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ENRICHED INDEXED CATEGORIES

MICHAEL SHULMAN

Abstract. We develop a theory of categories which are simultaneously (1) indexed
over a base category S with finite products, and (2) enriched over an S-indexed monoidal
category V . This includes classical enriched categories, indexed and fibered categories,
and internal categories as special cases. We then describe the appropriate notion of
“limit” for such enriched indexed categories, and show that they admit “free cocomple-
tions” constructed as usual with a Yoneda embedding.
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1. Introduction

It is well-known that ordinary category theory admits several important generalizations,
such as the following.

• A category enriched in a monoidal category V has a set of objects, but hom-objects
belonging to V.
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• A category internal to a category S with pullbacks has both an S-object of objects
and an S-object of morphisms.

• A category indexed or fibered over a category S has sets of objects and morphisms,
each of which lives over a specified object or morphism in S.

Sometimes, however, we encounter category-like objects which appear simultaneously
enriched and internal, or enriched and indexed. Here are a few examples.

(i) Parametrized homotopy theory (as developed in [MS06]) studies spaces and spectra
parametrized over a given base space. Each of these forms a category indexed over
the category of base spaces. In addition, however, parametrized spectra are enriched
over parametrized spaces, in a sense which was recognized in [MS06] but not given
a general context.

(ii) The free abelian group on a monoid is a ring; applying this functor homwise to an
ordinary category, we obtain a category enriched over abelian groups. Similarly, the
suspension spectrum of a topological monoid is a ring spectrum, and so the fiberwise
suspension spectrum of a topologically-internal category should be a category which
is simultaneously internal to spaces and enriched over spectra. Such categories
played an important role in [Pon07].

(iii) Equivariant homotopy theory studies spaces and spectra with actions of a topological
group. As the group in question varies, we find categories simultaneously indexed
over groups and enriched over spaces. More recently, global equivariant homotopy
theory [Boh12] studies equivariant spaces and spectra constructed in a coherent
way across all groups of equivariance. Such “global spectra” can be defined just
like ordinary diagram spectra, if we work in the context of categories simultaneously
indexed over groups and enriched over equivariant spaces.

(iv) In [Bun13], enriched indexed categories (which were discovered independently by
Bunge) provide a general context to compare completions such as the Karoubi
completion, stack completion, Grothendieck completion, and Cauchy completion.

(v) The category of abelian sheaves is simultaneously indexed over base spaces and
enriched over abelian groups. Similarly, chain complexes of sheaves are indexed
over spaces and enriched over chain complexes.

(vi) When doing mathematics relative to a base topos, we must replace small categories
by internal ones and large categories by indexed ones. Therefore, wherever enriched
category theory is used in classical mathematics, in topos-relative mathematics we
should expect to combine it with internalization and indexing.

In this paper we show that enriched indexed categories support a category theory as
rich and powerful as all three classical cases. To a large extent, this is entirely straight-
forward. Unsurprisingly, the resulting theory exhibits aspects that are characteristic both
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of classical enriched category theory and internal and indexed category theory. Notable
among the former is the need for a notion of weighted limit. Notable among the latter
is the nontriviality of the passage from small categories (e.g. internal ones) to large ones
(e.g. indexed ones).

1.1. Some remarks about formal category theory. The theory of enriched in-
dexed categories is clarified by using tools from formal category theory, which are already
known to encompass both enriched and internal/indexed categories separately. These
tools center around profunctors between categories (in the classical case, a profunctor
from A to B is a functor Bop × A → Set). Every functor gives rise to an adjoint pair of
profunctors, and altogether categories, functors, and profunctors of any fixed sort form a
proarrow equipment [Woo82] (or “framed bicategory” [Shu08]).

The central observations are the following:

(i) In any equipment, there is a formal notion of a weighted limit in an object (e.g. a
category) weighted by a morphism (e.g. a profunctor); see [SW78, Woo82]. Starting
from this we can develop large amounts of category theory purely formally.

(ii) For any well-behaved equipment W, there is an equipment of “W-enriched cate-
gories”, functors, and profunctors; see e.g. [BCSW83, Str83, GS13]. Moreover, we
can remove the qualifier “well-behaved” by generalizing to virtual equipments in
the sense of [CS10] (in which not all profunctors may be composable). This was
originally observed in [Lei07, Lei04, Lei02].

Observation (i) means that in order to automatically obtain a formally well-behaved the-
ory of “enriched indexed categories”, essentially all we need is to define suitably related
notions of category, functor, and profunctor. And observation (ii) means that for this, we
can start with a simpler (virtual) equipment and apply the general enriched-categories
construction. Finally, the relevant simpler equipment to begin with was already con-
structed in [Shu08], starting from an indexed monoidal category V (the relevant “base
for enrichment”).

It would seem, then, that there is very little left to do; so why is this paper so long?
There are several reasons.

Firstly, for the purposes of exposition, application, and wide accessibility, it seems
valuable to have explicit descriptions of what the formal equipment-theoretic notions
reduce to in our particular case of interest, not requiring the reader to be familiar with
the literature of formal category theory. For this reason, I will minimize references to
equipments, generally confining them to remarks and to the proofs of lemmas (all of
which could also easily be done “by hand”).

Secondly, not all of the formal category theory existing in any equipment has yet been
generalized to the virtual case. (The generalization should be entirely straightforward,
but for the most part it has not yet been written out.) However, the virtual case is
necessary in order to deal with large categories, since even when the enriching category is
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cocomplete, profunctors between large categories may not be composable.1 A reader who
is so inclined can read parts of sections 5, 8, and 10 of this paper as contributions to this
theory, since wherever possible, we give proofs that apply in any virtual equipment.

Finally, enriched indexed categories share with classical indexed categories the prop-
erty of having multiple not-obviously-equivalent definitions. Given an indexed monoidal
category V , there is an obvious notion of small V -category, which directly generalizes
internal categories and small enriched categories. On the other hand, there is also a fairly
obvious notion of (large) indexed V -category, which generalizes locally small indexed cat-
egories (incarnated as “locally internal categories” in the sense of [Pen74]). There are
plenty of good examples of both definitions, but it is not entirely trivial how to regard a
small V -category as an indexed one!

The equipment-theoretic approach actually yields a third notion, which we will call
simply a (large) V -category. This notion manifestly includes small V -categories as a
special case, but its connection to indexed V -categories is not entirely trivial. In the
special case of ordinary (unenriched) indexed categories, this relationship was established
by [BCSW83, BW87]. Thus, we spend some time producing the analogous correspondence
between indexed V -categories and large V -categories. It turns out to behave even better
when we work with equipments, rather than merely bicategories as [BCSW83, BW87] did.

The nontriviality of this correspondence also means that it also takes a little work to
rephrase equipment-theoretic notions (such as weighted limits) in the language of indexed
V -categories. Pleasingly, the results are exactly what one might hope for.

1.2. Historical remarks. Apparently, the idea of enriched indexed categories was
first proposed by Lawvere [Law73]. A formal definition was given by Gouzou and Grunig
in [GG76], corresponding to what I will call an “indexed V -category”. They did not apply
general equipment-theoretic methods (which did not exist at that time). Perhaps because
of a lack of applications, the definition did not become well-known, and the theory was
not extensively developed.

I discovered enriched indexed categories myself around 2007, with examples such
as [MS06] and [Pon07] in mind. Michal Przybylek [Prz07] independently invented them
at about the same time as well. After a brief discussion on the categories mailing list,
Thomas Streicher very kindly sent me a copy of the work of Gouzou and Grunig. Seeing
this, and not having any real applications in mind yet, and feeling that it was all a special
case of equipment theory, I put the notion aside for a while.

However, recently two new applications have appeared. Firstly, the notion of “global
equivariant spectrum” developed in [Boh12] requires categories that are both indexed
over groups and enriched in spaces with group actions, and was made possible by an early
draft of this paper. Secondly, during Octoberfest 2012 in Montreal, I found that Marta
Bunge had also independently arrived at the same notion of “indexed V -category”, with
the goal of comparing various idempotent completion monads [Bun13].

1In some of the literature, such as [SW78], this is avoided by invoking an embedding theorem to
make the enriching category into an even larger one. However, an analogous process for enriched indexed
categories would be rather more complicated and obscure the important ideas.
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This suggests that it is time to publish a careful development of the theory, using
modern technology, and with due credit given to everyone who discovered it independently.

1.3. Outline of the paper. We begin in §2 by studying indexed monoidal categories,
which provide the “base” of enrichment and indexing for our enriched indexed categories.
More specifically, there is a category S which provides the base of the indexing, and an
S-indexed category V with a monoidal structure which provides the enrichment. Much of
this theory can be found in [Shu08] and [PS12], but we recall it all here for convenience.
We also give a large number of examples.

In §§3–5, we define respectively the three kinds of V -category: small, indexed, and
large. In each case we also define the relevant notions of V -functor, V -natural trans-
formation, and V -profunctor, and give several examples. In §3 and §5 we also study
profunctors in some more detail, making use of some equipment-theoretic notions.

Then in §6 we compare the notions of V -category. Small V -categories are manifestly
a special case of large ones. As for the indexed ones, we identify a particular subclass of
large V -categories, called V -fibrations, and a subclass of functors between them, called
indexed, which form a 2-category that is 2-equivalent to the 2-category of indexed V -
categories. We regard this correspondence as closely analogous to the classical equivalence
between pseudofunctors (indexed categories) and fibrations, although it is not strictly a
generalization of it.

Moreover, it turns out that the 2-category of V -fibrations and indexed V -functors
is biequivalent to the entire 2-category of large V -categories and all V -functors. The
equivalence also carries over to profunctors, so we have a complete equivalence of “category
theories”.

It seems that in applications, the V -categories which act like the “large categories” in
classical category theory are always V -fibrations (or, equivalently, indexed V -categories),
while those that act like the “small categories” are not always so. (Sometimes they are
small in the sense of §3; other times they are small only in a weaker, non-elementary
sense.) Thus, it is useful to have the context of large V -categories which includes both.

In §7 we consider “change of enrichment” along a morphism V → V ′. The definitions
are all straightforward and mostly omitted; mainly we give a lot of examples to show the
generality of the concept. A particularly important case is that of the “underlying indexed
category” of an enriched indexed category, which generalizes the classical “underlying
ordinary category” of an enriched category.

In §8–9 we study the very important topic of limits and colimits. In §8 we work purely
equipment-theoretically, defining limits in terms of profunctors and proving their basic
properties abstractly. Then in §9 we specialize these notions to the case of indexed V -
categories, where they turn out to reduce exactly to a combination of well-known indexed
and enriched notions of limit. In the case of ordinary (unenriched) indexed categories,
this perspective on limits was explored in [BW87] and sequels such as [Bet89, Bet00,
BW89]. On the other hand, the same combination of indexed and enriched notions of
limit was studied in [GG76], but without the equipment-theoretic context for justification
and formal properties.
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With the basic theory of limits and colimits available, there are of course many different
directions in which to develop category theory. We choose only two: presheaf categories
in §10, and monoidal structures in §11.

The goal of §10 is to prove that presheaf V -categories are free cocompletions. The
arguments are purely formal and equipment-theoretic. Rather than restrict ourselves to
presheaves on small categories, we consider more generally small presheaves in the sense
of [DL07], which form free cocompletions of not-necessarily-small categories.

Finally, in §11 we study monoidal V -categories, using for the first time in an essential
way the symmetry of V . We define two tensor products of V -categories, one “indexed”
and one not, which extend the biequivalence of §6 to a monoidal biequivalence. Monoidal
V -categories are then pseudomonoids with respect to either of these tensor products. We
also define closed monoidal V -categories by way of profunctors, essentially specializing
the general definitions of [DS97, DMS03, Str04] to V -categories. As in the classical
case, closed monoidal V -categories correspond closely to monoidal adjunctions involving
V . We conclude with the Day convolution monoidal structure for V -presheaf categories,
which, combined with the previous theory, yields some of the most important examples,
from [MS06] and [Boh12].

1.4. Acknowledgments. I would like to thank my thesis advisor, Peter May, for many
things too numerous to mention. I would also like to thank Anna Marie Bohmann and
Marta Bunge, for providing the final impetus for publication. Finally, I would like to
thank Hurricane Sandy, for providing a week free from other commitments, in which I
was able to polish my notes into a readable paper; and the Institute for Advanced Study,
for providing an electricity generator during that week.

2. Indexed monoidal categories

Let S be a category with finite products. We write ∆X : X → X ×X for the diagonal of
X ∈ S, and for related maps such as X × Y → X ×X × Y . Similarly, we write πX for
any projection map in which X is projected away, such as X → 1 or X × Y → Y . If this
would be ambiguous, such as for the product projections X ×X → X, we use numerical
subscripts which again denote the copy being projected away ; thus π1 : X × X → X is
the projection onto the second copy.

Our enriched indexed categories will be indexed over S. Their enrichment, on the other
hand, will not be over a monoidal category in the classical sense, but over the following
type of category.

2.1. Definition. An S-indexed monoidal category is a pseudofunctor V : Sop →
MonCat, where MonCat is the 2-category of monoidal categories, strong monoidal func-
tors, and monoidal transformations.

As usual, we write the image of X ∈ S as V X , and the image of f : X → Y as
f ∗ : V Y → V X . We write the tensor product and unit of V X as ⊗X and IX . The
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monoidality of f ∗ means we have isomorphisms such as

f ∗A⊗X f ∗B ∼= f ∗(A⊗Y B) and IX ∼= f ∗IY .

Of course, by applying the “Grothendieck construction” we can equally regard V as a
fibration

∫
V → S. Moreover, the monoidal structures on the fibers V X can equivalently

be described by giving a monoidal structure on the category
∫

V such that

(i) the fibration
∫

V → S is strict monoidal, and

(ii) the tensor product of
∫

V preserves cartesian arrows.

In [Shu08] this is called a monoidal fibration; see there for a proof of the equivalence.
If we write ⊗ and I for the monoidal structure and unit of

∫
V , then the relationships

between these and the fiberwise monoidal structures are as follows. For A ∈ V X and
B ∈ V Y , we have

A⊗B = π∗YA⊗X×Y π∗XB ∈ V X×Y and I = I1 ∈ V 1,

while for A,B ∈ V X we have

A⊗X B = ∆∗X(A⊗B) ∈ V X and IX = π∗XI ∈ V X .

We sometimes call ⊗ the external product, and ⊗X the fiberwise or internal one.
Property (ii) gives us isomorphisms such as

f ∗A⊗ g∗B ∼= (f × g)∗(A⊗B).

We say that V is symmetric if the pseudofunctor V : Sop → MonCat lifts to
SymMonCat; this is equivalent to asking

∫
V and the fibration

∫
V → S to be sym-

metric monoidal. We say that V is cartesian if each category V X is cartesian monoidal,
or equivalently if

∫
V is cartesian monoidal.

The two most important examples, corresponding to classical enrichment and classical
internalization/indexing, are as follows.

2.2. Example. Let V be an ordinary monoidal category, let S = Set, and let V X = VX

be the category of X-indexed families of objects of V with the pointwise tensor product.
We call this the naive indexing of V and write it as Fam(V). Its total category∫

Fam(V) is the category Fam(V) of all set-indexed families of objects of V, where a
morphism from (Ax)x∈X to (By)y∈Y consists of a function f : X → Y and a family of
morphisms fx : Ax → Bf(x). The external product is defined by

(A⊗B)(x,y) = Ax ⊗By.
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2.3. Example. Let S be a category with finite limits, and let V X = S/X, with the
cartesian product (which is pullback in S). This is a cartesian monoidal fibration called
the self-indexing of S; we write it as Self (S). Its total category

∫
Self (S) is the

category S2 of arrows in S, its external product is just the cartesian product in S.

See [Shu08] and [PS12] for further study of indexed monoidal categories; the latter
includes an informal string diagram calculus.

Now, as is the case with classical enriched category theory, we frequently need com-
pleteness conditions on V . By a fiberwise limit or colimit, we mean a limit or colimit in
a fiber category V X which is preserved by all functors f ∗. If κ is a regular cardinal, we
say that V is fiberwise κ-complete if it has all fiberwise limits of cardinality < κ, and
we say V is fiberwise complete if it has all small fiberwise limits. Of course we have
similar notions of fiberwise cocompleteness.

The other important sort of (co)limit for indexed categories is the following.

2.4. Definition. V has S-indexed coproducts if

(i) each functor f ∗ : V Y → V X has a left adjoint f!, and

(ii) for any pullback square
h //

k

��

f

��
g
//

in S, the induced Beck-Chevalley transformation k!h
∗ → g∗f! is an isomorphism.

Dually, V has S-indexed products if each f ∗ has a right adjoint f∗ satisfying an anal-
ogous condition.

It is well-known that the adjoints f! exist if and only if the fibration
∫

V → S is also
an opfibration.

2.5. Example. Fam(V) has any fiberwise limits and colimits that V has, and has Set-
indexed (co)products iff V has (co)products.

2.6. Example. If S has finite limits, then Self (S) has fiberwise finite limits. It is
fiberwise complete if S is complete, and has any fiberwise colimits that S has. It always
has S-indexed coproducts, and has S-indexed products if and only if S is locally cartesian
closed.

We say that V is κ-complete if it is fiberwise κ-complete and has indexed prod-
ucts, and similarly it is κ-cocomplete if it is fiberwise κ-cocomplete and has indexed
coproducts.

Now in the case when V has indexed coproducts, there is a third variant of the
monoidal structure. For A ∈ V X×Y and B ∈ V Y×Z , we define

A ⊗[Y ] B = πY !∆
∗
Y (A ⊗ B),
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which lies in V X×Z . We can also express this in terms of the fiberwise product as:

A ⊗[Y ] B ∼= πY !

(
π∗ZA ⊗X×Y×Z π∗XB

)
.

We call this the canceling product because the object Y no longer appears in the base
of the result. We have induced isomorphisms such as

(f × 1)∗A⊗[Y ] (1× g)∗B ∼= (f × g)∗(A⊗[Y ] B) (2.7)

for f : X ′ → X and g : Z ′ → Z.

2.8. Example. When V = Fam(V), the canceling product is

(A ⊗[Y ] B)(x,z) =
∐
y∈Y

A(x,y) ⊗ B(y,z).

2.9. Example. When V = Self (S), the canceling product is just a pullback in S, but
which then forgets the map to the object we pulled back over.

Classically, in a monoidal category one often needs colimits to be preserved by the ten-
sor product in each variable. For fiberwise colimits, we can simply impose this condition
fiberwise. For indexed coproducts, the relevant condition is the following.

2.10. Definition. If V is a monoidal fibration with indexed coproducts, we say that
⊗ preserves indexed coproducts if for any f : X → Y in S and any A ∈ C Y and
B ∈ CX , the canonical map

f!(f
∗A⊗X B)→ A⊗Y f!B (2.11)

is an isomorphism, and symmetrically. (This condition is sometimes called “Frobenius
reciprocity”, or said to make the adjunction f! a f ∗ into a “Hopf adjunction”.)

An exercise in pasting mates implies that this condition is equivalent to the external
product ⊗ preserving opcartesian arrows, yielding isomorphisms such as

(f × g)!(A⊗B) ∼= f!A⊗ g!B.

When this condition holds, the canceling product has its own derived commutativity
isomorphisms, namely

(1× f)∗A ⊗[X] B ∼= A ⊗[Z] f!B (2.12)

(f × 1)!A ⊗[Y ] B ∼= f!

(
A ⊗[Y ] B

)
(1× f)!A ⊗[Z] B ∼= A ⊗[X] f

∗B. (2.13)

Finally, we consider what it means for a monoidal fibration to be closed. For simplicity,
we consider only the symmetric case (in the non-symmetric case, we would have two homs
of each type, a “right one” and a “left one”).
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2.14. Theorem. Let V be an S-indexed symmetric monoidal category with indexed prod-
ucts, and indexed coproducts preserved by ⊗. Then the following are equivalent.

(i) Each fiber V X is closed symmetric monoidal and each restriction functor f ∗ is closed
symmetric monoidal. This means that for B,C ∈ V X we have V X(B,C) ∈ V X

and isomorphisms

V X(A ⊗X B,C) ∼= V X
(
A,V X(B,C)

)
,

natural in A, and moreover the canonical maps

f ∗V Y (B,C) −→ V X(f ∗B, f ∗C) (2.15)

are isomorphisms.

(ii) For any B ∈ V Y and C ∈ V X×Y , we have a V [Y ](B,C) ∈ V X and isomorphisms

V X×Y (A ⊗ B,C) ∼= V X
(
A,V [Y ](B,C)

)
natural in A, and moreover the resulting canonical maps

f ∗V [Y ](B,C) −→ V [Y ](B, (f × 1)∗C)

are isomorphisms.

(iii) For any B ∈ V Y and C ∈ V X we have a V (B,C) ∈ V X×Y and isomorphisms

V X(A ⊗[Y ] B,C) ∼= V X×Y (A,V (B,C)) (2.16)

natural in A, and moreover the resulting canonical maps

(f × g)∗V (B,C)→ V (g∗B, f ∗C)

are isomorphisms.

When these conditions hold, we say that V is closed.

Proof. The relationships between the three kinds of hom-functors are

V X(B,C) ∼= V [X]
(
B,∆X∗C

) ∼= ∆∗XV (B,C)

V (B,C) ∼= V Y×X(π∗XB, π∗YC) ∼= V [Y ]
(
B,∆Y ∗π

∗
YC
)

V [Y ](B,C) ∼= πY ∗V
X×Y (π∗XB,C) ∼= πY ∗∆

∗
Y V (B,C).

Checking that the canonical maps coincide is an exercise in diagram chasing. The equiv-
alence of (i) and (ii) can be found in [Shu08].
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When the conditions of Theorem 2.14 hold, we say that V is closed. We call V X(−,−)
the fiberwise hom, V (−,−) the external hom, and V [X](−,−) the canceling hom.

2.17. Example. If V is complete and cocomplete closed symmetric monoidal with internal-
homs V(−,−), then Fam(V) is closed; we have

V X(B,C) =
(
V(Bx, Cx)

)
x∈X

V [Y ](B,C) =

(∏
y∈Y

V(By, Cx,y)

)
x∈X

V (B,C) =
(
V(Bx, Cy)

)
x∈X,y∈Y

.

2.18. Example. Self (S) is closed just when S is locally cartesian closed.

2.19. Remark. The construction of the canceling hom from the fiberwise or external
hom, and vice versa, do require indexed products as assumed. This is natural when
looking at Example 2.17, in which the canceling hom involves a product whereas the
other two do not.

