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HIGHER CENTRAL EXTENSIONS VIA COMMUTATORS

DIANA RODELO AND TIM VAN DER LINDEN

Abstract. We prove that all semi-abelian categories with the the Smith is Huq prop-
erty satisfy the Commutator Condition (CC): higher central extensions may be charac-
terised in terms of binary (Huq or Smith) commutators. In fact, even Higgins commuta-
tors suffice. As a consequence, in the presence of enough projectives we obtain explicit
Hopf formulae for homology with coefficients in the abelianisation functor, and an in-
terpretation of cohomology with coefficients in an abelian object in terms of equivalence
classes of higher central extensions. We also give a counterexample against (CC) in the
semi-abelian category of (commutative) loops.

Introduction

The concept of higher centrality is a cornerstone in the recent approach to homology
and cohomology of non-abelian algebraic structures based on categorical Galois theory [5,
35]. Through higher central extensions, the Brown–Ellis–Hopf formulae [11, 14] which
express homology objects as a quotient of commutators have been made categorical [17,
19, 20], which greatly extends their scope while simplifying the study of concrete cases
(see, for instance, [13]). Higher central extensions are also essential in the study of relative
commutators [22, 23] and are classified by cohomology groups [49].

To take full advantage of these results, sufficiently explicit characterisations of higher
centrality are essential. On the one hand, the higher Hopf formulae are valid in any semi-
abelian category [39] with enough projectives, but these formulae only become concrete
once the relevant concept of higher centrality is appropriately characterised, ideally in
terms of classical binary commutators. Indeed, the main result of [20] says that in a
semi-abelian monadic category A, for any n-presentation F of Z,

Hn�1pZ, abq �
rFn, Fns ^

�
iPn Kerpfiq

LnrF s
. (A)

Coefficients are chosen in the abelianisation functor ab : AÑ AbpAq. Here Fn is the initial
object of F and the fi are the initial arrows. The object rFn, Fns is the Huq commutator
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of Fn with itself, which makes the numerator entirely explicit. But the denominator is not;
rather, LnrF s is the smallest normal subobject of Fn which, when divided out, makes F
central with respect to AbpAq in the sense of categorical Galois theory. Nevertheless, in
all known examples also this object may be expressed in terms of commutators.

On the other hand, given an object Z in a semi-abelian category, its cohomology
with coefficients in an abelian object A classifies the higher central extensions of Z by A,
provided those higher central extensions admit a characterisation in terms of Huq com-
mutators. Thus far, such precise characterisations of higher central extensions were only
available in concrete cases.

A semi-abelian category A satisfies the Smith is Huq Condition (SH) when two
equivalence relations (Smith) commute if and only if their normalisations (Huq) commute.
Under (SH) we may remedy the lack of characterisation mentioned above. We prove that
an n-fold extension in a semi-abelian category A with (SH) is central with respect to the
abelian objects in A if and only if a certain join of binary Huq commutators vanishes.
This gives us the following refined version of the main theorem of [49].

Theorem. Let Z be an object and A an abelian object in a semi-abelian category
with (SH). Then for every n ¥ 1 we have an isomorphism Hn�1pZ,Aq � CentrnpZ,Aq.

Examples of semi-abelian categories with (SH) are all action representative semi-
abelian categories [6, 4] and all action accessible ones [10], all strongly semi-abelian cat-
egories [7], all Moore categories [25, 47], all categories of interest [45, 44], but not all
varieties of Ω-groups: the category of digroups is a counterexample [3, 7]. Hence our
results are valid, e.g., in the categories of groups, Lie and Leibniz algebras, (pre)crossed
modules and associative algebras.

The above can be made slightly more precise as follows. We shall say that an n-fold
extension F in a semi-abelian category A is H-central when�©

iPI

Kerpfiq,
©
iPnzI

Kerpfiq
�
� 0

for all I � n. Here the fi are the initial arrows of the n-fold extension F , the commutators
are either Huq or Higgins commutators, and we write 0 � H, n � t0, . . . , n � 1u. The
category A satisfies the Commutator Condition (CC) when H-centrality is equivalent
to centrality with respect to AbpAq in the Galois-theory sense. This means that the
denominator LnrF s of (A) may be expressed as the join

ª
I�n

�©
iPI

Kerpfiq,
©
iPnzI

Kerpfiq
�
.

It follows from results in [8] and [29] that the Commutator Condition holds for (one-fold)
extensions (Subsection 1.6). For double extensions, the Commutator Condition holds as
soon as the Smith is Huq Condition does (see Subsection 1.7). Our main concern now
becomes to find conditions which imply (CC) in all degrees.
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In Section 1 we give a more detailed outline of the mathematical context we shall be
working in. Section 2 contains the main result of the paper: Theorem 2.8, which says that
the Commutator Condition for double extensions implies the Commutator Condition for
all higher degrees. Hence the Commutator Condition is weaker than the Smith is Huq
Condition.

