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MULTITENSORS AS MONADS ON CATEGORIES OF ENRICHED
GRAPHS

MARK WEBER

Abstract. In this paper we unify the developments of [Batanin, 1998], [Batanin-
Weber, 2011] and [Cheng, 2011] into a single framework in which the interplay between
multitensors on a category V , and monads on the category GV of graphs enriched in
V , is taken as fundamental. The material presented here is the conceptual background
for subsequent work: in [Batanin-Cisinski-Weber, 2013] the Gray tensor product of 2-
categories and the Crans tensor product [Crans, 1999] of Gray categories are exhibited
as existing within our framework, and in [Weber, 2013] the explicit construction of the
funny tensor product of categories is generalised to a large class of Batanin operads.

1. Introduction

A monad on a category C is an excellent way of defining extra structure on the objects
of C. For instance in the globular approach to higher category theory [Batanin, 1998] an
n-dimensional categorical structure of a given type is defined as the algebras for a given
monad on the category Ĝ≤n of n-globular sets.

Multitensors are another way of defining extra structure. Recall [Batanin-Weber, 2011]
that a multitensor E on a category V is simply the structure of a lax monoidal category
on V . As such it includes the assignment

(X1, ..., Xn) 7→ E(X1, ..., Xn)

of the n-fold tensor product of any finite sequence of objects of V and non-invertible
coherences including unit maps uX : X → E(X) and substitution maps

E(E(X11, ..., X1n1), ..., E(Xk1, ..., Xknk))→ E(X11, ..., X1n1 , ..., Xk1, ..., Xknk)

which satisfy some natural axioms. In particular, the unary case n = 1 is interesting, and
restricting attention just to this case one has a monad E1 on V . On the other hand in
the case where the unit is the identity and the substitutions are invertible, one refinds
the usual notion of monoidal category, though expressed in an “unbiased” way in terms
of n-ary tensor products.

From this perspective the notion of enriched category does not require the invertibility
of these coherence maps, and so one has the notion of a category enriched in E (also known
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as an “E-category”) for any multitensor. Thus, a multitensor on a category V is a way of
endowing graphs enriched in V with extra structure. Recall a graph X enriched in V is
simply a set X0 of objects, together with objects X(a, b) of V called “homs” for all pairs
(a, b) of objects of V . In particular an E-category structure on X includes the structure
of an E1 algebra on the homs of X.

These two ways of defining extra structure are related. If V has coproducts and the
assignation

(X1, ..., Xn) 7→ E(X1, ..., Xn)

preserves coproducts in each variable, in which case we say that E is a distributive multi-
tensor, then in a straight forward manner E defines a monad ΓE on the category GV of
graphs enriched in V , whose algebras are E-categories. The purpose of this article is to
study this process

(V,E) 7→ (GV,ΓE)

of assigning a monad to a distributive multitensor in a systematic way.
The developments presented in this article are applied to simplifying and unifying

earlier work in the subject [Batanin, 1998] [Batanin-Weber, 2011] [Cheng, 2011], and as
a springboard for subsequent developments. In [Weber, 2013] the funny tensor product
of categories is exhibited as a special case of a symmetric monoidal closed structure
that can be exhibited on the category of algebras of a wide class of higher operads. In
[Batanin-Cisinski-Weber, 2013] the Gray and Crans tensor products are exhibited within
our emerging framework, weak n-categories with strict units are defined and then exhibited
as obtainable via some iterated enrichment. For both [Weber, 2013] and [Batanin-Cisinski-
Weber, 2013], the work presented here is used extensively.

This article is organised as follows. In section(2) categories of enriched graphs are
studied. This uses basic categorical notions recalled and defined in appendix(A) related to
the theory of locally presentable categories. In section(3) the construction of monads from
multitensors is discussed, and how properties on the multitensor correspond to properties
on the corresponding monad is spelled out in detail in theorem(3.7). The monads that
arise from multitensors via our construction are characterised in section(4) theorem(4.9).
Later in the same section the 2-functors underlying the multitensor to monad construction
are given, at which point the connection with the formal theory of monads [Street, 1972]
is made.

This connection is exploited to explain the ubiquity of the distributive laws that arise
in higher category theory [Cheng, 2011]. In section(5) the senses in which a monad
and multitensor may distribute is spelled out as part of a generalisation of the classical
theory of monad distributive laws of Beck [Beck, 1969]. As an application we give a
very efficient construction of the monads for strict n-categories in section(5.16). This
is the construction at the level of monads which corresponds at the level of theories to
the inductive formula Θn+1 = ∆ o Θn of [Berger, 2007]. We recover this formula from
our perspective in section(5.16), from more general considerations in section(5.8) which
bring together the developments of [Berger-Melliès-Weber, 2012] with those of the present
article.
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In the setting of the theory of cartesian monads [Burroni, 1971, Hermida, 2000, Lein-
ster, 2003] a T -operad for a cartesian monad T on a category E with pullbacks consists of
another monad A on E together with a cartesian monad morphism 1 α : A→ T . Similarly
given a cartesian multitensor E on a category V one defines an E-multitensor to consist of
another multitensor F on V together with a cartesian multitensor morphism φ : F → E
[Batanin-Weber, 2011]. In section(6.1) the basic correspondence between E-multitensors
and ΓE-operads is given.

A weak n-category is an algebra of a contractible n-operad2. In section(6) we recall
this notion, give an analogous notion of contractible multitensor, and in corollary(6.10),
give the canonical relationship between them. Finally in section(6.11) we recover Cheng’s
description [Cheng, 2011] of Trimble’s definition of weak n-category.

Notation and terminology. Given a monad T on a category V the forgetful functor
from the category of Eilenberg-Moore algebras of T is denoted as UT : V T → V . We
denote a T -algebra as a pair (X, x), where X is the underlying object and x : TX → X
is the algebra structure. When thinking of monads in a 2-category, it is standard practise
to refer to them as pairs (A, t) where A is the underlying object, t is the underlying
endomorphism, and the unit and multiplication are left implicit. Similarly we refer to
a lax monoidal category as a pair (V,E) where V is the underlying category, E is the
multitensor, and the unit and substitution are left implicit.

The category of presheaves on a given category C is denoted Ĉ. Given a functor
F : C → D we denote by D(F, 1) : D → Ĉ with object map D 7→ D(F (−), D). For the
category of globular sets it is typical to denote the image of the yoneda embedding as

0 1 2 3 ...// // // //
////////

but then 0 denotes the globular set with one vertex and no edges or higher cells. Thus we
adopt the convention of using 0 to denote objects of categories that we wish to think of as
representing some underlying objects functor. Since initial objects are also important for
us, we use the notation ∅ to denote them. While multicategories aren’t directly multiten-
sors, they become so after convolution – see [Day-Street, 2003]. Moreover when working
seriously with multitensors, one is always manipulating functors of many variables, and
so in fact working inside the CAT-enriched multicategory of categories. It is for these
reasons that we find the term “multitensor” appropriate.

2. Categories of enriched graphs

Preliminary to the correspondence between monads and multitensors that we describe
in this paper, is the passage V 7→ GV from an arbitrary category V , to the category
GV of graphs enriched in V . In section(2.1) we describe the basic properties of G as an

1That is, α’s naturality squares are pullbacks, and α satisfies axioms expressing its compatibility with
the monad structures on A and T .

2In this work we use the notion of contractibility given in [Leinster, 2003] rather than the original
notion of [Batanin, 1998].
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endofunctor of CAT, whose object map is V 7→ GV . Then in section(2.8), we describe
what categorical properties G preserves in theorem(2.15). From this it is clear that as far
as basic categorical properties are concerned, GV is at least as good as V .

2.1. Enriched graphs.

2.2. Definition. Let V be a category. A graph X enriched in V consists of an underlying
set X0 whose elements are called objects, together with an object X(a, b) of V for each
ordered pair (a, b) of objects of X. The object X(a, b) will sometimes be called the hom
from a to b. A morphism f : X→Y of V -enriched graphs consists of a function f0 : X0→Y0

together with a morphism fa,b : X(a, b)→Y (fa, fb) for each (a, b). The category of V -
graphs and their morphisms is denoted as GV , and we denote by G the obvious 2-functor

G : CAT→ CAT V 7→ GV

with object map as indicated.

Note that for n ∈ N, GnSet is the category of n-globular sets, and that GGlob ∼= Glob
where Glob denotes the category of globular sets. In fact applying the 2-functor G succes-
sively to the inclusion of the empty category into the point (ie the terminal category), one
obtains the inclusion of the category of (n−1)-globular sets into the category of n-globular
sets. In the case n > 0 this is the inclusion with object map

X0
... Xn−1oooo
oooo 7→ X0

... Xn−1 ∅oooooo
oooooo

and when n=0 this is the functor 1→Set which picks out the empty set. Thus there is
exactly one (−1)-globular set which may be identified with the empty set.

When V has an initial object ∅, one can regard any sequence of objects (Z1, ..., Zn)
of V as a V -graph. The object set is {0, ..., n}, (Z1, ..., Zn)(i − 1, i) = Zi for 1≤i≤n,
and all the other homs are equal to ∅. We denote also by 0 the V -graph corresponding
to the empty sequence (). Note that 0 is a representing object for the forgetful functor
(−)0 : GV→Set which sends an enriched graph to its underlying set of objects. Globular
pasting diagrams [Batanin, 1998] may be regarded as iterated sequences, for instance
(0, 0, 0) and ((0, 0), (0), (0, 0, 0)) correspond respectively to

• • • •// // // • • • •
��
//
HH

��

��

//
��  
?? KK

��

��

��

when one starts with V = Set. We denote by “n” the free-living n-cell, defined inductively
by n+ 1 = (n).

It is often better to think of G as taking values in CAT/Set. By applying the end-
ofunctor G to the unique functor tV : V→1 for each V , produces (−)0 which sends an
enriched graph to its underlying set of objects. This 2-functor

G1 : CAT→ CAT/Set
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has a left adjoint described as follows. First to a given functor f : A→ Set we denote by
f×2 : A → Set the functor with object map a 7→ f(a) × f(a). Then to a given functor
g : A → Set we denote by g• the domain of the discrete opfibration corresponding to g
via the Grothendieck construction. That is, g• can be defined via the pullback

g• Set•

SetA

//

U
��

//
g

��
pb

where U is the forgetful functor from the category of pointed sets and base point preserving
maps. The left adjoint to G1 is then described on objects by f 7→ f×2

• . Explicitly f×2
•

has as objects triples (a, x, y) where a is an object of A, and (x, y) is an ordered pair of
objects of fa. Maps in f×2

• are maps in A which preserve these base points.
It is interesting to look at the unit and counit of this 2-adjunction. Given a category V ,

(GtV )×2
• is the category of bipointed enriched graphs in V . The counit εV : (GtV )×2

• → V
sends (X, a, b) to the hom X(a, b). When V has an initial object εV has a left adjoint
LV given by X 7→ ((X), 0, 1). Given a functor f : A→Set the unit ηf : A→G(f×2

• ) sends
a ∈ A to the enriched graph whose objects are elements of fa, and the hom ηf (a)(x, y) is
given by the bipointed object (a, x, y).

A given functor f : A→ GV thus admits a canonical factorisation

A G(f×2
0• ) GV

ηf0 // GHV (f) //

where on objects one has HV (a, x, y) = f(a)(x, y). This is the generic factorisation of f in
the sense of [Weber, 2007]. The adjointness (−)×2

• a G1 says that f is uniquely determined
by its object part f0 := (−)0f and its hom dataHV (f). For the sake of computing colimits
in GV , as we will in section(2.8), it is worth noting that one can reorganise the data of a
lax triangle as on the left in

A B

GV

k //

h����f

φ +3

A B

Set

k //

h0����f0

φ0 +3
f×2

0• h×2
0•

V

φ×2
0• //

HV (h)����HV (f)

Hφ+3

into GV in the same way. The middle triangle is just (−)0φ. In the right hand triangle, φ×2
0•

is the evident functor with object map (a, x, y) 7→ (ka, φa(x), φa(y)) which is determined
by φ0. The natural transformation Hφ has components given by the hom maps of the
components of φ, that is (Hφ)(a,x,y) is the map (φa)x,y : f(a)(x, y)→ hk(a)(φa(x), φa(y)).
It then follows easily from unpacking the data involved that

2.3. Lemma. Given f : A → GV , k : A → B and h : B → GV , the assignment
φ 7→ (φ0,Hφ) is a bijection which is natural in h.
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Suppose that one has an object 0 in a category A, and f is the representable f =
A(0,−). Then f×2

• may be regarded as the category of endo-cospans of the object 0, that
is to say the category of diagrams

0→ a← 0

and a point of a ∈ A is now just a map 0→a. When A is also cocomplete one can compute
a left adjoint to ηf . To do this note that a graph X enriched in f×2

• gives rise to a functor

X : X
(2)
0 → A

where X0 is the set of objects of X. For any set Z, Z(2) is defined as the following category.
It has two kinds of objects: an object being either an element of Z, or an ordered pair of
elements of Z. There are two kinds of non-identity maps

x→ (x, y)← y

where (x, y) is an ordered pair from Z, and Z(2) is free on the graph just described. A
more conceptual way to see this category is as the category of elements of the graph

Z×Z Z
//
//

where the source and target maps are the product projections, as a presheaf on the
category

G≤1 = 0 1
//
//

and so there is a discrete fibration Z(2)→G≤1. The functor X sends singletons to 0 ∈ A,
and a pair (x, y) to the head of the hom X(x, y). The arrow map of X encodes the
bipointings of the homs. One may then easily verify

2.4. Proposition. Let 0 ∈ A, f = A(0,−) and A be cocomplete. Then ηf has left
adjoint given on objects by X 7→ colim(X).

There is a close connection between G and the Fam construction. A very mild re-
formulation of the notion of V -graph is the following: a V -graph X consists of a set X0

together with an (X0×X0)-indexed family of objects of V . Together with the analogous
reformulation of the maps of GV , this means that we have a pullback square

GV
(−)0=GtV

��

// FamV

Fam(tV )
��

Set
(−)2

// Set

in CAT, and thus a cartesian 2-natural transformation G → Fam. From [Weber, 2007]
theorem(7.4) we conclude
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2.5. Proposition. G is a familial 2-functor.

In particular notice that for all V , the functor (−)0 : GV → Set has the structure
of a split fibration. The cartesian morphisms are exactly those which are fully faithful,
which are those morphisms of V -graphs whose hom maps are isomorphisms. The vertical-
cartesian factorisation of a given f : X → Y corresponds to its factorisation as an identity
on objects map followed by a fully-faithful map. Moreover it follows from the theory of
[Weber, 2007] that G preserves conical connected limits as well as all the notions of
“Grothendieck fibration” which one can define internal to a finitely complete 2-category,
and that the obstruction maps for comma objects are right adjoints. In addition to this
we have

2.6. Lemma. G preserves Eilenberg-Moore objects.

Given a monad T on a category V , we shall write V T for the category of T -algebras and
morphisms thereof, and UT : V T→V for the forgetful functor. We shall denote a typical
object of V T as a pair (X, x), where X is the underlying object in V and x : TX→X is
the T -algebra structure. From [Street, 1972] the 2-cell TUT → UT , whose component at
(X, x) is x itself has a universal property exhibiting V T as a kind of 2-categorical limit
called an Eilenberg-Moore object. See [Street, 1972] or [Lack-Street, 2002] for more details
on this general notion. The direct proof that for any monad T on a category V , the
obstruction map G(V T )→G(V )G(T ) is an isomorphism comes down to the obvious fact
that for any V -graph B, a GT -algebra structure on B is the same thing as a T -algebra
structure on the homs of B, and similarly for algebra morphisms.

