horizontal and vertical
transformations. There is a natural notion of horizontal morphism between lax functors,
which we call simply natural transformations (of lax functors, if confusion is possible).
The theory presents no problem. For 2-categories considered as horizontal double cate-
gories (i.e. vertical arrows are identities), natural transformations are exactly 2-natural
transformations. For bicategories considered as vertical weak double categories, they
correspond to (dual) ICONs.

Research supported by an NSERC grant.

Received by the editors 2012-05-21 and, in revised form, 2013-04-02.

Published on 2013-04-03 in the volume of articles from CT2011.

2010 Mathematics Subject Classification: 18D05,18D25.

Key words and phrases: double category, lax functor, module, modulation, representability.
(© Robert Paré, 2013. Permission to copy for private use granted.

393



394 ROBERT PARE

Vertical morphisms of lax functors are a little trickier but there is still a natural can-
didate, a kind of multiobject profunctor, which in fact reduces to profunctors in the case
where the domain is 1 and the codomain Set or, more generally, V-profunctors for V-Set.
This was introduced in [5] for bicategories, and called “module”. The definition given
there is easily adapted to weak double categories. A notion of 2-cell, called “modulation”,
is given in [5], which is also easily lifted to the weak double category setting.

These vertical morphisms come up in the study of double limits and colimits where it
is important to understand their dependence on vertical morphisms of diagrams. This is
already suggested by the two dimensional property of limits introduced in [8].

Another context where vertical morphisms can be interesting is in model theory. A first
order theory can be viewed as a weak double category in a way completely analogous to
Lawvere theories, with terms giving horizontal morphisms and formulas the vertical ones
[14]. Then a model is a product preserving functor into Set, so modules give important
extra structure which seems to have been ignored so far.

The composition of modules is however not straightforward, and this is something
which must be addressed if the theory is to proceed. Part of the problem already appears
for V-profunctors where completeness conditions on V are required, and the composite
is given by a coend formula. So it is clear that certain cocompleteness properties of the
recipient category will be needed.

But this is just part of the problem. A variation on this coend formula is given in [5]
but it does not apply, as is, to the weak double category case. The problem is that their
formula is not horizontally functorial on general double cells, although for special cells it
is, and for bicategories, all cells are special. We isolate a certain factorization property
of double cells which holds in many important cases, among which are bicategories, and
for which a modification of the formula from [5] does indeed give composition of modules.
We consider this to be the major contribution of the present work.

This property, which we call AFP, is only one of many similar ones which have come
up in our work on double categories, e.g. double Kan extensions. What it means to
factor an arrow, being a one dimensional entity, is clear. It is a composite of two arrows,
an epi-like one followed by a mono-like one. By contrast, cells being two dimensional, a
whole panorama of factorization schemes such as our AFP is opened up. We foresee many
other kinds of factorizations playing a central role in double category theory.

The subject of this paper presents an expository challenge. The proof of the main
theorem requires checking a large number of details, each of which is more or less straight-
forward once everything has been properly set up. Conventional mathematical writing
style would probably suggest they be omitted, but doing so certainly leaves a lingering
doubt that something important has been missed. So we have written down all the details,
which are there for anyone to check. Notationally, this is non-trivial, and we consider this
to be the secondary contribution of the paper. Our notation, though not perfect, is a vast
improvement over previous drafts.

Section 1 recalls the necessary background. We give the relevant definitions listing the
conditions in point form for easy reference later on.
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In section 2 we begin the construction of the composition of modules.

Section 3 contains our main definition, AFP, and completes the construction.

A complete proof of the main theorem is given in section 4.

The paper ends with a section tying up some loose ends. We show that identities
are always strongly representable, which together with theorem 4.0.1, shows that mod-
ules provide the vertical structure for a weak double category of lax functors (under the
hypotheses of the theorem of course). We show that our construction reduces to that of
[5] in the case of bicategories, although not in a completely straightforward way. This
validates their claim that composition of modules is associative.

1. Preliminaries

1.1. LAX FuNcTORS, MODULES, MODULATIONS We summarize here the basic defini-
tions for easy reference. The two dimensional cell diagrams are given fully in [15], to
which the reader is referred for more detail and examples.

1.1.1. CONVENTION. By “double category” we always, unless otherwise specified, “weak
double category”.

To say that a double category is weak means that vertical composition is associative
and unitary up to coherent special isomorphisms

0= Oyy 0y © V3 (V2 v1) = (v3-02) -1y

t=rt,:v-idy = v
(=10 :idj-v=v

satisfying the same coherence conditions as bicategories, i.e. pentagon, etc. The double
arrow indicates that we are talking about a special cell, i.e. one whose vertical domain
and codomain are identities. For example [ looks like

A:A

A » U
idje

A——A

In what follows we will omit the associativity isomorphisms and treat them as equal-
ities, otherwise the already complicated formulas would risk becoming incomprehensible.
They are easily added in for anyone wishing to do so. We sometimes also omit the unit
isomorphisms when we feel it helps, although it’s usually better not to.
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1.1.2. DEFINITION. A laz functor F': A —X consists of the following data:

(LF1) Functions, all denoted F', taking objects, arrows and cells of A to similar ones in X,
respecting boundaries (domains and codomains);

(LF2) (Laxity cells) for every object A of A a special cell pA : idpa = F(id4) and for every
pair of vertical arrows A—s=A—$~ A a special cell ¢(3,v) : F(v)-F(v) = F(5-v).
They are required to satisfy:

(LF3) (Horizontal functoriality) F/(14) = 1pa, F(1,) = 1p, F(f'f) = F(f")F(f), F(da) =
Fla)F(a);
(LF4) (Naturality of ¢) F(ids)(¢A) = (¢A")(idpys), F(a - a)p(v,v) = ¢(v,v)(Fa - Fa);
(LF5) (Unit and associativity laws for ¢) ¢(idz,v)(¢FA - Fv) = can, ¢(v,idy)(Fv-¢A) =
can, ¢(v,v - v)(Fv - ¢(v,v)) = ¢(0,-0,v)(p(0,0) - Fv).
1.1.3. REMARK. The first condition of (LF4) is vacuous for bicategories.

1.1.4. REMARK. As much as possible we use a Greek letter corresponding to the name
of the functor to represent the laxity cells.

1.1.5. DEFINITION. If ', G : A—=X are lax functors, a natural transformationt : F—G
consists of the following data:

(NT1) Functions, both denoted ¢, taking objects A of A to horizontal arrows tA : FA—GA
in X, and taking vertical arrows v of A to cells

FA--GA
n } . [GU
FA—GA
in X.
These are required to satisfy:
(NT2) (Horizontal naturality)
FA--GA Fv—"~Gv
Ff‘ \Gf and Fa‘ ‘Ga
FB—GB Fuw—Gu

commute for all horizontal arrows f and cells «;



COMPOSITION OF MODULES FOR LAX FUNCTORS 397
(NT3) (Vertical functoriality)

P(v,0)

idps —22— F(id ) Fo - Fu F(v-v)
ithl jt(idA) and tv-tv‘ lt(z‘)-v)
idga A G(ldA) Gv - Gu o) G(T_) . ’U)

commute for all objects A and composable pairs of vertical arrows v, .

Natural transformations compose in the obvious way and give a category. They are
the horizontal arrows between lax functors and admit as special cases 2-natural transfor-
mations, when A and X are 2-categories (i.e. double categories whose vertical arrows are
identities), and (the dual of) ICONs when A and X are bicategories (i.e. double categories
whose horizontal arrows are identities).

Our main concern will be with the vertical morphisms between lax functors. This is
more difficult. They were studied in some detail in [15] and in fact in [5] for bicategories
before that and for poly-bicategories in [4] even before that. We are referring, of course,
to modules, a kind of “multiobject profunctor”.

1.1.6. DEFINITION. Let F,G : A— X be lax functors. A module m : F—e—= (G consists
of the following data:

(M1) Functions, both denoted m, taking vertical arrows v : A—s=Ain A to vertical
arrows mv : FA—e—=GA, and cells 0 : v —w in A to cells mo : Fv— Guw;

(M2) (Left and right actions) For every pair of vertical arrows A—s>A—$> A, special
cells
A(0,v) : G- mv = m(v - v)

p(v,v) :mv - Fvo = m(v-v).