On the other hand, the definitions of the fiberwise and external homs in terms of
each other do not require any indexed products or coproducts, although the adjunction
isomorphism (2.16) does require indexed coproducts since it involves the canceling tensor
product. Thus, in the absence of any completeness or cocompleteness conditions on V ,
we should define closedness by (i), and we are free to use the external hom defined by
V (B,C) = V Y×X(π∗XB, π

∗
YC), although not its universal property (2.16). (In fact, the

external hom does have a universal property even in the absence of indexed coproducts,
but we defer mention of it until §11, where it will seem more natural.)

Classically, the tensor product in a closed monoidal category preserves colimits in each
variable. It is similarly immediate that the tensor product in an indexed closed monoidal
category preserves fiberwise colimits in each variable, while for indexed colimits we have:

2.20. Lemma. If V is closed and has indexed coproducts, then its indexed coproducts are
preserved by ⊗.

Proof. The morphism (2.11) is a mate of (2.15), such that each is an isomorphism if and
only if the other is.

We can also define combination fiberwise/external/canceling products and homs, which
satisfy a more symmetric-looking adjunction. If A ∈ V X×Y×Z , B ∈ V Y×Z×W , and
C ∈ V X×Y×W , then we define

A ⊗Y,[Z] B = πZ!∆
∗
Y×Z

(
A ⊗ B

) ∼= πZ!(π
∗
WA ⊗X×Y×Z×W π∗XB)

V Y,[W ](B,C) = πW∗∆
∗
Y×WV (B,C) ∼= πW∗V

X×Y×Z×W (π∗XB, π
∗
ZC).
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We then have

V X×Y×W (A ⊗Y,[Z] B,C
) ∼= V X×Y×Z(A,V Y,[W ](B,C)

)
.

All the other products, homs, and adjunctions can be seen as special cases of these when
X, Y , Z, and/or W are taken to be the terminal object 1, and in such cases we omit
them from the notation.

Furthermore, when V is closed, the base change and tensor-hom adjunctions also
automatically become enriched, in a suitable sense.

2.21. Proposition. For any f : X → Y we have natural isomorphisms

V Y (f!B,C) ∼= f∗V
X(B, f ∗C) and (2.22)

V Y (C, f∗B) ∼= f∗V
X(f ∗C,B). (2.23)

Proof. The isomorphism (2.23), for any colax/lax adjunction f ∗ a f∗ between closed
monoidal categories, is actually equivalent to f ∗ being strong monoidal (it is a mate of
f ∗(A ⊗ B) ∼= f ∗A ⊗ f ∗B). The isomorphism (2.22) is perhaps less well-known, but a
similar argument shows that given a chain of adjunctions f! a f ∗ a f∗ between closed
monoidal categories with f ∗ strong, the isomorphism (2.22) is equivalent to f ∗ being
closed monoidal.

2.24. Remark. In fact, (2.22) makes sense and is true even if V lacks indexed products in
general, as an assertion that V Y (f!B,C) has the universal property that f∗V

X(B, f ∗C)
would have if it existed. The same is true of the first isomorphism in the following
proposition.

2.25. Proposition. For any f : X → Y we have natural isomorphisms

V (f!B,C) ∼= (1× f)∗V (B,C)

V (B, f ∗C) ∼= (f × 1)∗V (B,C)

V (f ∗C,B) ∼= (1× f)∗V (C,B)

V (C, f∗B) ∼= (f × 1)∗V (C,B).

Proof. These are mates of the compatibility relations (2.7) and (2.12)–(2.13) for the
canceling product.

2.26. Proposition. For any f : X → Y we have isomorphisms

V [Y ](f!B,C) ∼= V [X](B, (1× f)∗C)

V [X](f ∗B,C) ∼= V [Y ](B, (1× f)∗C)

f ∗V [Z](B,C) ∼= V [Z](B, (f × 1)∗C)

f∗V
[Z](B,C) ∼= V [Z](B, (f × 1)∗C)

Proof. These are the mates under adjunction of the compatibility relations such as
(1× f)!(A ⊗ B) ∼= A ⊗ f!B.
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It is a standard result that in any closed symmetric monoidal category, such as V X ,
the ordinary hom-tensor adjunction isomorphism

V X(A ⊗X B,C) ∼= V X
(
A,V X(B,C)

)
enriches to an isomorphism of internal-hom objects in V X :

V X(A ⊗X B,C) ∼= V X
(
A,V X(B,C)

)
.

It follows that in a closed monoidal fibration we also have other enriched hom-tensor
adjunction isomorphisms, such as the ‘purely external’ isomorphism

V (A ⊗ B,C) ∼= V (A,V (B,C)).

Bénabou has used the word cosmos for a complete and cocomplete closed symmetric
monoidal category (the ideal situation for classical enriched category theory). By analogy,
we define:

2.27. Definition. An S-indexed cosmos is an S-indexed closed symmetric monoidal
category which is ω-complete and ω-cocomplete.

We have chosen ω as the cardinality of completeness and cocompleteness in this def-
inition so as to make the notion an elementary one. That is, at least if we reformulate
indexed categories using fibrations, then indexed cosmoi are models of a first-order the-
ory, making them appropriate for foundational contexts such as category theory over a
base topos. However, many indexed cosmoi arising in other applications are also fiberwise
complete and cocomplete.

Any cosmos V in Bénabou’s sense gives rise to a Set-indexed cosmos Fam(V), al-
though not every Set-indexed cosmos arises in this way. Moreover, we will see in §5 that
any fiberwise cocomplete indexed cosmos gives rise to a cosmos in the sense of [Str81].

We now collect a number of further examples.

2.28. Example. For any S, and any ordinary monoidal category V, the constant pseudo-
functor X 7→ V is an S-indexed monoidal category with indexed products and coproducts
preserved by ⊗. Limits and colimits in V give fiberwise limits and colimits, and it is closed
if V is. The fiberwise, external, and canceling products and homs are all identical. We
call this a constant indexed monoidal category and denote it by Const(S,V). Its total
category

∫
Const(S,V) is S×V.

2.29. Example. As a particular case of the previous example, we may take S to be the
terminal category ?, in which case

∫
Const(?,V) ∼= V.

2.30. Example. Recall that Fam(S) denotes the category of all set-indexed families of
objects of S. For any S-indexed category V , there is a Fam(S)-indexed category Fam(V ),
whose total category is Fam(

∫
V ) and whose fiber over (Xi)i∈I ∈ Fam(S) is

∏
i∈I V Xi . It

inherits a monoidal structure, closedness, and fiberwise limits and colimits from V , while
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it has indexed (co)products if and only if V has both indexed (co)products and small
fiberwise ones.

Noting that Fam(?) ∼= Set, we see that by applying this construction to Const(?,V)
we reproduce our original example Fam(V) from Example 2.2.

2.31. Example. If V is an S-indexed monoidal category and F : S′ → S is any functor,
then there is an S′-indexed monoidal category F ∗V defined by (F ∗V )X = V F (X): the
fiberwise monoidal structure of V passes immediately to F ∗V . (If F does not preserve
finite products, then the external product of F ∗V may differ from that of V .)

2.32. Example. The category of topological spaces has pullbacks, but is not locally
cartesian closed, so its self-indexing does not have indexed products and is not closed. Its
subcategories of “compactly generated spaces” and “k-spaces” are cartesian closed, but
still not locally cartesian closed. However, the references given in [MS06, §1.3] show that
if we take S to be the category of compactly generated spaces, and for X ∈ S we take K X

to be the category of k-spaces over X, then we do obtain an indexed cosmos K . Since
not every k-space is compactly generated, this indexed cosmos K is larger than Self (S)
(which is not an indexed cosmos).

2.33. Example. If S is a category with finite limits and finite colimits which are pre-
served by pullback, then there is an S-indexed monoidal category Self ∗(S) whose fiber
Self ∗(S)X is the category of sectioned objects over X. For such A and B, the fiberwise
smash product is the following pushout.

A tX B //

��

A×X B

��

X // A ∧X B.

This defines a monoidal structure with the unit object X → X t X → X, which has
indexed coproducts preserved by ∧. If S is locally cartesian closed, it is an indexed
cosmos.

More generally, a similar construction can be applied to any V with fiberwise finite
limits and colimits, with the fiberwise colimits preserved by ⊗. For instance, starting
from Example 2.32 we obtain an indexed cosmos K∗ of sectioned topological spaces.

2.34. Example. Let S be locally cartesian closed with countable colimits, and let Ab(S)X

be the category of abelian group objects in S/X. The countable colimits in S enable us to
define free abelian group objects. Thus by [Joh02, D5.3.2], Ab(S) has indexed products
and coproducts and fiberwise finite limits and colimits. The countable colimits also enable
us to define a tensor product, making Ab(S) into an indexed cosmos.

More generally, if V is an S-indexed cartesian cosmos with countable fiberwise col-
imits, we can define an S-indexed cosmos Ab(V ) whose fiber over X is the category of
abelian groups in V X . For example, from Example 2.32 we obtain an indexed cosmos of
topological abelian groups.
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2.35. Example. Let V be an S-indexed cosmos and R a commutative monoid object in
V 1, so that π∗XR is a commutative monoid in V X for any X. Let (RV )X be the category
of objects in V X with a π∗XR-action. This is closed symmetric monoidal with finite limits
and colimits; its tensor product is the coequalizer of the two actions

A⊗X (π∗XR)⊗X B ⇒ A⊗X B.

Since each f ∗ preserves π∗R-actions and their limits, tensor product, and hom, RV is an
S-indexed closed symmetric monoidal category with finite fiberwise limits and colimits.

To show that it has indexed products and coproducts, we verify that f! and f∗ preserve
π∗R-actions. Let f : X → Y ; then if M is a π∗XR-object in V X , we have

π∗YR ⊗Y f!M ∼= f!(f
∗π∗YR ⊗X M)

∼= f!(π
∗
XR ⊗X M)

so we can use the action π∗XR ⊗X M → M to induce an action of π∗YR on f!M . On
the other hand, since f∗ is lax monoidal (being the right adjoint of the strong monoidal
f ∗), it preserves monoids and their actions; thus f∗π

∗
XR is a monoid in V Y and f∗M

is a f∗π
∗
XR-object. However, f∗π

∗
XR = f∗f

∗π∗YR and the unit π∗YR → f∗f
∗π∗YR is a

monoid homomorphism, so this induces a π∗YR-action on M . It is straightforward to
check that these functors f! and f∗ are left and right adjoints to f ∗ on π∗R-actions. The
Beck-Chevalley condition follows from that for V , so RV is an indexed cosmos.

For example, if (S, R) is a ringed topos, such as the topos of sheaves on a scheme,
then RAb(S) is an indexed cosmos of sheaves of modules over the structure sheaf.

2.36. Example. Example 2.34 also works with the theory of abelian groups replaced
by any other finitary commutative theory (see [Bor94a, 3.10]), such as the theory of R-
modules for a fixed commutative ring R (in sets), or the theory of pointed sets. Applying
the latter case to Self (S), we recover Example 2.33.

In fact, we can also consider internal finitary commutative theories in S, such as
modules for an internal commutative ring object in S. This gives another way to approach
Example 2.35.

2.37. Example. On the other hand, if V is an S-indexed cartesian indexed cosmos,
and G ∈ V 1 is any monoid (not necessarily commutative), then each category of (π∗XG)-
modules in V X is also cartesian monoidal, with (π∗XG)-action induced on the products by
the diagonal of G. We denote this indexed monoidal category by GV ; note that when G
is commutative, the underlying indexed category of GV is the same as that of GV . For
instance, G could be a topological group in K , yielding the indexed monoidal category
of equivariant unsectioned spaces from [MS06]. Applying Example 2.33 we obtain the
sectioned versions.

2.38. Example. For S with finite products, let Grp(S) denote the category of group ob-
jects in S. For any such group object G, let Act(S)G = GS denote the category of objects
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G×K f×1K //

1G×g
��

H ×K
1H×g
��

G× L
f×1L

// H × L

G
∆ //

∆
��

G×G
1G×∆
��

G×G
∆×1G

// G×G×G

G
(1G,f)

//

f
��

G×H
f×1H
��

H
∆H

// H ×H

Figure 1: Homotopy pullback squares

with a G-action. With fiberwise cartesian monoidal structures (and G-actions induced by
the diagonal), this yields a Grp(S)-indexed cartesian monoidal category Act(S).

Since GS is monadic over S with monad (G × −), Act(S) has any fiberwise limits
that S has, and any fiberwise colimits that S has and that are preserved by × in each
variable. And if S is cartesian closed, then Act(S) is closed, with the exponentials in GS
being those of S with a conjugation action.

Now if S has coequalizers preserved by × in each variable, then the restriction functors
f ∗ : G → H have left adjoints. Namely, for a group homomorphism f : G → H and
X ∈ GS, we define f!X to be the coequalizer of the two maps

H ×G×X ⇒ H ×X

induced by the action of G on X, and by f followed by the multiplication of H. Similarly,
if S is cartesian closed and has equalizers, then f ∗ has a right adjoint, with f∗X defined
to be the equalizer of the analogous pair of maps

XH ⇒ XG×H .

Unfortunately, these adjoints do not satisfy the Beck-Chevalley condition for all pullback
squares in S. However, we do have the Beck-Chevalley condition for three important
classes of pullback squares, shown in Figure 1. (For example, this follows from [Joh02,
B2.5.11].) Note that these squares are all pullbacks in any category with finite products,
whether or not it has all pullbacks.

Only once or twice in this paper will we use the Beck-Chevalley condition for fully
general pullback squares; in most cases we will only need it for these particular ones,
along with their transposes, and their cartesian products with fixed objects. In [PS12],
we said that an indexed category had indexed homotopy coproducts if its restriction
functors f ∗ have left adjoints satisfying the Beck-Chevalley condition for these pullback
squares. But since Act(S) is the only example we will discuss in this paper2 which fails

2There are other examples discussed in [PS12], in which the fiber categories V X are “homotopy
categories”. However, these examples are usually not very interesting to enrich in, both because they
tend to lack fiberwise limits and colimits, and because the resulting enriched categories would be only
“up to unspecified homotopy”, not up to coherent homotopy.
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to have true indexed (co)products, we will not bother to add the adjective “homotopy”
everywhere in this paper. Instead we will merely remark on the one or two places where
the fully general Beck-Chevalley condition is used.

2.39. Example. If V is an S-indexed monoidal category and D a small category, define
(V D)X = (V X)D, with the pointwise monoidal structure. Then V D is an S-indexed
monoidal category, which inherits closedness, fiberwise limits and colimits, and indexed
products and coproducts from V .

For example, if G is an ordinary monoid, we can consider it as a one-object category
and obtain an indexed cosmos V G of objects in V with a G-action. On the other hand,
taking D = �

op to be the simplex category and S a topos of sheaves, we obtain an indexed
cosmos Self (S)�

op
of simplicial sheaves.

2.40. Example. Now let D be a small monoidal category and V a fiberwise complete
and cocomplete S-indexed cosmos. Then the category (V X)D is also closed monoidal
under the Day convolution product ; see [Day70]. This gives a different monoidal structure
to the indexed category V D. Since the Day monoidal structure and internal-homs are
constructed out of limits and colimits from those in V X , and f ∗ preserves all of these, the
transition functors f ∗ are also strong and closed with respect to the convolution product.
Thus we have a second indexed cosmos structure on V D in this case.

For example, if we take Σ to be the category of finite sets and permutations and
V to be the indexed cosmos K∗ of sectioned spaces, then K Σ

∗ is the indexed cosmos
of symmetric sequences of sectioned spaces. The spheres give a canonical commutative
monoid S in (K Σ

∗ )1 with respect to the convolution product, so by Example 2.35 we
have an indexed cosmos S(K Σ

∗ ) of parametrized (topological) symmetric spectra. We will
consider parametrized orthogonal spectra in §11.

2.41. Example. Suppose S is equipped with an orthogonal factorization system (E ,M)
which is stable in that E is preserved by pullback. Then defining M(S)X =M/X gives
an S-indexed monoidal category. For instance, if S is a regular category, then (E ,M)
could be (regular epi, mono), in which case M(S)X is the poset of subobjects of X.

2.42. Example. Let S have pullbacks and V be an ordinary monoidal category (such
as Set), and define Psh(S,V)X = V(S/X)op , with the pointwise monoidal structure. The
functor f ∗ is defined by precomposition with f : S/X → S/Y . Since S has pullbacks, f :
S/X → S/Y has a right adjoint, hence so does f ∗. The Beck-Chevalley condition follows
from that for pullbacks in S, so the resulting S-indexed monoidal category Psh(S,V) has
indexed products. It also inherits fiberwise limits and colimits from V.

If S is small and V is complete and cocomplete, then Psh(S,V) is closed and has
indexed coproducts, hence is an S-indexed cosmos. If S is not small, then Psh(S,V) may
not have these properties, but if S is locally small and V is complete, cocomplete, and
closed (i.e. a classical Bénabou cosmos), then it has an important class of them.

Namely, for any Z
g−→ X, consider the representable presheaf Fg ∈ V(S/X)op , defined

by Fg(W
h−→ X) = (S/X)(h, g) · I, a copower of copies of the unit object I of V. Now
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as in [DL07], we define an object of V(S/X)op to be small if it is a small (V-weighted)
colimit of such representables. Representable objects are closed under restriction, since
f ∗(Fg) ∼= Ff∗g; hence so are small objects. Similarly, representable objects are closed
under tensor products, since Fg ⊗X Fh ∼= Fg×Xh; hence so are small objects.

Now f ∗ : V(S/Y )op → V(S/X)op has a partial left adjoint f! defined on small objects,
which takes them to small objects: we define f!(Fg) = Ffg and extend cocontinuously.

Similarly, all homs V ?(A,B) exist when A is small: we define V X(Fg, B)(W
h−→ X) =

B(g ×X h) and extend cocontinuously, and construct the other homs from this as usual.

3. Small V -categories

Let S be a category with finite products and V an S-indexed monoidal category, with
corresponding fibration

∫
V → S. In this section we describe a notion of “small V -

category” which directly generalizes internal categories and small enriched categories.
(In §5 we will see that there is also another, less elementary, notion of “smallness” for
V -categories.)

We will use the following notation:

A
φ
//

_

��

B
_

��

X
f
// Y

to indicate that φ : A→ B is a morphism in
∫

V lying over f : X → Y in S. Of course, to
give such a φ is equivalent to giving a morphism A→ f ∗B in V X , but using morphisms
in
∫

V often makes commutative diagrams less busy (since there are fewer f ∗’s to notate).

3.1. Definition. A small V -category A consists of:

(i) An object εA ∈ S.

(ii) An object A ∈ V εA×εA.

(iii) A morphism in
∫

V :

IεA ids //

_

��

A
_

��

εA
∆
// εA× εA

(iv) A morphism in
∫

V :

A ⊗εA A
comp

//

_

��

A
_

��

εA× εA× εA π2
// εA× εA
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in which the fiberwise tensor product is over the middle copy of εA.

(v) The following diagrams commute:

A ⊗εA (A ⊗εA A)
∼= //

comp

��

(A ⊗εA A) ⊗εA A
comp

// A ⊗εA A
comp

��

A ⊗εA A comp
// A

A
∼= //

=
..

IεA ⊗εA A ids // A ⊗εA A
comp

��

A ⊗εA IεAidsoo A
∼=oo

=
ppA

3.2. Example. If V is an ordinary monoidal category, then a small Fam(V)-category
is precisely a small V-enriched category. It has a set εA, an (εA× εA)-indexed family

(A(a, b))(b,a)∈εA×εA

of objects of V, an identities map with components I→ A(a, a), and a composition map
with components A(b, c) ⊗ A(a, b) −→ A(a, c).

3.3. Remark. In εA × εA, we interpret the first copy of εA as the codomain and the
second copy as the domain; hence the reversal of order in the subscript in (3.2). This is
so that we end up composing morphisms in the usual order.

3.4. Examples. If S has finite limits, then a small Self (S)-category is precisely a cate-
gory internal to S. Similarly, ifM is the class of monomorphisms in S as in Example 2.41,
then a small M (S)-category is precisely an internal poset in S.

When S satisfies the hypotheses of Example 2.33, then a small Self ∗(S)-category may
be called a pointed S-internal category. It consists of an S-internal category A1 ⇒ A0

together with a morphism A0 × A0 → A1 assigning to every pair of objects a “zero
morphism” between them, which is preserved by composition on each side.

3.5. Example. For S and V as in Example 2.28, a small Const(S,V)-category consists
of an object of S together with a monoid in V.

3.6. Example. A small Ab(S)-category consists of an internal category A1 ⇒ A0 in S,
together with the structure of an abelian group on the object A1 of S/(A0×A0) which is
preserved by composition in each variable.

3.7. Examples. A small RV -category is a small V -category with an action of (π(εA×εA))
∗R

on A ∈ V εA×εA, which is suitably preserved by the composition in each variable. By con-
trast, a small GV -category is a small V -category with an action of (π(εA×εA))

∗G on A,
which is preserved by the composition in both variables together.
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3.8. Definition. If V has indexed coproducts preserved by ⊗, then for any object
X ∈ S, there is a small V -category δX with ε(δX) = X and δX = (∆X)!IX . We call it
the discrete V -category on X.

3.9. Definition. Let A and B be small V -categories. A V -functor f : A→ B consists
of:

(i) A morphism εf : εA→ εB in S.

(ii) A morphism in
∫

V :

A
f

//

_

��

B
_

��

εA× εA
εf×εf

// εB × εB.

(iii) The following diagrams commute:

IεA ids //

��

A

f

��

IεB ids
// B

and

A ⊗εA A
comp

//

f⊗f
��

A

f

��

B ⊗εB B comp
// B.

3.10. Examples. Evidently a Fam(V)-functor is a V-enriched functor, and a Self (S)-
functor is an S-internal functor. The other specific examples are similar.

3.11. Remark. If δX is the discrete V -category on X ∈ S as in Definition 3.8, then a
V -functor f : δX → A is uniquely determined by its underlying morphism εf : X → εA
in S (the unit axiom forces its action on homs to be induced by ids : IεA → A).

If V lacks indexed coproducts, in which case δX may not exist as a V -category,
it is nevertheless often convenient to abuse language and allow the phrase “V -functor
δX → A” to refer simply a morphism X → εA in S.

3.12. Definition. Let f, g : A → B be V -functors. A V -natural transformation
α : f → g consists of:

(i) A morphism

IεA α //

_

��

B
_

��

εA
(εg,εf)

// εB × εB.
(3.13)
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(ii) The following diagram commutes.

A
∼= //

∼=
��

A ⊗εA IεA
f⊗α

// B ⊗εB B
comp

��

IεA ⊗εA A α⊗g
// B ⊗εB B comp

// B.