Even though (SH) is known to be independent of semi-abelianness, thus far we did not
have any examples to show that also (CC) is independent. The known counterexamples
(in digroups [3, 7] or in loops [24, 32]) give an action of an object on an abelian object
which is not a module. However, when an action is considered as double extension, it
cannot be H-central without being central—see Subsection 4.1—which forces us to find a
new counterexample. This is done in Section 3 where we show that the category of loops
Loop does not satisfy (CC). In fact this counterexample also works in the category of
commutative loops CLoop; it gives a new example of a semi-abelian category in which (SH)
does not hold.

There are certain further questions which remain unanswered as yet; we give a short
overview in Section 4.

1. Preliminaries

In this paper A will always denote a semi-abelian category [39].

1.1. The Huq commutator and the Smith commutator A coterminal pair

K � ,2 k ,2 X L�lrllr

of normal monomorphisms (i.e., kernels) in A is said to (Huq-)commute [9, 34] when
there is a (necessarily unique) morphism ϕ such that the diagram

K
x1K , 0y

z�
k

�$
K � L ϕ ,2 X

L
x0, 1Ly

Zd

l

:D

is commutative. The Huq commutator rk, lsHuq : rK,LsHuq Ñ X of k and l [8, 3] is
the smallest normal subobject of X which should be divided out to make k and l commute,
so that k and l commute if and only if rK,LsHuq � 0. We can define rK,LsHuq as the
kernel of the (normal epi)morphism X Ñ Q, where Q is the colimit of the outer square
above.

Given a pair of equivalence relations pR, Sq on a common object X

R
r1 ,2

r2
,2 X∆R

lr ∆S
,2 S,

s1
lr

s2lr
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consider the induced pullback of r2 and s1:

R �X S
πS ,2

πR

��

S

s1

��
R r2

,2 X.

The equivalence relations R and S centralise each other or (Smith-)commute [50,
46, 9] when there is a (necessarily unique) morphism θ such that the diagram

R
x1R,∆Sr2y

z�

r1

�$
R �X S θ ,2 X

S
x∆Rs1, 1Sy

Zd

s2

:D

is commutative. Like for the Huq commutator, the Smith commutator is the smallest
equivalence relation rR, SsS on X which, divided out of X, makes R and S commute. It
can be obtained through a colimit, similarly to the situation above; see Section 3 for a
concrete example. Thus R and S commute if and only if rR, SsS � ∆X , where ∆X denotes
the smallest equivalence relation on X. We say that R is a central equivalence relation
when it commutes with∇X , the largest equivalence relation on X, so that rR,∇Xs

S � ∆X .

1.2. The Smith is Huq Condition It is well known, and easily verified, that if the
Smith commutator of two equivalence relations is trivial, then the Huq commutator of
their normalisations is also trivial [9]. But, in general, the converse is false; in [3, 7] a
counterexample is given in the category of digroups, which is a semi-abelian variety, even
a variety of Ω-groups [33]. The requirement that the two commutators vanish together
is known as the Smith is Huq Condition (SH) and it is shown in [43] that, for a
semi-abelian category, this condition holds if and only if every star-multiplicative graph
is an internal groupoid, which is important in the study of internal crossed modules [37].
Moreover, the Smith is Huq Condition is also known to hold for pointed strongly pro-
tomodular categories [9] (in particular, for any Moore category [25, 47]) and in action
accessible categories [10] (in particular, for any category of interest [44, 45]).

1.3. Extensions We write ArrnpAq for the category of n-fold arrows in A.
A zero-fold extension in A is an object of A and a (one-fold) extension

is a regular epimorphism in A. For n ¥ 2, an n-fold extension is an object pc, fq
of ArrnpAq (a morphism of Arrn�1pAq) as in

X c ,2

d
��

C

g

��
D

f
,2 Z,
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such that the morphisms c, d, f , g and the universally induced comparison morphism
xd, cy : X Ñ D �Z C to the pullback of f with g are pn � 1q-fold extensions. A two-fold
extension is also called a double extension. The n-fold extensions determine a full
subcategory ExtnpAq of ArrnpAq; we write ExtpAq � Ext1pAq.

An n-fold arrow may be considered as a diagram 2n Ñ A in A, a cube of dimension n;
in particular, n-fold extensions are pictured as n-cubes. Given such an n-fold extension F ,
we shall write Fn for its initial object and fi : Fn Ñ Fnztiu, i P n, for the initial arrows.
The extension property of F implies that for any choice of i P n, the induced square in A

Fn
fi � ,2

_��

Fnztiu

_��
lim

tiu�J�n
FJ

� ,2 lim
J�nztiu

FJ

is still a double extension [49].

1.4. Central extensions We write AbpAq for the full subcategory of A determined
by the abelian objects, that is, those objects which admit an internal abelian group struc-
ture. Let ab : AÑ AbpAq denote the abelianisation functor, left adjoint to the inclusion
of AbpAq in A. It sends an object X of A to the abelian object abpXq � X{rX,XsHuq. We
define centrality of (higher) extensions with respect to the Birkhoff subcategory AbpAq
of A [38, 8].

An extension f : X Ñ Z is called trivial when the induced naturality square

X
f � ,2

ηX
_��

Z

ηZ
_��

abpXq
abpfq

� ,2 abpZq

is a pullback, and f is central when there exists an extension g : Y Ñ Z such that the
pullback of f along g is trivial. In our context we can take g � f so that f is central if
and only if either projection of its kernel pair is trivial (central extensions coincide with
normal extensions).