These are required to satisfy:

/

(M3) (Horizontal functoriality) m(1,) = L), m(a’a) = m(a/)m(a);

(M4) (Naturality of A and p)

A(v,v _ _ v,v _
G - my 22 m(v - v) mU.FULm(U-U)
Ga-ma‘ jm(o‘ua) and mouFon Lm(o‘z-a)
Gw - mw Wm(w - w) mw - Fw o m(w - w)

commute.
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(M5) (Unit laws)

idg - m(v) — 2" Gidy) - m(v) m() - idpa —2 L n(v) - F(ida)
> l,\(idA,u) and . lp(v,idA)
m(idz - v) m(v-idy)
commute.
(M6) (Associativity)
G- Go-mo—2 g m(v - v) G- mo - Py 00T m(v-0) - Fv
¥(8,9)-mu l/\(f)?v-v) G@p(ﬁ,v)] jp(f)-v,v)
G(f}-@)-mvwm(@-@-v) Gﬁ-m(@-v)wm(f)-@-v)
mo - Fg - Fry 200 m(v-0v)- Fv
and mf}'qﬁ(vﬂ))‘ Lp(ﬁ-v,v)
mv - F(0-v) e m(?-0-v)

commute.

There is also a notion of cell in [5], modulation, which we adapt to our situation.

1.1.7. DEFINITION. Let ¢t : FF—= F’" and s : G —= (&’ be natural transformations and
m: F—e=G and m' : F/—e—=G" be modules. A modulation p with boundary

F—tsp

G—S>G/

consists of the following data:

(m1) For vertical arrows v : A—s> A we are given cells

FAA A

mv{ w Jmlv

GA—G'A
sA

which are required to satisfy
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(m2) (Horizontal naturality) For every cell a: v —=12/

o
my —=mv

mv' —m/v’
pv

commutes.

(m3) (Equivariance) For all pairs A—s>A—8~ A

G5 - mv— G'5 - mv mv - Fo—"" o /5 - F'v
)\(v,v)t l)\/(v,v) and p(v,v)‘ ‘p’(v,v)
7 . _ > Ut . T _ "5 .
m(v - v) o (0-v) m(v - v) PR (-v)
commute.

If A and X are bicategories (only identity horizontal arrows) then our definition of
module is the same as that of [5]. If furthermore s and ¢ are identities, then our definition
of modulation is also the same as theirs. Note, however, that even for bicategories there
can be non-identity s and ¢ (dual ICONs) so our definition allows for more modulations.

1.2. VIRTUAL DOUBLE CATEGORIES The problem which is the focus of this paper is
the composition of modules. In order to properly formulate it, we must introduce virtual
double categories.

These have been variously called T-catégories [2], “fc-multicategories” [13], “multi-
categories with several objects” [10], “multibicategories” [5] and “lax double categories”
[7]. We adopt the name “virtual double category” from [6] to which we refer the reader
for more details. There, an elegant and convincing case is made for the importance of
this central concept. We simply sketch the relevant parts here.

A wvirtual double category has objects, horizontal and vertical arrows and multicells
whose boundaries look like

Ao
vie &
Ay By

o, tw
Un e
1
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which we will denote as « : v,,v,_1,...,v; — w or, using vector notation, o : v—w.
Horizontal arrows form a category but there is no composition of the vertical ones. We
have a composition of multicells in the style of functions of several variables. Given a cell

bWy, ..., w—
and compatible cells o, : v; — w; we are given
By y01) Vi, Vi1, + . ., V] —= L.

This composite is required to be associative and unitary (i.e. for each v, 1, : v —wv is
given, and 1,a =a =a(l,,,...,1,)).

U1

1.2.1. DEFINITION. Let Ag—e>A; —e> --- —¢> A, be a path of vertical arrows in a
virtual double category A. We say it has a strongly representable composite if there is an
arrow v : Ag—e—=A,, and a special multicell

L Up,Up_1y..., U] =0
such that for all compatible paths x, y and multicells
aX,V,y —=2
there is a unique multicell & : x, v,y — z such that

1x,t,1y
xV,y =X, 0,Y

N

z

1.2.2. REMARK. Mere representability, where the universal property is only required for
empty x and y, is of course enough to determine the composite up to special isomorphism,
but strong representability is needed to get associativity of the composite. If v has a
composite we use [v] to denote a chosen one.

Thus in order to properly state the problem of the composition of modules it will be
sufficient to define a virtual double category structure on Lax(A, X). We gave a definition
of multimodulation in [15] which we reproduce here. Our definition was an adaptation of
the multimodulations of [5].

1.2.3. DEFINITION. Let Fy, F1, ..., F,, Go, G1 be lax functors A—=X, my : Fy—e—=Fj, mo :
Fl—esF5 ... omy,: F,_1—=F,, p: Go—e=G1 modules, and t : Fj—=G, s: F,—=G;
natural transformations. A multimodulation

ft:m—=p
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Fo
F Go
ma) %
: G1

F,

consists of the following data:
(mm1) For every path Ag—e=A; —e=> ... —¢>A, a cell
(Vny o 01) MUy s My U1+ ooy —= (U - . vy), p(V) D [mv] —p[v]

These must satisfy the following conditions:
(mm2) (Horizontal naturality) For any n-path of cells a : v— v/,

[mv] —""~ [mv/]

u<v>l lu(v’)

R\ ——

commutes.

(mm3) (Inner equivariance) For any path of length n + 1
Yny -+ Yir1, Vs Tiy ..y (0 < i< n)

y, Vv, X
we have that
fmy] - Fyv - fmx] — "~ [my] - [m(v - x)]
l-pi+1~1L ju(y:v-X)

m(y - 0)] - fmx] —————ply, o]

commutes.
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(mm3;) (Left equivariance)

F,v - [mx] el [m(v - x)]
sv-u(x)j Lu(v-X)
Gro - plx] —— 5 p[v, %]
commutes.
(mm3,.) (Right equivariance)
[my] - Foo —"— [m(y - v)]
u(y)-tvj Lu(y-v)

ply]- Gov ————ply, v]

commutes.

1.2.4. NOTATION. In this definition, we have introduced some notational conventions,
without which the formulas would quickly become incomprehensible. We set them down
here for clarity.

As mentioned before the definition, we use vector notation for paths

U1 v2 Un
V= (Vpy...,01) = Ag—e=A— ... —=A,
and square brackets for a chosen composite

Vl=vp - vp_1-...-v1 = (U - Up1) - ...) - V1.

ma2

F, &~ . &~ F, is a path of modules, then

Ifm = (m,,...,mp): Fy—e

mivl

mv = m(v) = F(]A() . FlAl A . U FnAn

is the path obtained by evaluating m at the corresponding v. When the paths are not of
the same length we evaluate at the corresponding ones that make sense, so

Mi+1Yi4+1 Mi+2Yi4+2 MnYn
my = EAi+E+1Ai+1 . R . FnAn

The following is now easily proved.

1.2.5. THEOREM. Equipped with multimodulations, Lax(A,X) is a virtual double cate-
gory.
With this result, the question of whether the composite of modules exists is well-posed.

Just by considering V-profunctors, we see that certain cocompleteness conditions on X
will be required. Under such hypotheses, [5] give a simple formula for the composite of



COMPOSITION OF MODULES FOR LAX FUNCTORS 403

two modules in the bicategory case. For m; : F'—e=G and my : G —e=H modules, and
v : A—e= A they define m(v) as the coequalizer

ZmQ(Ug) - G(v9) - my(v) —= ng(vg) -my(vy) —=m(v)

1

in the hom category X[FA, HA] whose objects are vertical arrows z : FA—e=HA and
whose morphisms are (special) cells. I is the set of “lax factorizations” of v

A=——=A
Al « » U
A=—=A

and J is the set of quadruples (a1, as, 51, f2) such that

A A A A A A
v1 4 vig 1, 4w

Al B ¢ Ail—=A4

Ay =—=2A4, A B e
vse 1, vs vs 4

A A A A A A

This is a nice intuitive formula but it has several drawbacks. The main one for us is that

it doesn’t work for double categories. The m, thus defined, is not horizontally functorial.
If

A——=B
f

is an arbitrary cell, there is no way of defining m(c). To solve this, it is tempting to
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enlarge I to all diagrams
Ag—L- A
vie

A1 «@ » U

v2e

Az—f>zzl

But now the arrows maq(vs) - my(v1) do not all lie in the same hom category. One could
require some stronger cocompleteness properties of X or, more or less equivalently, that
all horizontal arrows of X have companions and conjoints. But this doesn’t work either.
There is no obvious way of defining left and right actions for m. These problems will be
solved in the next two sections.