(3.14)

3.15. Examples. A Self (S)-natural transformation is an S-internal natural transfor-
mation, and a Fam(V)-natural transformation is a V-enriched one. The other specific
examples are similar.

3.16. Remark. If δX is a discrete V -category as in Definition 3.8 and f, g : δX → A are
determined by morphisms εf, εg : X → εA as in Remark 3.11, then a V -natural transfor-
mation α : f → g consists solely of a morphism (3.13) (the axiom (3.14) is automatic).
Thus, as in Remark 3.11, we may abuse language by referring to a morphism (3.13) as a
“V -natural transformation” between “V -functors δX → A” even when V lacks indexed
coproducts.

3.17. Theorem. Small V -categories, V -functors, and V -natural transformations form
a 2-category V -Cat.

Proof. The composition of V -functors is obvious. The composition of V -natural trans-
formations α : f → g and β : g → h has components

IεA ∼= IεA ⊗εA IεA
α⊗β−−→ B ⊗εB B

comp−−−→ B.

The “whiskering” of a natural transformation on either side by a functor is likewise obvi-
ous; we leave the verification of the axioms to the reader.

3.18. Example. When V has indexed coproducts preserved by ⊗, the “discrete V -
category” operation defines a 2-functor δ : S → V -Cat . Thus, any small V -category A
induces an indexed category

V -Cat(δ−, A) : Sop → Cat.

The same construction works formally even if V lacks indexed coproducts, using the
conventions of Remarks 3.11 and 3.16. In §7 we will identify this “underlying indexed
category” with a special case of a general “change of cosmos” construction.

3.19. Definition. Let A and B be small V -categories. A V -profunctor H : A −7−→ B
consists of:

(i) An object H ∈ V εA×εB.
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(ii) Morphisms in
∫

V :

A ⊗εA H act //

_

��

H
_

��

εA× εA× εB
1×π×1

// εA× εB
and

H ⊗εB B act //

_

��

H
_

��

εA× εB × εB
1×π×1

// εA× εB

(iii) The following diagrams commute.

A ⊗εA A ⊗εA H
1⊗act

//

comp⊗1

��

A ⊗εA H
act
��

A ⊗εA H act
// H

H ⊗εB B ⊗εB B
act⊗1

//

1⊗comp

��

H ⊗εB B
act
��

H ⊗εB B act
// H

H ids //

=
$$

A ⊗εA H
act
��

H

H ids //

=
$$

H ⊗εB B
act
��

H

A ⊗εA H ⊗εB B
act⊗1

//

1⊗act
��

H ⊗εB B
act
��

A ⊗εA H act
// H.

We have an obvious notion of morphism of profunctors, yielding a category which we
denote V -Prof (A,B).

3.20. Examples. A Fam(V)-profunctor is equivalent to a V-functor Bop ⊗ A → V,
which is the classical notion of enriched profunctor; see for example [Bor94b]. Similarly,
Self (S)-profunctors give the usual notion of internal profunctor; see e.g. [Joh02, §B2.7].

3.21. Example. For any small V -category A, there is a unit V -profunctor A : A −7−→ A
defined by the hom-object A. The action maps are simply composition in A.

3.22. Remark. If A or B is a discrete V -category as in Definition 3.8, then the corre-
sponding action map is necessarily the unitality isomorphism. In particular, a profunctor
δX −7−→ δY is simply an object of V X×Y , while a profunctor δX −7−→ B or A −7−→ δY is simply
an object of V X×εB or V εA×Y with a one-sided action of B or A, as appropriate. Thus,
as in Remarks 3.11 and 3.16, we allow ourselves to abuse language by referring to such
data as “V -profunctors” even if V lacks indexed coproducts.

3.23. Example. If H : A −7−→ B is a V -profunctor and f : A′ → A and g : B′ → B are
V -functors, then there is a V -profunctor H(g, f) : A′ −7−→ B′ defined by

H(g, f) = (εg × εf)∗H.

The action maps are defined by composing the action maps of H with f .
In particular, from any V -functor f : A→ B and the unit profunctor B : B −7−→ B, we

obtain representable profunctors B(1, f) : A −7−→ B and B(f, 1) : B −7−→ A.
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Classically, profunctors can be composed with a ‘tensor product of functors’. In the
enriched case, the composite of H : Bop ⊗ A→ V and K : Cop ⊗ B → V is the coend

(H �K)(c, a) =

∫ B

H(b, a) ⊗ K(c, b)

= coeq

( ∐
b1,b2∈B

H(b2, a) ⊗ B(b1, b2) ⊗ K(c, b1)⇒
∐
b∈B

H(b, a) ⊗ K(c, b)

)
.

3.24. Remark. We write the composite of profunctors in “diagrammatic” order, so that
H : A −7−→ B and K : B −7−→ C yield H �K : A −7−→ C.

By making these colimits indexed or fiberwise, as appropriate, we obtain:

3.25. Lemma. If V has indexed coproducts preserved by ⊗ and fiberwise coequalizers then
any two V -profunctors H : A −7−→ B and K : B −7−→ C have a composite defined by

H �K = coeq
(
H ⊗[εB] B ⊗[εB] K ⇒ H ⊗[εB] K

)
.

Composition of profunctors is associative up to coherent isomorphism, with units as in
Example 3.21, yielding a bicategory V -Prof .

Proof. Straightforward. The compatibility conditions for indexed coproducts (including
the Beck-Chevalley condition), and the preservation of fiberwise coequalizers by restric-
tion, are necessary to give H �K actions by A and C, and to show associativity.

In fact, this is a formal consequence of known results. It is shown in [Shu08] that if
V has indexed coproducts preserved by ⊗, then it gives rise to a “framed bicategory”,
or equivalently a “proarrow equipment” in the sense of [Woo82, Woo85], which we may
denote Mat(V ). If V furthermore has fiberwise coequalizers, then we can form the fur-
ther equipment Mod(Mat(V )) as defined in [Shu08] (which according to [GS13] is the
free cocompletion of Mat(V ) under tight Kleisli objects). The equipment Mod(Mat(V ))
consists of small V -categories, V -functors, and V -profunctors, and so we might denote it
V -Prof. Its bicategory of proarrows is precisely V -Prof .

If V lacks indexed coproducts, then a construction analogous to that in [Shu08] pro-
duces instead a virtual equipment in the sense of [CS10], and thereby another virtual
equipment V -Prof. We leave the details to the reader, but we note the following corollar-
ies. We refer the proofs to the cited references, but no knowledge of equipments or framed
bicategories will be necessary for the rest of this paper, so the reader is free to take these
results on faith or to re-prove them by hand (which is not difficult).

3.26. Lemma. For V -functors f, g : A→ B, there are natural bijections

V -Cat(A,B)(f, g) ∼= V -Prof (A,B)(B(1, f), B(1, g))
∼= V -Prof (B,A)(B(g, 1), B(f, 1)).
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When V has indexed coproducts preserved by ⊗ and fiberwise coequalizers, the first of
these is the action on 2-cells of a locally fully faithful pseudofunctor V -Cat → V -Prof ,
which is the identity on objects and sends f : A → B to B(1, f) : A −7−→ B. Furthermore,
we have an adjunction B(1, f) a B(f, 1) in V -Prof .

Proof. The first statement is [CS10, Cor. 7.22] applied in the virtual equipment V -Prof ,
together with [CS10, Prop. 6.2] to identify the left-hand side with V -natural transforma-
tions as we have defined them. The rest is [Shu08, Props. 4.5 and 5.3].

3.27. Lemma. If V is an indexed cosmos, then V -Prof is closed in that we have natural
isomorphisms

V -Prof (A,C)(H �K,L) ∼= V -Prof (A,B)(H,K B L) ∼= V -Prof (B,C)(K,LCH).

Proof. By [Shu08, Theorems 14.2 and 11.5], or as a direct construction using fiberwise
equalizers:

K B L = eq
(
V [εC](K,L) ⇒ V [εC](K,V [εC](C,L))

)
LCH = eq

(
V [εA](H,L) ⇒ V [εA](H,V [εA](A,L))

)
.

We also have a couple versions of the Yoneda lemma.

3.28. Lemma. For f : A→ B, H : C −7−→ B, and K : B −7−→ C, there are natural bijections

V -Prof (B(1, f), H) ∼= V -Prof (A,H(f, 1)) and

V -Prof (B(f, 1), K) ∼= V -Prof (A,K(1, f)).

Proof. By [CS10, Theorems 7.16 and 7.20].

3.29. Lemma. If V is an indexed cosmos, f : A→ B, H : B −7−→ C, and K : C −7−→ B then
we have canonical isomorphisms

H(1, f) ∼= H CB(f, 1) ∼= B(1, f)�H and
K(f, 1) ∼= B(1, f)BK ∼= K �B(f, 1).

Proof. By [Shu08, Prop. 5.11].

In particular, the Yoneda lemma implies the usual sort of hom-object characterization
of adjunctions.

3.30. Proposition. For V -functors f : A → B and g : B → A, there is a bijection
between

(i) Adjunctions f a g in V -Cat, and

(ii) Isomorphisms B(f, 1) ∼= A(1, g) of V -profunctors B −7−→ A.

Proof. Since B(f, 1) is always right adjoint to B(1, f), to give B(f, 1) ∼= A(1, g) is
equivalent to giving data exhibiting A(1, g) as right adjoint to B(1, f). By Lemma 3.26,
this is equivalent to data exhibiting g as right adjoint to f . (As stated, this argument
requires the bicategory V -Prof to exist, but for general V we can translate it into the
language of the virtual equipment V -Prof.)
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We postpone further development of the theory of V -categories until we have a good
notion of large V -category, to minimize repetition.

4. Indexed V -categories

As in §3, let S be a category with finite products and V an S-indexed monoidal category,
with corresponding fibration

∫
V → S. In this section we describe a notion of “indexed

V -category” which directly generalizes classical indexed categories.
Recall that if F : V → W is a lax monoidal functor and A is a V-category, there

is an induced W-category F•A with the same objects as A and hom-objects defined by
F•A(x, y) = F (A(x, y)). Note moreover that if F : V→W is a closed monoidal functor,
then it can be regarded as a fully faithful W-functor F• : F•V→W.

4.1. Definition. An indexed V -category A consists of:

(i) For each X ∈ S, a V X-enriched category A X .

(ii) For each f : X → Y in S, a fully faithful V X-enriched functor f ∗ : (f ∗)•A Y → A X .

(iii) For each X
f−→ Y

g−→ Z in S, a V X-natural isomorphism

(gf)∗ ∼−→ f ∗ ◦ (f ∗)•(g
∗)

(where we implicitly identify (f ∗)•(g
∗)•A Z with ((gf)∗)•A Z in the domains of these

functors).

(iv) For each X ∈ S, a V X-natural isomorphism (1X)∗ ∼= 1A X .

(v) The following diagrams of isomorphisms commute:

(hgf)∗ //

��

f ∗ ◦ (f ∗)•((hg)∗)

��

(gf)∗ ◦ ((gf)∗)•(h
∗)

��

f ∗ ◦ (f ∗)•(g
∗ ◦ (g∗)•(h

∗))

��

f ∗ ◦ (f ∗)•(g
∗) ◦ ((gf)∗)•(h

∗) // f ∗ ◦ (f ∗)•(g
∗) ◦ (f ∗)•(g

∗)•(h
∗).

(f1X)∗ // (1X)∗ ◦ ((1X)∗)•(f
∗)

��

f ∗ ◦ (f ∗)•((1Y )∗)

��

(1Y f)∗oo

f ∗ f ∗

(These are the same coherence conditions as for an ordinary indexed category or
pseudofunctor, with some (f ∗)•’s added to make things make sense.)
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An indexed V -functor F : A → B consists of V X-enriched functors FX : A X → BX

together with isomorphisms

FX ◦ f ∗ ∼= f ∗ ◦ (f ∗)•(F
Y )

such that the following diagrams of isomorphisms commute:

FX ◦ (gf)∗ //

��

FX ◦ f ∗ ◦ (f ∗)•(g
∗) // f ∗ ◦ (f ∗)•(F

Y ) ◦ (f ∗)•(g
∗)

��

(gf)∗ ◦ ((gf)∗)•(F
Z)

��

f ∗ ◦ (f ∗)•(F
Y ◦ g∗)

��

f ∗ ◦ (f ∗)•(g
∗) ◦ (f ∗)•(g

∗)•(F
Z) // f ∗ ◦ (f ∗)•(g

∗ ◦ (g∗)•(F
Z))

FX ◦ (1X)∗

**

// (1X)∗ ◦ ((1X)∗)•(F
X)

��

FX .

Finally, an indexed V -natural transformation consists of V X-natural transformations
αX : FX → GX such that the following diagram of isomorphisms commutes:

FX ◦ f ∗ //

��

f ∗ ◦ (f ∗)•(F
Y )

��

GX ◦ f ∗ // f ∗ ◦ (f ∗)•(G
Y ).

We denote the resulting 2-category by V -Cat.

The required fully-faithfulness of f ∗ : (f ∗)•A Y → A X may seem odd. The following
example should help clarify the intent.

4.2. Example. Let V be an ordinary monoidal category and A a (large) V-enriched
category. We define an indexed Fam(V)-category Fam(A) where, for a set X, Fam(A)X

is the VX-enriched category of X-indexed families of objects of A. That is, for (Ax)x∈X
and (Bx)x∈X with each Ax, Bx ∈ A, the hom-object in VX is defined by

Fam(A)X(A,B)x = A(Ax, Bx).

For a function f : Y → X, the VY -enriched category (f ∗)•A has hom-objects in VY :

Fam(A)X(A,B)y = A(Af(y), Bf(y)).

Finally, the functor f ∗ : (f ∗)•A X → A Y sends an X-indexed family (Ax)x∈X to the
Y -indexed family defined by (f ∗A)y = Af(y). Thus we have

Fam(A)Y (f ∗A, f ∗B)y = A((f ∗A)y, (f
∗B)y) = A(Af(y), Bf(y)) = Fam(A)X(A,B)f(y)
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and hence Fam(A)Y (f ∗A, f ∗B) = f ∗(Fam(A)X(A,B)), so that f ∗ : (f ∗)•A X → A Y is
fully faithful. This construction defines a 2-functor

Fam : V-CAT → Fam(V)-Cat.

It is not essentially surjective, but it induces an equivalence on hom-categories (i.e. it
is bicategorically fully-faithful). We could characterize its essential image by imposing
“stack” conditions.

Here are a few other important examples.

4.3. Example. If V is symmetric and closed as in Theorem 2.14(i), then we can regard
it as an indexed V -category, by regarding each closed symmetric monoidal category V X

as enriched over itself, and each closed monoidal functor f ∗ : V Y → V X as a fully faithful
V X-enriched functor (f ∗)•V Y → V X .

4.4. Example. If S has finite limits, then an indexed Self (S)-category is precisely a
locally internal category over S, as defined in [Pen74] or [Joh02, §B2.2], and similarly for
functors and transformations.

4.5. Example. Indexed K -categories and K∗-categories, where K and K∗ are the in-
dexed cosmoi from Examples 2.32 and 2.33, are ubiquitous throughout [MS06].

4.6. Example. Let A be an indexed V -category, and T a monad on A in the 2-category
V -Cat. This is easily seen to consist of

(i) A V X-enriched monad TX on CX , for every X, and

(ii) Isomorphisms f ∗ ◦ (f ∗)•(T
Y ) ∼= TX ◦ f ∗ which simultaneously make T into an

indexed V -functor and f ∗ into a morphism of V X-enriched monads from (f ∗)•(T
Y )

to TX .

We can then form the Eilenberg-Moore object Alg(T ) in V -Cat. Explicitly, Alg(T )X =
Alg(TX), with transition functors induced by the above morphisms of monads.

For instance, if V is an indexed cosmos and R is a monoid in V 1, then there is a
V -monad on V defined by RXA = π∗XR ⊗X A, whose algebras in V X are π∗XR-modules.

As another example, if V is an indexed cartesian cosmos with fiberwise countable
colimits, then there is a V -monad T on V for which Alg(T )X is the V X-enriched category
of monoids in V X . More generally, we can consider algebras for any finite-product theory.

Finally, if V is a cartesian cosmos with countable coproducts and C is an operad in
V 1 as in [May72, Kel05], then π∗XC is an operad in V X , for any X. The induced monad

π̂∗XC on V X is V X-enriched, because V is cartesian, and as X varies these fit together

into a V -monad Ĉ on V . We thus obtain a V -category of C-algebras. Taking V to be
K as in Example 2.32, we obtain V -categories of parametrized A∞- and E∞-spaces.
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4.7. Example. If S has finite products and V is an ordinary monoidal category as in
Example 2.42, then an indexed Psh(S,V)-category A consists of, in particular, for each
X ∈ S, a V(S/X)op-enriched category A X . However, a V(S/X)op-enriched category is
equivalently a functor A X : (S/X)op → V-CAT whose image consists of functors that
are the identity on objects.

Moreover, by definition of the functor f ∗ : V(S/X)op → V(S/Y )op and by full-faithfulness
of f ∗ : (f ∗)•A Y → A X , for any objects a, b of A Y the hom-object A Y (f)(a, b) ∈ V must
be isomorphic to A X(1X)(f ∗a, f ∗b), and similarly for all the category structure. Thus,
the V-category A Y (f) is completely determined by the V-category A X(1X) and the
function f ∗ : ob(A Y (1Y ))→ ob(A X(1X)).

Furthermore, the action on hom-objects of the functors in the image of the functor
A X : (S/X)op → V-CAT assemble exactly into an extension of this function on ob-
jects to a V-functor A Y (1Y )→ A X(1X). Adding in the pseudofunctoriality constraints,
we see that an indexed Psh(S,V)-category is equivalently an ordinary pseudofunctor
Sop → V-CAT . In fact, the 2-category Psh(S,V)-Cat is 2-equivalent to the 2-category
[Sop,V-CAT ] of pseudofunctors, pseudonatural transformations, and modifications.

In particular, an indexed Psh(S, Set)-category is merely an ordinary S-indexed cat-
egory (with locally small fibers). It is known (e.g. [Joh02, B2.2.2]) that locally internal
categories can be identified with indexed categories that are “locally small” in an in-
dexed sense. This corresponds to identifying indexed Self (S)-categories with indexed
Psh(S, Set)-categories whose hom-presheaves A X(a, b) ∈ Set(S/X)op are all representable.
(The connection with the usual definition of “locally small indexed category” will be more
evident in §5.)

4.8. Remark. In [GG76] indexed V -categories are called V -enriched fibrations. We
have chosen a different terminology because indexed V -categories are more analogous to
pseudofunctors than to fibrations. In §6 we will see a more ‘fibrational’ approach.

It is straightforward to define indexed V -profunctors as well.

4.9. Definition. For indexed V -categories A and B, an indexed V -profunctor con-
sists of a V X-enriched profunctor HX : A X −7−→ BX for each X, together with iso-
morphisms (f ∗)•H

Y ∼= HX satisfying evident coherence axioms. We obtain a category
V -Prof(A ,B) of indexed V -profunctors.

However, rather than develop the theory of indexed V -categories any further here, we
will instead move on to a more general notion which includes both small V -categories
and indexed V -categories as special cases.

5. Large V -categories

Continuing with our minimal assumptions that S has finite products and V is an S-
indexed monoidal category, we will now define a different sort of “large V -category”
which more obviously includes the small ones from §3. The relationship of these large
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V -categories with indexed V -categories is less immediately clear, but will turn out to be
similar to the relationship between fibrations and classical indexed categories.

5.1. Definition. A large V -category A consists of

(i) A collection of objects x, y, z, . . . .

(ii) For each object x, an object εx ∈ S, called its extent.

(iii) For each x, y, an object A (x, y) of V εy×εx.

(iv) For each x, a morphism in
∫

V :

Iεx ids //

_

��

A (x, x)
_

��

εx
∆
// εx× εx

(v) For each x, y, z, a morphism in
∫

V :

(A (y, z) ⊗εy A (x, y))
comp

//

_

��

A (x, z)
_

��

εz × εy × εx πεy
// εz × εx

(vi) Composition is associative and unital, just as in Definition 3.1.

If A and B are large V -categories, a V -functor f : A → B consists of:

(i) For each object x of A , an object fx of B and a morphism εfx : εx→ ε(fx) in S.

(ii) For each pair x, y in A , a morphism in
∫

V :

A (x, y)
fxy

//

_

��

B(fx, fy)
_

��

εy × εx
εfy×εfx

// ε(fy)× ε(fx).

(iii) Composition and identities are preserved, as in Definition 3.9.

If f, g : A → B are V -functors between large V -categories, a V -natural transforma-
tion α : f → g consists of, for each object x, a morphism

Iεx
αx //

_

��

B(fx, gx)
_

��

εx
(εgx,εfx)

// ε(gx)× ε(fx)

such that for all x, y a diagram analogous to that in Definition 3.12 commutes.
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5.2. Lemma. Large V -categories form a 2-category V -CAT , which contains the 2-category
V -Cat of small V -categories as the full sub-2-category of large V -categories with exactly
one object.

Proof. Just like Theorem 3.17.

The most obvious non-small example comes from V itself.

5.3. Example. If V is closed as in Theorem 2.14(iii), then we can define a large V -
category whose objects are the objects of

∫
V (that is, the disjoint union of the objects of

the categories V X) and whose hom-objects are the external ones V (x, y). (Recall from
Remark 2.19 that the external-homs can be defined in terms of the fiberwise ones for
arbitrary V . This explicit definition suffices to make them into a large V -category.)

5.4. Remark. When V has indexed coproducts preserved by ⊗, we have the “discrete
V -category” 2-functor

δ : S→ V -Cat ↪→ V -CAT .

As in Remarks 3.11 and 3.16, we can make sense of “V -functors f : δX → A ” and “V -
natural transformations α : f → g” between them, even when V lacks indexed coproducts.
Namely, the former is simply a choice of an object a ∈ A and a morphism εfa : X → εa
in S, while the latter is simply a morphism IX → A (a, b) in

∫
V lying over (εgb, εfa). In

particular, any large V -category A induces an S-indexed category

V -CAT (δ−,A ) : Sop → Cat.

Again, in §7 we will identify this with a special case of “change of cosmos”.

5.5. Definition. If κ is a regular cardinal, then we say a large V -category A is κ-small
if its collection of objects is a set of cardinality < κ. We say A is ∞-small or set-small
if its collection of objects is a small set (of any cardinality).

Note that if S is a small ordinary category, then a V -category A is set-small if and
only if for each X ∈ S, there is a small set of objects of A having extent X.