Returning to the consideration of G1, our final observation for this section is

2.7. Proposition. G1 : CAT→ CAT/Set is locally fully faithful.

Proof. Given functors F,G : V → W , the data of a natural transformation φ : GF → GG
over Set amounts to giving for each X ∈ GV and a, b ∈ X0, maps φX,a,b : FX(a, b) →
GX(a, b), such that for f : X → Y one has the naturality condition for f between a and
b:

FX(a, b) GX(a, b)

GY (fa, fb)FY (fa, fb)

φX,a,b //

Gfa,b
��

//
φY,fa,fb

��
Ffa,b =

So we define φ′ : F → G by φ′Z = φ(Z),0,1. One has c : (X(a, b)) → X in GV with
object map (0, 1) 7→ (a, b) and hom map c0,1 the identity. The naturality condition for c
between 0 and 1 yields φ(X(a,b)),0,1 = φX,a,b from which it follows that φ = Gφ′. Conversely
(Gφ)′Z = (Gφ)(Z),0,1 = φZ and so φ 7→ φ′ is the inverse of

CAT(V,W )(F,G)→ CAT/Set(GV,GW )(GF,GG) ψ 7→ Gψ.
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2.8. Properties of GV . This section contains a variety of results from which it is clear
that as a category, GV is at least as good as V . To begin with, any limit that V possesses
is also possessed by GV .

2.9. Proposition. Let I be a small category. If V admits limits of functors out of I,
then so does GV and these are preserved by (−)0.

Proof. Let F : I → GV be a functor. We construct its limit L directly as follows. First
we take the set L0 to be the limit of the functor F (−)0, writing λi,0 : L0 → F (i)0 for
a typical component of the limit cone. Without loss of generality one can represent the
elements of L0 explicitly as matching families of elements of the F (i)0. That is, any such
element is a family

x := (xi ∈ F (i)0 : i ∈ I)

such that for all f : i→ j in I, one has Ff(xi) = xj. Given an ordered pair (x, y) of such
families, one has a functor

Fx,y : I → V i 7→ Fi(xi, yi)

with indicated object map. One then defines the hom L(x, y) to be the limit in V of Fx,y,
and we write λi,x,y : Fi(xi, yi) → L(x, y) for the components of the limit cone. These
provide the hom maps, and λi,0 the object functions, of morphisms λi : L → Fi. It is
easily verified that these exhibit L as a limit of F .

In particular from the explicit construction of limits just described, it is clear that GV
possesses some pullbacks under no conditions on V .

2.10. Corollary. For any category V , GV admits all pullbacks along fully faithful maps,
and these are preserved by (−)0. Moreover the pullback of a fully faithful map is itself
fully faithful.

Proof. In this case the construction of proposition(2.9) goes through because the pull-
backs in V that arise in the construction are all along an isomorphism, and such clearly
exist in any V . The last statement follows from this explicit construction since isomor-
phisms in any V are pullback stable.

By lemma(2.3) one can compute the left kan extension of F : I → GV , along any
functor G : I → J between small categories, in the following way. First compute the left
extension K0 : J → Set of F0 along G denoting the universal 2-cell as κ0 : F0 → K0G.
Then given sufficient colimits in V , compute the left extension HV (K) : K×2

0• → V of
HV (F ) along κ×2

0• , denoting the universal 2-cell as Hκ : HV (F ) → HV (K). Thus we
have the object part K0 and hom data HV (K) of a functor K : J → GV . The natural
transformation κ : F → KG corresponding to (κ0,Hκ) by lemma(2.3) clearly exhibits K
as the left extension of F along G, by a straight forward application of lemma(2.3) and
the definition of “left kan extension”.

When J = 1 note that K×2
0• is just the discrete category K0×K0, and so for x, y ∈ K0

one may compute HV (K)(x, y) as the colimit of HV (F ) restricted to the fibre of κ×2
0• over

(x, y).
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2.11. Proposition.

1. For any category V , GV has a strict initial object.

2. If V has an initial object, then GV has coproducts and pullbacks along coproduct
inclusions.

3. If V has a strict initial object, then every X ∈ GV decomposes as a coproduct of
connected objects.

4. If λ is a regular cardinal and V has λ-filtered colimits, then so does GV .

5. If V has all small colimits, then so does GV .

In each case the colimits in GV under discussion are preserved by (−)0.

2.12. Remark. In appendix(A) we recall some of the general theory of connected objects.
An alternative formulation of (3) is that V having a strict initial object implies that GV
is locally connected in the sense of definition(A.3), which by lemma(A.4), implies that
GV is extensive. If moreover one has finite limits in V , and thus also in GV , then
by proposition(A.9), this coproduct decomposition into connected objects is essentially
unique, and the assignation X 7→ π0(X) is the object map of a left adjoint to the functor
(−) · 1 given by taking copowers with 1.

Proof. (of proposition(2.11)). By the above uniform construction of colimits one has
(5), and the preservation of any colimit by (−)0 when it is constructed in this way. The
empty V -enriched graph is clearly strictly initial in GV and so (1) follows.

(2): In the case where I is discrete, κ×2
0• is the inclusion∐

i∈I

F (i)0 × F (i)0 →
∐
i

F (i)0 ×
∐
i

F (i)0

(between discrete categories) which picks out pairs (x, y) which live in the same com-
ponent. Thus the coproduct X :=

∐
iXi in GV is defined to have objects those of the

disjoint union of the objects sets of the Xi, and homs given by X(x, y) = Xi(x, y) when
x and y are both in Xi, and ∅ otherwise. The required pullbacks exist by corollary(2.10)
since coproduct inclusions are clearly fully faithful.

(3): Let X ∈ GV . We define the relation on X0 as

{(a, b) : V (X(a, b), ∅) = ∅} ⊆ X0 ×X0

and say that a and b are in the same component of X when they are identified by the
equivalence relation generated by the above relation. Denote by π0(X) the set of equiv-
alence classes, which themselves are called connected components. For i ∈ π0(X0) we
denote by Xi the full sub-V -graph of X whose objects are those of X’s i-th component,
and by cX,i : Xi → X the evident inclusion.
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Suppose π0(X) = 1 and f : X →
∐

j Yj is a graph morphism into some coproduct
of V -graphs. We will now show that such an f factors uniquely through a unique sum-
mand, so that X is connected. From the explicit construction of coproducts in GV in
proposition(2.11), it is clear that coproduct inclusions in GV are mono. Thus it suffices to
show that f factors through a unique summand. Since X is non-empty it suffices to show
that f sends any pair (a, b) of elements of X0 to the same summand. Since π0(X) = 1
there is a sequence

(xj : 0 ≤ j ≤ n)

of elements of X0, such that x0 = a, xn = b and for all 1 ≤ j ≤ n, the set

Si,j := V (X(xj−1, xj), ∅)× V (X(xj, xj−1), ∅)

is empty. But if fxj−1 and fxj are in different components of the coproduct, then both
Y (fxj−1, fxj) and Y (fxj, fxj−1) would be ∅, and so the hom maps (fxj−1,xj , fxj ,xj−1

)
would give an element of Si,j. Thus all the elements (x0, ..., xn) are sent to the same
component of the coproduct by f .

Thus for general X, the Xi for i ∈ π0(X) are connected. Since V ’s initial object is
strict, a and b in X0 will be in a different component iff X(a, b) ∼= ∅. Thus by the explicit
construction of coproducts in GV , the cX,i are the components of a coproduct cocone.

(4): When I is λ-filtered we note that since λ-filtered colimits in Set commute with
binary products, the cocone

κ0,i × κ0,i : F (i)0 × F (i)0 → K0 ×K0

in Set is also a colimit cocone. Thus the functor κ×2
0• : F×2

0• → K0 × K0 has another
interpretation. Since F×2

0• is the category of elements of the functor i 7→ F (i)0 × F (i)0,
then by the above remark K0 ×K0 is the set of connected components of F×2

0• and κ×2
0• is

the canonical projection. So the fibres of κ0•• are the connected components of F×2
0• . Since

the evident forgetful functor F×2
0• → I is a discrete opfibration, the connected components

of F×2
0• are themselves λ-filtered. Thus a fibre of κ×2

0• over a given (x, y) will itself be λ-
filtered, and so λ-filtered colimits in V will suffice for the construction of the colimit in
this case.

2.13. Remark. There is one very easy to understand class of limit/colimit of V -graphs.
These are those for functors F : J → GV where J is connected and F0 : J → Set is
constant at some set X. For then the limit or colimit of F may also be taken to have
object set X, and one computes the hom between a and b ∈ X of the limit or colimit by
taking the limit or colimit in V of the functor J → V with object map j 7→ F (j)(a, b).

Now we describe how the 2-functor G preserves locally (c)-presentable categories and
Grothendieck toposes. First we require a general lemma which produces a strongly gen-
erating or dense subcategory of GV from one in V in a canonical way. Recall that a
functor i : D → V is strongly generating when V (i, 1) : D → D̂ is conservative (ie reflects
isomorphisms), and that i is dense when V (i, 1) is fully faithful. Moreover recall that an
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object D of a category V is said to be small projective when V (D,−) preserves all small
colimits.

For the following lemma we require also the endofunctor

(−)+ : Cat −→ Cat

of the 2-category Cat of small categories. For a small category C, one describes C+ as
follows. There is an injective on objects fully faithful functor

ιC : C→ C+ C 7→ C+

and C+ has an additional object 0 not in the image of ιC. Moreover for each C ∈ C one
has maps

σC : 0→ C+ τC : 0→ C+

and for all f : C→D one has the equations f+σC = σD and f+τC = τD. Starting from the
terminal category and iterating (−)+ n times gives the usual site G≤n

0 ... n
σ // σ //

τ
//

τ
//

for n-globular sets.
Given a small category D and a functor i : D → V where V has an initial object, one

has a functor i+ : D+ → GV given on objects by i+(0) = 0 and i+(D+) = (iD), fitting
into

D V

GVD+

i //

(−)
��

//
i+

��
ιD pb

in CAT. Note moreover that when V ’s initial object is strict, the fully faithfulness of i
implies that of i+.

2.14. Lemma. Suppose that V has a strict initial object, D is a small category and i :
D → V is a fully faithful functor. Let λ be a regular cardinal.

1. If i is strongly generating then so is i+. [Kelly-Lack, 2001]

2. If i is dense then so is i+.

3. If the objects in the image of i are connected then so are those in the image of i+.

4. If V has λ-filtered colimits and the objects in the image of i are λ-presentable, then
so are those of i+. [Kelly-Lack, 2001]

5. If V has small colimits and the objects in the image of i are small projective, then
so are those of i+.
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Proof. For convenience we regard i as an inclusion of a full subcategory. Since V has
a strict initial object, i+ is also fully faithful, and so we regard it as an inclusion also.
Let f : X → Y be in GV . Suppose that GV (0, f) is a bijection, and that for all D ∈ D,
GV ((D), f) are bijections. For (1) we must show that f is an isomorphism. To say that
GV (0, f) is a bijection is to say that f is bijective on objects, and so it suffices to show
that f is fully faithful. Let a, b ∈ X0 and D ∈ D. Note that the hom set V (D,X(a, b))
may be recovered as the pullback of the cospan

1 GV (0, X)× GV (0, X) GV ((D), X)
(a,b) // oo (GV (i0,X),GV (i1,X))

where i0 and i1 pick out the objects 0 and 1 of (D) respectively. Moreover the function
V (D, fa,b) is induced by the isomorphism of cospans

1 GV (0, X)× GV (0, X) GV ((D), X)
(a,b) // oo (GV (i0,X),GV (i1,X))

1 GV (0, Y )× GV (0, Y ) GV ((D), Y )
(fa,fb)

// oo
(GV (i0,Y ),GV (i1,Y ))

��
GV (0,f)×GV (0,f)
��

GV ((D),f)
��

and so V (D, fa,b) is also bijective. Since this is true for all D ∈ D and D is a strong
generator, it follows that fa,b is an isomorphism. Thus f is fully faithful and so (1)
follows.

Given functions
fE : GV (E,X)→ GV (E, Y )

natural in E ∈ D+, we must show for (2) that there is a unique f : X→Y such that
fE = GV (E, f). The object map of f is forced to be f0, and naturality with respect to
the maps i0 and i1 : 0 → (D) ensures that the functions fE amount to f0 together with
functions

fD,a,b : G(tV )×2
• ((0, (D), 1), (a,X, b))→ G(tV )×2

• ((0, (D), 1), (f0a, Y, f0b))

natural in D ∈ D for all a, b ∈ X0. Recall from section(2.1) that εV : G(tV )×2
• → V has a

left adjoint given on objects by Z 7→ (0, (Z), 1). By this adjointness the above maps are
in turn in bijection with maps

f ′D,a,b : V (D,X(a, b))→ V (D, Y (f0a, f0b))

natural in D ∈ D for all a, b ∈ X0, and so by the density of D one has unique fa,b in
V such that f ′D,a,b = V (D, fa,b). Thus f0 and the fa,b together form the object and hom
maps of the unique desired map f , and so (2) follows.

By proposition(2.11) (−)0 preserves all the necessary colimits, so that in the case of
(3) 0 is connected, in the case of (4) it is λ-presentable and in the case of (5) it is small
projective.
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Recall the uniform construction of a colimit of F : I → GV described for proposition
(2.11), and write κi : Fi → K for the universal cocone. Then for D ∈ V the cocone
GV ((D), κi) induces an obstruction map

γ(D),κi : colim
i∈I
GV ((D), F i)→ GV ((D), K)

which measures the extent to which GV ((D),−) preserves the colimit of F . We shall give
an alternative description of this map in terms of the homs of V . First observe that any
map f : (D)→ X amounts to an ordered pair (a, b) of objects of X picked out by f0, and
the hom map f0,1 : D → X(a, b), and so one has a bijection

GV ((D), X) ∼=
∐

a,b∈X0

V (D,X(a, b)).

Second for a, b ∈ K0 recall from the construction of the colimit K that one has a colimit
cocone κi,α,β : Fi(α, β)→ K(a, b) in V where (α, i, β) ranges over the fibre of κ×2

0• : F×2
0• →

K0 ×K0 over (a, b). Thus one has an obstruction map

γD,κi,α,β : colim
(i,α,β)∈(κ×2

0• )−1(a,b)
V (D,Fi(α, β))→ V (D,K(a, b))

measuring the extent to which V (D,−) preserves the defining colimit of K(a, b). The
above isomorphisms exhibit γ(D),κi as isomorphic in Set→ to the function∐

a,b

γD,κi,a,b :
∐
a,b

colim
(α,i,β)

V (D,Fi(α, β))→
∐
a,b

V (D,K(a, b)).

Let D be small projective and I small. Then the colimit in the definition of γD,κi,α,β
is preserved since D is small projective. Thus the functions γD,κi,α,β , and thus γ(D),κi are
bijective, whence (D) is also small projective, and so (5) follows. Similar arguments prove
(4) and (3). In the case of (3) when D is connected and I discrete, (κ×2

0• )−1(a, b) is either
the empty or the terminal category. In the former case the colimit in the definition of
γD,κi,α,β is preserved since D is connected, and in the latter case this is so since the colimit
in question is absolute. As for (4) where D is now λ-presentable and I is λ-filtered,
the result follows because as we saw in the proof of proposition(2.11), the categories
(κ×2

0• )−1(a, b) are also λ-filtered.