2. The Construction

2.1. LocAL CorLiMITs It is clear from the examples, V-profunctors e.g., that we will need
some cocompleteness for X. For objects X, Y in X we let X[X, Y] denote the “vertical
hom category”. Its objects are vertical arrows z : X —e—=Y | and its morphisms £ : x = 2/,
are special cells

X:X
1 b
Y =—=Y

2.1.1. DEFINITION. We say that X has local I colimits if
(LC1) Each category X[X, Y] has I colimits;

(LC2) For every w: W —e=X and y : Y —e—=Z the functor X[w,y] : X[X, Y] —X[W, Z]
which takes x to y - x - w preserves I colimits;

(LC3) The I colimits have a further universal property. Let I' : I—X[X,Y] be an I
diagram. Given f: X — X’ and g : Y —Y" horizontal morphisms, 2’ : X' —e—=Y"
a vertical morphism of X and a cocone of cells
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then there exists a unique cell

x—1.x

YEF{ ¢ Jw

Y —S> Y/
such that &v(1) = (1) (v(I) is the Ith colimit injection).

2.1.2. REMARKS. (1) (LC3) is not saying that limI™ is a colimit in the category X, of
all vertical arrows and all cells, because the f and g are fixed. If T is connected however,
the two concepts agree.

(2) If in X, horizontal arrows have companions and conjoints, then (LC3) is automatic
because a cell

xX—tox
LL’] 5 Jx’
Y T‘ Y’
is equivalent to a special cell
X pr— X
f*
Xl
Te g x!
Y/
g*
Y pr— Y

(3) (LC3) is less mysterious in the context of category theory over a base B. The 2-
category CAT /B is cotensored over Cat. Given an object P : X — B and a small
category I then

x»_rY g

is the pullback
X® - x@

So an object of XM is a pair (B, : I— X3) and a morphism (b,t) : (B,T) — (B',T")
is a morphism b : B— B’ and a natural transformation over b, t : I'—1", i.e. a natural
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family
tI:TI—T'T st. P(I)=b.

There is an obvious diagonal functor

X A X (@)
B

If A has a left adjoint over B (i.e. in CAT/B) it gives I colimits in the fibres Xp but
with a further universal property with respect to cocones over b : B— B'.
Then X has local I colimits if

X1

(0,01) l

XOXXO

has T colimits (in CAT /Xy x Xg) and composition X; xx, X; — X, distributes over
them.

Many large double categories are locally cocomplete. For example Set and Cat are,
and V-Set is, provided V has colimits and ® distributes over them (e.g. if V is closed).

2.2. THE CONSTRUCTION Let F,G,H : A — X be lax functors with A small and X
locally cocomplete. Let m : F'—e—=G and n : G—e—= H be modules which we wish to
compose. Our colimit formula is a reworking of the coequalizer formula of [5], adapted to
the double category context. We will discuss how the two are related in §5.2.

Given v : A—e=A we define a diagram T, : I, — X[F A, HA| as follows. I, is a
bipartite category with two kinds of objects:
lax factorizations of v

A=——==A

Vie

B 5 v

V2 o

A=—=A4
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and triple lax factorizations of v

A=A
C1
w2 e ~ p U
Cy
A——A

The (non-identity) morphisms go from triple lax factorizations, 7, to double ones 3, and
there are two kinds of these:
(i) for each horizontal morphism Cy — B and cells ¢y, ¢o for which S(¢s - ¢1) = v as in

A A A A=—=A
Ci o Ch

wa 5 4V — wa I
Cy,——B )

wse g, U2 ws
A A A A=——=A

we give a morphism

lssr = () —(P)

E(iilgl)(ifor each horizontal arrow C) — B and cells 9, ¥, for which B(i - ¢1) = v as in

A A A A=——==A

wig oy w1 w
Ci——B Ch

wo 5 4v — wo , e
Co g 972 Cy

ws ws
A A A A=——=A

we give a morphism
Tyou (1) —= (B).
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There are no non-trivial composites.

[, : I—X[FA, HA] is defined by
'y(8) = nvy - muy

[y () = nws - Gwy - mw,

nws-\ ng2-meoi

Ly(lgypy ) = nws - Gwg - mwy ——s—=nws - m(wy - wy) —e—=nvy - MV
prmwi nPa-may

Ly (T ) = nws - Gwy - mw; —e—=n(ws - wy) - maw, nvy - MUy

In this, A is the left action of G on m and p the right action of G on n.

2.2.1. PROPOSITION. Giving a cocone k for I, is equivalent to giving a family of cells
K(B) : nvg - mvy —x

indexed by lax factorizations B of v, satisfying
(a) (transfer of scalars) for every triple lax factorization v as above,

w3 ’lU2 MWy

7

nws - Gws - mwy

N /

nws -m ’lUQ

commautes,
(b) (naturality) for any two laz factorizations  and B’ related by

A:A

B'(02-60,) =8,

commautes.
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PROOF. First, let x : 'y — x be a cocone. Note that both arrows denoted by r(y)
in (a) are different as is clear from their domains. A more precise notation would be
k(ws - we,wq,7y) and k(ws,ws - wy,y). Then each of the composites in the transfer of
scalars diagram is equal to

K(ws, wo, wy,7y) : nws - Gwy - mw; —=

by the cocone property for the morphisms r,, .1, and l1, 1,, .,
For naturality, let 3, ', 01, 62 be as in (b). Consider the triple lax factorization of v

Luy

A:A
B

idp B oV
B
A——A

where (8 is 8 composed with the canonical isomorphism v, - idg - v —=v5 - v1. We have
morphisms in I,

l1v2,1;1 : (5>—>(5)
T65,0, - (5>—>(5/)
which give a commutative diagram

. nlyg-m(lyy)
nvg - m(idp - v1) —————— nvy - My

nvy/ k(B)
nvy - Gidg - mv; () z

P‘mx /(ﬁ’)

: / !/
n(vy - idg) - mu; - nv's - mv'y
( ) n(62)m(01)

Precede this by the canonical

nvz-yp-mu1

nvs - MU — Ny - idgp - Moy nvy - Gidg - mu;

and the top path will be equal to x(f) whereas the bottom will be x(5’)(nby - mb,).
Conversely, let (k(/) : nvg-muv;—sx) be a family of cells satisfying (a) and (b). Given
a triple lax factorization () as above, define

k() @ nws - Gwy - mwy —=x
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to be the common composite given by (a). Then for a morphism ly, 4, : (7) —(8) in I,
we have x(8)[,(lpy.¢,) as the top composite in

nws - ng mw; —>’I’L’LU3 —>m)2 muvy

x%

which is the cocone property for ly, 4,. The one for ry, , is similar.
]

Actually we need a stronger form of this proposition; we need it not just for cocones
on T, but on ®T',,, where ® : X[F A, HA]—=X is an arbitrary functor. In the applications
that follow, X will be one of the vertical homs of X, X[X}, X5], and & will come from
vertical composition.

2.2.2. PROPOSITION. Giving a cocone k : ', —x is equivalent to giving a family
k(B) : ®(nvy - mug) —x

indezed by lax factorizations 5 of v, satisfying:
(a) (transfer of scalars)

<I>(n(w3 wy) + MWy )

/

& (nws - Gws - mwy)

m

b (nws
commutes,
(b) (naturality)
b (nvy - mvl)
P (nbha- m91

/

Ny

O (nv'y - mo'y)
commutes.

PROOF. Put a ® before all objects and arrows in X[F A, HA] in the previous proof, except
x and the k’s. [
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2.2.3. DEFINITION. (n-m)(v) = limT",.

Let jg : n(ve) - m(vy) — (n - m)(v) denote the colimit injection corresponding to the
lax factorization () of v. Note that the family (jz) is jointly epic. This is also true for the
families (y - j3), (js- 2), (y- Js - 2) as composition with vertical arrows preserves colimits.
This fact will be used repeatedly below.

2.3. THE ACTIONS Given A'—4> A—%> A—%+ A we wish to define the actions A, (0, v)
and p.m(v,0).

2.3.1. PROPOSITION. There are unique cells . (0,v) and pp.m,(v,v") satisfying:

Ho - (n-m) () =" (. m) (5 - v)
Hﬁ.jﬁT T]‘v.g
Hv - nvy - muy Wn(ﬁ - Ug) - MUy

and

pr-m(v,0")

(n-m)(v) - Fv

jg-F’v/T Tjﬂ,vl

nug - muy - Fv' nvy - m(vy - v')

nv2-pm (v1-v")

commute for every lax factorization of v

A=——A
A B v
A:A

ProOF. We will only discuss the left action, the right one being similar. Hv-( ) preserves
colimits so Hv - (n - m)(v) is limHv - I'y and Ho - jg are colimit injections. So we must
show that (j5.5(A\.(0,v2) - mu1)) s determines a cocone. By proposition 2.2.2 it is sufficient
to check conditions (a) and (b).