5.6. Remark. If we allow κ to be an “arity class” in the sense of [Shu12], then according
to this definition the “small V -categories” of §3 may be called “{1}-small”.

5.7. Remark. Recall from Example 2.30 that an S-indexed monoidal category V gives
rise to a Fam(S)-indexed monoidal category Fam(V ). It is straightforward to identify
set-small V -categories, as defined above, with small Fam(V )-categories, as defined in §3.
(Of course, by allowing “large families” we could include all large V -categories.)

In particular, for a classical monoidal category V, we can identify set-small Const(?,V)-
categories with small V-enriched categories in the classical sense—while we have already
observed in Example 2.30 that Fam(V) = Fam(Const(?,V)), and in Example 3.2 that
small Fam(V)-categories (in the sense of §3) can also be identified with small V-enriched
categories.
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Thus, although on the one hand small V -categories are evidently a special case of
large ones, we could equivalently regard large V -categories as a special case of small ones,
by the expedient of changing V .

The theory of profunctors from §3 also generalizes to large V -categories, as long as
we pay appropriate attention to size questions.

5.8. Definition. For large V -categories A and B, a V -profunctor H : A −7−→ B
consists of:

(i) For each pair of objects a of A and b of B, an object H(b, a) ∈ V εa×εb.

(ii) Morphisms in
∫

V :

A(a, a′) ⊗εa H(b, a) act //

_

��

H(b, a′)
_

��

εa′ × εa× εb πεa
// εa′ × εb

and

H(b, a) ⊗εb B(b′, b) act //

_
��

H(b′, a)
_

��

εa× εb× εb′ πεb
// εa× εb

(iii) The following diagrams commute.

A(a′, a′′) ⊗εa′ A(a, a′) ⊗εa H(b, a)
1⊗act

//

comp⊗1

��

A(a′, a′′) ⊗εa′ H(b, a′)

act
��

A(a, a′′) ⊗εa H(b, a)
act

// H(b, a′′)

H(b, a) ⊗εb B(b′, b) ⊗εb′ B(b′′, b′)
act⊗1

//

1⊗comp

��

H(b′, a) ⊗εb′ B(b′′, b′)

act
��

H(b, a) ⊗εb B(b′′, b)
act

// H(b′′, a)

H(b, a) ids //

=
((

A(a, a) ⊗εa H(b, a)

act
��

H(b, a)

H(b, a) ids //

=
((

H(b, a) ⊗εb B(b, b)

act
��

H(b, a)

A(a, a′) ⊗εa H(b, a) ⊗εb B(b′, b)
act⊗1

//

1⊗act
��

H(b, a′) ⊗εb B(b′, b)

act
��

A(a, a′) ⊗εa H(b′, a)
act

// H(b′, a).

We have an obvious notion of morphism of profunctors, yielding a category which we
denote V -PROF (A,B).

Of course, when A and B are small, this reduces exactly to Definition 3.19.
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5.9. Example. Any large V -category A has a unit profunctor A : A −7−→ A which is
made up of its hom-objects.

5.10. Example. If H : A −7−→ B is a V -profunctor and f : A ′ → A and g : B′ → B are
V -functors, then there is a V -profunctor H(g, f) : A ′ −7−→ B′ defined by

H(g, f)(b, a) = (εf × εg)∗
(
H(gb, fa)

)
In particular, for a V -functor f : A → B, we have the representable V -profunctors
B(1, f) : A −7−→ B and B(f, 1) : B −7−→ A .

To define the composite of V -profunctors H : A −7−→ B and K : B −7−→ C in general, we
need V to have fiberwise colimits of the size of the collection of objects of B. Therefore,
if this collection is itself large (in the sense of the ambient set theory), we cannot expect
such composites to exist. For this reason, it is useful to introduce the following notion.

5.11. Definition. For V -profunctors H : A −7−→ B, K : B −7−→ C , and L : A −7−→ C , a
bimorphism φ : H,K → L consists of

(i) For each a, b, c, a morphism in
∫

V :

H(b, a)⊗εb K(c, b)
φabc //

_

��

L(c, a)
_

��

εa× εb× εc // εa× εc

(ii) The following diagrams commute:

H(b, a)⊗εb K(c, b)⊗εc C (c′, c)
1⊗act

//

φ⊗1
��

H(b, a)⊗εb K(c′, b)

φ
��

L(c, a)⊗εc C (c′, c)
act

// L(c′, a)

(5.12)

A (a, a′)⊗εa H(b, a)⊗εb K(c, b)
act⊗1

//

1⊗φ
��

H(b, a′)⊗εb K(c, b)

φ

��

A (a, a′)⊗εa L(c, a)
act

// L(c, a′)

(5.13)

H(b, a)⊗εb B(b′, b)⊗εb′ K(c, b′)
1⊗act

//

act⊗1
��

H(b, a)⊗εb K(c, b)

φ
��

H(b′, a)⊗εb′ K(c, b′)
φ

// L(c, a)

(5.14)
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We write V -Bimor(H,K;L) for the set of bimorphisms H,K → L. It is evident that
such bimorphisms can be composed with ordinary morphisms of profunctors L → L′,
H ′ → H, and K ′ → K, yielding a functor

V -Bimor(−,−;−) : V -PROF (A ,B)op×V -PROF (B,C )op×V -PROF (A ,C ) −→ Set

We can now characterize some conditions under which composites exist.

5.15. Lemma. If V has indexed coproducts, fiberwise coequalizers, and fiberwise κ-small
coproducts, all preserved by ⊗, and B is κ-small, then for any H : A −7−→ B and K : B −7−→
C , the functor V -Bimor(H,K;−) is representable by some H �K : A −7−→ C .

Proof. As in Lemma 3.25, define H �K(c, a) to be the coequalizer of the parallel pair∐
b,b′∈obB

(
H(b, a) ⊗[εb] B(b′, b) ⊗[εb′] K(c, b′)

)
⇒

∐
b∈obB

(
H(b, a) ⊗[εb] K(c, b)

)
.

We also have dual constructions of right and left homs, under analogous hypotheses.

5.16. Lemma. Suppose V is symmetric and closed and has indexed products, fiberwise
equalizers, and fiberwise κ-small products, and we have V -profunctors H : A −7−→ B,
K : B −7−→ C , and L : A −7−→ C .

(i) If C is κ-small, then V -Bimor(−, K;L) is representable by some KBL : A −7−→ B.

(ii) If A is κ-small, then V -Bimor(H,−;L) is representable by some LCH : B −7−→ C .

Proof. We define K B L(b, a) to be the fiberwise equalizer of the following parallel pair
of maps between fiberwise products:∏

c∈obC

V [εc]
(
K(c, b), L(c, a)

)
⇒

∏
c,c′∈obC

V [εc]
(
K(c, b),V [εc′]

(
C (c′, c), L(c′, a)

))
(5.17)

and similarly for LCH(c, b) we use:∏
a∈obA

V [εa]
(
H(b, a), L(c, a)

)
⇒

∏
a,a′∈obA

V [εa]
(
H(b, a),V [εa′]

(
A (a, a′), L(c, a′)

))
.

5.18. Remark. If C is a discrete V -category δZ, then its actions on K and L are
trivial, and so the two morphisms in (5.17) are in fact equal. Thus, in this case we have
K B L(b, a) = V [Z](K(?, b), L(?, a)). Of course, similar observations hold when A is
discrete, or in Lemma 5.15 when B is discrete.
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5.19. Example. Recall from Example 2.42 that when V = Psh(S,V), with S a locally
small category with pullbacks and V a classical cosmos, we do not have all indexed
coproducts and homs, but only those satisfying some smallness conditions. Let us say
that a Psh(S,V)-category A is locally small if each hom-object A (a, a′) is small in the
sense of Example 2.42, and likewise that a Psh(S,V)-profunctor H : A −7−→ B is locally
small if each H(b, a) is small. Then the proof of Lemma 5.15 goes through as long as we
assume additionally that B, H, and K are locally small. Likewise, Lemma 5.16(i) holds
when C and K are locally small, and (ii) holds when A and H are locally small.

The Psh(S,V)-categories that arise “in nature” are generally not locally small. How-
ever, we will see in §9 that locally small Psh(S,V)-categories and profunctors are useful
for describing weighted limits and colimits.

These representing objects actually have a stronger universal property, which is nec-
essary (for instance) to show that they are associative. To express this property, we first
observe that for V -profunctors Hi : Ai −7−→ Ai+1 and K : A0 −7−→ An, there is a more general
notion of a multimorphism φ : H1, . . . , Hn → K. This has components

H1(a1, a0)⊗εa1 · · · ⊗εan Hn(an, an−1)
φa0,...,an //

_

��

K(an, a0)
_

��

εa0 × · · · × εan // εa0 × εan

satisfying axioms similar to (5.12) and (5.13) for the actions of A0 and An, and axioms
similar to (5.14) for the actions of A1 through An−1. In the case n = 0, the components
of a multimorphism φ : ()→ K are

Iεa
φa

//

_

��

K(a, a)
_

��

εa
∆

// εa× εa

and its only axioms are of the form (5.12) and (5.13). Write V -Multimor(H1, . . . , Hn;K)
for the set of multimorphisms H1, . . . , Hn → K. Multimorphisms can obviously also be
composed with ordinary morphisms, and also with each other in a multicategory-like way,
e.g. given φ : H1, H2 → K1 and ψ : K1, K2 → L we have ψ(φ, 1) : H1, H2, K2 → L.

Formally, multimorphisms are the 2-cells of another virtual equipment, which we de-
note V -PROF. The following is [CS10, Def. 5.1].

5.20. Definition. A composite of V -profunctors H : A −7−→ B and K : B −7−→ C is a
V -profunctor H�K : A −7−→ C and a bimorphism φ : H,K → H�K such that composing
with φ induces bijections

V -Multimor(L1, . . . , Ln, H �K,M1, . . . ,Mm) ∼−→
V -Multimor(L1, . . . , Ln, H,K,M1, . . . ,Mm)
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for all well-typed Li,Mj.

When n = m = 0, this just says that H�K represents the functor V -Bimor(H,K;−),
so being a composite is a strengthening of that universal property. It is easy to verify that
the proof of Lemma 5.15 actually constructs composites in the sense of Definition 5.20.

5.21. Definition. A left hom of V -profunctors H : A −7−→ B and K : A −7−→ C is
a V -profunctor K C H : B −7−→ C and a bimorphism φ : H, (K C H) → K such that
composing with φ induces bijections

V -Multimor(L1, . . . , Ln;K CH) ∼−→ V -Multimor(H,L1, . . . , Ln;K)

for all well-typed Li. Similarly, a right hom of H : B −7−→ C and K : A −7−→ C is a
V -profunctor H BK : A −7−→ B and a bimorphism φ : (H BK), H → K which induces
bijections

V -Multimor(L1, . . . , Ln;H BK) ∼−→ V -Multimor(L1, . . . , Ln, H;K).

Again, when n = 1 these definitions reproduce the universal property stated in
Lemma 5.16, whereas the proof of that lemma produces objects with this stronger uni-
versal property.

5.22. Remark. The omitted verification in Lemmas 5.15 and 5.16 that the given objects
do, in fact, form a profunctor with the desired property, applies verbatim to show that if
H : A −7−→ B and K : B −7−→ C are V -profunctors such that the composite H(1, a)�K(c, 1)
exists for all a ∈ A and c ∈ C , then the composite H �K also exists. There is a similar
result for homs.

We also note that the unit profunctors A : A −7−→ A from Example 5.9 have an
analogous universal property.

5.23. Lemma. For any large V -category A , there is a multimorphism φ : () → A such
that composing with φ induces bijections

V -Multimor(~L,A , ~M ;N) ∼−→ V -Multimor(~L, ~M ;N)

for all well-typed ~L = L1, . . . , Ln and ~M = M1, . . . ,Mm and N .

Proof. By [CS10, Prop. 5.5].

One value of these stronger universal properties is that they automatically imply
associativity and unitality of composites and homs.

5.24. Lemma. If all necessary composites and homs exist, then we have the following
isomorphisms:

(H �K)� L ∼= H � (K � L) (5.25)

(H �K)B L ∼= H B (K B L)

(H CK)C L ∼= H C (K � L)

(H BK)C L ∼= H B (K C L).
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Proof. We prove only (5.25); the others are similar. For any appropriately typed M , we
have

V -PROF ((H �K)� L,M) ∼= V -Bimor((H �K), L;M)
∼= V -Multimor(H,K,L;M)
∼= V -Bimor(H,K � L;M)
∼= V -PROF (H � (K � L),M).

Thus, the Yoneda lemma gives (5.25).

5.26. Lemma. For H : A −7−→ B, the composites H�B and A �H, and the homs BBH
and H CA , all exist and are canonically isomorphic to H.

Proof. Just like the previous lemma.

5.27. Remark. We will henceforth abuse language by writing “H � K ∼= L” to mean
that the composite H�K exists and is canonically isomorphic to L, and similarly for left
and right homs.

5.28. Lemma. For a V -profunctor H : A −7−→ B and a V -functor f : A ′ → A , we have
A (1, f)�H ∼= H(1, f). Similarly, for g : B′ → B, we have H �B(g, 1) ∼= H(g, 1).

Proof. By [CS10, Theorem 7.16].

In particular, for A
f−→ B

g−→ C , we have B(1, f) � C (1, g) ∼= C (1, gf), so that
representable profunctors are “pseudofunctorial”, even though in general, V -profunctors
between large V -categories do not form a bicategory. The same proof as in Lemma 3.26
shows that this functor is fully faithful, i.e. we have natural bijections

V -CAT (A ,B)(f, g) ∼= V -PROF (A ,B)(B(1, f),B(1, g))
∼= V -PROF (B,A )(B(g, 1),B(f, 1)).

The dual statement for homs is the second Yoneda Lemma, as in 3.29.

5.29. Lemma. For a V -profunctor H : A −7−→ B and a V -functor f : A ′ → A , we have
H CA (f, 1) ∼= H(1, f). Similarly, for g : B′ → B, we have B(1, g)BH ∼= H(g, 1).

Proof. This follows immediately from [CS10, Theorem 7.20].

In particular, although in the statement of Lemma 3.29 we assumed V to be an indexed
cosmos so that the homs C and B would exist a priori, this version of it shows that that
assumption is unnecessary; the particular homs in question automatically exist.

The first Yoneda Lemma 3.28 follows immediately.

5.30. Lemma. For any V -functor f : A → B and V -profunctors H : A −7−→ B and
K : B −7−→ A , there are natural bijections

V -PROF (A ,B)(B(1, f), H) ∼= V -PROF (A ,A )(A , H(f, 1)) and

V -PROF (B,A )(B(f, 1), K) ∼= V -PROF (A ,A )(A , K(1, f)).
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Proof. For the first, we have

V -PROF (A ,B)(B(1, f), H) ∼= V -Bimor(A ,B(1, f);H)
∼= V -PROF (A ,A )(A , H(f, 1))

by Lemma 5.26 and Lemma 5.29. The second is analogous.

Finally, to generalize the remaining lemmas about profunctors from §3 we require the
following weakened notion of adjunction, which does not require all composites to exist.

5.31. Definition. An adjunction H a K between V -profunctors H : A −7−→ B and
K : B −7−→ A consists of a composite H�K together with multimorphisms η : ()→ H�K
and ε : K,H → B such that the composites

H
η,1−→ H �K,H ε̂−→ H and

K
1,η−→ K,H �K ε̌−→ K

are identities. Here ε̂ denotes the unique bimorphism such that

H,K,H → H �K,H ε̂−→ H is equal to H,K,H
1,ε−→ H,B → H,

and similarly for ε̌.

It is easy to show that such adjunctions have all the same formal properties as ordinary
adjunctions in a bicategory. We can now duplicate essentially the same proofs from §3 of
the following.

5.32. Lemma. For any V -functor f : A → B there is an adjunction A (1, f) a A (f, 1).

5.33. Lemma. For V -functors f : A → B and g : B → A , there is a bijection between
adjunctions f a g in V -CAT and isomorphisms B(f, 1) ∼= A (1, g) of V -profunctors.

We also note, for future reference:

5.34. Lemma. Suppose H a K and L a M are adjunctions as in Definition 5.31, and
that the composites H � L and M �K and (H � L)� (M �K) exist. Then there is an
adjunction H � L aM �K.

6. V -fibrations

At first glance, indexed V -categories and large V -categories appear very different, but
it turns out that both are ‘loose enough’ notions that they are essentially equivalent. A
starting point for this equivalence is to recall from Theorem 2.14 that the fiberwise-homs,
which make V into an indexed V -category, and the external-homs, which make it into a
large V -category, are related as follows:

V (x, y) ∼= V Y×X(π∗Xx, π∗Y y)
V X(x, y) ∼= ∆∗XV (x, y)
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Thus, it is natural to try to extend these operations to compare large and indexed V -
categories. In one direction this is straightforward: given an indexed V -category A , we
define a large V -category ΘA whose objects are the objects of the fiber categories A X ,
and whose hom-objects are

ΘA (x, y) = A Y×X(π∗Xx, π∗Y y)
(where x ∈ A X , y ∈ A Y ). It is easy to verify that this does, in fact, give a large V -
category. Similarly, if F : A → B is an indexed V -functor, we define ΘF to take each
object x ∈ A X to Fx ∈ BX , with ε(ΘF )x = 1X and the obvious action on hom-objects.
We leave to the reader the definition of Θ on natural transformations and the verification
that it defines a 2-functor

Θ: V -Cat→ V -CAT .

from indexed V -categories to large V -categories.
Now Θ is nothing like a 2-equivalence of 2-categories. Any large V -category of the form

ΘA has lots of objects, and the number of objects is clearly preserved by isomorphisms in
V -CAT . In particular, no small V -category can be isomorphic to anything in the image
of Θ. Similarly, the induced functors

Θ: V -Cat(A ,B)→ V -CAT (ΘA ,ΘB)

are clearly not isomorphisms, since every functor of the form ΘF preserves extents strictly
(that is, the maps ε(ΘF )x are identities).

However, as we will prove shortly, Θ is nevertheless a biequivalence. We will approach
this by trying to construct an inverse to Θ. One obvious place to start, given a large
V -category B, is to try to define an indexed V -category ΛB as follows. We take the
objects of ΛBX to be the objects of B of extent X, and set

ΛBX(x, y) = ∆∗XB(x, y).

It is easy to check that this defines a V X-enriched category ΛBX , but when we come to
try to define the reindexing functors f ∗ we are stuck. Just because x is an object of B
with extent Y and we have an arrow f : X → Y in S, there need not be any object at all
with extent X; this is glaringly obvious when B is a small V -category.

This should be regarded as similar to the problem we might encounter when trying to
define a inverse to the classical “Grothendieck construction” which makes a pseudofunctor
A : Sop → Cat into a functor

∫
A → S. In that case, the answer is that we need the input

functor A→ S to be a fibration; thus it makes sense to look for “fibrational” conditions
on large V -categories.

If x is an object of a large V -category A , we will write x also for the V -functor
δ(εx) → A induced by x and 1εx : εx → εx. (Recall from Remark 5.4 that we can make
sense of this even if V lacks indexed coproducts.)
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6.1. Definition. Let A be a large V -category, x an object of A , and f : Y → εx a
morphism in S. A restriction of x along f is an object f ∗x of A such that ε(f ∗x) = Y ,
together with an isomorphism between the V -functors

δY
f∗x−−→ A and δY

δf−→ δX
x−→ A .

Of course, by the Yoneda lemma, this can equivalently be expressed by isomorphisms
of profunctors

A (1, f ∗x) ∼= A (1, δf ◦ x) or

A (f ∗x, 1) ∼= A (δf ◦ x, 1)

If we note that A (1, δf ◦x) ∼= A (1, x)(1, δf) and similarly, and evaluate these profunctors
at some y ∈ A , we obtain isomorphisms

A (y, f ∗x) ∼= (f × 1)∗A (y, x) and

A (f ∗x, y) ∼= (1× f)∗A (x, y).

In the case V = Self (S), this idea is due to [BW87], where restrictions are called substi-
tutions.

We can now characterize the large V -categories in the image of Θ.

6.2. Definition. A V -fibration is a large V -category such that for each object x and
each f : Y → εx, there exists a restriction f ∗x.

6.3. Remark. The phrase “V -fibration” is, of course, motivated by the remarks above
comparing Θ to the Grothendieck construction. Moreover, just as ordinary fibrations
replace the “algebraic” reindexing functors of an ordinary indexed category by cartesian
arrows with a universal property, V -fibrations replace the reindexing functors of an in-
dexed V -category by “restrictions” as defined above, which are objects with a sort of
universal property. In particular, it is no longer necessary to specify the coherence iso-
morphisms in Definition 4.1; they follow automatically from the universal property.

However, the analogy is just an analogy: there is no S-indexed monoidal category V
such that large V -categories can be identified with arbitrary functors into S. (Example 4.7
might suggest that Psh(S, Set) should have this property, but it does not). Large V -
categories contain more data than an arbitrary functor into S, which as we will see is in
fact sufficient to characterize a corresponding V -fibration.

6.4. Remark. On the other hand, V -fibrations share the virtue of ordinary fibrations
that for fixed V , they are an elementary (first-order) notion, as contrasted with indexed
V -categories and classical indexed categories which are not.

6.5. Proposition. A large V -category is isomorphic to one of the form ΘA if and only
if it is a V -fibration.
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Proof. If A is an indexed V -category with transition functors f ∗ : A X → A Y , then it
is easy to check that for any x ∈ A X , the object f ∗x ∈ A Y is a restriction of x along f
in ΘA . Thus ΘA , and anything isomorphic to it, is a V -fibration.

Conversely, given a V -fibration B, we complete the above construction of an indexed
V -category ΛB as follows. We choose, for every x and f , a restriction f ∗x, and define
the functor f ∗ : (f ∗)•ΛBY → ΛBX to take x to f ∗x. The definition of restriction ensures
that this can be extended to a fully faithful V Y -functor, and the essential uniqueness of
restrictions ensures that they are coherent. Finally, it is straightforward to check that
ΘΛB ∼= B in V -CAT .

As remarked above, in order to fully characterize the image of Θ, we will also need to
limit the functors we consider.

6.6. Definition. A V -functor f : A → B between large V -categories is called indexed
if εfx is an identity for all x.

If we now let V -FIB denote the sub-2-category of V -CAT consisting of the V -
fibrations, the indexed V -functors between them, and all the V -natural transformations
between those, then it is easy to extend Λ to a 2-functor V -FIB → V -Cat. Our double
use of the word ‘indexed’ is unproblematic because of the following result.