2.15. Theorem. Let λ be a regular cardinal.

1. If V is locally λ-presentable then so is GV .[Kelly-Lack, 2001]

2. If V is locally λ-presentable and has a strict initial object, then GV is locally λ-c-
presentable.

3. If V is locally λ-presentable then G2V is locally λ-c-presentable.

4. If V is locally λ-c-presentable then so is GV .

5. If V is a presheaf topos then so is GV .

6. If V is a Grothendieck topos then GV is a locally connected Grothendieck topos.
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Proof. If V is locally λ-presentable then GV is cocomplete by proposition(2.11), and
one can build a strong generator for GV consisting of λ-presentable objects from one in
V using lemma(2.14) to exhibit GV as locally λ-presentable, giving us (1). If in addition
V has a strict initial object, then in GV every object decomposes as a sum connected
objects by proposition(2.11)(3), and so (2) follows by theorem(A.14)(5). (3) now follows
since GV has a strict initial object by proposition(2.11). (4) is immediate from (2) and
theorem(A.14)(6).

Recall that a category V is a presheaf topos iff it has a small dense full subcategory
i : D ↪→ V consisting of small projective objects. Clearly the representables in a presheaf
topos provide such a dense subcategory. Conversely V (i, 1) : V → D̂ is fully faithful
by density. Since the objects of D are small projective, V (i, 1) is cocontinuous, and
since every presheaf is a colimit of representables, it then follows that V (i, 1) essentially

surjective on objects, giving the desired equivalence V ' D̂. In this situation D+ provides
a small dense subcategory of GV consisting of small projectives by lemma(2.14), whence

GV ' D̂+, and so (5) follows.
Since a Grothendieck topos is a left exact localisation of a presheaf category, the 2-

functoriality of G together with (5), (2) and example(A.15) implies that to establish (6), it
suffices to show that G preserves left exact functors between categories with finite limits.
This follows immediately from the explicit description of limits in GV given in the proof
of proposition(2.9).

In particular from theorem(2.15)(5) and the 2-functor (−)+, we obtain

GnSet ' Ĝ≤n
reconciling the two ways of looking at the category of n-globular sets. Note however that
this is a genuine equivalence and not an isomorphism.

3. Constructing a monad from a distributive multitensor

The passage V 7→ GV discussed in the previous section will now be extended to the
construction (V,E) 7→ (GV,ΓE), which takes a category V equipped with a multitensor
E, and produces a monad ΓE on GV . The construction itself is very simple and not at all
original. What is perhaps novel is the recognition that this construction is so well-behaved
formally, and that taking it as fundamental leads to considerable efficiencies in our ability
to describe many constructions later on (both in this paper and subsequent works).

A multitensor E and its associated monad ΓE describe the same structure, but in
different ways. Multitensors, just like the monoidal structures they generalise, come with
an attendant notion of enriched category, whereas monads come with a notion of algebra.
Proposition(3.3) says that a category enriched in E is the same thing as an algebra for
ΓE. In the technical aspects of operad/monad theory one is often interested in the formal
properties enjoyed by the operads/monads one is considering. Thus it is of interest to
know how the formal properties of E correspond those of ΓE, which is what the main
result of this section, theorem(3.7), tells us.
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3.1. Recalling multitensors. We begin by recalling some definitions and notation
from [Batanin-Weber, 2011]. For a category V , the free strict monoidal category MV on
V is described as follows. An object of MV is a finite sequence (Z1, ..., Zn) of objects of
V . A map is a sequence of maps of V – there are no maps between sequences of objects of
different lengths. The unit ηV : V→MV of the 2-monad M is the inclusion of sequences of
length 1. The multiplication µV : M2V→MV is given by concatenation. A lax monoidal
category is a lax algebra for the 2-monad M , and a multitensor on a category V is by
definition a lax monoidal structure on V .

Explicitly a multitensor on a category V consists of a functor E : MV→V , and maps

uZ : Z → E(Z) σZij : E
i

E
j
Zij → E

ij
Zij

for all Z, Zij from V which are natural in their arguments, and such that

E
i
Zi

uE
i //

1

��

E1 E
i
Zi

σ
��

E
i
Zi

=

E
i

E
j

E
k
Zijk

σE
k //

E
i
σ

��

E
ij

E
k
Zijk

σ

��
E
i

E
jk
Zijk σ

// E
ijk
Zijk

=

E
i
E1Zi

σ
��

E
i
Zi

1

��

E
i
u
oo

E
i
Zi

=

in V . As in [Batanin-Weber, 2011] the expressions

E(X1, ..., Xn) E
1≤i≤n

Xi E
i
Xi

are alternative notation for the n-ary tensor product of the objects X1, ..., Xn, and we
refer to the endofunctor of V obtained by observing the effect of E on singleton sequences
as E1. The data (E, u, σ) is called a multitensor on V , and u and σ are referred to as the
unit and substitution of the multitensor respectively.

Given a multitensor (E, u, σ) on V , an E-category consists of X ∈ GV together with
maps

κxi : E
i
X(xi−1, xi)→ X(x0, xn)

for all n ∈ N and sequences (x0, ..., xn) of objects of X, such that

X(x0, x1) E1X(x0, x1)u //

X(x0, x1)

κ

��id %%

E
i

E
j
X(x(ij)−1, xij) E

ij
X(x(ij)−1, xij)σ //

X(x0, xmnm)

κ

��
E
i
X(x(i1)−1, xini)

E
i
κ

��

κ
//

commute, where 1≤i≤m, 1≤j≤ni and x(11)−1=x0. Since a choice of i and j references an
element of the ordinal n•, the predecessor (ij)−1 of the pair (ij) is well-defined when i
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and j are not both 1. With the obvious notion of E-functor (see [Batanin-Weber, 2011]),
one has a category E-Cat of E-categories and E-functors together with a forgetful functor

UE : E-Cat→ GV.

A multitensor (E, u, σ) is distributive when for all n the functor

V n → V (X1, ..., Xn) 7→ E(X1, ..., Xn)

preserves coproducts in each variable.
Multitensors generalise non-symmetric operads. For given a non-symmetric operad

(An : n ∈ N) u : I → A1 σ : Ak ⊗ An1 ⊗ ...⊗ Ank → An•

in a braided monoidal category V , one can define a multitensor E on V via the formula

E
1≤i≤n

Xi = An ⊗X1 ⊗ ...⊗Xn

as observed in [Batanin-Weber, 2011] example(2.6), and when the tensor product for V is
distributive, so is E. A category enriched in E with one object is precisely an A-algebra in
the usual sense. In the case where V is Set with tensor product given by cartesian product,
this construction is part of an equivalence between the evident category of distributive
multitensors on Set and that of non-symmetric operads in Set. This equivalence is easily
established using the fact that every set is a coproduct of singletons.

3.2. Monads from multitensors. Let (E, u, σ) be a distributive multitensor on a
category V with coproducts. Then we define a monad ΓE on the category GV of graphs
enriched in V as follows. We ask that the monad ΓE actually live over Set, that is to
say, in the 2-category CAT/Set. Thus for X ∈ GV , ΓE(X) has the same objects as X.
The homs of ΓE(X) are defined by the equation

ΓE(X)(a, b) =
∐

a=x0,...,xn=b

E
i
X(xi−1, xi) (1)

for all a, b ∈ X0. The above coproduct is taken over all finite sequences of objects of X
starting at a and finishing at b. Let us write kE,X,(xi)i for a given coproduct inclusion
for the above sum. Since the monad we are defining is over Set, the object maps of the
components of the unit η and multiplication µ are identities, and so it suffices to define
their hom maps. For the unit these are the composites

X(a, b) E1X(a, b) ΓE(X)(a, b).
uX(a,b)//

kE,X,a,b//

In order to define the multiplication, observe that the composites

E
i

E
j
X(xij−1, xij) E

i
ΓE(X)(xi−1, xi) (ΓE)2(X)(a, b)

E
i
k
// k //
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ranging of all doubly-nested sequences (xij)ij of objects of X starting from a and finishing
at b, exhibit the hom (ΓE)2(X)(a, b) as a coproduct, since E preserves coproducts in each

variable. Let us write k
(2)
E,X,(xij)ij

for such a coproduct inclusion. We can now define the

hom map of the components of the multiplication µ as unique such that

E
i

E
j
X(xij−1, xij) E

ij
X(xij−1, xij)

ΓE(X)(a, b)(ΓE)2(X)(a, b)

σ //

k��
//

µX,a,b

��k(2)

commutes for all doubly-nested sequences (xij)ij starting at a and finishing at b.

3.3. Proposition. Let V be a category with coproducts and (E, u, σ) be a distributive
multitensor on V . Then (ΓE, η, µ) as defined above is a monad on GV and one has an
isomorphism E-Cat ∼= (GV )ΓE commuting with the forgetful functors into GV .

Proof. Since (ΓE, η, µ) are defined over Set it suffices to check the monad axioms on
the homs. For the unit laws we must verify the commutativity of

ΓE(X)(a, b) (ΓE)2(X)(a, b)

ΓE(X)(a, b)

ηΓE //

µ
��))1

ΓE(X)(a, b)(ΓE)2(X)(a, b)

ΓE(X)(a, b)

ΓE(η)oo

µ
�� uu 1

and precomposing each of these by each of the injections kE,X,(xi)i gives the unit laws
for the multitensor E. Given a triply-nested sequence of objects of X starting at a and
finishing at b, let us denote by k

(3)
E,X,(xijk)ijk

the composite

E
i

E
j

E
k
X(xijk−1, xijk) E

i
(ΓE)2(X)(xi−1, xi) (ΓE)3(X)(a, b)

E
i
k(2)

// k //

and note that since E is distributive, the family of maps so determined exhibits the hom
(ΓE)3(X)(a, b) as a coproduct. The associative law on the homs then follows because
precomposing the diagrams that express it with such coproduct injections gives back the
associativity diagrams for the multitensor E. Thus (ΓE, η, µ) is indeed a monad on GV .

For X ∈ GV a morphism a : ΓE(X) → X may be identified, by precomposing
with the appropriate coproduct inclusions, with morphisms E

i
X(xi−1, xi) → X(x0, xn)

for all sequences (x0, ...xn) of objects of X, and under this identification the unit and
associative laws for a ΓE-algebra correspond exactly to those for an E-category. To say
that f : X → Y in GV underlies a given morphism (X, a) → (Y, b) of ΓE-algebras is
clearly equivalent to saying that f underlies an E-functor. Thus one has the required
canonical isomorphism over GV .
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3.4. Example. In the case where V is Set and E is cartesian product, ΓE is the monad
for categories on Gph. The summand of equation(1) corresponding to a given sequence
(x0, ..., xn) is the set of paths in X of length n, starting at a = x0 and finishing at b = xn,
which visits successively the intermediate vertices (x1, ..., xn−1).

3.5. Remark. Given a monad T on GV over Set, and a set Z, one obtains by restriction
a monad TZ on the category GVZ of V -graphs with fixed object set Z. Let us write Γold

for the functor labelled as Γ in [Batanin-Weber, 2011]. Then for a given distributive
multitensor E, our present Γ and Γold are related by the formula

Γold(E) = Γ(E)1

where the 1 on the right hand side of this equation indicates a singleton. In other words
in this paper we are describing the “many-objects version” of the theory presented in
[Batanin-Weber, 2011] section(4).

3.6. Properties of ΓE. For a functor

F : A1 × ...× An → B

of n variables, the preservation by F of a given connected limit or colimit implies that
this limit or colimit is preserved in each variable separately. To see this one considers
diagrams which are constant in all but the variable of interest, and use the fact that the
limit/colimit of a connected diagram constant at an object X, is X, as witnessed by a
universal cone/cocone all of whose components are 1X .

However the converse of this is false in general. For instance to say that F preserves
pullbacks is to say that it does so in each variable, and moreover, that all squares of the
form

(a1, ...ai−1, ai, ..., aj, aj+1..., an) (a1, ...ai−1, bi, ..., aj, aj+1..., an)

(a1, ...ai−1, bi, ..., bj, aj+1..., an)(a1, ...ai−1, ai, ..., bj, aj+1..., an)

(1,...,1,f,1,...,1)//

(1,...,1,g,1,...,1)
��

//
(1,...,1,f,1,...,1)

��
(1,...,1,g,1,...,1)

(2)

are sent to pullbacks in B, where 1 ≤ i < j ≤ n, f : ai → bi and g : aj → bj. That
this extra condition follows from F preserving all pullbacks follows since these squares are
obviously pullbacks in A1 × ... × An. Conversely note that any general map (f1, ..., fn) :
(a1, ..., an)→ (b1, ..., bn) in A1 × ...× An can be factored in the following manner

(a1, ..., an) (b1, a2, ..., an) ... (b1, ..., bn)
(f1,1,...,1) // (1,f2,...,1) // (1,...,1,fn) //

and doing so to each of the maps in a general pullback in A1× ...×An, produces an n×n
lattice diagram in which each inner square is either of the form (2), or a pullback in a
single variable.
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An important case where such distinctions can be ignored is with λ-filtered colimits for
some regular cardinal λ. For suppose that F preserves λ-filtered colimits in each variable.
By [Adamek-Rosicky, 1994] corollary(1.7) it suffices to show that F preserves colimits of
chains of length λ. Given such a chain

X : λ→ A1 × ...× An i 7→ (Xi1, ..., Xin)

with object map denoted on the right, one obtains the functor

X ′ : λn → A1 × ...× An (i1, ..., in) 7→ (Xi11, ..., Xinn)

which one may readily verify has the same colimit as X. But the colimit of X ′ may be
taken one variable at a time and so

colim(X) ∼= colim
i1

colim
i2

... colim
in

(Xi11, ..., Xinn)

from which it follows that F preserves colim(X). We say that a multitensor (E, u, σ) is
λ-accessible when the functor E : MV → V preserves λ-filtered colimits, which is clearly
equivalent to the condition that each of the associated n-ary functors En : V n → V does
so, which as we have seen, is equivalent to the condition that each of the En’s preserve
λ-filtered colimits in each variable.

Cartesian monads play a fundamental role in higher category theory [Leinster, 2003].
Recall that a monad (T, η, µ) on a category V with pullbacks is said to be cartesian when
T preserves pullbacks, and η and µ are cartesian transformations (meaning that their
naturality squares are pullbacks). Similarly one has the notion of a cartesian multitensor,
with a multitensor (E, u, σ) on a category V with pullbacks being cartesian when E
preserves pullbacks, and u and σ are cartesian transformations.