Let () = (ws, wa, wy,y) be a triple lax factorization of v. Condition (a) is commuta-
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tivity of the outside of the diagram

_ An-mawy
Hv - n(ws - wy) - mwy ———n(0 - ws - - mawy
Hv pp-mw1 Pn Mw1 Jo-y
/ " / \
_ An-Gwo-muwq _ 3)
Hv - nws - Gwg - mw; —“——n(0 - ws) - Gwy - mw, (- v)
2

H(v)nwk;m (2) n(v-ws3) \ %’y

Hv - nws - m(wy - w1) —————n(v - ws) wi)

Anm(w2-wi)

Mixed associativity for n gives commutativity of (1), functoriality of vertical composition
gives (2), and (3) is condition (a) for the lax factorization v - v = (v - w3, wa, w1y, v - y) of
v .

Let B = §'(0 - 61) as in condition (b). We have to show that the outside of the
following diagram commutes.

HY - nvy - mvy —2 (5 - v) - may jos
T
Hi-nfa-mby (1) n(ﬁ@z)'m@lj (2) (n-m)(v-v)
/’
Hv-nv'y - mv'y —>n(v v 2) mv'y’"?
An-mv’y

Naturality of A, gives (1), and (2) is condition (b) for v - v.

3. A Factorization Property

It remains to define n - m on cells.

In order to do this, we need an extra condition on A, a factorization of cells which
holds vacuously for bicategories. This is where the theory for double categories diverges
from that of [5]. Double cells or multicells, being two dimensional, can be factored in a
variety of ways of which the one given below is but one. We envision many other such
factorizations. It is the isolation of this property that we consider the main contribution
of this work.

3.1. Tue ConDITION AFP
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3.1.1. DEFINITION. We say that A satisfies AFP if every cell of the form

Ao—f>Bo

vie

factors as

U1
A1—>Bl as ow

V2 a9 [ X005

Ay —>By=—=DB;

a = az(as - 1), and any two such factorizations are equivalent under the equivalence
relation generated by identifying two factorizations

Ao~ By— B, Ao —~ B, By
vig 4y ew 1'% ST S
Al——=C 5 sw = A ——=D 45 v
% SR O vad 5y T2
Ay —— B, By Ay —>By=——=D0B;,
if there is either
(1) a horizontal reduction (y1,72,73) (@162) (61,02, 03): there exist
By=——=B,
TR S 1
C——D
uzg gy 42
B, B,

such that
(a) 171 =
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(b) Pav2 = 0o
(c) 03(2 - 1) = 73
or

(2) a wvertical reduction (y1,v2,73) W (01,09, 03): there exists

C
/
Al 0 Y
\ D
such that
(a) 0y =01,
(b) 52 : 9 = 72,
(c) v3 = 63.

3.1.2. NOTE. The intent of the conditions in (2) is clear but because we are working with
weak double categories we can’t help certain canonical isomorphisms creeping in. More
specifically, we need to require special isomorphisms & :y-u; = v and & : Ty -y = Us
such that

(a)

Ay — By By Ao Ay—— By
vig 4w v

Al —C o ez = Ay 1, 15 em
id 0 Y id
Al——=D=—==0D Ay Ay ——=D

(b)

A ——C=—=C() Al=—A ——C
ide 0 ¢V idd

Al——D ¢ w2 = Ap w4, 2 4 e
v2e s, 472 26

Ay — By B, Ay=——=Ay——= B,
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By By=—=2DB, By==By=—= D5y
e 1w ur b

C=—=C C « 1

ve v bW = Ye 5, ew
D ¢ u2 D=——=D

2l o S P
By—By,——B, By—By——DB,

3.1.3. EXAMPLES. Bicategories, considered as vertical double categories, satisfy AFP,
but more can be said.

3.1.4. PROPOSITION. If every horizontal arrow of A admits a companion and a conjoint,
then A satisfies AFP.

PROOF. Any cell

Ay—1> B,
U1 e
Al « » W
U2 @
A2 —g> BQ
factors as
AO —f> BO e BO
U1 ai ovr-f*
Al Al az W
v2 o ® gx U2

Ay —>By=—=DB;

where a1, as and a3 are respectively

Ag—— Ay—L~ B, A —— A, —— A,
idagd L ef v2g 1, ev2

ne = A Ao e = Ay=—=A,
vig 1, Ui ida, e T g0

A, A, A A, Ay —— By
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and

By By By
fre idg,
Ay—L- By
vie

Al o tw = euw
va g

A, — B>
gee 4 eidg,

By By == DBy

where the corner brackets represent binding cells, and = are canonical (structural) iso-
morphisms. Any other factorization of «

AO—f>BO—B0

V2

o4
A, —>= B:=——=D5B;
is a horizontal reduct of (ay, ag, a3) via the cells
By By
v1-f* b1 sul
A ——C
gx-v2 by U2
B, B,
where ¢; and ¢4 are respectively
By=——=By=—=DB, A ——C——
f*e 1 eidp Vo 2 o U2
Ao — By =~ suw and Ay—=By = qu
vis 4y sw g L eidp,

Ay ——C=—=C By=——=By—=2DB,
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]
3.1.5. COROLLARY. Any bicategory considered as a vertical double category satisfies AFP.

Whereas, in the proof of proposition 3.1.4, only horizontal reduction (condition (1) of
AFP) was needed, the proof of the next result requires vertical reduction (condition (2))
as well.

3.1.6. PROPOSITION. Let A be a double category in which every vertical arrow is a com-
panion of some horizontal arrow. Then A satisfies AFP.

PRroor. Consider a cell
4oL~ B,
U1 e

Al o fw

v2e

Az—g>Bz

and suppose vy = h, for h : Ay — A,. Then « factors as

Ay —L~ By— B,

U1 o ow

gh
A1—>BZ as ow

V9 s idB2

A2 T‘ BQ —_— BQ
where a7 , g are respectively

AO—AO—AO—f>BO

U1 6 Toy [ X0} Al h A2 g B2
v1 ~ A A a b w and UQl g {idA2 idg &ing
ida, ¢ r V2 Ay=——= A, —g B,
Al _— Al T‘ A2 T‘ BO

and a3 is the canonical isomorphism.
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Now let
Ao—L~ B,

By

U1 61 oW1
Ai—=By g g

v2 52 [ X10]

By

A2—g>B2

be an arbitrary factorization of a. Use the same procedure as above to factor 5 as

By==25B, By
w1 e 01 w

B — =By as tuw

w2 e o idB2

By —— B, By
which gives a horizontal reduction of the fB3(f5, - £1) factorization to

AO—BO—BO

vl Y1 ow

Al ——= By a3 ew

v29 4y eidp,
A Bs B,
where v; = 0, - 5;. Now let 6 be
Ay Ay —— By

id[ r {vz Yo Jid

Al—h>A2—>BQ

Then an easy calculation shows that 6 -+, = a; and g - 8 = 5. Thus 6 gives a vertical
reduction of the az(7, - 1) factorization to the az(as - ay) one.
"

3.1.7. COROLLARY. Any 2-category considered as a horizontal double category satisfies
AFP.

3.1.8. COROLLARY. The double category of quintets in a 2-category satisfies AFP.
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3.1.9. COROLLARY. If every vertical arrow of A is a conjoint, then A satisfies AFP.