6.7. Theorem. The 2-functors Θ and Λ are inverse 2-equivalences between V -Cat and
V -FIB.

Proof. Left to the reader.

Since 2-equivalences preserve all 2-categorical structure, we can use indexed V -cate-
gories and V -fibrations interchangeably, just as we do for ordinary fibrations and pseudo-
functors, and we will rarely distinguish notationally between them.

6.8. Remark. This 2-equivalence also extends to profunctors. We could define a virtual
equipment of indexed V -profunctors and show it is equivalent to the restriction of V -PROF
to the V -fibrations and indexed functors. However, for our purposes it will suffice to note
that for V -fibrations A and B, we have an equivalence of categories

V -Prof(A ,B) ' V -PROF (A ,B)

connecting indexed V -profunctors, as in Definition 4.9, to V -profunctors as considered in
§5. This equivalence is constructed just as for the hom-objects of categories, by restricting
along diagonals and projections.

In contrast to the classical case, however, it turns out that by including the non-
indexed V -functors, we can put back in the large V -categories that aren’t V -fibrations
and still maintain a biequivalence. We first observe the following.

6.9. Proposition. If B is a V -fibration, then any V -functor F : A → B is naturally
isomorphic to an indexed one.
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Proof. Given F , with components εFx : εx→ ε(Fx), we define F ′ : A → B by choosing
F ′x to be a restriction (εFx)

∗(Fx) of Fx along εFx. It is easy to check that F ′ is an indexed
V -functor, and that the isomorphisms (εFx)

∗(Fx) ∼= (Fx) ◦ δ(εFx) from Definition 6.1
assemble into a natural isomorphism F ∼= F ′.

It follows that V -FIB , while not a full sub-2-category of V -CAT , is a ‘full sub-
bicategory’ in the sense that the inclusions

V -FIB(A ,B) ↪→ V -CAT (A ,B)

are equivalences of categories. Thus, to prove that V -FIB ↪→ V -CAT is a biequivalence,
it suffices to check that every large V -category is equivalent, in V -CAT , to a V -fibration.
This is included in the following theorem.

6.10. Theorem. The (non-full) inclusion V -FIB ↪→ V -CAT has a right 2-adjoint Γ;
this means that for a V -fibration A and a large V -category B, we have natural isomor-
phisms of hom-categories

V -FIB(A ,ΓB) ∼= V -CAT (A ,B).

Moreover, the unit and counit A → ΓA and ΓB → B are internal equivalences, so this
2-adjunction is actually a biequivalence.

Proof. We define the objects of ΓB to be ‘formal restrictions’ f ∗x, where x is an object
of B with extent X and f : Y → X is a map in S. Of course, we set e(f ∗x) = Y , and we
define ΓB(f ∗x, g∗y) to be (g× f)∗B(x, y). We leave it to the reader to define the rest of
the structure and check that ΓB is a V -fibration.

Now, an indexed V -functor A → ΓB sends each object a of A to a formal restriction
f ∗x in ΓB, where f : εa→ εx is a map in S. On the other hand, a non-indexed V -functor
A → B sends each object a to an object x and chooses a map f : εa → εx, so at this
level the bijection is obvious. It is easy to check that it carries over to the action on
hom-objects and to natural transformations, so that Γ defines a right 2-adjoint to the
inclusion.

Now since the inclusion is bicategorically fully faithful, it follows automatically that
the unit A → ΓA is an equivalence (though not an isomorphism). Thus, it remains to
check that the counit ε : ΓB → B is an equivalence for any large V -category B.

Of course, the counit ε : ΓB → B sends f ∗x to ε(f ∗x) = x with ε(εf∗x) = f . We
define a V -functor ξ : B → ΓB by sending each object x of B to its formal restriction
1∗εxx. Clearly εξ is the identity on B. The composition ξε sends the formal restriction f ∗x
to 1∗εxx, with ε(ξε)f∗x = f . It suffices to show that ξε ∼= IdΓB in V -CAT , which we can
do by assembling the isomorphisms from Definition 6.1, as we did in Proposition 6.9.

6.11. Example. If V is a classical monoidal category and C is a small V-enriched cate-
gory, regarded as a small Fam(V)-category as in Example 3.2, then ΓC is the Fam(V)-
category Fam(C) constructed in Example 4.2.
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6.12. Example. If A is an S-internal category regarded as a small Self (S)-category,
then ΓA is the locally internal category classically associated to A.

6.13. Remark. On the other hand, if we write V -CAT ind for the sub-2-category of
V -CAT containing all the V -categories but only the indexed V -functors, then the non-
full inclusion V -CAT ind ↪→ V -CAT is not a biequivalence. This is relevant because if
we were to restrict ourselves to data contained in the bicategory constructed from V
(rather than the whole equipment), then the indexed V -functors would be the only type
of morphism available. For this reason, the authors of [BCSW83, BW87, Bet89, Bet00]
had to impose extra conditions at least as strong as being a V -fibration in order to obtain
an equivalence with indexed V -categories (in the case V = Self (S), which is the only
one they considered).

Most V -categories which arise “in nature” are either small or are V -fibrations. We
can regard the other large V -categories as a technical tool which makes it easier to relate
these two most important types. (As we will see in §8, set-sized V -categories are also
convenient to use as diagram shapes.)

6.14. Remark. We can also define an anologue of the general hom-functors from the
end of §2 for any V -fibration A ; we set

A Y,[W ](B,C) = πW∗∆
∗
Y×WA (B,C)

∼= πW∗A
X×Y×Z×W (π∗XB, π

∗
ZC).

When we consider tensors, cotensors, and monoidal structures for V -categories, we will
also find analogues for V -fibrations of the various types of monoidal structure on V .

7. Change of cosmos and underlying indexed categories

If V is an S-indexed monoidal category and W is a T-indexed one, then by a lax
monoidal morphism Φ : V → W we mean a commutative square∫

V Φ //

��

∫
W

��

S
Φ

// T

such that Φ : S → T preserves finite products (hence is strong cartesian monoidal),
Φ :
∫

V →
∫

W is lax monoidal and preserves cartesian arrows, and the square commutes
in the 2-category of lax monoidal functors. If Φ : S → T is an identity, as is often the
case, we say that Φ is a morphism over S.

In this situation, we have induced operations Φ• from small, large, and indexed V -
categories to the corresponding sort of W -categories, and similarly for functors, trans-
formations, profunctors, multimorphisms, and so on, which we call change of cosmos.
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Formally, Φ• is a (normal, lax) equipment functor V -PROF→ W -PROF, which in partic-
ular induces 2-functors V -Cat → W -Cat , V -CAT → W -CAT , and so on.

If Φ is strong monoidal and preserves indexed coproducts, fiberwise coequalizers, and
fiberwise coproducts of the appropriate cardinalities, then Φ• preserves composition of
profunctors. Similarly, if Φ is closed monoidal and preserves indexed products, fiberwise
equalizers, and fiberwise products of the appropriate cardinalities, then Φ• preserves right
and left homs of profunctors.

We can furthermore assemble the operations (−)-PROF and (−)• into a 2-functor
from a 2-category of indexed monoidal categories as in [Shu08] into the 2-category vEquip
of [CS10, 7.6]. This can be decomposed into the 2-functor Fr of [Shu08, 14.9] (suitably
generalized to the virtual case) followed by a many-object version of the 2-functor Mod
of [CS10, 3.9]. In particular, any monoidal adjunction between indexed monoidal cat-
egories induces an adjunction between 2-categories (or equipments) of enriched indexed
categories.

We omit the details of all of this since we will not need them here; instead we merely
mention some important special cases.

7.1. Example. Any lax monoidal functor V→W gives rise to a lax monoidal morphism
Fam(V) → Fam(W). When we identify V-enriched categories with certain indexed
Fam(V)-categories as in Example 4.2, the induced operations from Fam(V)-categories
to Fam(W)-categories agree with the classical change-of-enrichment operations.

7.2. Example. Any pullback-preserving functor F : S→ T gives rise to a strong monoid-
al morphism Self (S) → Self (T). The induced operations on internal categories and
locally internal categories agree with the obvious ones.

7.3. Example. If V has indexed coproducts preserved by ⊗, then there is a strong
monoidal morphism Σ : Self (S) −→ V , which takes an object A

a−→ X of Self (S)X =
S/X to the object a!IA of V X . The pseudonaturality isomorphism Σ(f ∗A) ∼= f ∗(ΣA) is
just the Beck-Chevalley condition for indexed coproducts in V , together with the fact
that f ∗IY ∼= IX . And for a pullback square

C
q
//

p
��

c
  

B

b
��

A a
// X

in S, regarded as the fiberwise product C = A ×X B in Self (S)X , the comparison
isomorphism Σ(A)⊗X Σ(B) ∼−→ Σ(C) is the composite

a!IA ⊗X b!IB ∼= a!(IA ⊗A a∗b!IB) (since ⊗ preserves indexed coproducts)
∼= a!(IA ⊗A p!q

∗IB) (by the Beck-Chevalley condition)
∼= a!p!(p

∗IA ⊗C q∗IB) (since ⊗ preserves indexed coproducts)
∼= c!(IC ⊗C IC) (since p∗ and q∗ are strong monoidal)
∼= c!(IC).
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It is evident that Σ also preserves indexed coproducts.
We say that the induced functor Self (S)-CAT → V -CAT builds the free V -category

on a Self (S)-category, and write it as V [−]. As a special case, the discrete V -category
δX is the free V -category on the discrete S-internal category on X.

(This is the primary place in this paper where we use the fully general Beck-Chevalley
condition for V , as opposed to the limited version described in Example 2.38. Thus we
cannot expect to build free Act(S)-categories.)

7.4. Example. Assuming S is locally small, the fiberwise Yoneda embedding gives a
strong monoidal morphism Self (S) → Psh(S, Set). Since this morphism is fiberwise
fully faithful, the induced functor from Self (S)-categories to Psh(S, Set)-categories is
2-fully-faithful. Hence, we can regard Self (S)-categories as Psh(S, Set)-categories—that
is, classical S-indexed categories with locally small fibers—with the property that all their
hom-presheaves are representable.

When expressed in terms of the fiberwise-homs A X(x, y) of an indexed Psh(S, Set)-
category, this requires that for any x, y ∈ A X the functor

S/X −→ Set

(Z
f−→ X) 7→ A Z(f ∗x, f ∗y)

is representable. And when expressed equivalently in terms of the external-homs A (x, y)
of a large Psh(S, Set)-category, it requires that for any x ∈ A X and y ∈ A Y , the functor

S/(X × Y ) −→ Set

(Z
(f,g)−−→ X × Y ) 7→ A Z(f ∗x, g∗y)

is representable. But this latter condition is exactly the usual notion of when an indexed
category is “locally small”. Thus, we recover the theorem identifying locally small in-
dexed categories with “locally internal categories” (which, recall, are the same as indexed
Self (S)-categories).

7.5. Example. In fact, for any V with locally small fibers, there is a lax monoidal
morphism V →Psh(S, Set), which takes A ∈ V X to the functor

(S/X)op −→ Set

(Y
f−→ X) 7→ V X(IY , f ∗A).

(7.6)

In the case V = Self (S) this reduces to the fiberwise Yoneda embedding. In general, it
implies that any indexed V -category A has an underlying ordinary S-indexed category,
which we denote Ao. We call Ao the underlying indexed category of A ; it should
be regarded as an indexed version of the classical “underlying ordinary category of an
enriched category”. In particular, if V is closed, then by applying this construction to
the V -category V we recover the original S-indexed category V .

Tracing through the identification of indexed Psh(S, Set)-categories with classical
indexed categories, we see that the fiber category (Ao)X over X is the underlying ordinary
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category of the classical V X-enriched category A X , generally denoted (A X)o. Thus, there
is no ambiguity in writing A X

o for this fiber.
If A is a (large or small) V -category that is not a V -fibration, then it still has an

underlying S-indexed category, namely (ΓA )o where Γ is the functor from Theorem 6.10.
It is easy to see that this is precisely the underlying indexed category constructed in
Example 3.18 and Remark 5.4. However, if A is a V -fibration, then (ΓA )o is rather
larger than Ao (though still equivalent to it).

7.7. Example. If V has the property that each functor (7.6) is representable, then the
morphism V → Psh(S, Set) factors through Self (S), and so Ao is a Self (S)-category
for any V -category A . When V is cartesian, this property of V is precisely the com-
prehension schema of [Law70], so we will henceforth extend that terminology to the
non-cartesian case.

In particular, if V is closed, then the V -category V itself has an underlying Self (S)-
category. It is easy to see that this means the S-indexed category V is locally small.
Indeed, for a closed V , local smallness is equivalent to the comprehension schema.

If V satisfies the comprehension schema and also has indexed coproducts preserved
by ⊗, then the “underlying” morphism V → Self (S) is right adjoint to the “free”
morphism Self (S) → V from Example 7.3. Thus, the induced functors on enriched
indexed categories are likewise adjoint.

For instance, when V = Self ∗(S), we see that every pointed internal category (as in
Examples 3.4) has an underlying ordinary internal category, and that this operation has a
left adjoint which “adjoins a disjoint section” to the hom-objects. Similarly, if S satisfies
the hypotheses of Example 2.34, then any Ab(S)-category has an underlying Self (S)-
category, and this operation has a left adjoint which builds free abelian group objects on
the hom-objects.

7.8. Example. Here is an example in which the base category changes. Let S have finite
limits; then there is a lax monoidal morphism Self (S) → Fam(S), which takes X ∈ S
to the set S(1, X) and an object A ∈ S/X to its family of fibers. Thus, any S-internal
category gives rise to a small S-enriched category. For example, any internal topological
category gives rise to a topologically enriched category by forgetting the topology on the
set of objects.

If S has small coproducts preserved by pullback, then this morphism has a strong
monoidal left adjoint, which sends a set X to

∐
x∈X 1 and an X-indexed family {Ax} of

objects of S to
∐

x∈X Ax. The corresponding operation on small S-enriched categories re-
gards them as S-internal categories whose object-of-objects is “discrete” (i.e. a coproduct
of copies of the terminal object).

8. Limits and colimits

We now begin studying limits and colimits for V -categories. Here is where the equipment-
theoretic machinery of profunctors is most helpful, because it automatically gives us a
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general definition of weighted limit with many good formal properties. In this section we
recall this definition and some of these good properties; in the next section we translate
some examples into more concrete terms for indexed V -categories.

8.1. Definition. Let J : K −7−→ A be a V -profunctor and f : A → C a V -functor. A J-
weighted colimit of f consists of a V -functor ` : K → C together with an isomorphism

C (`, 1) ∼= J B C (f, 1) (8.2)

of profunctors C −7−→ K. (Recall Remark 5.27.)
If instead J : A −7−→ K, then a J-weighted limit of f consists of a V -functor ` : K → X

together with an isomorphism

C (1, `) ∼= C (1, f)C J.

of profunctors K −7−→ C .

In general, K, A, and C could be any large V -categories. However, in our examples,
most often K and A will be small or set-small, while C will be a V -fibration (hence our
choice of typefaces).

We will consider many examples in §9, but we should at least mention the following
one here, to clarify why this is a reasonable definition of “weighted limit”.

8.3. Example. If V = Fam(V) and we take K to be the unit V -category δ1 and A
a small V -category, then J is simply a diagram on A. If C is the indexed V -category
constructed from a (possibly large) V-enriched category C as in Example 4.2, then the
above definitions reduce to the usual notion of weighted limit and colimit. Specifically,
if we assume ` to be an indexed V -functor, then it is just an object of C, and (in the
colimit case) the isomorphism (8.2) means that

C(`, x) ∼= [Aop,C](J, C(f−, x))

for all x ∈ C, which is the usual definition of ` being a J-weighted colimit of f .

By contrast with the above classical situation, in general it turns out to be very useful
to allow K to be an arbitrary V -category. Here is one example of what such more general
“limits” include.

8.4. Example. Let j : K → A and take J = A(1, j). Then for any f : A→ C , we have

A(1, j)B C (f, 1) ∼= C (fj, 1)

by Lemma 5.29. Hence fj is always a A(1, j)-weighted colimit of f . Dually, fj is also
always an A(j, 1)-weighted limit of f .

In particular, if j is the identity functor of A, then A(1, 1) = A is the identity pro-
functor of A, and f is its own A-weighted (co)limit.

One real advantage of allowing arbitrary profunctors as weights is that a given pro-
functor can be used both as a weight for limits and a weight for colimits. This symmetry
is necessary in order to even state the following fact, which will be very useful.
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8.5. Proposition. For a V -profunctor J : A −7−→ B and V -functors f : B → C and

g : A → C which have respectively a J-weighted colimit A
colimJ f−−−−→ C and a J-weighted

limit B
limJ g−−−→ C , we have a natural isomorphism

V -CAT (colimJ f, g) ∼= V -CAT (f, limJ g).

Proof. We calculate

V -CAT (colimJ f, g) ∼= V -PROF (C (g, 1),C (colimJ f, 1))
∼= V -Bimor(C (g, 1), J ; C (f, 1))
∼= V -Bimor(J,C (1, f); C (1, g))

∼= V -PROF (C (1, f),C (1, limJ g))

∼= V -CAT (f, limJ g).

We immediately obtain a description of Kan extensions as particular weighted limits
and colimits.

8.6. Corollary. Let j : A → K and f : A → X. Then any K(j, 1)-weighted colimit of
f is an internal left extension of f in V -CAT , and any K(1, j)-weighted limit of f is an
internal right extension of f in V -CAT .

Proof. Internal left extension is defined to be a (partial) left adjoint to composition, and
we observed in Example 8.4 that K(j, 1)-weighted limits are composites with j.

In general, not all 2-categorical left extensions have the stronger universal property of
a K(1, j)-weighted colimit. Sometimes extensions with this additional property are called
pointwise (see [ML98, §X.5]), but we follow [Kel82, Ch. 4] in reserving the simple term
Kan extension for the pointwise ones.

8.7. Definition. A left Kan extension of f : A → C along j : A → K is a K(j, 1)-
weighted colimit of f . Dually, a right Kan extension of f along j is a K(1, j)-weighted
limit of f .

The following theorem, which will also be very useful, also requires the use of arbitrary
profunctors as weights.

8.8. Theorem. Let J2 : A −7−→ B and J1 : B −7−→ C be weights and let f : C → C be a
V -functor. Suppose that `1 is a J1-weighted colimit of f and `2 is a J2-weighted colimit
of `1, and that the composite J2 � J1 exists. Then `2 is a (J2 � J1)-weighted colimit of f .

Proof. For any ~H = H1, . . . , Hn, we have

V -Multimor( ~H, J2 � J1; C (f, 1)) ∼= V -Multimor( ~H, J2, J1; C (f, 1))

∼= V -Multimor( ~H, J2; C (`1, 1))

∼= V -Multimor( ~H; C (`2, 1)).
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Here is one example of the usefulness of Theorem 8.8. We say that a V -functor
f : A → B is fully faithful if each morphism A (x, y)→ B(f(x), f(y)) is cartesian over
εfx×εfy. It is easy to see that this is equivalent to the induced morphism A → B(f, f) of
profunctors A −7−→ A being an isomorphism, or equivalently that B(1, f)�B(f, 1) ∼= A .

8.9. Corollary. Left and right Kan extensions along fully faithful V -functors are hon-
est extensions. In other words, if j : A→ K is fully faithful and ` : K → C is a left Kan
extension of f : A→ C along j, then `j ∼= f .

Proof. Left Kan extensions are K(j, 1)-weighted colimits, while precomposition with j
is a K(1, j)-weighted colimit. Thus, by Theorem 8.8, `j is a (K(1, j)�K(j, 1))-weighted
colimit. However, since j is fully faithful, (K(1, j)�K(j, 1)) is isomorphic to the identity
profunctor, for which a weighted colimit of f is just f itself. The case of right Kan
extensions is dual.

We now consider what it means for a V -functor to preserve or reflect limits. Let
J : K −7−→ A be a weight and d : A→ C a V -functor, and suppose given a bimorphism

C (`, 1), J
ψ−→ C (d, 1) (8.10)

Let f : C → D be a V -functor, and consider the unique morphism

C (f`, 1), J −→ C (fd, 1) (8.11)

whose composite with the universal bimorphism C (f, 1),C (`, 1)
φ−→ C (f`, 1) is

C (f, 1),C (`, 1), J
1,ψ−−→ C (f, 1),C (d, 1)

φ−→ C (fd, 1).

8.12. Definition. In the above situation, if (8.10) exhibits ` as a J-weighted colimit of
d, we say that f preserves this colimit if (8.11) exhibits f` as a J-weighted colimit of
fd. Similarly, if (8.11) exhibits f` as a J-weighted colimit of fd, we say that f reflects
this colimit if (8.10) exhibits ` as a J-weighted colimit of d.

Dually, we define what it means for a V -functor to preserve and reflect a weighted
limit. The following observations are expected.

8.13. Proposition. If f : C → D is a left adjoint, then f preserves any colimits which
exist in C . Dually, right adjoints preserve all limits.

Proof. Recall that an adjunction f a g implies an isomorphism D(f, 1) ∼= C (1, g).
Therefore, if ` : K → C is a colimit of d : A → C weighted by J : K −7−→ A, then for any
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well-typed ~H = H1, . . . , Hn, we have

V -Multimor( ~H, J ; D(fd, 1)) ∼= V -Multimor( ~H, J,D(1, d); D(f, 1))

∼= V -Multimor( ~H, J,D(1, d); C (1, g))

∼= V -Multimor(C (g, 1), ~H, J ; D(d, 1))

∼= V -Multimor(C (g, 1), ~H; D(`, 1))

∼= V -Multimor( ~H,D(1, `); C (1, g))

∼= V -Multimor( ~H,D(1, `); D(f, 1))
∼= V -PROF (M,D(f`, 1)).

The case of right adjoints is dual.

8.14. Proposition. A fully faithful V -functor reflects all limits and colimits.

Proof. Let f : C → D be fully faithful and let f` be a J-weighted colimit of fd. Suppose
we have a multimorphism ~H, J → C (d, 1); we want to show that it factors uniquely

through a multimorphism ~H → C (`, 1). We can compose on the left with D(f, 1) to
obtain a multimorphism

D(f, 1), ~H, J −→ D(f, 1)� C (d, 1) ∼= D(fd, 1),

and since D(f`, 1) ∼= J B D(fd, 1), this factors uniquely through D(f`, 1) via a mul-

timorphism D(f, 1), ~H → D(f`, 1). Now composing on the left with D(1, f) gives a
multimorphism

D(1, f)�D(f, 1), ~H −→ D(1, f)�D(f, 1)� C (`, 1).