Recall that a functor F : V → W is a local right adjoint (local right adjoint) when for
all X ∈ V the induced functor

FX : V/X → V/FX

between slice categories is a right adjoint. When V has a terminal object 1, it suffices
for local right adjoint-ness that F1 be a right adjoint. Recall moreover that local right
adjoint functors preserve all connected limits, and thus in particular pullbacks. A monad
(T, η, µ) on a category V is local right adjoint (as a monad) when T is local right adjoint
as a functor and η and µ are cartesian. Thus this is a slightly stronger condition on a
monad than being cartesian. Local right adjoint monads, especially defined on presheaf
categories, are fundamental to higher category theory. Indeed a deeper understanding
of such monads is the key to understanding the relationship between the operadic and
homotopical approaches to the subject [Weber, 2007]. Similarly one has the notion of an
local right adjoint multitensor, with a multitensor (E, u, σ) on a category V being local
right adjoint when the functor E : MV → V is local right adjoint, and u and σ are
cartesian transformations.
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For a functor F :
∐

i∈I Vi → W to be local right adjoint is equivalent to each of the
induced Fi : Vi → W being local right adjoint, because for X ∈ Vi, FX = (Fi)X . Thus
the condition that E : MV → V be local right adjoint is equivalent to the condition that
each of the En’s is local right adjoint. The condition that a functor F : V1× ...×Vn → W
to be local right adjoint is equivalent to the condition that it be local right adjoint in each
variable, and moreover that it send the basic pullbacks (2) in V1× ...× Vn to pullbacks in
W . For suppose F is local right adjoint. Then since it preserves all pullbacks it preserves
those of the form (2). Moreover for 1 ≤ i ≤ n the functor

F (X1, ..., Xi−1,−, Xi+1, ..., Xn)Xi : Vi/Xi → W/F (X1, ..., Xn)

can be written as the composite

Vi/Xi V1/X1 × ...× Vn/Xn W/F (X1, ..., Xn)//
FX1,...,Xn //

in which the first functor has object map f 7→ F (1X1 , ..., 1Xi−1
, f, 1Xi+1

, ..., 1Xn). Since for
all i both these functors are clearly right adjoints, F is local right adjoint in each variable.
Conversely, supposing F to be local right adjoint in each variable and preserving the
pullbacks (2), F ’s effect on the slice over (X1, ..., Xn) is isomorphic to the composite

∏
i V/Xi (W/F (X1, ..., Xn))n W/F (X1, ..., Xn)

∏
i F (X1,...,Xi−1,−,Xi+1,...,Xn)Xi // × //

and both these functors are clearly right adjoints. Thus the condition that E : MV → V
be local right adjoint is equivalent to the condition that each En is local right adjoint in
each variable and preserve the pullbacks of the form (2).

The following result expresses how the assignment E 7→ ΓE is compatible with the
various categorical properties we have been discussing.

3.7. Theorem. Let V be a category with coproducts and (E, u, σ) be a distributive mul-
titensor on V , and let (ΓE, η, µ) be the corresponding monad on GV . Let λ be a regular
cardinal.

1. ΓE preserves coproducts.

2. Suppose V has λ-filtered colimits. Then E is λ-accessible iff ΓE is.

3. Suppose V has pullbacks and every object of V is a coproduct of connected objects.
Then (E, u, σ) is a cartesian multitensor iff (ΓE, η, µ) is a cartesian monad.

4. Suppose V is locally λ-c-presentable. Then (E, u, σ) is an local right adjoint multi-
tensor iff (ΓE, η, µ) is an local right adjoint monad.

The proof of this result will occupy the remainder of section(3).
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3.8. Coproducts and filtered colimits. In lemma(3.9) below we formulate the
preservation by ΓE of a given colimit in terms of the underlying multitensor E. We
require some further notation. For a functor f : J → Set and n ∈ N we denote by
f×n : J → Set the functor with object map j 7→ f(j)n, and if κj : fj → K form a colimit
cocone, then we denote by κ×n• : f×n• → Kn the evident induced functor. We have been
using this notation already, for instance in proposition(2.11), in the case n = 2.

3.9. Lemma. Let J be a small category, F : J → GV and V has sufficient colimits so that
the colimit K of F may be constructed as in the discussion preceding proposition(2.11).
Let κj,0 : F (j)0 → K0 be a colimit cocone in Set at the level of objects, and for a, b ∈ K0

let
κj,α,β : F (j)(α, β)→ K(a, b)

be the colimit cocone in V , where (j, α, β) ∈ (κ×2
0• )−1(a, b). If for all sequences (x0, ..., xn)

of objects of K, the morphisms

E
i
κj,γi−1,γi : E

i
F (j)(γi−1, γi)→ E

i
K(xi−1, xi)

ranging over (j, γ0, ..., γn) ∈ (κ×n0• )−1(x0, ..., xn) form a colimit cocone in V , then ΓE
preserves the colimit of F .

Proof. The obstruction map k measuring whether ΓE preserves the colimit K is bijective
on objects since ΓE is over Set. By definition of ΓE and the construction of colimits in
GV one has (

colim
j∈J

ΓE(Fj)

)
(a, b) =

∐
a=x0,...,xn=b

colim
j,γ0,...,γn

E
i
F (j)(γi−1, γi)

where in the summand (j, γ0, ..., γn) ∈ (κ×n0• )−1(x0, ..., xn). Thus if the obstruction maps
measuring whether the E

i
κj,γi−1,γi are colimit cocones are invertible, then the hom maps

of k are invertible, and so k is also fully faithful.

In order to understand how the preservation by E of λ-filtered colimits gives rise to
the same property for ΓE, we require

3.10. Lemma. Let J be a filtered category, F : J → Set and κj : F (j)→ K be a colimit
cocone. Then for n > 0 and 1 ≤ i ≤ n the functor

pri : (κ×n• )−1(x0, ..., xn)→ (κ×2
• )−1(xi−1, xi) (j, γ0, ..., γn) 7→ (j, γi−1, γi)

is final.
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Proof. For a given (j, α, β) ∈ (κ×n• )−1(xi−1, xi) we must show that the comma category
(j, α, β)/pri is connected. Explicitly the objects of this comma category consist of the
data

f : j → j′ (j′, γ0, ..., γn)

where γi ∈ Fj, F (f)(α) = γi−1 and F (f)(β) = γi. A morphism

(f, j′, γ0, ..., γn)→ (f ′, j′′, γ′0, ..., γ
′
n)

is a map g : j′ → j′′ in J such that gf = f ′ and F (g)(γk) = γ′k for 1 ≤ k ≤ n.
For k /∈ {i − 1, i} one can find (jk, γk) where jk ∈ J , γk ∈ F (jk) and κjk(γk) = xk

since the cocone κ is jointly epic. By the filteredness of J one has maps δ : j → j′ and
δk : jk → j′, and thus (δ, ε0, ..., εn) with εi−1 = F (δ)(α), εi = F (δ)(β) and εk = F (δ)(γk)
for k /∈ {i− 1, i}, exhibits (j, α, β)/pri as non-empty.

Note that if y, z ∈ Fj satisfy κj(x) = κj(y), then since K may be identified as the
connected components of F•, there is an undirected path

(j, x)→ (j1, z1)← ...→ (jn, zn)→ (j, y)

in F•. Consider the underlying diagram in J with endpoints (ie the two instances of j)
identified. Using the filteredness of J one has a cocone for this diagram, and we write j′

for the vertex of this cocone. Thus we have f : j → j′ such that F (f)(y) = F (f)(z).
Now let (f, j′, γ0, ..., γn) and (f ′, j′′, γ′0, ..., γ

′
n) be any two objects of (j, α, β)/pri. First

we use the filteredness of J to produce a commutative square

j j′

v1j′′

f //

h1
��
//

g1

��
f ′

whose diagonal we denote as d1. Note that by definition F (h1)(γi−1) = F (d1)(α) =
F (g1)(γ′i−1) and F (h1)(γi) = F (d1)(β) = F (g1)(γ′i), but we have no reason to suppose
that F (h1)(γk) = F (g1)(γ′k) for k /∈ {i − 1, i}. However F (h1)(γk) and F (g1)(γk) are by
definition identified by κv1 . Choosing one value of k and using the observation of the
previous paragraph, we can find r1 : v1 → v2 such that F (h2)(γk) = F (g2)(γ′k) where
h2 = r1h1 and g2 = r1g1. Do the same successively for all other k /∈ {i− 1, i}, so that in
the end one has h : j′ → v and g : j′′ → v such that hf = gf ′ whose common value we
denote as d, and F (h)(γk) = F (g)(γ′k) for all 1 ≤ k ≤ n. Denote by ψk ∈ F (v) for the
common value of F (h)(γk) = F (g)(γ′k). Thus one has

(f, j′, γ0, ..., γn) (d, v, ψ1, ..., ψk) (f ′, j′′, γ′0, ..., γ
′
n)h // oo g

in (j, α, β)/pri. Thus (j, α, β)/pri is indeed connected.
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With these preliminary results in hand we can now proceed to

Proof. (of theorem(3.7)(1) and (2))
(1): Let J be small and discrete and F : J → GV . In the situation of lemma(3.9) with

a given sequence (x0, ..., xn) from K0, if that sequence contains elements from different
F (j)’s then the category (κ×n0• )−1(x0, ..., xn) will be empty, but by distributivity in this
case E

i
K(xi−1, xi) will also be initial. On the other hand when the xi all come from the

same F (j), one has

(κ×n0• )−1(x0, ..., xn) =
∏

1≤i≤n

κ−1
j0 (xi)

and then the universality of the cocone E
i
κj,γi−1,γi follows again from the distributivity of

E.
(2): Suppose E is λ-accessible. Let J be λ-filtered, F : J → GV and (x0, ..., xn) be a

sequence from K0, where as in lemma(3.9), K is the colimit of F . Then one has a functor

(κ×n0• )−1(x0, ..., xn)→ V n (j, γ0, ..., γn) 7→ (F (j)(γi−1, γi))1≤i≤n

and we claim that(
κj,γi−1,γi : F (j)(γi−1, γi)→ K(xi−1, xi) : 1 ≤ i ≤ n

)
is a colimit cocone in V n for this functor. In the i-th variable κj,γi−1,γi is a cocone for the
composite functor

(κ×n0• )−1(x0, ..., xn) (κ×2
0• )−1(xi−1, xi) V

pri // //

in which the second leg has colimit cocone given by the components κj,γi−1,γi . Since pri is
final by lemma(3.10), the cocone (κj,γi−1,γi : 1 ≤ i ≤ n) is indeed universal as claimed.

Now the category (F×n0• ) comes with a discrete opfibration into J , and so its connected
components are λ-filtered. But since λ-filtered colimits commute with finite products in
Set, these connected components are exactly the fibres of (κ×n0• ), and so for each sequence
(x0, ..., xn), (κ×n0• )−1(x0, ..., xn) is λ-filtered. Thus by lemma(3.9) ΓE is λ-accessible.

Conversely suppose that ΓE is λ-accessible. For F : J → V with J where is λ-filtered,
with colimit cocone κj : Fj → K we must show that the induced cocone

E(X1, ..., Xi−1, F j,Xi+1, ...Xn)→ E(X1, ..., Xi−1, K,Xi+1, ...Xn) (3)

is universal, for all N ∈ N, 1 ≤ i ≤ n and X1, ..., Xi−1, Xi+1, ...Xn ∈ V . By remark(2.13)
the cocone

(X1, ..., Xi−1, F j,Xi+1, ...Xn)→ (X1, ..., Xi−1, K,Xi+1, ...Xn) (4)

in GV is universal, and moreover that for any sequence (Y1, ..., Yn) of objects of V and
1 ≤ a, b ≤ n one has

ΓE(Y1, ..., Yn)(0, n) =
∐

0=x0,...,xn=n

E
i

((Y1, ..., Yn)(xi−1, xi))

∼= E
i
Yi
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by the distributivity of E. Thus applying ΓE to the cocone (4) and looking at the hom
between 0 and n gives the cocone (3), and so by remark(2.13), the result follows.

3.11. Cartesianness of ΓE. Let V be a category with coproducts and pullbacks, in
which every object is a coproduct of connected objects, and suppose that (E, u, σ) is a
cartesian multitensor. We will now show that (ΓE, η, µ) is a cartesian monad. Note that
by lemma(A.4) such a V is in fact extensive.

3.12. Lemma. Let V be a category with coproducts and pullbacks in which every object
is a coproduct of connected objects. Suppose that we are given square

P B

CA

q //

g
��
//

f

��
p

in V which admits a description as on the left in∐
(i,j)∈L

Pij
∐
j∈J

Bj

∐
k∈K

C
∐
i∈I
Ai

(qij)ij //

(gj)j��

//
(fi)i

��
(pij)ij

L J

KI

ν //

γ
��
//

φ

��
π pb

P(i,j) Bj

Cφi=γjAi

qij //

gj
��

//
fi

��
pij

in which the indexing sets of the coproduct decompositions fit into a pullback square as
shown in the middle, with elements of L represented explicitly as pairs (i, j) such that
φ(i) = γ(j). Suppose moreover that for all such (i, j) the squares as indicated on the right
in the previous display are pullbacks. Then it follows that the original square is itself a
pullback.

Proof. To see this is a pullback it suffices just for connected X, h : X → A and
k : X → B with fh = gk, that there is a unique filler d : X → P such that pd = h and
qd = k, since every object of V is a coproduct of connected ones. But then using the
connectedness one can factor h and k through unique summands say i ∈ I and j ∈ J
related by φ(i) = γ(j), and so use the defining pullback of Pij to induce the desired unique
d.

One application of lemma(3.12) is the componentwise construction of pullbacks in such
a V . For given a cospan

A C B
f // oo g

in V , one can compute its pullback one component at a time by decomposing A, B and
C into coproducts of connected objects, then pulling back the indexing sets, then taking
the pullbacks componentwise, and finally re-amalgamating (by taking coproducts). Note
however that the summands Pij of the pullback so obtained are not necessarily themselves
connected. We are now ready to exhibit
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Proof. (of theorem(3.7)(3))
Let (E, u, σ) a cartesian multitensor on V a category with coproducts and pullbacks

in which every object decomposes as sum of connected ones. Let P be the pullback

P Y

ZX

q //

g
��
//

f

��
p pb

in GV and denote by d : P → Z the diagonal. Then ΓE(P) is certainly a pullback at the
level of object sets, since ΓE is over Set. So it suffices, by the construction of pullbacks
in GV , to check that for each w,w′ ∈ P0 the corresponding hom square of ΓE(P) is a
pullback in V . This hom square is a square in V of the form∐

w=w0,...,wn=w′
E
i
P (wi−1, wi)

∐
qw=y0,...,yn=qw′

E
i
Y (yi−1, yi)

∐
dw=z0,...,zn=dw′

E
i
Z(zi−1, zi)

∐
pw=x0,...,xn=pw′

E
i
X(xi−1, xi)

//

��

//

��

and the induced square at the level of summand indexing sets is a pullback since P0 is
a pullback in Set. For each sequence (w0, ..., wn) in P0 from w to w′, the corresponding
component is

E
i
P (wi−1, wi) E

i
Y (qwi−1, qwi)

E
i
Z(dwi−1, dwi)E

i
X(pwi−1, pwi)

E
i
qwi−1,wi

//

E
i
gqwi−1,qwi��

//
E
i
fpwi−1,pwi

��
E
i
pwi−1,wi

which is a pullback since P is. Thus by lemma(3.12) ΓE(P) is a pullback.
We must show that for f : X → Y in GV the corresponding naturality squares of η

and µ are cartesian. Since they are over Set this is clearly so at the level of objects. The
hom at (a, b) of the naturality of square of η has underlying square of summand indexing
sets given by

1 {(x0, ..., xn) : n ∈ N, x0 = a, xn = b}

{(y0, ..., yn) : n ∈ N, y0 = fa, yn = fb}1

(a,b) //

apply f0
��

//
(fa,fb)

��

and the components are naturality squares for u. Thus by lemma(3.12) η is cartesian.
Note that using the distributivity of E one has a canonical isomorphism

(ΓE)2(X)(a, b) ∼=
∐

(xij)ij

E
i

E
j
X(xij−1, xij)
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where the coproduct is taken over the set of composable doubly-indexed sequences starting
at a and finishing at b. Unpacking in these terms one can see that in the case of µ’s hom
naturality square, the underlying square of summand indexing sets is

{(xij)ij : x0 = a, xn = b} {(x0, ..., xn) : n ∈ N, x0 = a, xn = b}

{(y0, ..., yn) : n ∈ N, y0 = fa, yn = fb}{(yij)ij : y0 = fa, yn = fb}

concatenate //

apply f0
��

//
concatenate

��
apply f0

in which concatenation is that of composable sequences, that is, one identifies the last
point of the i-th subsequence with the first point of the (i+ 1)-th, which by definition of
“composable doubly-indexed sequence” are equal as elements of X0 or Y0. This square is
easily seen to be a pullback. The components of µ’s hom naturality square are naturality
squares for σ. Thus by lemma(3.12) µ is cartesian.