3.2. FUNCTORIALITY (DEFINED) We are now in a position to define the action of n-m
on cells.

3.2.1. PROPOSITION. Assume that A satisfies AFP and let

be a cell in A. Then there exists a unique cell (n-m)(o) : (n-m)(v) — (n-m)(w) such
that

Jo jﬁS

nvy - My nws - Mwy

nf2-mpB1

commutes for every o and factorization of o«

Ai—A-1.B A LB —8B
wb 5 dw
Ay a v o 8w = Ay——=DBy p ¥
Y R
Ay——A—B As—— By——B

PRrROOF. We first show that jz,(nfs - mf1) is independent of the factorization.
(1) Suppose we have a horizontal reduction of (51, 52, 53) to (81, 85, B5) by (é1, ¢2). Then

nwsy - Muwn js

nug - M ngo-mer (n-m)(w)

P —

npBL-mpB Jat
TN nwhy -mawy %

commutes, the left triangle by functoriality of n and m and the right triangle by the
cocone property for j (proposition 2.2.2).
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(2) Suppose we have a vertical reduction of (81, B2, 53) to (81, 55, 55) via 6. Then we have
a commutative diagram

n(B’2:0)-mp

n(vg - idy,) - moy n(w's - ) - mwy; = nws - mw
p-muL (1) p~m17 jﬂg
ngy-Go-mpy
nuy - Gid 4, - mu, nw'y - Gx - mwy (3) (n-m)(w)
2
m)g\)\\ (2) nw’x\ gty
/ ~ / /
nvg - m(ida, - v1) T nw'y - m(z - wy) = nw'y - mw'y

where (1) and (2) commute by naturality of p and A and (3) by the cocone property for
J (proposition 2.2.2). Note that the top and bottom arrows of this diagram are nfs - mf,
and nf’, - mpf'; preceded by canonical isomorphisms, so if we precompose the diagram by

nv2-yG - mul .
nvg - G(ida,) - mvy

nUg * U —%>m}2 -idga, - mv;
we get jg,(nf2 - mpP1) = jg, (nfBs - mpy).
This shows that jg,(nfs - mf;) is independent of the factorization of ca. We denote
the common value by k.
Now we show that (k,) determines a cocone. We use proposition 2.2.2.
(a) (Transfer of scalars) Let « : v3 - v - v3 = v be a triple lax factorization of v. Then we
can factor oo as

A——A——B A——>B——8B
) S
Ay Al — B
¢ o §Y o Y = wp o pun g g
A, Ay, —— B,
vs. wl g gus
A=——A——-B A——B=—=38

by first factoring oo considered as a cell (v3-vq) - v;—w and then factoring the cell with
domain wvs - vo. Then the following diagram commutes
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n(B3-B2)-mpb1
n(vs - vg) - Mmvy n(ws - we) mwl

P-mV 1) P my

nB3-GB2-mpb1
nvs - Guy - muy

m)gx (2) nwk\\

nvs - m('U2 : vl) nBs-m(B2-P1) s

(1) and (2) by naturality of p and A and (3) by the cocone property for j. The top
composite is ko (p - mvy) and the bottom is k,(nvs - A). Thus (k,) determines a cocone.

Now the cocone determined by the k, is of the type required for the “further universal
property” (LC3) of definition 2.1.1. Each component has the same vertical domain, F'(f),
and the same vertical codomain H(g). Then by (LC3) there exists a unique cell (n-m)(o) :
(n-m)(v) — (n-m)(w) satisfying the stated conditions.

4. Proof of Main Theorem

In this section we prove the following theorem.

4.0.1. THEOREM. If A is a small double category satisfying AFT and X is a locally
cocomplete double category, then composites of modules between lax functors A—X are
strongly representable.

Now that the hard work has been done and everything properly set up, it is relatively
straightforward to check that everything works. We set down the calculations here in the
interest of completeness.

We first check that n-m is indeed a module F'—e— H. The data (M1) and (M2) from
definition 1.1.6 have already been specified. We use the fact that the definition of &, in
proposition 3.2.1 is independent of the factorization of ca and make judicious choices in
our proofs.

4.1. FUNCTORIALITY
4.1.1. PROPOSITION. n - m satisfies condition (M3) “horizontal functoriality”.

PRrROOF. For ¢ = 1, we can factor oo as

A A A A A A
V1 ¢ Vie 1 p U1

A« Y1 voo= A A v
V2 ¢ V2 e 1 p U2

A A A A A A
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so that ko = jo. Thus (n-m)(1,) = Lpm)w)-
Now consider two cells

A B C

We first factor cav = B3(fs - £1) and then 783 = v(79 - 1)

A——=A B C A——B=—=B——C

01 vig g ew

Al a %V o v - 8T = A ——=DB; p Y o ¢®

va v2e g, w2

A=—=A B C A——B=—=B—-C
A B C—=C A——C=—=C
e B Wt T Y1t mp T

= AA—B—C, » ¢ = A ——C; v ¢
e By Uy, g2 v2e p, 472
A B C=——=C A——=C=—=C

Ja Jg3 Jvs

nvy - Muy
n

- - . - - .
Bami nwsy «- Mmuwn P nro - MIy

n(v282)-m(y161)

so ((n-m)(7))((n-m)(0)) = (n-m)(ro).

4.2. NATURALITY
4.2.1. PROPOSITION. The left and right actions for n - m are natural (M}).

ProOOF. We give the proof for the left action A,.,. The right action is the same.
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For compatible cells, o : v—w and ¢ : v —w we must establish the commutativity

of
Huv - (n-m)(v) Anm(©0) (n-m)(v-v)
Hc‘r'(n'm)(ff)j L(”'m)(f_fﬁ)
Hw- (n-m)(w) (n-m)(w-w)

An-m (0,w)

Given a lax factorization of v, a : vy - v1 = v, we factor ca as

A——a_t . p At . p—_p
V1 ¢ V1 ¢ ﬂl p W1
Al o W o o = A ——DB; 5 v
V2 ¢ V2 ¢ 52 p W2
A——A—g>B A—g>B=B

which gives us a factorization of (7 - 0)(? - @)

A=——A——-B A——B——
V1 4 ny g w

S A Al——=B; s v
V2 4 — ve g, ews
A=——A——B A——=B=—=38
) S ¢ R ) ) S PR 0
A——A—-B A——-B——B

Then we have commutative diagrams

An.m (T,0)

Hv-(n-m)(v) (n-m)(v-v) (n-m)(w - w)

H’U:jaT ij»a T T]wﬁs
v

Hv - nvy - mu n(v - vy) - MU n(w - wy) - mw
2 1 An (U,02)-muy ( 2) 1 n(-B2)-mp1 ( 2) 1

and

Ha:(n-m)(o)

Ho - (n-m)() H - (n-m)(w) —=" () (@ - w)

Ha-k . .
H’U'ja] / THTIJ.]BS T]wﬁg

Hv -nvy - mvyy ———— Hw - nws - mwy ————n(w - wq) - mw
2 1 H&-nB2-mfB1 2 1 An (W,w2)-mw ( 2)
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in which the bottom rows are equal by naturality of )\,. As the H?v - j, are jointly epic,
we get the required commutativity.

4.3. UNIT LAWS

4.3.1. PROPOSITION. The left and right actions for n - m satisfy condition (M5), “unit
laws”.

PROOF. Again we just check the unit law for \,.,,. We must show commutativity of

idgg - (n - m)(0) 0 H(id) - (- m) (0)
S L,\n‘m(idmv)
(n-m)(ida - v)
For any a : vy - v1 = v we have a commutative diagram

idyg - (n - m)(0) T H(id ) - (- m)(0) S (- m)(id g -v)

idy 1Ja ]H(idA)ja [jidA.a

H(idz) - nvg - mv; ————n(idz - vq) - muy

idgy 1 - nve - mu
HA 2 1 An(id 5,v2)-muy

14 NV2-Mu1

The canonical isomorphism represented by 2 in the triangle above is in fact the top row
of the commutative diagram

i (- m)(0) 0 (e m)(w) " m)Gidy )

idHA'ja []a / T]’idg'a
o

idgy 5 - nvg - muy nvy - MUy n(idz - ve) - muy

lg a-mv1 n([;xl)Amvl
where the calculation of k, was made using the factorization

Ay——=Ay——=A

Ag A——=A vig 1 ¢u
v d v Aj=——A; o
Al o vt A = oo
va4 i we 1 Ay A
Ay A——A pida, 1 eida
Ay =——= A, A

The bottom lines of the two rectangles are equal by the unit law for n.
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4.4. ASSOCIATIVITY

4.4.1. PROPOSITION. The left and right actions for n - m satisfy condition (M6), “asso-
crativity”.

PRrOOF. First we check left associativity. This means that the top composites of the two
following diagrams must be equal for any composable triple of vertical arrows v, v, v.
Any lax factorization of v, a : vy - v1 = v gives lax factorizations v -« : (0-vg) vy = V-0
and 0-v-a:(0-0U-vy) vy =0-0-vof v-vand ¥-v-wv respectively. Thus we have the
following commutative diagrams.