The full subcategory CExt1AbpAqpAq of Ext1pAq determined by those extensions which
are central is again reflective. Inductively, we get a reflective subcategory CExtnAbpAqpAq
of ExtnpAq containing the n-fold central extensions (relative to AbpAq) of A,
n ¥ 1. Each level gives rise to a notion of central extension which determines the next
level—see [20, Theorem 4.6] and [17] where this is worked out in detail. In particular, for
every n ¥ 1 we have a reflector, the centralisation functor

centrn : ExtnpAq Ñ CExtnAbpAqpAq,

left adjoint to the inclusion of CExtnAbpAqpAq in ExtnpAq.



194 DIANA RODELO AND TIM VAN DER LINDEN

1.5. The Commutator Condition (CC) Given an n-fold extension F with initial
object Fn and initial arrows fi : Fn Ñ Fnztiu, we write ki : Ki � Kerpfiq Ñ Fn for all i P n.
We say that F is H-central when

�©
iPI

Ki,
©
iPnzI

Ki

�pHuqq

� 0 (B)

for all I � n. Here the commutators are either Huq or Higgins commutators (Subsec-
tion 1.8); this explains the “H” (see Lemma 2.5). The category A satisfies the Com-
mutator Condition (CC) when H-centrality is equivalent to centrality with respect
to AbpAq in the Galois-theory sense (Subsection 1.4).

The condition (CC) falls apart in one version for each degree of extension n: the
category A satisfies (CCn) when an n-fold extension in it is H-central if and only if it
is central. The principal result in this work is to show that (CC2) implies (CC) (Theo-
rem 2.8).

1.6. One-fold extensions and (CC1) Recall [35] that an extension f : X Ñ Z in the
category of groups is central (with respect to Ab) if and only if rKerpfq, Xs � 0. This
result was adapted to a semi-abelian context in [26, 8]: the one-fold central extensions
(in the sense of Galois theory) may be characterised through the Smith commutator
of equivalence relations as those extensions f : X Ñ Z such that rX �Z X,∇Xs

S � ∆X ,
where X �Z X denotes the kernel pair of f . This means that X �Z X is a central
equivalence relation on X (Subsection 1.1). A characterisation closer to the group case
appears in Proposition 2.2 of [29] where the condition is reformulated in terms of the Huq
commutator of normal subobjects so that it becomes rKerpfq, XsHuq � 0. Hence f is
central if and only if it is H-central, so that (CC1) is true in any semi-abelian category.

1.7. Double central extensions and (CC2) One level up, the double central ex-
tensions of groups vs. abelian groups were first characterised in [36]. A double extension
(of Z) is a pushout square of regular epimorphisms

X c � ,2

d
_��

C

g
_��

D
f

� ,2 Z.

(C)

Let us write K � Kerpcq, L � Kerpdq for the kernels of c and d and R � X �C X,
S � X �D X for the respective kernel pairs. Then (C) is central when

rK,Ls � 0 � rK ^ L,Xs.

General versions of this characterisation were given in [28] for Mal’tsev varieties, then
in [48] for semi-abelian categories and finally in [21] for exact Mal’tsev categories: the
double extension (C) is central if and only if

rR, SsS � ∆X � rR ^ S,∇Xs
S.
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This means that the span pX, d, cq is a special kind of pregroupoid in the slice cate-
gory A{Z (see [40] for the definition of a pregroupoid).

The problem we are now confronted with is that the correspondence between the
Huq commutator of normal monomorphisms and the Smith commutator of equivalence
relations which exists in level one is no longer there when we go up in degree. However,
we know that always rK ^ L,XsHuq � 0 if and only if rR ^ S,∇Xs

S � ∆X by (CC1).
Furthermore, rR, SsS � ∆X implies rK,LsHuq � 0, so when (C) is central it is also H-
central. On the other hand, the Smith is Huq Condition says that rK,LsHuq � 0 implies
rR, SsS � ∆X , so that the two concepts of centrality are equivalent—and hence (CC2)
holds under (SH).

1.8. The Higgins commutator Central extensions, relative to AbpAq, may also be
characterised in terms of the Higgins commutator [31, 41], which in turn may be obtained
through a co-smash product [12] or a cross-effect [15, 2, 30] of the identity functor on A.

Given two objects K and L of A, the co-smash product [12] of K and L

K b L � Ker
�@

1K 0
0 1L

D
: K � LÑ K � L

�
behaves as a kind of “formal commutator” of K and L. (See [31] and [41]; this object is
also written K �L, or pK|Lq when it is interpreted as the second cross-effect of the
identity functor 1A evaluated in K, L.) If now k : K Ñ X and l : L Ñ X are subobjects
of an object X, their Higgins commutator rK,Ls ¤ X is a subobject of X given by
the image of the induced composite morphism

K b L � ,2
ιK,L ,2

� "*

K � L
x kl y ,2 X.

rK,Ls
5?

5?