Conversely suppose that (Γ, η, µ) is a cartesian monad. Then by the same argument
as for the converse direction of (2), except with pullbacks in place of λ-filtered colimits,
one may conclude that E preserves pullbacks. Note that for X ∈ V the hom between 0
and 1 of the naturality component of η(X) is, modulo the canonical isomorphism E1X ∼=
ΓE(X)(0, 1), just E1X, and so u’s cartesianness follows from that of η by remark(2.13).
Suppose that (X1, ..., Xn) is a sequence of objects of V . Denote by sd(Xi)i the set of
subdivisions of (Xi)i into a sequence of sequences. A typical element is a sequence of
sequences (Xij) where 1 ≤ i ≤ k, 1 ≤ j ≤ ni and n1 + ...nk = n, such that sequence
obtained by concatenation is (X1, ..., Xn). Then modulo the canonical isomorphism

(ΓE)2(X1, ..., Xn) ∼=
∐

sd(Xi)i

E
i

E
j
Xij

the hom of the naturality component of µ(X1,...,Xn) between 0 and n is the map

(σXij) :
∐

sd(Xi)i

E
i

E
j
Xij → E

i
Xi

and thus by remark(2.13), these maps are cartesian natural in the Xi. By lemma(A.4) V
is extensive, and so the σXij are cartesian natural in the Xij as required.

3.13. Local right adjointness. We now proceed to the task of proving that the
construction Γ is compatible with local right adjoint-ness. For this we first require two
lemmas. We assume familiarity with the notion of “generic morphism” and the alternative
formulation of local right adjoint-ness in terms of generics as described in [Weber, 2007]
proposition(2.6).

3.14. Lemma. Let R : V→W be a functor, V be cocomplete, U be a small dense full
subcategory of W , and L : U→V be a partial left adjoint to R, that is to say, one has
isomorphisms W (S,RX) ∼= V (LS,X) natural in S ∈ U and X ∈ V . Defining L : W→V
as the left kan extension of L along the inclusion I : U→W , one has L a R.
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Proof. Denoting by p : I/Y→U the canonical forgetful functor for Y ∈ W and recalling
that LY = colim(Lp), one obtains the desired natural isomorphism as follows

V (LY,X) ∼= [I/Y, V ](Lp, const(X)) ∼= limf∈I/Y V (L(dom(f)), X)
∼= limf W (dom(f), RX) ∼= B(Y,RX)

for all X ∈ V .

3.15. Lemma. Let T : V→W be a functor, V be cocomplete and W have a small dense
subcategory U . Then T is a local right adjoint iff every f : S→TX with S ∈ U admits
a generic factorisation. If in addition V has a terminal object denoted 1, then generic
factorisations in the case X = 1 suffice.

Proof. For the first statement (⇒) is true by definition so it suffices to prove the converse.
The given generic factorisations provide a partial left adjoint L : I/TX→V to TX :
V/X→W/TX where I is the inclusion of U . Now I/TX is a small dense subcategory
of W/TX, and so by the previous lemma L extends to a genuine left adjoint to TX . In
the case where V has 1 one requires only generic factorisations in the case X = 1 by the
results of [Weber, 2007] section(2).

The analogous result for presheaf categories, with the representables forming the chosen
small dense subcategory, was discussed in [Weber, 2007] section(2). With these results in
hand we may now exhibit the

Proof. (of theorem(3.7)(4))
The aspects of this result involving the cartesianness of the units, multiplication and

substitution are covered already by (3). Suppose that E is local right adjoint. Let D
be a small dense subcategory of V consisting of λ-presentable connected objects. By
lemma(3.15) and lemma(2.14) it suffices to exhibit generic factorisations of maps

f : S → ΓE1

where S is either 0 or (D) for some D ∈ D. In the case where S is 0 the first arrow in the
composite

0 // ΓE0 ΓEt // ΓE1

is generic because 0 is the initial V -graph with one object (and t here is the unique map).
In the case where S = (D), to give f is to give a map f ′ : D→En1 in V since D is
connected. Since E is a local right adjoint, En is too and so one can generically factor f ′

to obtain

D
g′f // E

i
Zi

E
i
t
// En1

from which we obtain the generic factorisation

(D)
gf // ΓEZ ΓEt // ΓE1
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where Z = (Z1, ..., Zn), the object map of gf is given by 0 7→ 0 and 1 7→ n, and the hom
map of gf is g′f composed with the coproduct inclusion.

Conversely suppose that ΓE is local right adjoint. It suffices by lemma(3.15) to exhibit
a generic factorisation for maps of the form on the left in

f : Y → E(X1, ...Xn) f ′ : (Y )→ ΓE(X1, ..., Xn)

where Y is connected. Such an f determines f ′ as in the previous display unique with
object map (0, 1) 7→ (0, n) and hom map between 0 and 1 given by f , modulo the canonical
isomorphism E(X1, ..., Xn) ∼= ΓE(X1, ..., Xn)(0, n) that we described already in the proof
of (2).

Consider a factorisation

(Y ) ΓEZ ΓE(X1, ..., Xn)
g // ΓEh //

of f ′. The object map of h partitions the objects of Z into n+1 subsets Z(0), ..., Z(n). The
strict initiality of ∅ and the definition of (X1, ..., Xn) ∈ GV ensures that the only homs
of Z that are possibly non-initial, are those between a and b living in consecutive cells of
this partition. Thus in addition to this partition h amounts to maps ha,b : Z(a, b) → Xi

for all a ∈ Z(i−1) and b ∈ Z(i). The connectedness of Y ensures that the hom map of
g between 0 and 1 factors through a unique summand of the appropriate hom of ΓEZ.
Thus the data of g comes down to: 1 ≤ i ≤ j ≤ n, cr ∈ Z(r) for i ≤ r ≤ j and a map
g0,1 : Y → E

i<r≤j
Z(cr−1, cr). Consider the canonical inclusion

c : (Z(ci, ci+1), ..., Z(cj−1, cj)) ↪→ Z

and note that by the above description one may factor g as

(Y ) ΓE(Z(ci, ci+1), ..., Z(cj−1, cj)) ΓEZ.
g′ // ΓEc//

If g were in fact generic then c would have a section and thus be an isomorphism. It
follows that any generic factorisation of f ′ is necessarily of the form

(Y ) ΓE(X ′1, ..., X
′
n) ΓE(X1, ..., Xn)

g // ΓE(h1,...,hn) //

for hi : X ′i → Xi in V . Moreover it is easily shown that the hom of this factorisation
between 0 and 1 gives a generic factorisation for the original map f , thereby exhibiting
E as local right adjoint.

4. Constructing a multitensor from a path-like monad

The passage (V,E) 7→ (GV,ΓE) that we studied in the previous section is really the object
map of a 2-functor

Γ : DISTMULT→ MND(CAT/Set).
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In fact there are two (dual) ways of exhibiting Γ as being 2-functorial. It is these 2-
functors that are the principal objects of study in this section. The 2-functoriality is
given in section(4.10). In theorem(4.9) we characterise monads of the form ΓE, and
propositions(4.12) and (4.13) essentially characterise the images of the one and 2-cell
maps of Γ. Finally in section(4.14) we witness the compatibility of Γ with cartesian
transformations, which will lead in section(6.1), to an understanding of the relation be-
tween multitensors and operads.

4.1. Constructing a multitensor from a monad. For a category V a monad
(T, η, µ) over Set on GV is a monad on

(−)0 : GV → Set

in the 2-category CAT/Set. Thus as explained in section(3.2), the functor T doesn’t
affect the object sets and similarly for maps, and moreover the components of η and µ are
identities on objects. Recall from section(2.1) that if V has an initial object then one can
regard any sequence of objects (Z1, ..., Zn) of V as a V -graph. This is clearly functorial
in the Zi. Moreover for 1 ≤ a ≤ b ≤ n one has subsequence inclusions

(Za, ..., Zb) ↪→ (Z1, ..., Zn)

defined in the obvious way, with the object map preserving successor and 0 7→ (a − 1),
and the hom maps being identities. This enables us to construct a multitensor on V from
T , essentially by applying T to sequences and looking at the homs.

Explicitly one defines this associated multitensor (T , η, µ) as follows. The n-ary tensor
product is defined by

T (Z1, ..., Zn) := T (Z1, ..., Zn)(0, n).

Recall that for Z ∈ V , (Z) is the V -graph with object set {0, 1}, hom between 0 and
1 equal to Z, and other homs initial. The unit ηZ : Z → T 1Z is the hom map of η(Z)

between 0 and 1. In order to define the substitution, note that given objects Zij of V
where 1 ≤ i ≤ k and 1 ≤ j ≤ ni, one has a map

τ̃Zij : ( T
1≤j≤n1

Z1j, ..., T
1≤j≤nk

Zkj)→ T (Z11, ......, Zknk)

given on objects by 0 7→ 0 and i 7→ (i, ni) for 1 ≤ i ≤ k. The hom map between (i − 1)
and i is the hom map of

Tsi : T (Zi1, ..., Zini)→ T (Z11, ..., Zknk)

between 0 and ni, where si is the i-th subsequence inclusion. The component µZij is
defined to be the hom map of µ ◦ T (τ̃Zij) between 0 and k.

In order to understand why (T , η, µ) form a multitensor, it is worthwhile to take a
more conceptual approach. This begins with the observation that a sequence (Z1, ..., Zn)
of objects of V may be viewed as a cospan

0 (X1, ..., Xn) 0
b // oo t
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in GV in which b picks out the “bottom” object 0 and t picks out the “top” object n.
Moreover pushout composition

0 0 0

(Z1, ..., Zn)(Y1, ..., Ym)

(Y1, ..., Ym, Z1, ..., Zn)

b

$$ zz

t b

$$ zz

t

$$ zz

po

of such cospans in GV corresponds, as shown, to concatenation of sequences. These
pushouts are special in that they only require an initial object in V for their construction.

Pushout composition in GV of general cospans of the form

0 X 0// oo

require coproducts in V for their construction. Note that such cospans are, as already
pointed out in section(2.1), nothing more than bipointed V -graphs. Thus when V has
coproducts, pushout composition of cospans endows the category G(tV )×2

• of bipointed
V -graphs with a monoidal structure whose tensor product we denote as “∗”. Moreover
given a monad (T, η, µ) on GV over Set, one obtains a monoidal monad (T•, η•, µ•) on
G(tV )×2

• . The underlying endofunctor

T• : G(tV )×2
• → G(tV )×2

• (X, a, b) 7→ (TX, a, b)

as object map as described in the previous display. In terms of cospans, this is just the
application of T to cospans plus composition with the unique identity-on-objects 0→ T0
in order to get an endocospan of 0. The monoidal functor coherences for T• are the maps
that give the obstruction to T preserving the pushouts involved. The data (η•, µ•) are
defined in the evident way from (η, µ).

The assignation of a cospan/bipointed V -graph from a sequence may done in two steps

(Z1, ..., Zn) ∈MV 7→ (((Z1), 0, 1), ..., ((Zn), 0, 1)) 7→ ((Z1, ..., Zn), 0, n)

and so is the object map of the composite

MV MG(tV )×2
• G(tV )×2

• .
MLV // ∗ //

Thus one can view the functor T : MV → V in more conceptual terms as the composite

MV MG(tV )×2
• G(tV )×2

• G(tV )×2
• V.

MLV // ∗ // T• // εV //

Observe that (T•, η•, µ•) is a monoidal monad and LV a εV . Moreover in general one has
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4.2. Lemma.

1. Let (E, u, σ) be a multitensor on V and (T, η, µ) be a monoidal monad on (V,E)
with monoidal functor coherences for T written as

τXi : E
i
TXi → T E

i
Xi.

Then (F, u′, σ′) defines another multitensor on V where F
i
Xi = T E

i
Xi, u

′
X =

ηE1XuX and σ′ is the composite

T E
i
T E

j
T 2 E

i
E
j

T E
ij
.TτE // µσ //

2. Let (E, u, σ) be a multitensor on V and L a R : V → W with unit η and counit ε.
Then (F, u′, σ′) defines multitensor on W where F

i
Xi = RE

i
LXi, u

′ = (RuM)η and

σ′ is the composite

RE
i
LRE

j
L RE

i
E
j
L RE

ij
L

RE
i
εE
j
L

// RσL //

whose proof is an easy exercise in the definitions involved. Starting with the monoidal
structure ∗ on G(tV )×2

• , apply (1) to obtain the multitensor T•∗ on G(tV )×2
• , and then

apply (2) to this using the adjunction LV a εV . It is straight forward to verify directly
that the unit and substitution of the resulting multitensor coincides with (η, µ) as defined
above. Thus we have

4.3. Proposition. Let V be a category with coproducts and (T, η, µ) be a monad on GV
over Set. Then (T , η, µ) defines a multitensor on V .

4.4. Remark. Note that the multitensor (T , η, µ) played an implicit role the proofs of
the converse implications of theorem(3.7)(2)-(4). The reason for this is that one has a
canonical isomorphism E ∼= ΓE of multitensors. The isomorphism at the level of functors
MV → V was described in the proof of theorem(3.7)(2), and the reader will easily verify
the compatibility of this isomorphism with the unit and substitution maps.

4.5. Characterisation of monads coming from multitensors. In this section
we characterise the monads of the form (GV,ΓE) as those monads T on GV over Set
which are distributive and path-like in the sense to be defined below.

Let us consider first the basic example in which T is the monad on Gph = GSet
whose algebras are categories. For any graph X and a, b ∈ X0, TX(a, b) is by definition
the set of paths in X from a to b. Each such path determines a sequence x = (x0, ..., xn)
of objects of X such that x0 = a and xn = b, by reading off the objects of X as they are
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visited by the given path. The set of all paths visiting exactly these objects of X is the
product

∏n
i=1X(xi−1, xi) and by definition one has

n∏
i=1

X(xi−1, xi) = T (X(x0, x1), X(x1, x2)..., X(xn−1, xn))(0, n)

= T
i
X(xi−1, xi).

Recall,
(X(x0, x1), X(x1, x2)..., X(xn−1, xn))

is the graph with set of objects {0, ..., n}, whose hom from (i−1) to i is X(xi−1, xi), and
whose other homs are empty. Thus one can express the general hom TX(a, b) in terms of
those of the form

T (X(x0, x1), X(x1, x2)..., X(xn−1, xn))(0, n).

More precisely one has a canonical bijection∐
a=x0,...,xn=b

T (X(x0, x1), X(x1, x2)..., X(xn−1, xn))(0, n) ∼= TX(a, b)

which we shall now express more generally.
Let V be a category with coproducts. Given a V -graph X and sequence x = (x0, ..., xn)

of objects of X, one can define the morphism of V -graphs

x : (X(x0, x1), X(x1, x2), ..., X(xn−1, xn))→ X

whose object map is i 7→ xi, and whose hom map between (i − 1) and i is the identity.
For all such sequences x one has

T (x)0,n : T
i
X(xi−1, xi)→ TX(x0, xn)

in V , and so taking all sequences x starting at a and finishing at b one induces the
canonical map

πX,a,b :
∐

a=x0,...,xn=b

T
i
X(xi−1, xi)→ TX(a, b).

4.6. Definition. Let V be a category with coproducts and (T, η, µ) be a monad on GV
over Set. Then T is said to be path-like when for all X ∈ GV and a, b ∈ X0, the maps
πX,a,b are isomorphisms.