But since f is fully faithful, we have D(1, f) � D(f, 1) ∼= C , so this is equivalent to a

multimorphism ~H → C (`, 1). We leave it to the reader to verify that this is the desired
factorization, and that it is unique. The case of limits is analogous.

If i : D → C has a left adjoint r : C → D whose counit ε : ri→ 1 is an isomorphism,
we say that i exhibits D as a reflective sub-V -category of C .

8.15. Proposition. If D is a reflective sub-V -category of C , then D admits all limits
and colimits which C does.

Proof. For the case of colimits, if J : K −7−→ A is a V -profunctor and f : A → D a V -
functor, we can consider the composite if . If C admits the J-weighted colimit of if , then
since r is a left adjoint, it preserves this colimit; thus r(colimJ if) is a J-weighted colimit
of rif ∼= f .
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For the case of limits, let J : K −7−→ A again be a weight and g : K → D a V -functor,
and suppose that ` : A→ C is a J-weighted limit of ig; thus we have

C (1, `) ∼= C (1, ig)C J
∼= (D(1, g)� C (1, i))C J
∼= (D(1, g)�D(r, 1))C J
∼= (D(1, r)BD(1, g))C J
∼= D(1, r)B (D(1, g)C J)
∼= (D(1, g)C J)�D(r, 1).

It follows that

D(1, r`) ∼= C (1, `)�D(1, r)
∼= (D(1, g)C J)�D(r, 1)�D(1, r)
∼= (D(1, g)C J)� C (1, i)�D(1, r)
∼= D(1, g)C J

since ri ∼= 1. Thus r` is a J-weighted limit of g. Note that since i is a right adjoint, it
preserves all limits, so we can say more strongly that D is ‘closed under limits’ in C .

9. Limits in indexed V -categories

All the definitions and theorems in §8 make sense in any (virtual) equipment. Now,
however, we truly specialize to the case of enriched indexed categories, considering several
special types of limits and colimits and their relationship to more familiar ones. We will
see that many such limits and colimits can be described as ‘fiberwise’ limits together with
conditions ensuring the limits are (1) compatible with the enrichment and (2) preserved
by restriction. For classical indexed categories, the conditions (1) tend to be automatic
and the conditions (2) are significant, while for classical enriched categories, the situation
is reversed. For general V , both conditions will be nontrivial.

As mentioned in the introduction, in the case V = Self (S) this reduction of the
abstract limit-notions to familiar indexed ones is due to [BW87]; while the combination
of indexed and enriched universal properties for a general V was first considered (in an
ad hoc manner) in [GG76].

For simplicity, in this section we generally assume V to be an S-indexed cosmos.
Most of the results could be rephrased with some care under weaker assumptions on
V (in particular, symmetry is never really necessary), but we mostly leave this to the
interested reader.

We will also assume that the V -category C in which we consider limits is a V -fibration.
In particular, by Proposition 6.9 this implies that up to isomorphism, we may as well
assume that any V -functor with codomain C is indexed, and we will generally do so.
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First, suppose that K = δX and A = δY are small discrete V -categories. In this case,
a weight J : δX −7−→ δY is simply an object of V X×Y . Since (indexed) V -functors δX → C
are equivalent to objects of the fiber CX , J-weighted colimits take the fiber CX to the
fiber C Y , and J-weighted limits take C Y to CX .

For such a J ∈ V X×Y , we call a J-weighted colimit of x ∈ CX a global V -tensor
of x with J , and write it as J �[X] x. (We use the word ‘global’ to distinguish these
tensors from the ‘fiberwise’ ones that we will consider later.) Invoking the definition of
colimits and Remark 5.18, we find that J �[X] x is an object of C Y characterized by an
isomorphism of profunctors C −7−→ δY :

C
(
J �[X] x, 1

) ∼= V [X]
(
J,C (x, 1)

)
.

Dually, we call a J-weighted limit of y ∈ C Y a global V -cotensor with J and write
it as {J, y}[Y ]. By definition and Remark 5.18, it is an object of CX characterized by an
isomorphism of profunctors δX −7−→ C :

C
(
1, {J, y}[Y ]

) ∼= V [Y ]
(
J,C (1, y)

)
.

9.1. Example. Suppose V = Fam(V) and C = Fam(C) as in Example 4.2. Then
when X = Y = 1, global V -tensors are the same as classical tensors in enriched category
theory.

For generalX and Y , global tensors combine classical tensors with coproducts. Namely,
if J = (Jy,x)(y,x)∈Y×X is an object of CY×X and M = (Mx)x∈X is an object of DX for a
C-enriched category D , then we have

(J �[X] M)y ∼=
∐
x∈X

Jy,x �Mx.

In particular, if Y = X and Jy,x = ∅ is an initial object for y 6= x (which is to say that
J = ∆!J

′ for some J ′ ∈ DX), then (J �[X] M)x = Jx,x �Mx involves no coproducts. This
is also the tensor of M with J ′ in the VX-enriched category CX .

On the other hand, if we have a function g : X → Y and we define

Jy,x =

{
I if f(x) = y

∅ otherwise
,

then (J �[X] M)y =
∐

f(x)=yMx involves only coproducts.

This example suggests that for general V we may also profitably split up the study of
global V -tensors into those of the form ∆!J

′ and those induced by morphisms in S. We
start by considering the latter.

Suppose that f : X → Y is a morphism in S. Then it gives rise to profunctors
Y (1, f) : δX −7−→ δY and Y (f, 1) : δY −7−→ δX. Explicitly, we have

Y (1, f) = (f × 1)∗(∆Y )!IY and

Y (f, 1) = (1× f)∗(∆Y )!IY .
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By Lemma 5.28 and Lemma 5.29, for M ∈ V -Prof (δY, δZ) = V Y×Z , we have natural
isomorphisms

Y (1, f)�M ∼= (f × 1)∗M ∼= M C Y (f, 1).

Similarly, for N ∈ V -Prof (δX, δZ) = V X×Z we have

Y (f, 1)�N ∼= (f × 1)!N

N C Y (1, f) ∼= (f × 1)∗N. (9.2)

and symmetrically in all cases.
Now by Example 8.4, for any y ∈ C Y , the Y (1, f)-weighted colimit and the Y (f, 1)-

weighted limit of the corresponding indexed V -functor y : δY → C are just the composite
fy : δX → C . (If we demand the (co)limit to be an indexed V -functor, then it must be
precisely a restriction of y along f as in Definition 6.1.)

9.3. Theorem. If C is an indexed V -category admitting Y (f, 1)-weighted colimits for
all f : X → Y in S, then the S-indexed category Co has S-indexed coproducts. Dually, if
C admits Y (1, f)-weighted limits for all f : X → Y , then Co has S-indexed products.

Proof. By Proposition 8.5 and the above observation, Y (f, 1)-weighted colimits define
a left adjoint f! : CX

o → C Y
o to the restriction functor f ∗, and dually. So it remains only

to check the Beck-Chevalley condition. Thus, suppose that

W
f
//

g
��

X

k
��

Y
h
// Z

is a pullback square in S; the question is whether the canonical transformation

colimY (g,1) colimX(1,f) −→ colimZ(1,h) colimZ(k,1)

is an isomorphism. By Theorem 8.8, this can be reduced to the question of whether the
canonical transformation

Y (g, 1)�X(1, f) −→ Z(1, h)� Z(k, 1) (9.4)

is an isomorphism. However, by the above remarks, the functors

Y (g, 1)�X(1, f)�− and

Z(1, h)� Z(k, 1)�−

are naturally isomorphic to (g × 1)!(f × 1)∗ and (h× 1)∗(k × 1)!, respectively, and under
these isomorphisms (9.4) is identified with the Beck-Chevalley morphism in V . Since V
has indexed coproducts, this transformation is an isomorphism; hence by the bicategorical
Yoneda lemma for V -Prof , so is (9.4). The case of indexed products is dual.
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Of course, if V only satisfies the Beck-Chevalley condition for some pullback squares
in S, as in Example 2.38, then Co only inherits the Beck-Chevalley condition for those
same pullback squares.

9.5. Definition. We say that C has S-indexed V -coproducts if it admits Y (f, 1)-
weighted colimits for all f : X → Y in S. Similarly, we say it has S-indexed V -products
if it admits all Y (1, f)-weighted limits.

Just as a limit in the underlying category of a classical enriched category need not be
an enriched limit, it is not necessarily true that indexed (co)products in Co imply indexed
V -(co)products in C . We need to also require that the adjunction f! a f ∗ or f ∗ a f∗ is
“enriched” in a suitable sense. To explain this condition, suppose we have an adjunction
f! a f ∗ relating CX

o and C Y
o ; then for x ∈ CX and y ∈ C Y we have a transformation

f ∗
(
C Y (f!x, y)

) ∼−→ CX(f ∗f!x, f
∗y)→ CX(x, f ∗y) (9.6)

in which the second map is precomposition with the unit x → f ∗f!x of the adjunction
f! a f ∗. The mate of (9.6) under the adjunction f ∗ a f∗ in V is a transformation

C Y (f!x, y) −→ f∗
(
CX(x, f ∗y)

)
. (9.7)

9.8. Theorem. A V -fibration C has indexed V -coproducts if and only if Co has indexed
coproducts and every map (9.7) is an isomorphism. In this case, f! extends to a V Y -
enriched functor (f∗)•CX → C Y .

Dually, C has indexed V -products if and only if Co has indexed products and every
canonical map

C Y (y, f∗x) −→ f∗
(
CX(f ∗y, x)

)
is an isomorphism, in which case f∗ extends to a V Y -enriched functor (f∗)•CX → C Y .

Proof. First, assume that C has indexed V -coproducts. We have already shown that
then Co has indexed coproducts. And for x ∈ CX and y ∈ C Y we have

C Y (f!x, y) ∼= ∆∗Y C (f!x, y)

∼= ∆∗Y
(
Y (f, 1)B C (x, y)

)
(by definition of indexed V -coproducts)

∼= ∆∗Y (1× f)∗C (x, y) (by the dual of (9.2))
∼= f∗∆

∗
X(f × 1)∗C (x, y) (by the Beck-Chevalley condition)

∼= f∗∆
∗
XC (x, f ∗y) (since f ∗y is a restriction of y)

∼= f∗C
X(x, f ∗y).

We leave it to the reader to check that this isomorphism is in fact the canonical map (9.7).
Now using this isomorphism, we can define a morphism

f∗C
X(x,w) −→ f∗C

X(x, f ∗f!w) ∼= C Y (f!x, f!w)
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and check that it makes f! into a C Y -enriched functor (f∗)•CX → C Y , and the isomor-
phism (9.7) into an enriched adjunction.

For the other direction, suppose that Co has indexed coproducts and that (9.7) is
always an isomorphism. Then for any z ∈ C , we have

C (f!x, z) ∼= C Z×Y (π∗Zf!x, π
∗
Y z)

∼= C Z×Y ((1× f)!π
∗
Zx, π

∗
Y z
)

(by the Beck-Chevalley condition)

∼= (1× f)∗C
Z×X(π∗Zx, (1× f)∗π∗Y z

)
(by (9.7) for 1× f)

∼= (1× f)∗C
Z×X(π∗Zx, π∗Xz)

∼= (1× f)∗C (x, z)
∼= Y (f, 1)B C (x, z) (by the dual of (9.2)).

Since this isomorphism is suitably natural in z, by definition f!x is an indexed V -
coproduct. The case of f∗ is similar.

9.9. Example. If V = Fam(V) and C = Fam(C) as in Example 4.2, then C has
indexed Fam(V)-coproducts just when C has small V-coproducts. Here the Beck-
Chevalley condition is automatic, but (9.7) gives the coproducts their V-enriched uni-
versal property, beyond merely being coproducts in Co.

9.10. Example. On the other hand, for an indexed Self (S)-category, one can show
that condition (9.7) is automatic; here all the content is in the Beck-Chevalley condition.
This is also true for indexed Psh(S, Set)-categories (that is, ordinary indexed categories).
More generally, for indexed Psh(S,V)-categories, we need the adjunctions f! a f ∗ to be
V-enriched, in addition to the Beck-Chevalley condition.

We now consider the other principal type of global tensors. If J ∈ V X and x ∈ CX ,
we write J �X x for the ∆!J-weighted colimit of x. By definition, it is characterized by
an isomorphism

C (J �X x, z) ∼= V [X](∆X!J,C (x, z))

∼= πX∗∆
∗
X

(
V (∆X!J,C (x, z))

)
∼= πX∗∆

∗
X(1×∆X)∗

(
V (J,C (x, z))

)
(by Proposition 2.25)

∼= πX∗∆X∗(∆X × 1)∗
(
V (J,C (x, z))

)
(by Beck-Chevalley)

∼= (∆X × 1)∗
(
V (J,C (x, z))

)
∼= V X(J,C (x, z)). (9.11)

If we choose z such that z ∈ CX , and apply ∆∗X to the above isomorphism, we obtain as
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a special case

CX(J �X x, z) = ∆∗X
(
C (J �X x, z)

)
∼= ∆∗X(∆X × 1)∗

(
V (J,C (x, z))

)
∼= ∆∗X(1×∆X)∗

(
V (J,C (x, z))

)
∼= ∆∗X

(
V (J,∆∗XC (x, z))

)
∼= V X

(
J,CX(x, z)

)
. (9.12)

By definition, this isomorphism (natural in z) says that J �X x is a V X-enriched tensor
of x by J in the fiber category CX . (This is what we expected, from Example 9.1.)

9.13. Definition. We say C has fiberwise V -tensors if it admits all colimits with
weights of the form ∆!J . Dually, we say C has fiberwise V -cotensors if it has global
cotensors with all weights of the form ∆!J .

Fiberwise cotensors are characterized by an isomorphism

C (z, {J, x}X) ∼= V X(J,C (z, x)).

and are, in particular, cotensors in the fibers.
Of course, if the fiber categories CX have V X-enriched tensors, it doesn’t necessar-

ily follow that C has fiberwise V -tensors. Here what is missing is not the enrichment
(which is already there in the definition of tensors) but stability under restriction (which
corresponds to the Beck-Chevalley condition for indexed coproducts).

9.14. Theorem. C has fiberwise V -tensors if and only if each fiber CX has V X-enriched
tensors, and for any f : X → Y , J ∈ V Y , and y ∈ C Y the canonical map

f ∗J �X f
∗y −→ f ∗(J �Y y)

is an isomorphism. Dually, C has fiberwise V -cotensors if and only if each fiber CX has
V X-enriched cotensors preserved by restriction.

Proof. We have already shown that if C has fiberwise V -tensors, then the fibers have
tensors, so for the ‘only if’ direction it suffices to show that they are preserved by restric-
tion. Like Theorem 9.3, this follows from Theorem 8.8, the fact that f ∗ is given by a
Y (1, f)-weighted colimit, and the composite isomorphism

Y (1, f)�∆Y !J ∼= (f × 1)∗∆Y !J ∼= (1× f)!∆X!f
∗J ∼= ∆X!f

∗J � Y (1, f).
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Conversely, if we suppose that the fibers have tensors preserved by restriction, then we
can calculate

C (J �X x, z) ∼= C Z×X(π∗Z(J �X x), π∗Xz)

∼= C Z×X(π∗ZJ �X×Z π
∗
Zx, π

∗
Xz)

∼= V X×Z
(
π∗ZJ,C

Z×X(π∗Zx, π
∗
Xz)
)

∼= V X×Z(π∗ZJ,C (x, z)
)

∼= V X(J,C (x, z))

which is (9.12). The case of cotensors is dual.

9.15. Example. The Fam(V)-category Fam(C) has fiberwise Fam(V)-tensors exactly
when C has V-enriched tensors in the usual sense.

9.16. Example. On the other hand, if a Self (S)-category C has indexed coproducts
(hence indexed Self (S)-coproducts, by Example 9.10), then it automatically has fiberwise
Self (S)-tensors. Namely, if x ∈ CX and p : J → X is an object of Self (S)X = S/X,
then p!p

∗x is a fiberwise tensor of x by J . For if z ∈ C Z , we have

Self (S)X(J,C (x, z)) ∼= (1× p)∗(1× p)∗C (x, z)

∼= (1× p)∗C (p∗x, z)
∼= X(p, 1)B C (p∗x, z)
∼= C (p!p

∗x, z).

Dually, if C has indexed products, it has fiberwise Self (S)-cotensors.

9.17. Example. For size reasons, it is unreasonable to expect an indexed Psh(S,V)-
category to have all fiberwise tensors or cotensors. However, we can ask for fiberwise
tensors by small objects in the sense of Example 2.42. As in Example 9.16, a fiberwise
tensor of x ∈ CX by the representable object Fg is given by g!g

∗x, and fiberwise tensors
by small objects are V-weighted colimits of these preserved by restriction. In particular,
fiberwise tensors by V ⊗ F1X , for V ∈ V, are tensors by V in the V-enriched category
CX which are preserved by restriction.

9.18. Remark. Of course, our use of �[X] for global tensors and �X for fiberwise tensors
is not an accident. The canceling product is, in fact, a global tensor in the V -category
V , while the fiberwise product is a fiberwise tensor. Dually, the canceling hom is a global
cotensor and the fiberwise hom is a fiberwise cotensor. (We could also, if we wished,
define ‘external’ tensors and cotensors in arbitrary V -categories.)

For our next example, suppose that A is a V X-enriched category, in the classical sense.
Then we can construct a large V -category X[A] whose objects are those of A, all with
extent X, and with hom-objects

X[A](a, b) = ∆X!

(
A(a, b)

)
.
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Then for any V -fibration C , indexed V -functorsX[A]→ C are equivalent to V X-enriched
functors A→ CX .

Now suppose additionally that J : Aop → V X is a V X-enriched functor. Then we
can talk about J-weighted colimits in any V X-enriched category, and in particular in
CX . On the other hand, we can build a V -profunctor X[J ] : δX −7−→ X[A] by setting
X[J ](?, a) = ∆X!(Ja), and ask about X[J ]-weighted colimits. It should no longer be
surprising that X[J ]-weighted colimits will turn out to be J-weighted colimits which are
preserved by restriction.

To make the latter precise in this case, let f : Y → X be a morphism in S, and observe
that any V X-enriched functor d : A→ CX gives rise to a V Y -enriched functor

(f ∗)•A
(f∗)•d−−−→ (f ∗)•C

X f∗−→ C Y

which we denote d̂. Similarly, J : Aop → V X gives rise to a V Y -enriched functor

(f ∗)•A
op (f∗)•J−−−−→ (f ∗)•V

X f∗−→ V Y

which we denote Ĵ , and any J-weighted cocone under d in CX induces a Ĵ-weighted
cocone under d̂ in C Y .

9.19. Theorem. In the above situation, a V -fibration C admits X[J ]-weighted colimits
if and only if the fiber CX admits J-weighted colimits and moreover for any f : Y → X,
the functor f ∗ : (f ∗)•CX → C Y takes J-colimiting cocones to Ĵ-colimiting ones.

Proof. For simplicity we assume that A is κ-small and that V has fiberwise κ-small prod-
ucts, so that homs over X[A] can be constructed as in Lemma 5.16. Then by definition,
an X[J ]-weighted colimit ` of d : X[A]→ C is characterized by an equalizer

C (`, z) −→
∏
a∈A

V [X](∆X!Ja,C (da, z)) ⇒
∏

a,a′∈A

V [X](∆X!Ja⊗[X] ∆X!A(a, a′),C (da′, z)).

As in (9.11), this is equivalent to an equalizer

C (`, z) −→
∏
a∈A

V X(Ja,C (da, z)) ⇒
∏

a,a′∈A

V X(Ja⊗X A(a, a′),C (da′, z)).

Again, choosing z ∈ CX and applying ∆∗X yields an equalizer

CX(`, z) −→
∏
a∈A

V X(Ja,CX(da, z)) ⇒
∏

a,a′∈A

V X(Ja⊗X A(a, a′),CX(da′, z))

whence ` is the J-weighted colimit of d : A → CX . Preservation by restriction follows
exactly as in the proof of Theorem 9.14, as does the converse.
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In particular, if A is an unenriched category and J = ∆1 the standard conical weight
Aop → Set, then for any X ∈ S we can first take the free V X-enriched category V X [A]
and weight V X [J ] and then apply this construction. We refer to the resulting X[V X [J ]]-
weighted limits and colimits as fiberwise V -limits and colimits. Thus we have notions
of fiberwise V -equalizers, fiberwise V -products, and so on. These can all be expressed more
explicitly; for example, the fiberwise V -product of two objects x, y ∈ CX is an object
z ∈ CX together with an isomorphism

C (1, z) ∼= C (1, x)× C (1, y)

of profunctors δX −7−→ C . Of course, C (1, x)×C (1, y) denotes the profunctor whose value
at z is C (z, x)× C (z, y), the product taking place in V εz×X .

Since f ∗ : V X → V Y is a strong monoidal left adjoint, it commutes with the free
enriched category construction up to isomorphism: (f ∗)•V X [A] ∼= V Y [A]. Thus, to give
any sort of fiberwise conical limit is equivalently to give a V X-enriched conical limit in
CX which is preserved by restriction, in the appropriate sense.

9.20. Example. Clearly, the indexed Fam(V)-category Fam(C) has fiberwise Fam(V)-
limits and colimits just when C has the relevant V-enriched ones. Here again the preser-
vation by restriction is automatic, but the fact that the limits are enriched in each fiber
is crucial.

9.21. Example. As usual, by contrast, in an indexed Self (S)-category or Psh(S, Set)-
category, it is the preservation by restriction which contains the content. Once we know
that limits exist in fibers and are preserved by restriction, the fact that they are enriched
in each fiber follows automatically. Similarly, fiberwise Psh(S,V)-limits are V-enriched
limits in fibers preserved by restriction.

Finally, it is well-known in classical enriched category theory that if cotensors ex-
ist, then the distinction between enriched and unenriched ordinary limits disappears
(see [Kel82, §3.8]). The analogue of this for V -categories is the following.

9.22. Theorem. Let C be a V -fibration with fiberwise V -cotensors.

(i) C has fiberwise V -colimits of a given (conical) type if and only if Co has fiberwise
colimits of that type.

(ii) C has indexed V -coproducts if and only if Co has indexed coproducts.

Of course, there is a dual result for tensors and limits.