When K and L are normal subobjects of X and K _ L � X, the Higgins commutator
rK,Ls is normal in X so that it coincides with the Huq commutator (Subsection 1.1). In
particular, we always have rK,XsHuq � rK,Xs. In general the Huq commutator is the
normal closure of the Higgins commutator. So, rK,Ls ¤ rK,LsHuq and rK,Ls � 0 if and
only if rK,LsHuq � 0. The Higgins commutator may also be used to measure normality
of subobjects. In fact, a result in [41] states that K �X if and only if rK,Xs ¤ K, and
is further refined in [31] as follows: the normal closure of K in X may be computed as
the join K _ rK,Xs. In any case, an extension in A such as

0 ,2 K � ,2 k ,2 X
f � ,2 Z ,2 0

is central if and only if rK,XsHuq � rK,Xs � 0.

1.9. The ternary commutator The Higgins commutator generally does not preserve
joins, but the defect may be measured precisely—it is a ternary commutator which can
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be computed by means of a ternary co-smash product or a cross-effect of order three. Let
us extend the definition above: given a third subobject m : M Ñ X of the object X, the
ternary Higgins commutator rK,L,M s ¤ X is the image of the composite

K b LbM � ,2
ιK,L,M ,2

� &-

K � L�M

B
k
l
m

F
,2 X,

rK,L,M s
3:

3:

where ιK,L,M is the kernel of

K � L�M

C
iK iK 0
iL 0 iL
0 iM iM

G
,2 pK � Lq � pK �Mq � pL�Mq;

ik, iL and iM denote the injection morphisms. The object KbLbM is the third cross-
effect of the identity functor 1A or ternary co-smash product evaluated in K, L
and M .

1.10. Proposition. If K, L, M ¤ X then

rK,L_M s � rK,Ls _ rK,M s _ rK,L,M s.

Proof. Via the result in [31] or [32].

1.11. (SH) and (CC2) via the ternary commutator It is precisely the availability
of this join decomposition which makes the Higgins commutator useful in what follows.
This, and the fact that (SH) may be expressed in terms of ternary commutators. By the
main result in [32], two normal subobjects K, L�X have Smith-commuting denormali-
sations when rK,Ls � 0 � rK,L,Xs. Hence the Smith is Huq Condition is equivalent to
saying that rK,Ls � 0 (they Huq- or Higgins-commute) implies rK,L,Xs � 0 (what is
missing for them to also Smith-commute).

What we shall be studying here (the Commutator Condition, at first for n � 2) is
slightly weaker, because next to rK,Ls � 0 we shall also assume rK^L,Xs � 0 to obtain
the same conclusion rK,L,Xs � 0. This will give us “H-centrality” implies “centrality”
(Theorem 2.8) as in our paper [49]. Thus, (SH) ñ (CC2) ñ (CC).

Many other things can be said about these ternary commutators; let us just mention
that they are generally not decomposable into iterated binary ones, and refer to [32] for
further information.

2. Main result

In this section we prove our main result, Theorem 2.8: (CC2), the Commutator Condition
in degree n � 2, implies (CC) in all degrees. So (CC) does not explode—in the sense
that it would give rise to a new mysterious condition in each dimension separately—but
instead stays within bounds, as it is implied by the well-studied condition (SH).
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2.1. Degree two We use the same notation as in Subsection 1.7 for double extensions
in a semi-abelian category.

2.2. Lemma. Let (C) be a double extension in a semi-abelian category. Then

rK,Ls _ rK ^ L,Xs

is normal in X, and rK,Ls _ rK ^ L,Xs � rK,LsHuq _ rK ^ L,XsHuq.

Proof. This follows from the fact that rK,LsHuq _ rK ^ L,Xs is normal in X while
rK,LsHuq � rK,Ls _ rrK,Ls, Xs and rK,Ls ¤ K ^ L. The second statement is now
obvious.

When in A (SH) holds, this implies that the normalisation of rR, SsS _ rR ^ S,∇Xs
S

is rK,Ls _ rK ^ L,Xs. Hence the centralisation of (C) is its quotient

X
rK,Ls_rK^L,Xs

� ,2

_��

C

_��
D � ,2 Z.

Recall that a double presentation of an object Z is a double extension such as (C)
in which the objects X, D and C are (regular epi)-projective.

2.3. Theorem. Let A be a semi-abelian category with enough projectives and such that (SH)
holds. Let Z be an object in A and (C) a double presentation of Z. Then

H3pZ, abq �
K ^ L^ rX,Xs

rK,Ls _ rK ^ L,Xs
.

When, moreover, A is monadic over Set, these homology objects are comonadic Barr–Beck
homology objects [1] with respect to the canonical comonad on A.

Proof. This follows from the main result of [17]; see also [20].

2.4. Higher degrees Our purpose is now to prove that the Commutator Condition for
double extensions (CC2) implies the Commutator Condition for all n-fold extensions (CC).
Consequently, n-fold extensions are central if and only if they are H-central. We shall
assume that a Higgins-style characterisation exists for the pn� 1q-fold central extensions
and prove that such a characterisation is also valid for n-fold central extensions. More
precisely, we shall prove that under (CC2), the condition (CCpn� 1q) implies (CCn).

We begin with a higher-dimensional version of the result above for double extensions
which allows us to use either Huq or Higgins commutators in the definition of H-centrality
and in (CC). We use the notation from Subsection 1.5.