Clearly by definition, the category monad on GSet is path-like. Intuitively, the path-
likeness of a general T is saying that the homs TX(a, b) are to be thought of as abstract
path objects of a certain type.

4.7. Proposition. Let V have small coproducts and (T, η, µ) be a path-like monad on
GV over Set. Then G(V )T ∼= T -Cat.
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Proof. Let X be a V -graph. To give an identity on objects map a : TX→X is to give
maps ay,z : TX(y, z)→X(y, z). By path-likeness these amount to giving for each n ∈ N
and x = (x0, ..., xn) such that x0 = y and xn = z, a map

ax : T
i
X(xi−1, xi)→ X(y, z)

since T
i
X(xi−1, xi) = Tx∗X(0, n), that is ax = ay,zTx0,n. When n = 1, for a given

y, z ∈ X0, x can only be the sequence (y, z). The naturality square for η at x implies that
{ηX}y,z = Tx0,1{η(X(y,z))}0,1, and the definition of ( ) says that {η(X(y,z))}0,1 = ηX(y,z).
Thus to say that a map a : TX→X satisfies the unit law of a T -algebra is to say that
a is the identity on objects and that the ax described above satisfy the unit axioms of a
T -category.

To say that a satisfies the associative law is to say that for all y, z ∈ X0,

T 2X(y, z)
{µX}y,z//

Txy,z
��

TX(y, z)

ay,z

��
TX(y, z) ay,z

// X(y, z)

(5)

commutes. Given x = (x0, ..., xn) from X with x0 = y and xn = z, and w = (w0, ..., wk)
from T (X(x0, x1), ..., X(xn−1, xn)) with w0 = 0 and wk = n, one can consider the com-
posite map T (x)0,nT (w)0,k, and since the coproduct of coproducts is a coproduct, all such
maps for x and w such that x0 = y and xn = z form a coproduct cocone. Precomposing
(5) with the coproduct inclusions gives the commutativity of

T
i

T
j
X(xij−1, xij)

µ //

T
i
a

��

T
ij
X(xij−1, xij)

ax

��
T
i
X(xwi−1

, xwi) aw
// X(y, z)

and conversely by the previous sentence if these squares commute for all x and w, then
one recovers the commutativity of (5). This completes the description of the object part
of G(V )T ∼= T -Cat.

Let (X, a) and (X ′, a′) be T -algebras and F : X→X ′ be a V -graph morphism. To say
that F is a T -algebra map is a condition on the maps Fy,z : X(y, z)→X ′(Fy, Fz) for all
y, z ∈ X0, and one uses path-likeness in the obvious way to see that this is equivalent to
saying that the Fy,z are the hom maps for a T -functor.

Returning to our basic example in which T is the category monad on GSet, note
that one can decompose the general hom TX(a, b) even further when the X(xi−1, xi) are
themselves coproducts (in Set). For instance for sets A, B and C one has

T (A+B,C)(0, 2) ∼= (A+B)× C ∼= (A× C) + (B × C)
∼= T (A,C)(0, 2) + T (B,C)(0, 2)
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by the distributivity of coproducts over products in Set. Most succinctly one has this
kind of decomposition simply because in this case T is the cartesian product of Set which
is distributive as a multitensor.

4.8. Definition. Let V be a category with coproducts and (T, η, µ) be a monad on GV
over Set. Then T is said to be distributive when T is a distributive multitensor.

For a more explicit rendering of definition(4.8) which avoids explicit mention of T ,
consider a finite sequence of families of sets

((Zij : ij ∈ Ij) | 1 ≤ j ≤ n).

Then for any sequence of indices (i1, ..., in) ∈ I1 × ... × In, the coproduct inclusions give
identity-on-objects morphisms of V -graphs

(ci1 , ..., cin) : (Zi1 , ..., Zin) −→ (
∐
i1

Zi1 , ...,
∐
in

Zin),

and thus morphisms

T (ci1 , ..., cin)0,n : T (Zi1 , ..., Zin)(0, n) −→ T (
∐
i1

Zi1 , ...,
∐
in

Zin)(0, n)

in V , which together give a morphism

δ(Zij )j :
∐

(i1,...,in)

T (Zi1 , ..., Zin)(0, n) −→ T (
∐
i1

Zi1 , ...,
∐
in

Zin)(0, n).

in V . The distributivity of T then says that for all such finite sequences of families of
sets, this induced morphism δ(Zij )j is an isomorphism.

4.9. Theorem. Let V have coproducts. Then a monad T on GV over Set is of the form
(GV,ΓE) iff it is distributive and path-like, and in this case E is recovered as T .

Proof. Suppose that T is distributive and path-like. Since T is distributive the mor-
phisms πX,a,b are the hom maps of the components of a natural transformation π : ΓT →
T , which is easily seen to be compatible with the monad structures. Since T is path-like,
this is an isomorphism. The converse follows from remark(4.4).

4.10. 2-functoriality of Γ. As the lax-algebras of a 2-monad M lax monoidal cate-
gories form a 2-category Lax-M -Alg. See [Lack, 2002] for a complete description of the
2-category of lax algebras for an arbitrary 2-monad. Explicitly a lax monoidal functor
between lax monoidal categories (V,E) and (W,F ) consists of a functor H : V→W , and
maps

ψXi : F
i
HXi → H E

i
Xi
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natural in the Xi such that

HX F1HX

HE1X

uHX //

ψX��HuX ��

F
i

F
j
HXij F

i
H E

j
Xij H E

i
E
j
Xij

H E
ij
XijF

ij
HXij

F
i
ψ
//

ψE
j //

Hσ��σH ��

ψ
//

commute for allX andXij in V . A monoidal natural transformation between lax monoidal
functors

(H,ψ), (K,κ) : (V,E)→(W,F )

consists of a natural transformation φ : H→K such that

F
i
HXi H E

i
Xi

K E
i
XiF

i
KXi

ψ //

φE
i��

F
i
φ
��

κ
//

commutes for all Xi. We denote by DISTMULT the 2-category DISTMULT of distributive
multitensors. It is the full sub-2-category of Lax-M -Alg consisting of the (V,E) such that
V has coproducts and E is distributive.

For any 2-category K recall the 2-category MND(K) from [Street, 1972] of monads in
K. Another way to describe this very canonical object is that it is the 2-category of lax
algebras of the identity monad on K. Explicitly the 2-category MND(CAT) has as objects
pairs (V, T ) where V is a category and T is a monad on V . An arrow (V, T )→(W,S) is
a pair consisting of a functor H : V→W and a natural transformation ψ : SH→HT
satisfying the obvious 2 axioms: these are just the “unary” analogues of the axioms for a
lax monoidal functor written out above. For example, any lax monoidal functor (H,ψ) as
above determines a monad functor (H,ψ1) : (V,E1)→(W,F1). A monad transformation
between monad functors

(H,ψ), (K,κ) : (V, T )→(W,S)

consists of a natural transformation φ : H→K satisfying the obvious axiom. For example
a monoidal natural transformation φ as above is a monad transformation (H,ψ1)→(K,κ1).

In fact as we are interested in monads over Set, we shall work not with MND(CAT)
but rather with MND(CAT/Set). An arrow (V, T )→ (W,S) of this 2-category is a pair
(H,ψ) as in the case of MND(CAT), with the added condition that ψ’s components are
the identities on objects, and similarly the 2-cells of MND(CAT/Set) come with an extra
identity-on-object condition.

We shall now exhibit the 2-functor

Γ : DISTMULT→ MND(CAT/Set)
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which on objects is given by (V,E) 7→ (GV,ΓE). Let (H,ψ) : (V,E)→(W,F ) be a lax
monoidal functor between distributive lax monoidal categories. Then for X ∈ GV and
a, b ∈ X0, we define the hom map Γ(ψ)X,a,b as∐

a=x0,...,xn=b

F
i
HX(xi−1, xi)

∐
a=x0,...,xn=b

H E
i
X(xi−1, xi)

H
∐

a=x0,...,xn=b

E
i
X(xi−1, xi)

∐
ψ //

obst.
yy%%

Γ(ψ)X,a,b =

where “obst.” denotes the obstruction map to H preserving coproducts. It follows easily
from the definitions that (GH,Γ(ψ)) as defined here satisfies the axioms of a monad
functor. Moreover given a monoidal natural transformation φ : (H,ψ)→(K,κ), it also
follows easily from the definitions that

Gφ : (GH,Γ(ψ))→(GK,Γ(κ))

is a monad transformation. It is also straight-forward to verify that these assignments
are 2-functorial.

Lax algebras of a 2-monad organise naturally into two different 2-categories depending
on whether one takes lax or oplax algebra morphisms. So in particular one has the
2-category OpLax-M -Alg of lax monoidal categories, oplax-monoidal functors between
them and monoidal natural transformations between those. The coherence ψ for an oplax
(H,ψ) : (V,E)→(W,F ) goes in the other direction, and so its components look like this:

ψXi : H E
i
Xi → F

i
HXi.

The reader should easily be able to write down explicitly the two coherence axioms that
this data must satisfy, as well as the condition that must be satisfied by a monoidal
natural transformation between oplax monoidal functors. Similarly there is a dual version
OpMND(K) of the 2-category MND(K) of monads in a given 2-category K discussed
above [Street, 1972]. An arrow (V, T )→(W,S) of OpMND(CAT) consists of a functor
H : V→W and a natural transformation ψ : HT→SH satisfying the two obvious axioms.
An arrow of OpMND(CAT) is called a monad opfunctor. As before OpMND(CAT/Set)
differs from MND(CAT/Set) in that all the categories involved come with a functor into
Set, and all the functors and natural transformations involved are compatible with these
forgetful functors.

When defining the one-cell map of Γ above we were helped by the fact that the
coproduct preservation obstruction went the right way: see the definition of the monad
functor (GH,Γψ) above. This time however we will not be so lucky. For this reason we
define the 2-category OpDISTMULT to be the locally full sub-2-category of OpLax-M -Alg
consisting of the distributive lax monoidal categories, and the oplax monoidal functors
(H,ψ) such that H preserves coproducts. Thus we can define

Γ′ : OpDISTMULT→ OpMND(CAT/Set)
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on objects by (V,E) 7→ (GV,ΓE). Let (H,ψ) : (V,E)→(W,F ) be an oplax monoidal
functor between distributive lax monoidal categories. Then for X ∈ GV and a, b ∈ X0,
we define the hom map Γ′(ψ)X,a,b as

H
∐

a=x0,...,xn=b

E
i
X(xi−1, xi)

∐
a=x0,...,xn=b

H E
i
X(xi−1, xi)

∐
a=x0,...,xn=b

F
i
HX(xi−1, xi)

∼= //

∐
ψ

yy%%
Γ′(ψ)X,a,b =

It follows easily from the definitions that (GH,Γ′(ψ)) as defined here satisfies the ax-
ioms of a monad opfunctor. Moreover given a monoidal natural transformation φ :
(H,ψ)→(K,κ), it also follows easily from the definitions that

Gφ : (GH,Γ′(ψ))→(GK,Γ′(κ))

is a monad transformation. It is also straight-forward to verify that these assignments
are 2-functorial.

4.11. Properties of the 2-functor Γ.

4.12. Proposition. Γ and Γ′ are locally fully faithful 2-functors.

Proof. We will verify that Γ is locally fully faithful; the proof for Γ′ is similar. Let
(H,ψ), (K,κ) : (V,E) → (W,F ) be lax monoidal functors between distributive lax
monoidal categories. Given φ : GH → GK so that φ : (GH,Γ(ψ)) → (GK,Γ(κ)) is a
monad 2-cell, we must exhibit a unique monoidal natural transformation φ′ : H → K
such that Gφ′ = φ. By proposition (2.7) there is a unique φ′ : H → K such that Gφ′ = φ,
and from the proof of proposition (2.7) this is defined by φ′Z = φ(Z),0,1. So it suffices to
show that φ satisfies the monad 2-cell axiom iff φ′ satisfies the monoidal naturality axiom.
The monad 2-cell axiom says the outside of∐

F
i
HX(xi−1, xi)

∐
H E

i
X(xi−1, xi) H

∐
E
i
X(xi−1, xi)

K
∐

E
i
X(xi−1, xi)

∐
K E

i
X(xi−1, xi)

∐
F
i
HX(xi−1, xi)

∐
ψ // obstn //

∐
κ
//

obstn
//

∐
F
i
φ
��

∐
φ′

��
φΓE(X),a,b
��

commutes for all X ∈ GV and a, b ∈ X0, and where all the coproducts are taken over
all sequences a = x0, ..., xn = b. Since φΓE(X),a,b = φ′ΓE(X)(a,b), the right hand square
commutes by the naturality of the obstruction maps. Monoidal naturality of φ′ says that
for all (Z1, ..., Zn)

F
i
HZi H E

i
Zi

K E
i
ZiF

i
KZi

ψ //

φ′��
//

ψ′

��
F
i
φ′
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commutes, which implies that the left hand square above commutes, and so monoidal nat-
urality of φ′ implies the monad 2-cell axiom for φ. For the converse take X = (Z1, ..., Zn),
a = 0 and b = n. In this case the coproduct involved in the monad 2-cell axiom has only
one non-trivial summand, that for the sequence (0, 1, ..., n). Thus the obstruction maps
are isomorphisms, and the left hand square is exactly the monoidal naturality axiom for
φ′.

While Γ and Γ′ aren’t themselves 2-fully faithful, proposition (4.13) is a useful related
statement which is true. By definition Γ and Γ′ fit into commutative squares

DISTMULT MND(CAT/Set)

CAT/SetCAT

Γ //

��
//

G1

��

OpDISTMULT OpMND(CAT/Set)

CAT/SetCAT

Γ′ //

��
//

G1

��

in which the vertical arrows are the obvious forgetful 2-functors. Let us write G-MND
(resp. G-OpMND) for the 2-categories obtained by pulling back G1 along the appropriate
forgetful 2-functor, and by

Ψ : DISTMULT→ G-MND Ψ′ : OpDISTMULT→ G-OpMND

the induced 2-functors.
In more concrete terms an object of G-MND (or of G-OpMND) is a pair (V, T ) where

V is a category with coproducts and T is a monad on GV over Set. By definition and by
theorem(4.9), we know that (V, T ) is in the image of Ψ (or of Ψ′) iff T is distributive and
path-like. A morphism (V, T ) → (W,S) in G-MND is a pair (H,ψ) where H : V → W
is a functor, and ψ is 2-cell data making (GH,ψ) : (GV, T ) → (GW,S) a monad functor.
Similarly, a morphism (V, T )→ (W,S) in G-OpMND is a pair (H,ψ) where H : V → W is
a coproduct preserving functor, and ψ is 2-cell data making (GH,ψ) : (GV, T )→ (GW,S)
a monad opfunctor. A two cell φ : (H,ψ)→ (K,κ) of G-MND is a natural transformation
φ : H → K, making Gφ : (GH,ψ)→ (GK,κ) a monad 2-cell, and the 2-cells of G-OpMND
are described similarly.

4.13. Proposition. Ψ and Ψ′ are 2-fully faithful.

Proof. We shall prove that Ψ is 2-fully faithful; the proof for Ψ′ is similar. By definition
and proposition (4.12) Ψ is locally fully faithful. Thus it suffices to show that Ψ is
fully faithful as a mere functor. This in turn amounts to showing that for any functor
H : V → W between categories with coproducts, and any natural transformation ψ :
Γ(F )G(H) → G(H)Γ(E) such that (GH,ψ) : (GV,ΓE) → (GW,ΓF ) is a monad functor,
that there exists a unique ψ′ : FM(H) → HE making (H,ψ′) : (V,E) → (W,F ) a lax
monoidal functor such that Γψ′ = ψ.