Hv-\(v,v)

Hv-Hv-(n-m)(v) Ho-(n-m)(v-v)

Hf)-Hz‘)-ja[ THMW ]ja'm

Hv - Hv - nvy - muy Hf"n(@'vz)'mvlk'—>n(6-v-v2).mvl

Ho-\(v,v2)-muy

and
Ho - Ho - (n-m)0) 222 g6 5) - (n-m) () —22" o (nom) (55 - )
Hf;.Hﬁ.ja[ TH(&-U)-]'Q ]jﬁ»ﬁ»a
Hv - Hv - nvy - muy e y— H(?-9) - nuy - mvy Wn(v -0 - vg) - MY

That the composites of the bottom rows are equal is left associativity for n, giving left
associativity for n - m.

Right associativity follows in the same way from that of m.

Middle associativity is a bit different so we set it down here. Now, we take a lax
factorization of v, a : v9 - v1 = v, and the corresponding ones for v-v, v-v and v - v - v,
a-v:ivg-(v-v) =00, 0-a:(0-ve)- vy =0-0,and 0 -a-v:(0-v9)-(v1-0) =DV-0-0.
With this we get the following commutative diagrams.

A(0,0)-Fv p(0-0,v)

Ho-(n-m)(@)- Fv (n-m)(0-0)- Fov (n-n)(v-0-v)

Hﬁ'jaFv[ ij;-a'FU ]jﬁa-v

H?v - nvy - muy - Fu n(0 - vg) - muy - Fu n(0 - vy) - m(vy - v)

(9,v2)-mvy-Fv

n(v-v2)-p(v1,v)

and
Ho-p(v,v)

Ho-(n-m)(@)- Fv )0 -0-v)
H@-ja.Fv[ THiij ] o0
) - m(vr - v)

H? - nvy - muy - Fo H?v - nvy - m(vy - v) n(? - vg) -

Ho-(n-m)(v-v)

(n-m U

B
Hv-nva-p(v1,v) A(D,v2)-m(v1-v)

The bottom rows are equal simply by functoriality of vertical composition, so the top
rows will be equal as well, which is middle associativity.



426 ROBERT PARE

Thus we have proved that n - m is a module. It remains to see that it has the strong
representability property, which we do in the next two sections.

4.5. THE CANONICAL BIMODULATION In this section we define the bimodulation

F—F
G . on-m
H——H

. . v1 Vo . . . .

Given two vertical arrows Ag—e—= A; —s= Ay, v5-v; has a canonical lax factorization into
0 )

v and vy

lyywy 2 V2 - V1 = Vg - V.
Define (vq, v1) = j1,,,.,, : n(v2) - m(v1) —=(n-m)(vz - v1).
4.5.1. PROPOSITION. ¢ is a bimodulation.
PROOF. First, ¢ satisfies (mm2), “horizontal naturality”. Let
Ao—= By
v pwr
A — B

v2 e s w2

A2—>BQ

be cells. The composite (az - @1)1y,., has the factorization 1., (cs - aq)

AO AO - BO AO - BO BO
v1 vie o w1
A;  vvie agap Swrwr = Ai——=B; 1 sww
v2 V28 wa
AQ—A2—>B2 A2—>BQ—BQ

so by proposition 3.2.1, we have that

(- m)(vs - v1) =20 () (wy - wy)

Jlug-vy Jlwy-wy

nvy - My s mon nws - Mwq
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commutes, which is naturality of n - m.
Next we check equivariance, (mm3). This says that for any three composable vertical
arrows vy, vs, v3 we must have commutativity of

nvz-A(v2,v1)
nvs - Guy - my; ——————nwsz - m(vy - V1)

p(vg,vg)-mvll ljl

n(vs - vg) - My — (n-m)(vs - vg - v1)

This follows from proposition 2.2.1, part (a), because j is a cocone.
Left equivariance (mm3;) says that

A(vs,v3)-muy

Huvs - nvy - muy n(vs - vg) - MUY
Hvs 1490, lj&vxvz.v1

Hus - (n-m)(vg - vy) Y (n-m)(vs - vy - 1)

commutes, which it does by the definition of the left action for n - m (proposition 2.3.1).
Right equivariance, (mm3,.), is similar.

4.6. THE UNIVERSAL PROPERTY
4.6.1. PROPOSITION. The bimodulation ¢ : n,m—sn-m satisfies the strong representabil-
ity property.

PROOF. Let
Pr—1

p=(F—=F_ = LsF=F)

= (H = Hy—o=H,—%~ ... 4> H)

be paths of modules and let
maq,n,m,p—r

be a multimodulation. We will show that there is a unique multimodulation f such that

q,n, m7péq7n m,p

N4

X = (Aj—=Ajy_—o . S Ag = A)

commutes. Thus for vertical arrows

= (C = CO Uil Cl ’Ui2 e 'U;)l Cl)
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A—4~B-2-(C
we must have commutativity of

[aW]-j1yy.0,  [PX]

[aw] - nwy - moy - [px] [aw] - (n - m)(vs - v1) - [pX]

(1

p(w,v2,01,X) A(w,v2-v1,X)

T[W7 Vg, V1, X]

Let v : A—e—= (' be an arbitrary vertical arrow and

A=A
B «a b U
C=—=C

a lax factorization of v. Then for x and w as above, naturality of g would give the
commutative square

[aw](n-m)a-[px]

law] - (n - m)(vy - v1) - [PX] law] - (- m)o - [px]

u(w,vg-vhx)l l#(wzvvx)

r[w, ve, v1, X] r[w, v, X|

r[w,o,x]
which, if pasted onto the right side of (1), gives the commuting
[aw]-jo[px]
[aw] - (n - m)v - [px]
u(w,vg,vl,x)l (2) lﬂ(wvvvx)

[qw] - nvg - mu; - [pX]

r[w, vg, v1, X] rw, v, x]

T[W?a7x]

because ((n-m)a)(j1) = jo. Now the family ([qw]- j, - [PX])« is jointly epic so, if fi exists,
it is unique.

The next step is to show r[w, «, x| u(w, vo, v1, X) determines a cocone as in proposition
2.2.1, which will show that f(w,v,x) does exist. Condition (a) says that for any triple
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lax factorization v : v3 - v9 - v —v the diagram

[aw] - n(vs - vg) - mu; - [px

y \vg,vl,

[qw] - nus - Gug - muy - [pX] r[w, 3, V2, V1, X]

m w(w,vs,v2-v1,x

[aw] - nus - m(vs - v1)[PX]

must commute when followed by

rlw,y, x| : r[w,vs, v, v1, X| —r[W, v, X].

But it commutes even before that by associativity of u.

For condition (b) consider two lax factorizations of v, 8 : vy - vy = v, /' : v} - v] = v

related by (05 - 61) = (8 for

A——A
viy g 4
B——PB
vze g, U
C—=C
We have to show that
(W v2,01,x

[Qw] - nvg - muy - [px]—>T[WU2,Ul,X]
1-nf2-mb-1 T[W,92791>x}

[qW] ’ TLUé : mvi [px] A T[sza Ul? X]
p(w,v5,01 )

r[w,6,x]
r(w, v, X|

T[WMBI 7x]

commutes, which it does, the square by naturality of x and the triangle by functoriality
of r. This shows that the fi(w,v,x) exist (and are unique) satisfying (2).