2.5. Lemma. Let F be an n-fold extension in a semi-abelian category. Thenª
I�n

�©
iPI

Ki,
©
iPnzI

Ki

�
�
ª
I�n

�©
iPI

Ki,
©
iPnzI

Ki

�Huq

(D)

(so the join is normal in X).
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Proof. The case n � 1 is well known; see Subsection 1.8. In general, following the proof
of Lemma 2.2, for every I � n we have

�©
iPI

Ki,
©
iPnzI

Ki

�Huq

�
�©
iPI

Ki,
©
iPnzI

Ki

�
_
��©

iPI

Ki,
©
iPnzI

Ki

�
, Fn

�

while ��©
iPI

Ki,
©
iPnzI

Ki

�
, Fn

�
¤
�©
iPn

Ki, Fn

�
¤
ª
I�n

�©
iPI

Ki,
©
iPnzI

Ki

�
,

which implies the non-trivial inclusion.

Before we prove that (CC2) implies (CCn), so that we can go up in dimension, let us
first explain how to go down.

2.6. Proposition. For any n ¥ 1, the condition (CCpn� 1q) implies (CCn).

Proof. An n-fold arrow F is an n-fold extension if and only if the pn � 1q-fold arrow
F Ñ 0 is an pn� 1q-fold extension. It follows immediately from the definitions that F is
H-central precisely when F Ñ 0 is H-central, and that F is central if and only if F Ñ 0
is a trivial extension. Hence F is central precisely when F Ñ 0 is central because every
split central extension is trivial in the context considered [20].

2.7. Lemma. If F : X Ñ Z is an n-fold H-central extension, then also any of the two
projections

π1, π2 : X �Z X Ñ X

in its kernel pair are H-central.

Proof. We prove that G � π1 is H-central. Consider I � n and write kergi : Kerpgiq Ñ
Gn for the kernel of gi : Gn Ñ Gnztiu. Then gn is the “top morphism” of π1 : X �Z X Ñ X;
similarly, write hn for the top morphism of H � π2. Now

�
iPI kergi and

�
iPnzI kergi com-

mute: to see this, we compose them with the morphisms gn and hn, which form a jointly
monic pair. Composing with gn makes one of the intersections—the one containing the
kernel of gn—trivial, so already gn

�
iPI kergi and gn

�
iPnzI kergi commute. On the other

hand, the composites hn
�

iPI kergi and hn
�

iPnzI kergi factor through the intersections�
iPI ki and

�
iPnzI ki, respectively. These two intersections commute because F is H-

central.

2.8. Theorem. Every semi-abelian category with (CC2) satisfies the Commutator Con-
dition (CC).

Proof. We give a proof by induction on n: we show that under (CC2), for all n ¥ 3 the
condition (CCpn� 1q) implies (CCn).

Let F : X Ñ Z be an n-fold H-central extension, i.e., r
�

iPI Ki,
�

iPnzI Kis � 0 for all
I � n. To prove that F is central, we must show that either one of the projections in
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the kernel pair of F is a trivial n-fold extension. Consider, for i P n, the commutative
diagram

Kn ^Mi
� ,2 ki ,2

_��

mi

��

Mi

πi
1 ,2

πi
2

,2_��

mi

��

Ki_��

ki

��

eilr

Kn
� ,2 �kn ,2 Fn �Fn�1 Fn

π1 ,2

π2
,2

f 1i
_��

Fn
fn � ,2

fi

_��

elr Fn�1

_��
Fnztiu �Fnzti,n�1u

Fnztiu
p1 ,2

p2
,2 Fnztiu fn�1

� ,2lr Fnzti,n�1u,

(E)

where rkn is the kernel of π1, so π2
rkn � kn, while πi1, πi2, ei and f 1i are the induced

morphisms and Mi � Kerpf 1iq.
By the induction hypothesis (CCpn� 1q), the first projection π1 of the kernel pair

of F is a trivial n-fold extension when the naturality square

Fn �Fn�1 Fn
π1 ,2

��

Fn

��
Fn �Fn�1 Fn�

I�n�1

��
iPIMi,

�
iPpn�1qzIMi

� ,2 Fn�
I�n�1

��
iPI Ki,

�
iPpn�1qzI Ki

�

is a pullback. Indeed, once (CCpn� 1q) is satisfied, the “centralisation” of an pn�1q-fold
extension is obtained by replacing the “initial” object of the extension with its quotient by
the relevant join of commutators. Showing that the above square is a pullback amounts
to proving that

ª
I�n�1

�©
iPI

Mi,
©

iPpn�1qzI

Mi

�
�

ª
I�n�1

�©
iPI

Ki,
©

iPpn�1qzI

Ki

�
.