The homs of the components of ψ are maps in V of the form

ψX,a,b :
∐

a=x0,...,xn=b

F
i
HX(xi−1, xi)→ H

∐
a=x0,...,xn=b

E
i
X(xi−1, xi)
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and in the case where X = (Z1, ..., Zn), a = 0 and b = n, the coproducts here have only
one non-trivial summand, that for the sequence (0, 1, ..., n), and so we define

ψ′Zi := ψ(Z1,...,Zn),0,n : F
i
HZi → H E

i
Zi.

The lax monoidal functor coherence axioms for ψ′ follow easily from the monad functor
coherence axioms for ψ. To say that Γψ′ = ψ is to say that∐

a=x0,...,xn=b

F
i
HX(xi−1, xi)

∐
a=x0,...,xn=b

H E
i
X(xi−1, xi)

H
∐

a=x0,...,xn=b

E
i
X(xi−1, xi)

∐
ψ′ )) obstn

55

//
ψX,a,b

commutes for all X ∈ GV and a, b ∈ X0, which is to say that

F
i
HX(xi−1, xi)

∐
a=x0,...,xn=b

F
i
HX(xi−1, xi)

H
∐

a=x0,...,xn=b

E
i
X(xi−1, xi)H E

i
X(xi−1, xi)

cxi //

ψX,a,b��

//
Hcxi

��
ψ′

commutes for all X ∈ GV and a = x0, ..., xn = b ∈ X0. But this last square is just
the hom between a and b for the naturality square for ψ with respect to the canonical
inclusion (X(x0, x1), ..., X(xn−1, xn)) ↪→ X. Finally we note that given φ making (H,φ) :
(V,E)→ (W,F ) a lax monoidal functor one has for Z1, ..., Zn ∈ V

(Γφ)′Z1,...,Zn
= (Γφ)(Z1,...,Zn),0,n = φZi

and so ψ 7→ ψ′ is the inverse of the arrow map of Ψ.

4.14. Cartesian transformations. We now note that the above constructions are
compatible with cartesian transformations.

4.15. Lemma. Suppose that H : V → W is a pullback preserving functor between exten-
sive categories. Then the obstruction maps∐

i∈I

HXi → H
∐
i∈I

Xi

are cartesian-natural in the Xi.
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Proof. The naturality squares in question appear as the right hand square in

HXi

∐
HXi H

∐
Xi

H
∐
Yi

∐
HYiHYi

cHXi // obstn //

HcXi

''

cHYi
//

obstn
//

HcYi

77

Hfi
��

∐
Hfi

��
H

∐
fi

��

Since V is extensive and H preserves pullbacks it follows that outside square is a pullback
for all i ∈ I. Since W is extensive it follows then that the right hand square is a pullback
as required.

4.16. Proposition.

1. Let (H,ψ) : (V,E) → (W,F ) be a lax monoidal functor between distributive lax
monoidal categories, and suppose that V and W are extensive and H preserves
pullbacks. Then the following statements are equivalent:

(a) ψ is a cartesian transformation.

(b) Γψ is a cartesian transformation.

(c) Ψψ is a cartesian transformation.

2. Let (H,ψ) : (V,E) → (W,F ) be a coproduct preserving oplax monoidal functor
between distributive lax monoidal categories, and suppose that W is extensive. Then
the following statements are equivalent:

(a) ψ is a cartesian transformation.

(b) Γ′ψ is a cartesian transformation.

(c) Ψ′ψ is a cartesian transformation.

Proof. The statements that Γψ cartesian iff Ψψ is cartesian, and similarly for Γ′ψ and
Ψ′ψ, follows by definition. For (H,ψ) as in (1) note that by the extensivity of W the
maps ∐

a=x0...,xn=b

ψX(xi−1,xi) :
∐

a=x0...,xn=b

F
i
HX(xi−1, xi)→

∐
a=x0...,xn=b

H E
i
X(xi−1, xi)

are cartesian natural iff ψ is, and so (1) follows by lemma(4.15) and the definition of Γ.
For (H,ψ) as in (2) one has by the extensivity of W that the cartesian naturality of∐

a=x0...,xn=b

ψX(xi−1,xi) :
∐

a=x0...,xn=b

H E
i
X(xi−1, xi)→

∐
a=x0...,xn=b

F
i
HX(xi−1, xi)

is equivalent to that of ψ, so that (2) follows from the definition of Γ′.
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Recall that for a cartesian monad (T, η, µ) on a category V with pullbacks, a T -operad
consists of another monad A on V together with a cartesian monad morphism α : A→ T ,
that is to say, one has a natural transformation α : A → T whose naturality squares
are pullbacks, and is a morphism of monoids in the monoidal category End(V ). Given
a cartesian monad T on GV over Set, a T -operad over Set is defined in the same way
except that the natural transformation α lives over Set, which means that in addition
α’s components are identities on objects. For instance for T = T≤n the strict n-category
monad on GnSet, T -operads over Set were called normalised n-operads of [Batanin, 1998]
and the terminology “normalised” was also used in [Batanin-Weber, 2011]. Finally we
note that Γ’s image is closed under cartesian monad maps.

4.17. Lemma. Let V be a lextensive category and T be a cartesian monad on GV over
Set. Let α : A→ T be a T -operad over Set.

1. If T is distributive then so is A.

2. If T is path-like then so is A.

Proof. (1): given an n-tuple (X1, ..., Xn) of objects of V and a coproduct cocone

(cj : Xij → Xi : j ∈ J)

where 1≤i≤n, we must show that the hom-maps

A(X1, ..., cj, ..., Xn)0,n : A(X1, ..., Xij, ..., Xn)(0, n)→ A(X1, ..., Xi, ..., Xn)(0, n)

form a coproduct cocone. For j ∈ J we have a pullback square

A(X1, ..., Xij, ..., Xn)(0, n) A(X1, ..., Xi, ..., Xn)(0, n)

T (X1, ..., Xi, ..., Xn)(0, n)T (X1, ..., Xij, ..., Xn)(0, n)

A(X1,...,cj ,...,Xn)0,n //

α
��

α
��

T (X1,...,cj ,...,Xn)0,n

//

pb

and by the distributivity of T the T (X1, ..., cj, ..., Xn)0,n form a coproduct cocone, and
thus so do the A(X1, ..., cj, ..., Xn)0,n by the extensivity of V .

(2): given X ∈ GV , a, b ∈ X0 and a sequence (x0, ..., xn) of objects of X such that
x0 = a and xn = b, we have the map

Ax0,n : A(X(x0, x1), ..., X(xn−1, xn))(0, n)→ AX(a, b)

and we must show that these maps, where the xi range over all sequences from a to b,
form a coproduct cocone. By the path-likeness of T we know that the maps

Tx0,n : T (X(x0, x1), ..., X(xn−1, xn))(0, n)→ TX(a, b)

form a coproduct cocone, so we can use the cartesianness of α and the extensivity of V
to conclude as in (1).
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5. Distributive laws between monads and multitensors

In section(1) of the seminal paper [Beck, 1969] of Jon Beck on monad distributive laws, it
is shown that there are three equivalent ways of regarding a distributive law of a monad
S over a monad T on the same category:

1. As a natural transformation TS → ST satisfying some axioms,

2. as a natural transformation STST → ST satisfying some axioms, one of which is
that it is the multiplication of a monad, and

3. as a lifting of the monad S to the category of algebras of T .

In the previous section we saw that Γ can be seen as a 2-functor landing in certain 2-
categories of monads, and from [Street, 1972] we know that monads in these 2-categories
of monads are distributive laws. Thus Γ sends monoidal and opmonoidal monads to
distributive laws.

In this section we exhibit an analogue of Beck’s basic result in our situation before
applying Γ, and then relate this to the monad distributive laws one has upon Γ’s appli-
cation. Given a monad T and a multitensor E on a category V , the analogue of the data
TS → ST of a monad distributive law is that of the coherences making T into a monoidal
or opmonoidal monad with respect to E. Theorem(5.2) is the analogue of Beck’s result
for monoidal monads, and theorem(5.4) is the analogue for opmonoidal monads.

Section(5.3) completes our development of the theory of monads and multitensors, and
in section(5.16) we give an illustration of our theory to efficiently construct the monads
for strict n-categories and deduce all their important properties.

5.1. Distributing a monad over a multitensor. Let (V,E, u, σ) be a lax monoidal
category. Recall that a monoidal monad on (V,E) is a monad on (V,E) in the 2-category
of lax monoidal categories, lax monoidal functors and monoidal natural transformations.
In more explicit terms this amounts to a monad (T, η, µ) on V together with coherence
maps

τXi : E
i
TXi → T E

i
Xi

such that

T E1T

TE1

uT //

τ��Tu ��

E
i

E
j
T E

i
T E

j
T E

i
E
j

T E
ij

E
ij
T

E
i
τ
//

τ E
j //

Tσ��σT ��
τ

//

and

E1 E1T

TE1

E1η //

τ��ηE1 ��

E
i
T 2 T E

i
T T 2 E

i

T E
i

E
i
T

τT // Tτ //

µE
i

��E
i
µ ��

τ
//
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commute. Ignoring the subscripts in the above data and axioms one can see immediately
the formal resemblance with monad distributive laws. Restricting attention to singleton
sequences of objects from V one has a monad distributive law of T over E1.

Given a multitensor E on a category V and a monad (S, η, µ) on GV , a lifting of
S to E-Cat is a monad (S ′, η′, µ′) on E-Cat such that SUE = UES ′, ηUE = UEη′ and
µUE = UEµ′, where we recall that UE : E-Cat→ GV is the forgetful functor. We arrive
now at our monoidal monad analogue of Beck’s basic monad distributive law result.

5.2. Theorem. Let V be a category, (E, u, σ) be a multitensor on V and (T, η, µ) be a
monad on V . Then there is a bijection between the following types of data:

1. Morphisms τXi : E
i
TXi → T E

i
Xi of V providing the coherences making T into a

monoidal monad.

2. Morphisms σ′Xij : T E
i
T E

j
Xij → T E

ij
Xij of V providing the substitutions for a

multitensor (TE, u′, σ′) where u′X = ηE1XuX , ηE : E → TE is a multitensor map,
Tu : T → TE1 is a monad map, and the composite

T E
i

TE1T E
i

T E
i

TuηE
i // σ′ //

is the identity.

if in addition V has coproducts and E is distributive, then the data (1)-(2) are also in
bijection with

3. Identity on object morphisms λX : Γ(E)G(T )(X)→ G(T )Γ(E)(X) of GV providing
a monad distributive law of G(T ) over Γ(E).

4. Liftings of the monad G(T ) to a monad T ′ on E-Cat.

and for any given instance of such data one has an isomorphism

(TE)-Cat ∼= E-CatT
′

of categories commuting with the forgetful functors into GV .

Proof. (1)⇔(2): The basic idea of this proof is to adapt the discussion of [Beck, 1969]
section 1 replacing one of the monads by a multitensor. Suppose maps τXi are given
which make T into a monoidal monad. Define u′X = ηE1XuX and σ′Xij to be given by the
composite

T E
i
T E

j
Xij T 2 E

i
E
j
Xij T E

ij
Xij.TτE // µσ //

The axioms exhibiting (TE, u′, σ′) as a multitensor, ηE : E → TE as a multitensor
map, Tu : T → TE1 as a monad map, and σ′(Tuη E

i
) = id follow easily from the

multitensor axioms on E, the monad axioms on T and the monoidal monad coherence
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axioms. Conversely given the data σ′ as in (2) one defines the monoidal monad coherence
τ as the composite

E
i
T T E

i
TE1 T E

i
.

ηE
i
Tu
// σ′ //

The axioms involving τ , η and u are verified easily.
In order to verify the other two axioms one must first observe that

T E
i

E
j

T E
i
T E

j

T E
ij

T E
i
ηE
j //

σ′��
''Tσ

T 2 E
i

TE1T E
i

T E
i

TuT E
i //

σ′��''µE
i

(6)

commutes. One witnesses the commutativity of the triangle on the left from

T E
i

E
j

TE1T E
i

E
j

T E
i

E
j

T E
i
T E

j
TE1T E

i
T E

j
TE1 E

i
E
j

T E
ij

TE1 E
ij

TE1T E
ij

T E
ij

TuηE
i

E
j //

σ′ E
j //

T E
i
ηE
j

$$

σ′zz

Tσ

zz

TuE
ij
$$

TE1η E
ij

//
σ′

//

TE1ηE
i
ηE
j //

σ′T E
j //

TuE
i

E
j

$$

TE1σzz

TE1T E
i
ηE
j

$$

TE1σ′zz

using also σ′(Tuη E
i
) = id, and one witnesses the commutativity of the triangle on the

right of (6) from

T 2 E
i

T 2E1T E
i

T 2 E
i

TE1T E
i

TE1TE1T E
i

T 3 E
i

T E
i

T 2 E
i

TE1T E
i

T E
i

T 2uηE
i // Tσ′ //

TuT E
i

$$

σ′zz

µE
i

zz

TηE
i
$$

TuT E
i

//
σ′

//

TuTuT E
i // TE1σ′ //

T 2ηE
i

$$

µT E
i
E1zz

TuTE1T E
i

$$

σ′T E
i

zz

and σ′(Tuη E
i
) = id. Second, one observes that

T 2 E
i
T E

j
T 2 E

ij

T E
ij

T E
i
T E

j

Tσ′ //

µE
ij��

//
σ′

��
µE
i
T E
j

T E
i
T E

j
E
k

T E
ij

E
k

T E
ijk

T E
i
T E
jk

σ′ E
k //

Tσ��
//

σ′

��
T E
i
Tσ (7)
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commute, but these identities are easily witnessed from

T 2 E
i
T E

j
T 2 E

ij

TE1T E
ij

T E
ij

T E
i
T E

j

TE1T E
i
T E

j

Tσ′ //

TuT E
ij��

σ′��
//

σ′

��
σ′T E

j

��
TuT E

i
T E
j

TE1σ′//

T E
i
T E

j
E
k

T E
ij

E
k

T E
ij
T E

k

T E
ijk

T E
i
T E
jk

T E
i
T E

j
T E

k

σ′ E
k //

T E
ij
uE
k��

σ′��
//

σ′

��
T E
i
σ′

��
T E
i
T E
j
uE
k

σ′T E
k//

and (6).
With (7) now verified we now proceed to the verification of the other axioms for τ .

The axiom expressing the compatibility between τ and σ is verified in

E
i

E
j
T E

i
T E

j
TE1 E

i
T E

j
T E

i
TE1 E

j

T E
i

E
j

T E
ij

T E
ij
TE1E

ij
T

T E
i
T E

j
TE1 T E

i
T E

j

E
i
ηE
j
Tu

//
E
i
σ′

//
ηE
i
TuE

j//

σ′ E
j

��

Tσ

��

σT

��

η E
ij
Tu

//
σ′

//

ηE
i
ηE
j
Tu

!! T E
i
σ′

//
}}

T E
i
Tσ

ηE
i
T E
j
TE1

��

σ′TE1

��

ηE
i
T E
j

��

σ′

!!

and the axiom expressing the compatibility between τ and µ is verified in

E
i
T 2 T E

i
TE1T T E

i
T T 2 E

i
TE1

T 2 E
i

T E
i

T E
i
TE1E

i
T

T E
i
TE1TE1 T E

i
TE1

ηE
i
TuT
// σ′T //

TηE
i
Tu
//

Tσ′

��

µE
i

��

E
i
µ

��

ηE1Tu
//

σ′
//

ηE
i
TuTu

!!
σ′TE1//

}}

µE
i
TE1

T E
i
TE1Tu

��

T E
i
σ′

��

T E
i
Tu

��

σ′

!!