It remains to show that this definition makes ji into a multimodulation. There are
a number of things to check but the method of proof is the same for all of them. The
condition is expressed as the commutativity of a diagram involving z which we reduce to
a similar diagram for p by precomposing with an arbitrary 1-j,-1 (for suitable identities).
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To check naturality of i we take a path of cells

A —— A
X6 I3 o/
A——A
C——C
Cp——Cy
and must show that
B(w,v,x)
[qw] - (n - m)v - [px] r[w,v, X]
[aw]-(n-m)o-[pé] (%) 7[w,0.€]
[qwl] ) (n ) m)vl : [pxl] fr[w/7 UI? Xl]

ﬁ(w/ 7’Ul 7x,)

commutes. For this it will be sufficient to show that it does when preceded by [qw]- j. - [PX]
for a : v9 - v1 = v, an arbitrary lax factorization of v. Factor ca as

A=——A—-A A—s A =——=A
v vl g |v

B « v v = B——=DB' 3 v’
v R
C=——C—-C C——0=—=C

Then by definition of (n - m)o and functoriality of vertical composition, we get the com-
mutative square

[qw] - v, - muy - [px] —2— [qw] - (n - m)v - [px]

lqw]-nBa-mBy [pe] [qw]- (n-m)o-[pg]
[aw’] - nvy - mv) - [px']

1 law] - (n-m) - [px]
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If we paste this onto (*) and use the definition of i we get

[aw] - nvy - mo; - [pxX] plwz01x) r[w, va, v1, X] riwex] r[w, v, x]
[qw]-nB2-mpB1-[p€] rlw,B2,81,&] 7w,0,¢]
[qW/] . m}é . mv’l . [pxl] o ) ’I"[W” ’Ué, ’Ui, X] T 5] T[W/, U” X/]

which commutes by naturality of p and functoriality of r. This establishes naturality of
[i.
Checking the equivariance of i involves evaluating one of the F’s or one of the H's at
a vertical arrow. There are eight cases to consider:
(1) Fy, k > 0 (right equivariance),
(2) Fi, 0 <i < k (doesn’t involve n - m),
(3) Fy, k> 0 (involves n - m),
(4) Fo, k =0 (involves n - m),
and four dual ones for the H'’s.
For (1), let x, w, « be as before, and 2’ : A —e—=A;. We must show that

[aw] - (n-m)v - [px] - Fra' Mr[w,v,x] - Fpa

1‘Ppkl/ jpr

[aw] - (n-m)v - [p(x - z)] rw, v, x - 2]

/TL(W,’U,X'm/)

commutes. Paste onto this the commutative diagram

[qw] - nvg - muy - [px] - Fia! L [aw] - (n-m)v - [px] - Fja'

L-ppy, l Ll'ﬁ’pk

[aw] - nvy - mvi[p(x - 2)] ———~[qw] - (n- m)v - [p(x - 2')]

and use the definition of i1 to get

, 1(w,v2,01,%)-Fa! r[w,o, x| Frx’
— s - >

[qw] - nvg - muy - [px] - Frx r[w,ve, v1,X] - Frpa’ rlw,v, x| - Fpz'

””’kt Lpr Lpr

[aw] - nvg - mu; - [p(x - 2')] r[w, v, vy, X - 2] WT[W,’U,X - 2]

w(w,v2,01,%°2")

which commutes, the left square by right equivariance of u and the right square by natu-
rality of p,.
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To prove equivariance for case (2) we replace the path x by a path (x,y,z) where x
and z are paths of lengths ¢ and k£ — ¢ and y a single arrow. We must show that the
following diagram commutes

[qw] - (n-m)v - [px] - Fiy - [pz]

1Ap,, 1

[qw] - (n-m)v - [px] - [p(y - 2)] [qw] - (n-m)v - [p(x-y)] - [pz]

ﬁ(w,v,x,y-z)

rlw,v, X, y, z]

If we precede this by [qw] - j. - [pX] - Fiy - [pz] we get the corresponding diagram for p
followed by r[w, o, x, y, z]. This uses the definition of i and the fact that j, and p,, (resp.
Apirs) act on different factors and so can be permuted.

For case (3) we must show that

1-pn.m-1

(aw] - (n-m)v - Fa' - [px] law] - (n-m)(v-a')- Fa' - [px]

1-)\;01'1]/ lu(wvv'xlvx)

/

[aw] - (n-m)v - [p(a’ - x)]

!
r—— riw, v, 2, x|

commutes. Now we must use the definition of p,.,, (proposition 2.3.1), which gives the
commutative

1 nL'l
[aw] - nvs - moy - Fa' - [px] —— [qw] - nvs - m(v; - 2') - [pX]

1~ja~1j ll-ja,w/-l

[aw] - (n-m)v - Fa' - [px] —————qw] - (n- m)(v - ') - [pX]

that we paste on top of the diagram we want to commute. We use the definition of i and
the fact that 1-j,-1and 1-),, -1 act on different factors to permute them, to get

1-pn-1

[qw] - nvg - mu; - F' - [px] [aw] - nvg - m(vy - ') - [px]

1-Ap, -ll L#(W,vz,vl'wﬂx)

[aw] - nve - muy - [p(2’ - )] r[w,ve, vy, 2, X]

l-jall

[qw] - (n-m)v - [p(z’ - x)]

(w201 7$"X)

Lr[w,a,m/,x}

/
r——— rw,v, 2, x|
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The top square commutes by equivariance of o and the bottom by definition of f.
Case (4) is somewhere between cases (1) and (3) and so is its proof. We must establish
the commutativity of

[qw] - (n-m)v - Fyz plw.e) Fox riw,v] - Fyx

1'Pn~m,j jpr

[aw] - (n-m)(v - z) riw,v -z

ﬂ(w,v-x)
Paste onto this the commutative diagram (proposition 2.3.1)

1-jal

[aw] - nvy - muy - Fox [qw] - (n-m)v - Fox

[qw] - nvy - m(vg - z) — [qw] - (n-m)(v - z)

and use the definition of i to get

pu(w,vi,v2) Fox r[w,al]-Fox
—_—

[qw] - nvy - muy - Fyz r[w, vy, vs] - Fox rlw,v] - Fox

mel lpr Lpr

[qw] - nvy - m(vg - x) WT‘[W, V1, U - Z] Wr[w, v -]
which commutes, the left square by right equivariance of u and the right square by natu-
rality of p;.
The other four cases are dual.

5. Complements

5.1. IDENTITIES In this section we show that for arbitrary A and X, identities are strongly
representable in Lax (A, X). This justifies our claim in [15], theorem 4.3. It is also neces-
sary in order to see that, under the hypotheses of theorem 4.0.1, Lax(A, X) is a double
category.

We have to check this separately because, for one thing, nullary modulations are not
exactly the specialization of multimodulations to the nullary case, although a more global
definition of multimodulation than the one given above would indeed show it in that
light. Another reason is that, as Peter Lumsdaine has pointed out, our AFP is a binary
condition and those usually come with a corresponding nullary one. But if we generalize
our AFP to n-ary factorizations, which is easily enough done, and then specialize to n = 0,
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we get a ridiculously strong condition, which says (in part) that every cell

factors as
B
A— B & {U
C

which implies that B = C and g = f.
We recall the definition of the module we called idp (in corollary 3.19 of [15]) and Idg
(in theorem 4.3 of [15]).

5.1.1. DEFINITION. For any lax functor F' : A — X there is a canonical module idp :
F'—e—= I defined by the formulas
idp(v) = F(v) : FA—s=FA

idp(0) = F(o): Fo— Fw
Xidp(0,0) = ¢p(0,v) : Fv- Fo—F (v - v)
Pidp(0,0) = ¢p(0,v) : Fo - Fuv—=F(v - v).
5.1.2. PROPOSITION. The above definitions make idgr into a module F—e—F.

ProoF. Condition (M3) follows immediately from (LF3), (M4) from (LF4), (M5) and
(M6) from (LF5).

5.1.3. DEFINITION. If ¢ : I'— (G is a natural transformation between the lax functors
F and G, there is a canonical modulation id; : idp —idg defined by

idi(v) = t(v) : Fv—Gu.

5.1.4. PROPOSITION. The above definition makes id; into a modulation.

PRrooOF. Condition (m2) follows immediately from (NT2) and condition (m3) from (NT3).
"
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We also recall the definition of null modulation. Conditions (nml) and (nm2) below
are just a specialization of (mm1l) and (mm?2) from section 1 above, but (mm3), (mm3;)
and (mm3,) don’t make sense when n = 0 and must be replaced by (nm3).

5.1.5. DEFINITION. Let F', Gy, G be lax functors A—=X and p : Go—e—= G a module,
t: F—G, s: F— H natural transformations. A null modulation

p:F—p

consists of the following data:
(nm1) For every object A, a cell
pA idps —=p(ida).
These must satisfy

(nm2) (Horizontal naturality) For any horizontal arrow f: A— A’

. idpy .
idpg —————idpa

uAl pA’

plids) =gy~ plide)

commutes.
(nm3) (Equivariance) For every vertical arrow v : A—e— A,

Fo-idpa —=—idpz - Fo 2" p(idy) - Go

sv-puA lpp

Hv - p(ida) Tp(v +ida) —=—p(idz - v)

commutes.
We can now define the null modulation ¢ which will turn out to be the universal one.
5.1.6. DEFINITION. For any lax functor F' we let
LA =¢A :idps— F(ida).
5.1.7. PROPOSITION. ¢ s a null modulation from F' into idp.