As subobjects of Fn �Fn�1 Fn, we have

e
� ª
I�n�1

�©
iPI

kipKiq,
©

iPpn�1qzI

kipKiq
�	

�
ª
I�n�1

�©
iPI

ekipKiq,
©

iPpn�1qzI

ekipKiq
�

(F)

¤
ª
I�n�1

�©
iPI

mipMiq,
©

iPpn�1qzI

mipMiq
�
. (G)

To prove the other inclusion, we shall decompose the subobject (G) as a join using
Proposition 1.10.
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By protomodularity, the split exact sequence

0 ,2 Kn ^
�

iPIMi
� ,2 ,2

�
iPIMi

,2�
iPI Kilr ,2 0

gives us ©
iPI

mipMiq �
©
iPI

rknmipKn ^Miq _
©
iPI

ekipKiq

for all I � n� 1.
For H � I � n� 1 we have�©
iPI

mipMiq,
©

iPpn�1qzI

mipMiq
�
�
�©
iPI

rknmipKn ^Miq _
©
iPI

ekipKiq,
©

iPpn�1qzI

mipMiq
�
,

which decomposes to the join�©
iPI

rknmipKn ^Miq,
©

iPpn�1qzI

mipMiq
�
_
�©
iPI

ekipKiq,
©

iPpn�1qzI

mipMiq
�

_
�©
iPI

rknmipKn ^Miq,
©
iPI

ekipKiq,
©

iPpn�1qzI

mipMiq
�
. (H)

The first term of (H) vanishes by Lemma 2.7 and the assumption that F is H-central.

In fact, the intersection
�

iPI
rknmipKn ^Miq may be written as rknpKnq ^

�
iPI mipMiq,

i.e., an intersection of kernels of the initial arrows of the first projection of X �Z X.
Consequently, the commutator� ©

iPn�1

rknmipKn ^Miq, Fn �Fn�1 Fn

�

vanishes as it is one of the commutators which express the H-centrality of the first projec-
tion of the kernel pair X �Z X. So by (CC2) also the last term in (H) is trivial, because
it is smaller than�©

iPI

rknmipKn ^Miq, Fn �Fn�1 Fn,
©

iPpn�1qzI

mipMiq
�
� 0

as explained in Subsection 1.11.
We now further decompose the second term of (H)�©

iPI

ekipKiq,
©

iPpn�1qzI

rknmipKn ^Miq _
©

iPpn�1qzI

ekipKiq
�

into the join�©
iPI

ekipKiq,
©

iPpn�1qzI

rknmipKn ^Miq
�
_
�©
iPI

ekipKiq,
©

iPpn�1qzI

ekipKiq
�

_
�©
iPI

ekipKiq,
©

iPpn�1qzI

rknmipKn ^Miq,
©

iPpn�1qzI

ekipKiq
�
. (I)
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The first term of (I) vanishes, as the even larger subobjects

©
iPI

mipMiq and
©

iPpn�1qzI

rknmipKn ^Miq

commute, again by Lemma 2.7 and the assumption that F is H-central. By (CC2) also
the last term in (I) is trivial, because it is smaller than

�©
iPI

mipMiq,
©

iPpn�1qzI

rknmipKn ^Miq, Fn �Fn�1 Fn

�
� 0.

So all commutators determined by H � I � n� 1 in the join (G) are also in the join (F).
As I � H and I � n � 1 give rise to the same commutator, this finally tells us that the
join (G) is smaller than the join (F)—which finishes the proof that when F is H-central,
then it is central.

The other implication was almost proved in [49]; the only difference between the result
there and the present claim is that there, H-centrality was characterised in terms of Huq
commutators, rather than Higgins commutators as in (B). But the two concepts are
equivalent by Lemma 2.5.

2.9. Corollary. Every semi-abelian category with (SH) satisfies the Commutator Con-
dition (CC).

2.10. Corollary. Every semi-abelian category with (CCn) for some n ¥ 2 satisfies the
Commutator Condition (CC).

This immediately gives us explicit versions of Hopf formulae obtained in [17, 20].
Recall that an n-fold extension of an object Z is an n-fold presentation of Z when
all its objects, but its terminal object Z, are projective.

2.11. Theorem. Let A be a semi-abelian category with enough projectives such that (SH)
holds. Let Z be an object in A and F an n-fold presentation of Z. Then

Hn�1pZ, abq �

rFn, Fns ^
©
iPn

Ki

ª
I�n

�©
iPI

Ki,
©
iPnzI

Ki

� .

When, moreover, A is monadic over Set, these homology objects are comonadic Barr–
Beck homology objects with respect to the canonical comonad on A.

3. A counterexample

We prove that not every semi-abelian category needs to satisfy the Commutator Con-
dition (CC): for instance, the category of loops and loop homomorphisms Loop doesn’t.
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1 �1 i �i g �g h �h j �j k �k l �l m �m
�1 1 �i i �g g �h h �j j �k k �l l �m m
i �i 1 �1 h �h g �g k �k j �j �m m l �l
�i i �1 1 �h h �g g �k k �j j m �m �l l
g �g h �h 1 �1 i �i l �l m �m j �j k �k
�g g �h h �1 1 �i i �l l �m m �j j �k k
h �h g �g i �i 1 �1 m �m l �l k �k j �j
�h h �g g �i i �1 1 �m m �l l �k k �j j

j �j k �k l �l m �m 1 �1 i �i g �g h �h
�j j �k k �l l �m m �1 1 �i i �g g �h h
k �k j �j m �m l �l i �i 1 �1 h �h g �g
�k k �j j �m m �l l �i i �1 1 �h h �g g
l �l �m m j �j k �k g �g h �h 1 �1 i �i
�l l m �m �j j �k k �g g �h h �1 1 �i i
m �m l �l k �k j �j h �h g �g i �i 1 �1
�m m �l l �k k �j j �h h �g g �i i �1 1

Table 1: The loop X with its normal subloops I and Y

This is a refinement of the result from [32] saying that the category Loop does not sat-
isfy (SH). Incidentally, our counterexample also works in the category of commutative
loops CLoop, so it is a new example of a semi-abelian category where (SH) is not valid.