Proof. Both ‘only if’ statements have already been proven. By Theorem 9.19, for (i)
it suffices to show that fiberwise colimits in C Y

o are actually V Y -enriched for any Y .
But this follows from the classical version of this theorem, since CX is V X-enriched and
cotensored.
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For (ii), by Theorem 9.8 it suffices to show that (9.7) is an isomorphism. For f : X →
Y , x ∈ CX , y ∈ C Y , and any J ∈ V X , we compute

V Y
(
J,C Y (f!x, y)

) ∼= C Y
(
f!x, {J, y}Y

)
∼= CX

(
x, f ∗{J, y}Y

)
∼= CX

(
x, {f ∗J, f ∗y}X

)
∼= V X

(
f ∗J,CX(x, f ∗y)

)
∼= V Y

(
J, f∗C

X(x, f ∗y)
)

so the desired isomorphism (9.7) follows by the Yoneda lemma in V Y .

We now turn to the question of constructing general V -limits and colimits out of basic
ones such as those we have just studied. Our first observation is that the generality in
allowing K to be a non-discrete or large V -category comes for free.

9.23. Theorem. Let J : K −7−→ A be a V -profunctor, let f : A → C be a V -functor and
suppose that the J(1, k)-weighted colimit of f exists for all objects k of K . Then the
J-weighted colimit of f also exists, and agrees with colimJ(1,k) f upon restriction to δ(εk)
for each k.

Proof. We must define a V -functor colimJ f : K → C . Its action on objects is fixed:
we send k to colimJ(1,k) f . What remains of the data is morphisms

K (k, k′)→ C (colimJ(1,k) f, colimJ(1,k′) f).

But if we consider this to be a morphism of profunctors δ(εk′) −7−→ δ(εk), then we can
obtain it by passing across the isomorphism

V -Prof (K (k, k′),C (colimJ(1,k) f, colimJ(1,k′) f))

∼= V -Multimor(C (colimJ(1,k′) f, 1),K (k, k′); C (colimJ(1,k) f, 1))

∼= V -Multimor(C (colimJ(1,k′) f, 1),K (k, k′), J(1, k); C (f, 1))

from the composite multimorphism

C (colimJ(1,k′) f, 1),K (k, k′), J(1, k) −→ C (colimJ(1,k′) f, 1), J(1, k′) −→ C (f, 1)

built out of the action of K on J and the universal bimorphism of colimJ(1,k′) f . It is
straightforward to show that this defines a V -functor, and since isomorphisms of pro-
functors C −7−→ K are detected at each object of K , this functor must be the J-weighted
colimit of f .

9.24. Corollary. For a fixed V -category A, if C admits all colimits with weights
J : δX −7−→ A, then it admits all colimits with weights J : K −7−→ A.
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Next, we observe that the two special cases of tensors considered above actually suffice
to reconstruct all global V -tensors.

9.25. Theorem. If C is a V -category with indexed V -coproducts and fiberwise V -tensors,
then C admits all global tensors. Dually, if C has indexed V -products and fiberwise V -
cotensors, then it admits all global cotensors.

Proof. Let J ∈ V Y×X be a weight for a global tensor. Then we can define

J ′ = ∆(Y×X)!J ∈ V Y×X×Y×X ,

which we can regard as a profunctor J ′ : δ(Y×X) −7−→ δ(Y×X). Now since (πX×πY )◦∆Y×X
is the identity, we have

J ∼= (πX × πY )!(J
′)

∼= Y (πX , 1)� J ′ �X(1, πY ).

Thus, by Theorem 8.8, J-weighted colimits can be built from X(1, πY )-weighted colimits,
J ′-weighted colimits, and Y (πX , 1)-weighted colimits. However, X(1, πY )-weighted colim-
its are restrictions, J ′-weighted colimits are fiberwise V -tensors, and Y (πX , 1)-weighted
colimits are indexed V -coproducts.

Finally, we have an enriched indexed version of the classical construction of colimits
out of tensors, coproducts, and coequalizers.

9.26. Theorem. If C admits global V -tensors, fiberwise V -coequalizers, and fiberwise
V -coproducts of the size of the set of objects of A, then it admits all colimits with weights
J : K −7−→ A.

Proof. By Theorem 9.23 it suffices to assume that K is a discrete small V -category δY .
We then have to show that for any f : A→ C there is an object colimJ f ∈ CX with an
isomorphism

C (colimJ f, 1) ∼= J B C (f, 1)

of profunctors C −7−→ δY . Now, by the construction of B in Lemma 5.16, we have

J B C (f,−) ∼= eq

(∏
a∈A

J(?, a)B C (fa,−)⇒
∏
a,b∈A

(J(?, b)� A(a, b))B C (fa,−)

)
.

Since C admits global V -tensors, for each a ∈ A we have an object xa ∈ CX such that

C (xa,−) ∼= J(?, a)B C (fa,−).

Similarly, for each pair a, b ∈ A we have an object ya,b ∈ CX such that

C (ya,b,−) ∼= (J(?, b)� A(a, b))B C (fa,−).
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Therefore, we have

J B C (f,−) ∼= eq

(∏
a∈A

C (xa,−)⇒
∏
a,b∈A

C (ya,b,−)

)
.

where the two maps are induced by canonical morphisms ya,b → xa and ya,b → xb in CX .
Similarly, since C has κ-sized fiberwise V -coproducts, there is an object z such that

C (z,−) ∼=
∏
a∈A

C (xa,−),

and an object w such that

C (w,−) ∼=
∏
a,b∈A

C (ya,b,−).

Thus we have
J B C (f,−) ∼= eq

(
C (z,−)⇒ C (w,−)

)
.

Finally, because C has fiberwise V -coequalizers, there is an object colimJ f such that

C (colimJ f,−) ∼= eq
(
C (z,−)⇒ C (w,−)

)
,

which completes the proof.

9.27. Corollary. If C admits indexed V -coproducts, fiberwise V -tensors, and fiberwise
V -coequalizers, then it admits all V -colimits with weights J : K −7−→ A where A is small in
the sense of §3.

In [GG76], an indexed V -category satisfying the hypotheses of Corollary 9.27 was
called cocomplete. Unfortunately, however, the converse of Corollary 9.27 fails, since
fiberwise V -coequalizers are not a small V -colimit: the relevant V -categoryX[V X [A]] has
two objects. But if we add at least finite fiberwise coproducts, we do get an equivalence.

9.28. Corollary. Let κ be an infinite regular cardinal. The following are equivalent for
a V -category C .

(i) C admits indexed V -coproducts, fiberwise V -tensors, and fiberwise V -colimits of
cardinality < κ.

(ii) C admits all colimits with weights J : K −7−→ A where A is κ-small.
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In the situation of Corollary 9.28, we will say that C is κ-cocomplete. The two most
important cases are when κ = ω, since ω-cocompleteness is an elementary condition, and
when κ =∞ is the size of the universe, in which case we simply say C is cocomplete.

Finally, combining Corollary 9.28 with Theorem 9.22, we see that when C is tensored
and cotensored, it suffices to construct colimits in the underlying fibration.

9.29. Corollary. If C has fiberwise V -tensors and V -cotensors, and Co has indexed
coproducts and fiberwise κ-small colimits, then C is κ-cocomplete.

Of course, everything we have proven applies dually to limits as well, and we have a
notion of κ-completeness.

9.30. Example. The same proofs show that for a locally small S with pullbacks and
a classical cosmos V, an indexed Psh(S,V)-category admits colimits with all weights
J : K −7−→ A, where A is set-small and locally small (in the sense of Example 5.19) and
J is locally small (in the same sense), if and only if it has indexed coproducts as in
Example 9.10, fiberwise tensors by small objects as in Example 9.17, and small fiberwise
colimits as in Example 9.21. This is equivalent to asking for V-enriched adjunctions
f! a f ∗ satisfying the Beck-Chevalley condition, plus that each V-enriched category CX

is V-cocomplete, with colimits preserved by the restriction functors f ∗.

10. Presheaf V -categories

Our goal is now to define presheaf V -categories. Here again it is convenient to use the
machinery of profunctors. In particular, for bicategory-enrichment the construction was
already done by [Str83]. We will refine it slightly, so as to simultaneously give a notion of
“small-presheaf category” as in [DL07] and a version suitable for an elementary context.

Let S have finite products, and let V be an S-indexed cosmos which is κ-complete and
κ-cocomplete for some chosen regular cardinal κ. We also include the case “κ = ∞” for
which every (small) set is κ-small. (As in §9, with appropriate care we could weaken these
assumptions. In particular, symmetry is not really needed.) The cases of most interest
are κ = ω (for when we care about being first-order) and κ =∞.

10.1. Definition. A V -profunctor H : B −7−→ A is κ-small if for every b ∈ B, there exist
a κ-small V -category A′, a V -functor i : A′ → A , and a V -profunctor H ′ : δ(εb) −7−→ A′

such that H(1, b) ∼= H ′ �A (1, i).

Note that since V is κ-cocomplete and A′ is κ-small, the composite H ′ � A (1, i)
automatically exists.

10.2. Example. The unit profunctor A : A −7−→ A is always κ-small; for each a ∈ A we
may take A′ = δ(εa), H ′ the unit profunctor, and i : δ(εa)→ A the inclusion.

10.3. Example. If A is itself κ-small, then every profunctor B −7−→ A is κ-small, as for
any b we may take A′ = A and i = 1A .
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10.4. Example. If H : B −7−→ A is κ-small, then so is H(1, f) for any f : C → B, since
H(1, f)(1, c) = H(1, f(c)).

10.5. Example. Finally, the connection with the most classical case is a little bit sur-
prising. Suppose V = Fam(V) and A = Fam(A) as in Example 4.2, and that H is
likewise induced from a V-enriched profunctor B −7−→ A. Note that a κ-small Fam(V)-
category is equivalently a small V-enriched category with a partition of its objects into
a family of sets with a κ-small indexing set (but no cardinality restrictions on the indi-
vidual sets in the partition). Profunctors between such categories are, up to equivalence,
just V-enriched profunctors, and functors are those that respect the partitions. It follows
that H is κ-small in the sense of Definition 10.1 if and only if it is small in the sense
of [DL07]—in particular, the cardinal κ is completely irrelevant!

This makes more sense if we realize that κ does not exactly measure the “size” of a V -
category or profunctor, but rather its “departure from elementarity”, the case κ = ω being
the purely elementary one. The point is that for Set-indexed categories of families, sets of
arbitrary cardinality are already built into the indexing and have “become elementary”.

10.6. Remark. In Definition 10.1 we are free to assume that i is fully faithful and
indexed. For if not, define a new κ-small V -category A′′ with one object x̂ for every object

x ∈ A′, and with εx̂ = ε(ix) and A′′(x̂, ŷ) = A (ix, iy). Then i factors as A′
k−→ A′′

j−→ A ,
where j is fully faithful and indexed, and we have

H ′ �A (1, i) ∼= (H ′ � A′′(1, k))�A (1, j),

the composite H ′ � A′′(1, k) existing since A′ is κ-small.

We also observe that when the domain of a small profunctor is a small category, then
the decompositions of Definition 10.1 can be assembled into a single one.

10.7. Lemma. If H : B −7−→ A is a κ-small profunctor, where B is a κ-small V -category,
then there exists a κ-small V -category A′, a V -profunctor H ′ : B −7−→ A′, and a V -functor
i : A′ → A such that H ∼= H ′ �A (1, i).

Proof. By assumption, for each b ∈ B we have a κ-small V -category Ab, a profunctor
Hb : δ(εb) −7−→ Ab, and a functor ib : Ab → A with H(1, b) ∼= Hb�A (1, ib). By Remark 10.6
we may assume each ib to be fully faithful and indexed.

Define A′ to have as objects the disjoint union of the objects of the Ab, for all b. This
is a κ-small set since each Ab is κ-small and so is B. We let these objects inherit their
extents from Ab (and hence from A ), and take their hom-objects to be

A′(a, a′) =

{
Ab(a, a

′) if a, a′ ∈ Ab
∅ if a ∈ Ab and a′ ∈ Ab′ with b 6= b′

where ∅ denotes a fiberwise initial object. It is easy to check that this defines a V -category
and that we have functors i : A′ → A and jb : Ab → A′ with ijb = ib.



ENRICHED INDEXED CATEGORIES 679

Similarly, we define H ′ : B −7−→ A′ by

H ′(a, b) =

{
Hb(a, ?) if a ∈ Ab
∅ otherwise.

Then H ′(1, b) = Hb�A′(1, jb). Thus, the isomorphisms Hb�A (1, ib)
∼−→ H(1, b) assemble

into a morphism H ′ � A (1, i) → H, which restricts to an isomorphism at each b and
hence is itself an isomorphism.

The functor i : A′ → A constructed in the proof of Lemma 10.7 is not fully faithful,
but we may apply the argument of Remark 10.6 to make it so.

Note also that the converse of Lemma 10.7 is universally valid: if A′ is κ-small, then
for any i : A′ → A and H : B −7−→ A′, the composite H � A (1, i) is κ-small, since
(H �A (1, i))(1, b) ∼= H(1, b)�A (1, i).

10.8. Lemma. If K : B −7−→ C is a κ-small V -profunctor, B is a κ-small V -category, and
H : A −7−→ B is any V -profunctor, then the composite H �K is κ-small.

Proof. Write K = K ′ �C(1, i) as in Lemma 10.7. Then H �K ∼= (H �K ′)�C(1, i).

10.9. Lemma. If a V -category C is κ-cocomplete (i.e. admits all colimits with weights
J : K −7−→ A where A is κ-small) then it admits all colimits with κ-small weights. Similarly,
any V -functor that preserves κ-small colimits preserves all colimits with κ-small weights.

Proof. By Theorem 9.23, it suffices to show that C admits J-weighted colimits for any
κ-small profunctor J : δX −7−→ A. But then we have J ∼= J ′�A(1, i) for some J ′ : δX −7−→ A′

and i : A′ → A with A′ being κ-small, and thus for any f : A→ C ,

colimJ f ∼= colimJ ′�A(1,i) f ∼= colimJ ′ colimA(1,i) f ∼= colimJ ′ fi

(using Theorem 8.8), which exists because A′ is κ-small. The second statement follows
immediately.

10.10. Lemma. For any κ-small profunctor H : B −7−→ A and any profunctor K : C −7−→
A , the hom H BK exists.

Proof. By Remark 5.22, it suffices to show that H(1, b) B K(1, c) exists for all b ∈ B
and c ∈ C . Fixing such, let H(1, b) ∼= H ′ �A (1, i), for i : A′ → A and j : A′′ → A with

A′ κ-small. Then for any well-typed ~L = L1, . . . , Ln, we have

V -Bimor(~L,H(1, b);K(1, c)) ∼= V -Multimor(~L,H ′,A (1, i);K(1, c))

∼= V -Multimor(~L,H ′;K(1, c)�A (i, 1))

∼= V -Multimor(~L;H ′ B (K(1, c)�A (i, 1))).

The compositeK(1, c)�A (i, 1) exists by Lemma 5.28, and the homH ′B(K(1, c)�A (i, 1))
exists because A′ is κ-small.
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Finally, we are ready to define presheaf V -categories.

10.11. Definition. Let A be any V -category. Then there is a V -fibration PκA defined
as follows.

(i) Its objects are κ-small V -profunctors H : δX −7−→ A, for some X ∈ S.

(ii) The extent of H : δX −7−→ A is X.

(iii) The hom-object PκA(H,K) ∈ V X×Y is H BK (which exists by Lemma 10.10).

(iv) The unit morphism IX → H BH is adjunct to the identity H → H.

(v) The composition morphism (K B L)� (H BK)→ (H B L) is adjunct to

(K B L)� (H BK)�H → (K B L)�K → L.

(vi) The restriction of H : δX −7−→ A along f : Y → X is H(1, f) : δY −7−→ A.

10.12. Remark. Recall that if A is κ-small, then so is every profunctor into it. In
particular, if κ′ ≥ κ then Pκ′A = PκA. Again we see that κ measures not the “size” of
the cocompletion per se, but its non-elementariness, and once it is above the level of A no
further change takes place. When κ has “stabilized” in this sense, we may write merely
PA.

10.13. Example. If V = Fam(V) and A = Fam(A), then we have remarked that a
V -profunctor into A is small just when it is induced by a small V-enriched profunctor
into A. This makes it easy to identify PκA with Fam(PA), where PA is the category
of small V-enriched presheaves from [DL07].

10.14. Example. If V = Self (S) and A is an S-internal category, regarded as a small
V -category, then every profunctor into A is κ-small, and PκA is the usual locally internal
category of internal presheaves on A.

10.15. Example. If V = Self (S) and A is a κ-small category enriched over S with its
cartesian monoidal structure, then we can regard A as a κ-small Self (S) category all of
whose objects have extent 1. In this case, PκA is a locally internal category of S-enriched
presheaves on A, with (PκA)X = (S/X)A

op
.

More generally, for any V we may perform the same construction with A being a V 1-
enriched category, obtaining a V -fibration PκA with (PκA)X = (V X)A

op
. In particular,

A might be freely generated by an S-internal category as in Example 7.3.

These presheaf categories have a universal property relating to the following universal
profunctors.
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10.16. Definition. For any A, there is a V -profunctor YA : PκA −7−→ A defined for a ∈ A
and H : δX −7−→ A by

Y (a,H) = H(a, 1) ∈ V X×εa.

Its action by A is determined by the action of A on the H’s, while its action by PκA is
determined by adjunction from the universal property of the homs H B K. Since each
H ∈ PκA is κ-small, so is YA.

Thus, any V -functor f : B → PκA induces a κ-small profunctor YA(1, f) : B −7−→ A.
Since YA(1, f) ∼= PκA(1, f)� YA, we have a canonical multimorphism

PκA(1, g),PκA(f, 1), YA(1, f) −→ PκA(1, f), YA −→ YA(1, f).

And since PκA(f, g) ∼= PκA(1, g)�PκA(f, 1), this multimorphism factors uniquely through
a bimorphism

PκA(f, g), YA(1, f) −→ YA(1, g). (10.17)

10.18. Proposition. For any V -functors f : B → PκA and g : C → PκA, the bimor-
phism (10.17) exhibits an isomorphism

PκA(f, g) ∼= YA(1, f)B YA(1, f).

Proof. Follows directly from the definition of hom-objects in PκA and Remark 5.22.

10.19. Proposition. For any V -category B, the functor

V -CAT (B,PκA) −→ V -PROF (B, A)[
f : B → PκA

]
7→

[
YA(1, f) : B −7−→ A

] (10.20)

is fully faithful, and its image consists of the κ-small profunctors.

Proof. Invoking Proposition 10.18, for f, g : B → PκA we have

V -CAT (B,PκA)(f, g) ∼= V -PROF (B,PκA(f, g))
∼= V -Bimor(B, YA(1, f);YA(1, g))
∼= V -PROF (YA(1, f);YA(1, g)).

It is straightforward to verify that this isomorphism is the action of (10.20) on homs;
thus (10.20) is fully faithful.

Now, this functor certainly takes values in κ-small profunctors. Conversely, suppose
H : B −7−→ A is κ-small. Of course, H consists of objects H(a, b) ∈ V εa×εb, for each pair of
objects a ∈ A and b ∈ B, together with action maps

H(a, b)� A(a′, a)→ H(a′, b) and (10.21)

B(b, b′)�H(a, b)→ H(a, b′). (10.22)
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The maps (10.21) make each H(−, b) into a profunctor δ(εb) −7−→ A, which is κ-small since
H is; thus it is an object of PκA with extent εb. And the maps (10.22) have adjuncts

B(b, b′) −→ H(a, b)BH(a, b′) = PκA(H(−, b), H(−, b′)),

so we can define an indexed V -functor B → PκA sending each b to H(−, b). We leave it
to the reader to check that this works.

Since the unit V -profunctor A : A −7−→ A is κ-small, it has a classifying V -functor
yA : A → PκA, which we call the Yoneda embedding. Thus, by definition, we have
YA(1, yA) ∼= A. On the other hand, we can recover YA from yA, since by Proposition 10.18

Pκ(yA, 1) ∼= YA(1, yA)B YA ∼= AB YA ∼= YA. (10.23)

10.24. Lemma. The Yoneda embedding is fully faithful.

Proof. Taking f = g = yA in Proposition 10.18 yields

PκA(yA, yA) ∼= YA(1, yA)B YA(1, yA) ∼= AB A ∼= A.

We now move on to familiar completeness properties of presheaf categories.

10.25. Theorem. For any B, the V -category PκB is κ-cocomplete.

Proof. Suppose A is κ-small, and let J : K −7−→ A be a weight and f : A→ PκB a functor.
Then f classifies a κ-small profunctor YB(1, f) : A −7−→ B, and we define ` : K → PκB to
be the classifying map of the composite J � YB(1, f). This composite exists because A is
κ-small, and the composite is itself κ-small by Lemma 10.8. We then have

PκB(`, 1) ∼= YB(1, `)B YB (by (10.18))

∼=
(
J � YB(1, f)

)
B YB

∼= J B
(
YB(1, f)B YB

)
∼= J B PκB(f, 1) (by (10.18) again),

so ` is a J-weighted colimit of f .

10.26. Corollary. For any f : B → PκA we have

f ∼= colimYA(1,f) yA,

In other words, every presheaf is a colimit of representables.

Proof. By the construction of colimits in Theorem 10.25, we have

YA

(
1, colimYA(1,f) yA

)
∼= YA(1, f)� YA(1, yA) ∼= YA(1, f)� A ∼= YA(1, f).

Thus, by the essential uniqueness of classifying arrows, f ∼= colimYA(1,f) yA.
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10.27. Corollary. The Yoneda embedding is dense, i.e. 1PκA is the left Kan extension
of yA along itself.

Proof. Take f = 1PκA in Corollary 10.26 and use (10.23).

10.28. Theorem. The Yoneda embedding y : B → PκB preserves all limits.

Proof. Let J : A −7−→ K be any weight, g : A→ B a functor, and ` : K → B a J-weighted
limit of g; thus B(1, `) ∼= B(1, g)C J . We then have

PκB(1, y`) ∼= YB B YB(1, y`) ∼= YB B YB(1, y)(1, `)

∼= YB BB(1, `) ∼= YB B
(
B(1, g)C J

)
∼=
(
YB BB(1, g)

)
C J

∼=
(
YB B YB(1, yg)

)
C J ∼= PκB(1, yg)C J,

so y` is a J-weighted limit of yg.

The following is a generalization of [DL07, Prop. 3.2].

10.29. Theorem. For κ-small A and any J : A −7−→ K, a functor f : A → PκB has a
J-weighted limit if and only if the profunctor YB(1, f)C J : A −7−→ B is κ-small.