PRroOOF. Conditions (nm2) and (nm3) follow immediately from (LF4) and (LF5) respec-
tively.
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There are two bimodulations associated with an arbitrary module m : F'—e—G which
will be useful in the proof below.

5.1.8. DEFINITION. For a module m : F'—e—= (G we have bimodulations
Aidg,m—m

p:m,idp—m

defined by

A(vg,v1) = A (v2,v1) : Gug - muy —=m(vg - v7)
p(v2,v1) = pm(ve,v1) : Mg - Fvy —=m(vy - v1)
i.e. A and p are the left and right actions for m.

5.1.9. PROPOSITION. A and p are bimodulations and satisfy

/i\F L

m' "G m 1, = 4\1? , m
G/b' e m ¢ dm G
o N

PRrOOF. The conditions for A and p to be bimodulations correspond to those for m to be
a module. For A, e.g., (mm?2) is (M4), (mm3) and (mm3;) are the first condition of (M6),
and (mm3,) is the second condition of (M6).

Evaluating (¢, 1,,,) at v : A—e—= A gives the commutative

by (M5), and this is the first equation above.
The argument for p is dual.
]

5.1.10. THEOREM. Identities in Lax(A, X) are strongly represented by idg with universal
null modulation t.
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Proor. We first prove weak representability. Given a null modulation p : F'—1 we
want to show that there is a unique modulation fi : idp — 7 such that

i.e. for every A

o F(ida)
idpa l#(idA)
“A (id )

commutes. If i exists, its left associativity gives commutativity of the middle part of the
diagram

. ¢(v,ida) . =~
Fv- F(id F(v-ids) —=F
pogg e 1O (v-id0) == F)
Fov-idpa tv-fi(id ) A(vidg) v
Lo -r(id,) o) r(v-idg) ——1r(v)

The right square commutes by naturality of  and the triangle by functoriality of vertical
composition and the defining property of iz above. The right unit law for F’ says that the
top composite is a canonical isomorphism, so fiv is uniquely determined.

In fact jiv is the composite

tv-puA Ar(v,ida)

Lv-r(idy) /2 p(v - idy) —= 10

Fo——=Fv-idpy

which is the composite modulation

id¢

at v. So f1 is a modulation. That it satisfies the required commutativity condition follows

/\
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from the equalities

The validity of these equations is checked by evaluating at A to get

A1

F(idy) - idpa
,U,Al lithﬂA lt(idA)-ua
r(idy) —— idpa - 7(ida) L(id,) - r(id4)

\ lg l)\T(idA,idA)

r(idA) = T’(idA . idA)

idpg ————idpa - idpa

where [A is the structure morphism for L and the top right square commutes by the
unit law for ¢ (NT3). The bottom square is the unit law for ¢. The top diagram above
corresponds to the path top, right, bottom, and the second diagram to the path right,
down, right, down, left.

To prove strong representability, we adopt the notation of 4.6. Thus we start with
paths of modules

p:Fk Pk Fk—l Pk—1 p1 FO
q=Hy—e>H —%~ .. . —%-H,

with Fy = F' = Hy. We have to show that for any multimodulation u : q,p — 7, there
is a unique multimodulation ji : q,idg, p —r such that

q,p : q,idr,p

q,.,p
-
1 /
,
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commutes.
Thus for paths of vertical arrows

x Tp—1 T
X:Ak o Ak:—l . . AO

W:CO & Cl & ! Cl
with Ag = A = (), we must have commutativity of

o)

[aw] - [px] = [qw] - idpa - [px] ~25> [qw] - F(id,) - [px]

%ﬁdfhx)

riw,id, X]

s

rlw,x]

w(w,x)

We've already considered the case where both x and w are empty, so we can assume that
one of them is not, say x (the other case being dual).

Now, take x and w as above but with y : Aj—e=Cy. Then if i does exist, inner
equivariance says that

lqw] - F(ida,) - F(y) - [px] —2"~ [qw] - Flid,) - [p(y - X]

1¢(1dA07y)1l/ lﬁ(wuldonyx)

[qW] ' F(idAo ) y) ’ [pX] T[W, idAm Y, X]

(W ,idag %)

commutes. If we precede this square by 1 - ¢Ag - 1, the bottom composite gives the
commutative

[qw] - ida, - Fy - [px] — 220> [qw] - F(ida,) - Fy - [px]

gl L1~¢(id14,y)~1

law] - Fy - [px] - law] - F(ida, - y) - [PX]
ﬁ(wvyux)l ﬂ(W,idAo'yJ()
T[W>y7x] = T[W,idAO,y, X]
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The top composite gives the commutative

[qw] - Fy - [px] ——22"—~ [qw] - F(ida, - ) - [pX]
[aw] - idpa, - [P(y - %)] —22~ [qw] - F(ida,) - [P(y - X)]
[aw] - [p(y - x)] (w,id Ay yx)
w(w,y-x)
r(w,y, x] .~ rlw,ida,, y, X|

where the unlabeled isomorphisms are canonical. This shows that p, if it exists, is unique.
In fact we can solve for fi(w,y,x). It is the composite

[aw] - Fy - [px] —2 " [qw] - [p(y - %)] o pfw, g, x].

If we write p as pp, p’ we see that this means that i is the composite of multimodulations

(1, A1)
bFp—F,——K

/ /

P 1 *p

H=—H——1L

where A is the bimodulation of proposition 5.1.9. It follows immediately that i is a mul-
timodulation. By the same proposition it also follows that fi(1,¢,1) = . This completes

the proof.

5.2. REDUCTION TO [5] In this section we show that if A and X are bicategories, i.e. all
horizontal arrows are identities, our colimit formula for m-n (definition 2.2.3) is equivalent
to the one given in [5], §2.4. By proposition 2.2.1, a cocone  on I', is given by a family

of cells
K(B) : nug - muvy —x
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indexed by lax factorizations of v satisfying two conditions: (a) transfer of scalars and
(b) naturality. A cocone on their diagram is also a family x(5) : nvy - m; — x as above
satisfying just one condition (c):

For all 8, v1, Ba, 72, B1(1-71) = B2(72 - 1) as in

A A A A A A
wi ¢ wieg 1 ewi
A oy viem A=A,
wa 4 5 v = wnd By 4V
As A, Ay v, ev2
wse 1 w3 w1
A A A A A A

e
S
\
X
ks
(V]

1'>>\ K1

nws - m(wg « w) o MWws - My

If K satisfies (a) and (b) then it satisfies (c) as can be seen from

—

nyz-1
n(ws - we) - Mw; —— Ny - Mw,

PV (b) kB2
w(B2(y2-1)

nws - Gwg - mw, (a) T
K(B1(1-71)
1-Am (b) K1
nws - m(ws + wr) o s - M

On the other hand, (a) is a special case of (¢) where y; and v, are identities. Showing
that naturality (condition (b)) follows from (c) is a bit trickier. Let § : vy - v; —=v and
B’ vy - v’y — v be lax factorizations of v such that 5'(0y - 6,) = B for 0; : v; —=v';. We

have to show that
nvy - MUy
\“/8
n92-m91 €T
/ 7 kB
nvo-Mv
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commutes. A consequence of (c) is the following. Let v; : w3 —v; and 75 : wy — vs,
P1: we - v —=v, By : vy - w; —=v be such that F1(1-7;) = B2(72 - 1). Then the pentagon
of condition (c¢) when applied to the situation

A A A A A A
wi ¢ wie w
A o em Ay Ay
ida, 4 R X = ida, 8, ev
Ay Ay A w2
wae 1 w2 w2 ¢
A A A A A A
and preceded by
1y Ar1

nws - mwy; —e—=nws - idga, - mw; —e—=nws - G(idy, ) - mw,

reduces to
nvy - M
nws - Muwq
% /
nwsq - My

being commutative. Now specialize this to
n=0, p=p

and
Yo = lyy, Pa=p0'(1-61)

to get commutativity of

nv'y - muy —— BLCACN x
1. m& A/’
nv'y - muv'y
Then let
Nn=1L, p=48
and

T2 = 0, P = 5/(1 ) 91)
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to get commutativity of

nv'y - muy

n92/ \IB\ (1-61))

Mg - V) ——— =7

Pasting these two diagrams along x(5’(1 - 01) gives the required commutativity (b).

Thus we see that, when A and X are bicategories (i.e., double categories whose hor-

izontal arrows are all identities) our construction is equivalent to that of [5]. It follows
that composition of modules is associative up to coherent isomorphism as claimed in loc.

cit.
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