Let us recall a few basic notions. A loop is a quasigroup with a neutral element: an
algebraic structure pX, �, z, {, 1q that satisfies x � 1 � x � 1 � x and

y � x � pxzyq y � xzpx � yq

x � px{yq � y x � px � yq{y.

We also write xy for the product x � y. An associative loop is the same thing as a group.
A commutative loop has xy � yx for all x, y P X—which doesn’t yet imply that X
is abelian in Loop: X carries an internal abelian group structure precisely when it is an
abelian group, when it is commutative and associative. The defect in being associative is
measured by means of the associator elements

vx, y, zw � pxy � zq{px � yzq.

The associator elements are in the ternary commutator rX,X,Xs of X since they are
expressions in three variables which vanish as soon as one of the variables is equal to 1.

We take X to be the non-associative commutative loop of which the multiplication
table is Table 1. (Any Latin square determines a quasigroup, and a loop is a quasigroup
with unit. It is commutative as the multiplication table is symmetric.) We take I to be
its normal subloop t1,�1, i,�iu, as indicated in the multiplication table of X, and H the
normal subloop t1,�1, h,�hu of X. The normal subloop

Y � t1,�1, i,�i, g,�g, h,�hu � H _ I
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of X is actually an abelian group (isomorphic to the cube C3
2 of the cyclic group of order

two C2), so that I and H commute in Y , hence in X. Furthermore, A � H^I � t1,�1u is
central in X, as the multiplication on X restricts to a loop homomorphism � : A�X Ñ X.
Hence we have the the equalities

rH, Is � 0 � rH ^ I,Xs.

On the other hand, the commutator rH, I,Xs is non-trivial, as hi � l � gl � j while
h � il � hp�mq � �j, so that

1 � phi � lq{ph � ilq � vh, i, lw P rH, I,Xs.

This violates the Commutator Condition for n � 2 (Subsection 1.11), since H and I �X
determine a double extension (of C2 � X{Y ) which is H-central but not central.

A direct proof without ternary commutators goes as follows. Let R and S be the
respective denormalisations of H and I. Then px, yq P R (resp. P S) when xH � yH
(resp. xI � yI). The Smith commutator rR, SsS is the kernel pair of t in the colimit
diagram

R
x1R,∆Sr2y

z� ��

r1

�$
R �X S ,2 T Xtlr

S
x∆Rs1, 1Sy

Zd

s2

:DLR

(Subsection 1.1). We claim that t maps vh, i, lw P X to 1, so that the couple pvh, i, lw, 1q
is a non-trivial element of rR, SsS. This violates the characterisation of double central
extensions recalled in Subsection 1.7.

The above colimit may be computed as the pushout

R � S
x r1s2 y ,2A

1R ∆Sr2
∆Rs1 1S

E
_��

X

t
_��

R �X S ,2 T.

Certainly the formal associator

vph, 1q, p1, iq, pl, lqw

in R� S, where pl, lq is considered as belonging to R, is mapped to vh, i, lw in X. On the
other hand, the arrow

@
1R ∆Sr2

∆Rs1 1S

D
sends this associator to the element

vph, 1, 1q, p1, 1, iq, pl, l, lqw

of the pullback R �X S. This element is equal to

pvh, 1, lw, v1, 1, lw, v1, i, lwq � p1, 1, 1q,

because any associator containing 1 vanishes, so that indeed p1, 1q � pvh, i, lw, 1q P rR, SsS.
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4. Further remarks

4.1. Modules The Smith is Huq Condition implies that every action of an object on an
abelian object A is a module (i.e., an abelian group in the slice category A{Z): given any
split epimorphism f : X Ñ Z, the equality rX �Z X,X �Z Xs

S � ∆X follows from

rKerpfq,KerpfqsHuq � rA,AsHuq � 0.

All known counterexamples against (SH), in digroups [3, 7] or in loops [24, 32], were
examples of an action of an abelian object which is not a module, so where the commutator
rX�ZX,X�ZXs

S is bigger than ∆X . Under (CC) the situation is different: considering f
as a double extension

X
f � ,2

f
_��

Z

Z Z,

in order to make use of (CC2) we would have to assume the stronger condition

rA^ A,XsHuq � rA,XsHuq � 0;

by (CC1) this already implies the stronger rX �Z X,∇Xs
S � ∆X , which defeats the

purpose.