Proof. Note that YB(1, f)CJ exists since A is κ-small. Consider a functor ` : K → PκB;
we will show that ` is a J-weighted limit of f if and only if it is a classifying map for
YB(1, f)C J . On the one hand, we have

PκB(1, `) ∼= YB B YB(1, `) (10.30)

while on the other we have

PκB(1, f)C J ∼=
(
YB B YB(1, f)

)
C J

∼= YB B
(
YB(1, f)C J

)
. (10.31)

Now if ` classifies YB(1, f)CJ , then by definition YB(1, `) ∼= YB(1, f)CJ , and thus (10.30)
and (10.31) are isomorphic; hence ` is a J-weighted limit of f . Conversely, if (10.30)
and (10.31) are isomorphic, we have

YB(1, `) ∼= B B YB(1, `) ∼= YB(1, y)B YB(1, `)

∼=
(
YB B YB(1, `)

)
(y, 1) ∼=

(
YB B

(
YB(1, f)C J

))
(y, 1)

∼=
(
PκB(1, f)C J

)
(y, 1) ∼= PκB(y, f)C J ∼= YB(1, f)C J

so that ` classifies YB(1, f)C J .

10.32. Corollary. If B is κ-small, then PκB is κ-cocomplete.
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Finally, we prove the familiar theorem that presheaf objects are free cocompletions.
For V -categories B and C, we write V -CAT κ-colim(B,C) for the full subcategory of
V -CAT (B,C) determined by the V -functors which preserve κ-small colimits.

10.33. Theorem. If A is any V -category and B is a κ-cocomplete V -category, then
composition with yA : A→ PκA defines an equivalence of categories

V -CAT κ-colim(PκA,B) −→ V -CAT (A,B).

In other words, PκA is the free κ-small cocompletion of A.

Proof. Since B is κ-cocomplete, by Lemma 10.9 any functor f : A → B admits a
YA-weighted colimit, which is to say a left Kan extension along yA : A→ PκA. Thus we
have a functor

Lany : V -CAT (A,B)→ V -CAT (PκA,B).

We claim that for any f : A → B, the functor LanyA f : PκA → B preserves κ-small
colimits. Suppose that J : K −7−→ C is a weight, where C is κ-small, and d : C → PκA is a
functor. Let ` = colimJ d : K → PκA. Using again the construction of colimits in PκA in
Theorem 10.25, we compute

B
(
(LanyA f)`, 1

) ∼= B(LanyA f, 1)� PκA(`, 1)
∼= PκA(1, `)BB(LanyA f, 1)

∼=
(
J � PκA(1, d)

)
BB(LanyA f, 1)

∼= J B
(
PκA(1, d)BB(LanyA f, 1)

)
∼= J BB((LanyA f)d, 1)

as desired. Therefore, we have an induced functor

LanyA : V -CAT (A,B)→ V -CAT κ-colim(PκA,B),

which we claim is an inverse equivalence to (10.33).
On the one hand, since yA is fully faithful by Lemma 10.24, by Corollary 8.9 we

have (LanyA f)yA ∼= f . On the other hand, by Corollary 10.27, 1PκA is the left Kan
extension of y along itself. Therefore, if g : PκA → B preserves κ-small colimits, hence
(by Lemma 10.9) also colimits with κ-small weights, it must preserve left Kan extensions
along yA. Thus we must have g ∼= LanyA(gyA).

10.34. Remark. In the case V = Psh(S,V), we can repeat all the above arguments but
adding “local smallness” conditions (in the sense of Example 5.19) to all κ-small categories
and profunctors. This yields a free cocompletion of any pseudofunctor Sop → V-CAT
under fiberwise V-enriched colimits and S-indexed V-coproducts.

As usual, we can also find more general free cocompletions inside PκA by closing up
the image of yA under various types of colimits. This is the subject of [Bun13].



ENRICHED INDEXED CATEGORIES 685

11. Monoidal V -categories and iterated enrichment

In previous sections we have assumed for simplicity that V was symmetric, but so far
everything could also be done in the non-symmetric case, simply by keeping more careful
track of right versus left homs. Now, however, we consider monoidal structures on V -
categories, for which we do need a symmetry on V (or at least a braiding, although we
will not consider that case).

Thus, let S have finite products and V be, for now, an S-indexed symmetric monoidal
category. This enables us to define opposites and tensor products of V -categories.

11.1. Definition. For a V -category A , its opposite A op has the same objects and
extents as A , with A op(x, y) = s∗A (y, x), where s : εx × εy ∼−→ εy × εx is the twist
isomorphism. Its identities are obvious, and its composition morphism is

s∗A (z, y)⊗εy s∗A (y, x) ∼−→ s∗
(
A (y, x)⊗εy A (z, y))

comp−−−→ s∗A (z, x)

using the symmetry of V and the composition morphism of A .

If A is a V -fibration, then so is A op, and we have (A op)X = (A X)op (the latter
opposite being as a V X-enriched category). On the other hand, for tensor products
this may not be the case. In fact, we have two seemingly different tensor products for
V -categories.

11.2. Definition. For V -categories A and B, their tensor product A ⊗B has as
objects pairs (a, b) where a is an object of A and b is an object of B, with ε(a, b) = εa×εb,
and hom-objects

A ⊗B
(
(a, b), (a′, b′)

)
= s∗

(
A (a, a′)⊗B(b, b′)

)
where s is the isomorphism

εa′ × εb′ × εa× εb ∼−→ εa′ × εa× εb′ × εb.

Its identities are induced by those of A and B in an obvious way, while its composition
morphism is

s∗
(
A (a′, a′′)⊗B(b′, b′′)

)
⊗εa′×εb′ s∗

(
A (a, a′)⊗B(b, b′)

)
∼−→ s∗

((
A (a′, a′′)⊗εa′ A (a, a′)

)
⊗
(
B(b′, b′′)⊗εb′ B(b, b′)

))
comp⊗comp−−−−−−−→ s∗

(
A (a, a′′)⊗B(b, b′′)

)
.

11.3. Definition. For indexed V -categories A and B, their indexed tensor product
A ⊗S B is defined by

(A ⊗S B)X = A X ⊗X BX ,

the right-hand side being the tensor product of V X-enriched categories. Thus, the objects
of (A ⊗S B)X are pairs (a, b) with a ∈ A X and b ∈ BX .
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The tensor product ⊗ makes V -CAT into a symmetric monoidal 2-category, with unit
object δ1, while ⊗S makes V -Cat into a symmetric monoidal 2-category, with a unit
object I having IX the unit V X-enriched category for all X. The two tensor products
are different, but as in §6, both are “loose enough” that they agree up to equivalence.

11.4. Theorem. The biequivalence Θ : V -Cat ' V -CAT : Γ is a symmetric monoidal
biequivalence.

Proof. First of all, evidently I ∼= Γ(δ1), hence δ1 ' ΘI. Now let A and B be indexed
V -categories; we define an equivalence ΘA ⊗ ΘB ' Θ(A ⊗S B). In one direction we
have an indexed functor:

F : ΘA ⊗ΘB −→ Θ(A ⊗S B)

defined on objects by F (a, b) = (π∗εba, π
∗
εab). In the other direction we have a non-indexed

functor
G : Θ(A ⊗S B) −→ ΘA ⊗ΘB

defined at an object (a, b) ∈ (A ⊗S B)X by G(a, b) = (a, b) with G(a,b) = ∆X . We leave
it to the reader to verify that these are inverse equivalences and support the additional
coherent structure of a symmetric monoidal biequivalence.

Now recall that a monoidal object, or pseudomonoid, in a monoidal 2-category consists
of an object W with a multiplication m : W ⊗ W → W and a unit e : I → W together
with the usual coherent associativity and unit isomorphisms. We thus obtain notions
of monoidal V -category and indexed monoidal V -category by using the tensor
products ⊗ and ⊗S respectively.

Theorem 11.4 tells us that if W is a V -fibration, then up to equivalence there is no
difference between these two notions. However, on the surface they look quite different.

On the one hand, a monoidal V -category has an external product � : W ⊗W → W .
If W is a V -fibration, then we may assume � to be indexed, so that ε(a � b) = εa × εb,
just like for the external product of V itself.

On the other hand, an indexed monoidal V -category is equipped with a fiberwise
product W ⊗S W → W , which takes two objects a, b ∈ W X to a�X b ∈ W X , just as for
the fiberwise product of V . Indeed, an indexed monoidal V -category is easily seen to be
just an indexed V -category for which each fiber W X is a monoidal V X-enriched category
and the transition functors f ∗ and their coherence isomorphisms are strong monoidal.

It should not now be surprising that the equivalence between these two types of
monoidal structure on a given V -fibration W exactly parallels the equivalence between
external and fiberwise products for V described in §2. This is easy to see concretely by
tracing through the equivalence constructed in Theorem 11.4. (If W moreover admits
indexed V -coproducts as in §9, then we can define a canceling product for it as well.)

11.5. Example. In fact, if we take V = Psh(S, Set) so that indexed V -categories are
precisely S-indexed categories, then this equivalence between the two types of monoidal
structure on a V -fibration reduces more or less exactly to our development in §2.
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Of course, it is easy to define symmetric monoidal V -categories, but closed ones require
the machinery of profunctors yet again, as pioneered by [DS97, DMS03, Str04]. First we
note the following.

11.6. Lemma. For V -categories A,B,C, there is an equivalence of categories

Z : V -PROF (A,B ⊗ C) ∼−→ V -PROF (Bop ⊗ A,C)

We will also need to know that Z respects composites and homs.

11.7. Lemma. For V -profunctors H : A −7−→ B ⊗ C, K : A′ −7−→ A, L : B −7−→ B′, and
M : C −7−→ C ′ we have

Z
(
K �H � (L⊗M)

) ∼= (Lop ⊗K)� ZH �M

where Lop is the evident induced profunctor (B′)op −7−→ Bop.

11.8. Lemma. For V -profunctors H : A −7−→ B ⊗ C, K : A −7−→ A′, L : B′ −7−→ B, and
M : C ′ −7−→ C we have

Z
(
(L⊗M)BH CK

) ∼= M B ZH C (Lop ⊗K).

Now suppose W is a symmetric monoidal V -category (as usual, symmetry of W is
not required, but keeping track of right versus left homs is tedious). If m : W ⊗W → W
is its tensor product V -functor, we have an induced profunctor W (m, 1) : W −7−→ W ⊗W ,
and hence a profunctor Z(W (m, 1)) : W op ⊗W −7−→ W .

11.9. Definition. A symmetric monoidal V -category W is closed if there is a V -functor
h : W op ⊗W → W and an isomorphism

Z(W (m, 1)) ∼= W (1, h). (11.10)

If W is a V -fibration, we may take h to be an indexed V -functor W op ⊗S W → W ,
and by Remark 6.8 we may consider (11.10) an isomorphism of indexed V -profunctors as
in Definition 4.9. If we unravel this explicitly, what it says is merely that the symmetric
monoidal V X-enriched category W X is closed, for each X, and that the transition functors
(f ∗)•W X → W Y are closed monoidal (this is encoded in the V -functoriality of h). We
denote these fiberwise homs in W X by W X(−,−) (by contrast with the V -valued fiberwise

hom W X(x, y) ∈ V X).

11.11. Example. In particular, for V = Psh(S, Set) as in Example 11.5, then this no-
tion of closedness for indexed monoidal V -categories reduces essentially to Theorem 2.14(i).

On the other hand, we might remain in the world of non-indexed V -profunctors, but
still assume that W is a V -fibration, so that h might as well be indexed. In this case,
h has the right type to be an external-hom such as in Theorem 2.14(iii). Namely, for
objects x and y with extents εx and εy, h(x, y) is an object of W εx×εy, which we denote
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W (x, y) (by contrast with the V -valued external hom W (x, y) ∈ V εx×εy). The universal
property of these homs is expressed by an isomorphism

W (x� y, z) ∼= W
(
x,W (y, z)

)
(11.12)

natural in x, y, z. And as usual, given objects W (y, z) with isomorphisms (11.12) that
are natural in x, then we can construct a unique (indexed) V -functor W op ⊗ W → W
making (11.12) natural in y and z as well. In particular, since this functor preserves
restrictions like any indexed V -functor, we have

(g × f)∗W (y, z) ∼= W (f ∗y, g∗z). (11.13)

which is a version of the compatibility condition from Theorem 2.14(iii).
However, the universal property (11.12) itself looks surprisingly different from that in

Theorem 2.14(iii). But if W has indexed V -coproducts preserved by �, then (11.12) is
equivalent to a universal property looking more like 2.14(iii). Namely, given (11.12), for
x ∈ W X×Y , y ∈ W Y , and z ∈ W X , we have

W X(x�[Y ] y, z) ∼= ∆∗XW (πY !∆
∗
Y (x� y), z)

∼= ∆∗XπY ∗∆
∗
Y W (x� y, z)

∼= ∆∗XπY ∗∆
∗
Y W (x,W (y, z))

∼= πY ∗∆
∗
X×Y W (x,W (y, z))

∼= πY ∗W
X×Y (x,W (y, z)) (11.14)

which is a version of (2.16), enhanced for compatibility with V , analogously to (9.7).
Conversely, if we assume (11.14) and also (11.13), then for x ∈ W X , y ∈ W Y , and
z ∈ W Z we have (omitting the symbol × in most places, for conciseness):

W (x� y, z) ∼= W XY Z
(
π∗Z(x� y), π∗XY z

)
∼= W XY Z

(
πXY !∆XY !∆

∗
XY (π∗Y Zx� π

∗
Xy), π∗XY z

)
∼= W XY Z

(
πXY !(1×∆XY )∗(∆XY × 1)!(π

∗
Y Zx� π

∗
Xy), π∗XY z

)
∼= W XY Z

(
∆XY !π

∗
Y Zx�[XY ] π

∗
Xy, π

∗
XY z

)
∼= πXY ∗W

XYXY Z
(
∆XY !π

∗
Y Zx,W (π∗Xy, π

∗
XY z)

)
∼= πXY ∗∆XY ∗W

XY Z
(
π∗Y Zx,∆

∗
XY (πXπXY )∗W (y, z)

)
∼= W XY Z

(
π∗Y Zx, π

∗
XW (y, z)

)
∼= W (x,W (y, z)).

Of course, the equivalence between the two kinds of V -profunctors implies that the fiber-
wise homs W X(−,−) and external homs W (−,−) for a symmetric monoidal V -category
are interderivable, with formulas just like those in Theorem 2.14. And if W has indexed
V -products, we can also define a canceling hom W [X](−,−) just as in Theorem 2.14.
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11.15. Example. As promised in §2, interpreting (11.12) for Psh(S, Set)-categories
yields a characterization of external-homs for ordinary indexed monoidal categories that
doesn’t require indexed coproducts. Recall that the Psh(S, Set)-valued external-hom of
an S-indexed category V is given at x ∈ V X and y ∈ V Y by

(S/(X × Y ))op −→ Set

(Z
(f,g)−−→ X × Y ) 7→ V Z(f ∗x, g∗y).

Thus, (11.12) consists of isomorphisms

V U
(
(f, g)∗(x� y), h∗z

) ∼= V U
(
f ∗x, (g, h)∗V (y, z)

)
for x ∈ V X , y ∈ V Y , z ∈ V Z , f : U → X, g : U → Y , and h : U → Z, satisfying
appropriate sorts of naturality. In particular, with this characterization the compatibility
condition (g × f)∗V (x, y) ∼= V (f ∗x, g∗y) is automatic.

Finally, we have all the ingredients of the following.

11.16. Definition. If V is an S-indexed cosmos, then a V -cosmos is a closed symmetric
monoidal indexed V -category which is ω-complete and ω-cocomplete (in the sense of
Corollary 9.28).

11.17. Example. Since indexed Self (S)-categories are just ordinary indexed categories
with the property of being “locally small”, a Self (S)-cosmos is just an ordinary S-indexed
cosmos with this property.

11.18. Example. An indexed Fam(V)-category of the form Fam(C) is a Fam(V)-
cosmos just when C is a V-cosmos in a classical sense, namely a complete and cocomplete
closed symmetric monoidal V-enriched category.

11.19. Example. Since Psh(S,V) is not in general a cosmos, Definition 11.16 is not
quite right for it. Instead, we may reasonably define an S-indexed V-enriched cosmos
to be a closed symmetric monoidal indexed Psh(S,V)-category with “locally small” limits
and colimits in the sense of Example 9.30.

For instance, if S is locally cartesian closed, complete, and cocomplete, then the cosmos
Ab(S) is enriched over abelian groups in this sense.

11.20. Example. If S is locally cartesian closed, complete and cocomplete, then Self (S)
is an S-indexed S-enriched cosmos, where in addition to being the base of the indexing,
we regard S as a classical cartesian monoidal category. Similarly, the cosmoi K and
K∗ from Examples 2.32 and 2.33 are indexed enriched cosmoi over a good category of
topological spaces. The interaction of these iterated enrichments on K -categories and
K∗-categories, along with variations with an action by a fixed topological group (as in
Example 2.37) is discussed in detail in [MS06, Ch. 10].
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Now, if W is a symmetric monoidal indexed V -category, then there is a lax symmetric
monoidal morphism Wo → V over S, defined on the fiber over X by W 7→ W X(IX ,W ).
Moreover, the following triangle commutes up to isomorphism:

V

%%

Wo

xx

oo

Psh(S, Set).

(11.21)

Conversely, if Wo is a symmetric monoidal S-indexed category equipped with a lax mor-
phism satisfying (11.21), and moreover Wo is closed, then by applying the induced change-
of-cosmos functor to the W -category W , we obtain a closed symmetric monoidal indexed
V -category structure on W . These two constructions are inverses, so just as for classical
monoidal categories, we have an equivalence between

(i) lax symmetric monoidal morphisms of fibrations W → V over S, where W is closed
symmetric monoidal, satisfying (11.21), and

(ii) closed symmetric monoidal V -fibrations.

Similarly, we can show that the lax morphism Wo → V has a strong monoidal left adjoint
if and only if the V -category W has fiberwise tensors, and that in this case Wo is a
cosmos if and only if W is a V -cosmos. This gives an alternative approach to many of
our examples from §2, but we will not revisit them all here.

We end with a version of the Day convolution monoidal structure [Day70] for V -
categories. Note that the monoidal V -category A appearing below is κ-small, hence
probably not a V -fibration; thus its tensor product and unit morphisms may not be
indexed V -functors.

11.22. Theorem. Let V be an indexed cosmos which is κ-complete and κ-cocomplete,
and let A be a κ-small symmetric monoidal V -category. Then PκA is a closed symmetric
monoidal V -category.

Proof. We define the product m̂ : PκA ⊗ PκA→ PκA to be the classifying map of the
profunctor

PκA ⊗ PκA
(YA⊗YA)�A(1,m)−−−−−7−−−−−→ A,

where m : A ⊗ A → A is the tensor product of A. The displayed composite exists since
A ⊗ A is κ-small. The unit δ1→ PκA is the classifying map of A(1, i), where i : δ1→ A
is the unit of A. By full-faithfulness and pseudofunctoriality of representable profunctors,
the coherence data for A lift automatically to the corresponding profunctors, and thence
to their classifying functors; thus PκA is symmetric monoidal. For closedness, we use
Proposition 10.18 to compute

PκA(m̂, 1) ∼=
(
(YA ⊗ YA)� A(1,m)

)
B YA

∼= (YA ⊗ YA)B
(
A(1,m)B YA

)
∼= (YA ⊗ YA)B YA(m, 1).
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Thus, by Lemma 11.8 and Proposition 10.18 again, we have

Z(PκA(m̂, 1)) ∼= YA B
(
Z(YA(m, 1))C (PκA⊗ Y op

A )
)

∼= Pκ(1, ĥ)

where ĥ : (PκA)op×PκA→ PκA is the classifying functor of Z(YA(m, 1))C (PκA⊗ Y op
A ).

Thus, PκA is closed.

11.23. Remark. In fact, for Theorem 11.22 it suffices for A to be a symmetric monoidal
object in V -PROF , rather than V -CAT — that is, a promonoidal V -category. As in
the classical case [Day70, Day74], promonidal structures on A are actually equivalent to
closed symmetric monoidal structures on PκA.

This allows us to produce easily two of the most important topological examples.

11.24. Example. The cosmos K∗ of sectioned topological spaces from Example 2.33 is
enriched and fiberwise-tensored over the cosmos K of topological spaces from Example 2.32,
so we have a monoidal adjunction K � K∗. Let I be the topologically enriched cat-
egory of finite-dimensional inner product spaces and linear isometric isomorphisms, and
regard it as a set-small K -category with all objects having extent 1, as in Example 10.15.

Now change cosmos along the left adjoint K → K∗ (which adds disjoint sections) to
obtain a set-small K∗-category I+. Then P(I op

+ ), with its Day convolution monoidal
structure from Theorem 11.22, is the K∗-cosmos of parametrized I -spaces described
in [MS06, §11.1].

Finally, one-point compactifications yield a sphere object S ∈ P(I op
+ )1 which is a

commutative monoid. Thus, regarding P(I op
+ ) as an ordinary cosmos as above, and

applying Example 2.35, we obtain the K∗-cosmos of parametrized orthogonal spectra
from [MS06]. (In [MS06], everything has an additional action by a fixed topological
group; this can easily be added using Example 2.37.)

11.25. Example. Recall from Example 2.38 that we have a Grp(Top)-indexed monoidal
category Act(Top), where Grp(Top) is the category of topological groups and Act(Top)G

is the cartesian monoidal category of G-spaces. From Example 2.33 we obtain a Grp(Top)-
indexed monoidal category Act(Top)∗ of based spaces with group actions.

Let G ⊆ Grp(Top) be the full subcategory of finite groups, and TopG the restriction
of Act(Top)∗ to G. This is a fiberwise complete and cocomplete G-indexed cosmos.

Let IG be the TopG-category with objects (G ∈ G, n ∈ N, ρ : G → O(n)); that is,
finite-dimensional representations of finite groups. The extent of such a representation is
of course G, while IG(ρ, ρ′) ∈ (TopG)

G×G′ is the space of linear isometric isomorphisms

Rn ∼−→ Rn′ (which is of course empty unless n = n′) with a disjoint basepoint added, with
(G × G′)-action by conjugation. Of course, this may be obtained by change of cosmos
from an unbased version.

Now IG is a set-small TopG-fibration, and it is moreover symmetric monoidal under
the direct sum of representations. Therefore, by Theorem 11.22, we have a TopG-cosmos



692 MICHAEL SHULMAN

P(Iop
G ) of “IG-spaces”. (In [Boh12], only the objects of P(Iop

G ) of extent 1 are called
IG-spaces; those of extent G ∈ G have an additional G-action on each of their spaces.)

Finally, one-point compactifications yield a canonical sphere object S ∈ P(Iop
G )1 which

is a commutative monoid, and so again from Example 2.35 we obtain a TopG-cosmos
whose objects of extent 1 are the orthogonal G-spectra of [Boh12].
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