4.2. Relative commutators Many of the examples obtained in [20] through explicit
calculations now become instances of Theorem 2.11, as do several other examples consid-
ered in the literature: groups vs. abelian groups, rings vs. zero rings, and Lie algebras vs.
vector spaces, for instance. Nevertheless, there is still a whole class of examples missing,
namely all those where the homology is not absolute, i.e., the functor which is being derived
is not the abelianisation functor. Higher Hopf formulae exist e.g. for precrossed modules
vs. crossed modules, groups vs. groups of a certain nilpotency or solvability class [20],
loops vs. groups (in low dimensions) [22], compact groups vs. profinite groups [19] and
Leibniz n-algebras vs. Lie n-algebras [13]. We hope to extend the results of the present
paper to the relative case so that also these examples may become instances of the general
theory. This problem is closely related to the results of [16, 22, 23], as it depends on a
suitable notion of relative commutator. In the article [19] a solution is given for reflectors
which are protoadditive.

4.3. Equivalence of (CC) and (SH) Another question we did not answer now is
whether or not (CC) implies (SH). The problem is that already against (SH) alone the
counterexamples are exotic, and now we would have to find a category which does not
have (SH) but does satisfy (CC).

4.4. Exact Mal’tsev categories Under (CC), higher central extensions in a semi-
abelian category may be characterised in terms of binary Huq commutators. So un-
der (SH), this characterisation may be reformulated using binary Smith commutators as
follows.
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4.5. Corollary. Given an n-fold extension F in a semi-abelian category with (SH), let
Fn �Fnztiu

Fn denote the kernel pair of fi : Fn Ñ Fnztiu. Then

ª
I�n

�©
iPI

Fn �Fnztiu
Fn,

©
iPnzI

Fn �Fnztiu
Fn

�S

� ∆Fn

if and only if F is central.

We know, however, that when n � 2 this characterisation of double central extensions
is valid in all exact Mal’tsev categories: in [21], the proof given in the article [48] in a semi-
abelian context was replaced by a much more efficient one which avoids the use of the Huq
commutator and doesn’t need that the category is pointed nor that it is protomodular
but works in the exact Mal’tsev context. This naturally leads to the following conjecture:

4.6. Conjecture. The above characterisation of n-fold central extensions is also valid
in exact Mal’tsev categories.

That higher central extensions make sense in an exact Mal’tsev context is explained
in [18]. The difficulty in 4.6 may be better understood when observing the difference
in underlying geometry between the vanishing of the Smith commutators that occur in
Corollary 4.5 on the one hand, and the characterisation of higher centrality given in [49]—
which is also geometrical in nature, and makes sense in the exact Mal’tsev context—on
the other. One could argue that this latter characterisation of higher centrality leads to
a “higher-order Smith commutator”. This would be just one n-ary Smith commutator
involving higher-order diamonds, instead of a join of several binary Smith commutators,
each of which only gives rise to a fragment of the geometry of those higher-order diamonds.
The question now essentially becomes whether the characterisation of double central ex-
tensions in terms of binary Smith commutators is a coincidence typical for degree two or
not.

4.7. Higgins instead of Smith Even when a semi-abelian category does not have the
property (CC), the double central extensions in it may still be characterised in terms of
Higgins commutators. The only problem is that binary commutators will not suffice, but
rather a ternary commutator is needed: the result in [32] says that (C) is central when the
join rK ^L,Xs_ rK,Ls_ rK,L,Xs vanishes. An unpublished result by Tomas Everaert,
on which the proof of Theorem 2.8 was based, gives the higher-dimensional analogue. It
says that an n-fold extension F in a semi-abelian category is central if and only if the join
of higher-order Higgins commutators [31]

ª
I0Y���YIk�I�n

�©
iPI0

Kerpfiq, . . . ,
©
iPIk

Kerpfiq
�

vanishes. The size of the commutators stays bounded, and the join finite, as a commutator
in which an entry is repeated is smaller than the commutator with the repetition removed.
In fact, all three types of commutators—Higgins, Huq, Smith—may be seen as instances
of the weighted commutator introduced by Gran, Janelidze and Ursini ([27], see also [42]).
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Mal’tsev categories, Cah. Topol. Géom. Differ. Catég. LI (2010), 143–153.

[22] T. Everaert and T. Van der Linden, Galois theory and commutators, Algebra Uni-
versalis 65 (2011), no. 2, 161–177.

[23] T. Everaert and T. Van der Linden, Relative commutator theory in semi-abelian
categories, J. Pure Appl. Algebra 216 (2012), no. 8–9, 1791–1806.

[24] R. Freese and R. McKenzie, Commutator theory for congruence modular varieties,
London Math. Soc. Lecture Note Ser., vol. 125, Cambridge Univ. Press, 1987.

[25] M. Gerstenhaber, A categorical setting for the Baer extension theory, Applications of
Categorical Algebra, New York 1968, Proc. Sympos. Pure Math., vol. XVII, Amer.
Math. Soc., Providence, R.I., 1970, pp. 50–64.

[26] M. Gran, Applications of categorical Galois theory in universal algebra, Galois The-
ory, Hopf Algebras, and Semiabelian Categories (G. Janelidze, B. Pareigis, and
W. Tholen, eds.), Fields Inst. Commun., vol. 43, Amer. Math. Soc., 2004, pp. 243–
280.



208 DIANA RODELO AND TIM VAN DER LINDEN

[27] M. Gran, G. Janelidze, and A. Ursini, Weighted commutators in semi-abelian catego-
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