It follows immediately from the unit laws of T and E, that the composite function
(1)→(2)→(1) via the above constructions is the identity. It is the commutativity of
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the outside of

T E
i
T E

j

T 2 E
i
TE1 E

j
T 2 E

i
E
j

T E
i

E
j

T E
ij

T E
i
T E

j

T E
i
TE1 E

j

TηE
i
TuE

j
77

Tσ′ E
j //

µE
i

E
j
��

Tσ
��

//
σ′

''1

µE
i
TE1 E

j
��

T E
i
Tσ

��

σ′ E
j // µσ

xx

that says that (2)→(1)→(2) is the identity.
(1)⇔(3): A monoidal monad on (V,E) is a monad on (V,E) in the 2-category

DISTMULT. By [Street, 1972] to give a monad S on GV over Set and a distributive
law of S over ΓE, is to give a monad on (GV,ΓE) in MND(CAT/Set). Moreover such
distributive laws, for the case where S = GT for some monad T on V , are exactly monads
in G-MND. Thus applying Ψ to monads gives the desired bijection.

(3)⇔(4): By the usual theory of monad distributive laws and since GV ΓE ∼= E-Cat
over GV by proposition (3.3).

One can readily unpack the lifted monad T ′ in terms of the monoidal coherence
data using the details of the proof of proposition (3.3) which explain how to regard
an E-category as a ΓE-algebra. Let X ∈ E-Cat and as in section(3.1) write κxi :
E
i
X(xi−1, xi)→ X(x0, xn) for the composition maps. Then since T ′ is a lifting of GT , T ′X

must have underlying V -graph GT (X), which has the same objects as X and homs given
by (T ′X)(a, b) = T (X(a, b)). The composition map κ′xi : E

i
T ′X(xi−1, xi) → T ′X(x0, xn)

is given by the composite

E
i
TX(xi−1, xi) T E

i
X(xi−1, xi) TX(x0, xn)τ //

Tκxi //

Consider Z ∈ GV . To endow Z with the structure of a TE-category is to give maps

κzi : T E
i
Z(zi−1, zi)→ Z(z0, zn)

satisfying the usual axioms. But by precomposing these with the unit for T gives the
compositions for an E-category structure on Z, and by the above explicit description of
T ′, one may readily verify that the remaining structure is exactly that of a T ′-algebra
structure. Similarly given V -graph map f : Z → Z ′ between TE-categories, one may
readily verify that f is a TE-functor iff it is an E-functor and a T ′-algebra map. Thus
we have the object and arrow maps of the required isomorphism (TE)-Cat ∼= E-CatT

′
.

All aspects of the above result apply to the familiar examples of monoidal monads on
Set regarded as monoidal via its cartesian product, since × preserves all colimits in each
variable and so is certainly distributive. These familiar examples include: the pointed set
monad, the covariant power set monad, the monad obtained from a commutative ring R
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by taking R-linear combinations. In [Weber, 2013] a tensor product on GV is provided,
under very slight conditions on V , with respect to which any monad on GV over Set is
(symmetric) monoidal, giving many examples relevant to higher category theory.

5.3. Distributing a multitensor over a monad. In a completely analogous fashion
one may also regard opmonoidal monads as distributive laws. Once again let (V,E, u, σ)
be a lax monoidal category. An opmonoidal monad on (V,E) is a monad on (V,E) in
the 2-category of lax monoidal categories, oplax monoidal functors and monoidal natural
transformations, which amounts to a monad (T, η, µ) on V together with coherence maps

τXi : T E
i
Xi → E

i
TXi

such that

T TE1

E1T

Tu //

τ��uT ��

T E
i

E
j

E
i
T E

j
E
i

E
j
T

E
ij
TT E

ij

τ E
j //

E
i
τ
//

σT��Tσ ��
τ

//

and

E1 TE1

E1T

ηE1 //

τ��E1η ��

T 2 E
i

T E
i
T E

i
T 2

E
i
TT E

i

T τ // τT //

E
i
µ��µE

i
��

τ
//

commute. Recalling that M is our notation for the monoid monad on CAT, we shall use
the alternative notations

EM(T )(X1, ..., Xn) = E
i
TXi

interchangeably as convenience dictates.
Given a multitensor (E, u, σ) on a category V and a monad (T, η, µ) on V , a lifting

of E to V T is defined to be a multitensor (E ′, u′, σ′) on V T such that UTE ′ = EM(UT ),
UTu′ = uUT and UTσ′ = σM2(UT ), where we recall that UT : V T → V is the forgetful
functor. In more explicit terms to give such a lifting is to give maps

axi : T E
i
Xi → E

i
Xi

in V for all sequences ((X1, x1), ..., (Xn, xn)) of T -algebras, such that these maps satisfy
the axioms making (E

i
Xi, axi) T -algebras, and with respect to these structures, E

i
fi is a

morphism of T -algebras for any sequence fi : (Xi, xi) → (Yi, yi) of T -algebra maps, and
moreover, u and σ are T -algebra morphisms.
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5.4. Theorem. Let V be a category, (E, u, σ) be a multitensor on V and (T, η, µ) be a
monad on V . Then there is a bijection between the following types of data:

1. Morphisms τXi : T E
i
Xi → E

i
TXi of V providing the coherences making T into a

opmonoidal monad.

2. Morphisms σ′Xij : E
i
T E

j
TXij → E

ij
TXij of V providing the substitutions for a mul-

titensor (EM(T ), u′, σ′) where u′X = uTXηX , Eη : E → EM(T ) is a multitensor
map, uT : T → E1T is a monad map, and the composite

E
i
T E

i
TE1T E

i
T

E
i
ηuT

// σ′ //

is the identity.

3. Liftings of the multitensor E to a multitensor E ′ on V T .

and for any given instance of such data one has an isomorphism

EM(T )-Cat ∼= E ′-Cat

of categories commuting with the forgetful functors into GV . If in addition V has coprod-
ucts, T preserves them and E is distributive, then the data (1)-(2) are also in bijection
with

4. Identity on object morphisms λX : G(T )Γ(E)(X)→ Γ(E)G(T )(X) of GV providing
a monad distributive law of Γ(E) over G(T ).

Proof. (1)⇔(2): This is completely analogous to the bijection between (1) and (2) in
theorem(5.2).

(1)⇔(3): Suppose that opmonoidal monad coherence data τXi is given. Then for
a given sequence of T -algebras ((X1, x1), ..., (Xn, xn)) we define axi to be given by the
composite

T E
i
Xi E

i
TXi E

i
Xi.τ //

E
i
Xi
//

The verifications that these maps satisfy the T -algebra axioms, and that with respect to
these structures u and σ are T -algebra morphisms are straight forward. Conversely given
a lifting of E to V T we construct, for a given sequence (X1, ..., Xn) of objects of V , the
coherence map τXi as the composite

T E
i
Xi T E

i
TXi E

i
Xi.

T E
i
η
//

aµXi //
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The axioms expressing the compatibilities between τ with u, η and µ are all routinely
verified. The axiom for the compatibility of τ with σ is witnessed in

T E
i

E
j
Xij T E

i
T E

j
Xij E

i
T E

j
Xij

E
i
T E

j
TXij

E
i

E
j
TXij

E
ij
TXij

T E
ij
TXij

T E
ij
Xij

T E
i

E
j
TXij

T E
i
T E

j
TXij

T E
i

E
j
TXij

T E
i
ηE
j //

aµE
j
Xij

//

E
i
T E
j
η

��

E
i
aµXij

��

σTtt**aµXij

��

T E
ij
η

��

Tσ

T E
i
ηE
j
T

CC
T E
i
aµXij

��
//

1

T E
i

E
j
η

��

TσTxx

T E
i
T E
j
η

��
aµE
j
TXij

,,

aaµXij

&&

(I)

(II)

(III)

in which the unlabelled regions commute for obvious reasons. Region (III) commutes
since σ is a T -algebra map. Since the aµXij are T -algebra maps so is E

i
aµXij and so region

(II) commutes. The morphisms T E
j
η are T -algebra maps and so E

i
T E

j
η are T -algebra

maps whence region (I) commutes also. Thus we have established functions that turn
opmonoidal coherence data into liftings and vice versa, and the verification that these are
inverse to each other is straight forward.

The isomorphism E ′-Cat ∼= (EM(T ))-Cat over GV : To give X ∈ GV the structure of
an EM(T )-category is to give morphisms

axi : E
i
T (X(xi−1, xi))→ X(x0, xn)

in V for each sequence (x0, ..., xn) of objects of X, such that all diagrams of the form

X(x0, x1) TX(x0, x1)

E1TX(x0, x1)X(x0, x1)

η //

uT
��

ax0,x1

oo
��

1

E
i
T E

j
TX(xij−1, xij) E

i
E
j
T 2X(xij−1, xij)

E
ij
TX(xij−1, xij)E

i
TX(xi−1, xi)

X(x0, xn)

E
i
τT
//

σµ��

axijyy%%aai

��
E
i
Taxij

commute. On the hand to give X the structure of an E ′-category is to give maps

bx0,x1 : TX(x0, x1)→ X(x0, x1) cxi : E
i
X(xi−1, xi)→ X(x0, xn)
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such that the bx0,x1 satisfy the T -algebra axioms, the cxi satisfy the E-category axioms,
and moreover the cxi are T -algebra morphisms with respect to the T -algebra structures
given by the bx0,x1 . Supposing that maps axi are given as above one defines maps bx0,x1

and cxi as composites

TX(x0, x1) E1TX(x0, x1) X(x0, x1)uT //
ax0,x1 //

E
i
X(xi−1, xi) E

i
TX(xi−1, xi) X(x0, xn).

E
i
η
//

axi //

The T -algebra axioms for bx0,x1 and the E-category axioms for cxi are easily verified.
That cxi is a T -algebra morphism is expressed by the commutativity of the outside of the
diagram

T E
i
X(xi−1, xi)

E
i
TX(xi−1, xi) E

i
E1TX(xi−1, xi)

E
i
X(xi−1, xi)

E
i
TX(xi−1, xi)

X(x0, xn)

E1TX(x0, xn)

TX(x0, xn)

T E
i
TX(xi−1, xi)

E
i
T 2X(xi−1, xi)

E
i
T 2X(xi−1, xi)

E
i
TE1TX(xi−1, xi)

E
i
E1T

2X(xi−1, xi)

E
i
TX(xi−1, xi)

E1 E
i
T 2X(xi−1, xi)

E1T E
i
TX(xi−1, xi)

τ

<<

E
i
uT

//

E
i
axi−1,xi

""

E
i
η

��

axi

��

66

ax0,xn

((
uT

��

Taxi

��

T E
i
η

τT

FF

��

E
i
Tη

E
i
ηT

""

E
i
TuT

%%

E
i
τT

��

σµ

��""

σµ

KK

E1τT

��

uT E
i
T

uE
i
T 2

��

id

��

E
i
uT 2

��

E
i
ηE1T

��

E
i
Taxi−1,xi

��

axi &&

E1Taxi

��

whose internal regions all clearly commute. Conversely given structure maps bx0,x1 and
cxi as above, one constructs the axi as the composites

E
i
TX(xi−1, xi) E

i
X(xi−1, xi) X(x0, xn).

E
i
bxi−1,xi

//
cxi //
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The verification that these maps satisfy the axioms on the axi described above is straight
forward. It is also straight forward to check that these constructions give a bijection
between EM(T )-category structures and E ′-category structures on X, and moreover that
this can be extended to maps giving the required isomorphism of categories over GV .

(1)⇔(4): This bijection is given in basically the same way as that for (1)⇔(3) in
theorem(5.2), using the 2-functor Ψ′ instead of Ψ.

5.5. Remark. Note in particular that, in the context of theorem(5.4), when V has co-
products, E is distributive and T preserves coproducts, then the composite multitensor
EM(T ) is clearly distributive. Moreover since UTE ′ = EM(UT ) and UT creates coprod-
ucts, the lifted multitensor E ′ is also distributive. Thus by theorem(5.4) and proposition
(3.3) one in fact has isomorphisms

G(V )Γ(EM(T )) ∼= EM(T )-Cat ∼= G(V )Γ(E)G(T ) ∼= E ′-Cat ∼= G(V T )ΓE′

over GV . Either by a direct verification, or by applying structure-semantics3 to
G(V )Γ(EM(T )) ∼= G(V )Γ(E)G(T ), one has also an isomorphism

Γ(EM(T )) ∼= Γ(E)G(T )

of monads. Moreover the monad T may also be regarded as a multitensor, whose unary
part is T and whose n-ary parts for n 6= 1 are constant at ∅, and then ΓT ∼= GT as
monads. Thus if E and T are λ-accessible, then so is EM(T ) by theorem(3.7)(2).

5.6. Remark. If moreover E and T are local right adjoint and the coherences τXi are
cartesian natural in the Xi, then by the explicit description of the composite multitensor
EM(T ) and theorem(3.7)(4), EM(T ) is also local right adjoint.

5.7. Example. When V is a category with finite products and E is given by them, any
monad T on V is canonically opmonoidal, with the coherences provided by the product
preservation obstruction maps. The composite monad, whose tensor product is

EM(T )(X1, ..., Xn) =
∏

1≤i≤n

TXi

was called T× in [Batanin-Weber, 2011]. Proposition(2.8) of [Batanin-Weber, 2011], which
says that

T×-Cat ∼= (V T ,×)-Cat

over GV , follows by applying theorem(5.4) to this example. When T is local right ad-
joint and V is distributive, the product obstruction maps for T are cartesian natural by
lemma(2.15) of [Weber, 2007] and so by remark(5.6) T× is local right adjoint.

3This is the well-known fact due to Lawvere that for any category E , the canonical functor

Mnd(E)op → CAT/E T 7→ U : ET → E

with object map indicated is fully faithful (see [Street, 1972] for a proof). In particular this implies that
for monads S and T on E , an isomorphism ET ∼= ES over E is the same thing as a monad isomorphism
S ∼= T .
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5.8. Wreath products. Continuing with this last example, one can give an account of
the wreath products with ∆ which are central to [Berger, 2007], by combining the present
discussion with the theory of monads with arities as described in [Berger-Melliès-Weber,
2012]. Let us first recall and in some ways update some of this theory.

A monad with arities is a monad in the 2-category CAT-Ar of categories with arities
that we now describe. An object is a fully faithful dense functor i : A → E such that A
is small and E is locally small. A morphism from i : A → E to j : B → F is a functor
F : E → F such that the composite functor

E F B̂
F // F(j,1) //

is the left kan extension along i of F(j, 1)Fi. See lemma(2.2) and section(2.4) of [Berger-
Melliès-Weber, 2012] to see why these compose, and for an elementary characterisation
of this last condition. A 2-cell F → G is just a natural transformation.

In [Berger-Melliès-Weber, 2012] i : A → E was referred to as a pair (A, E) and assumed
to be the inclusion of a full subcategory. Thus strictly speaking, our CAT-Ar has more
objects than that of [Berger-Melliès-Weber, 2012]. However any i : A → E in CAT-Ar can
easily be seen to be isomorphic to one for which the functor is a subcategory inclusion.
The objects in the image of i are small projective iff E(i, 1) is an equivalence E ' Â
(see the discussion preceding lemma(2.14)). Working with such an i is a more flexible

alternative than working with categories which are equal or isomorphic to Ĉ for some
small category C, for instance, when dealing with G(Ĉ).

5.9. Remark. By lemma(2.14), if V has a strict initial object and i : D → V is a
category with arities, then so is i+ : D+ → GV . Moreover if the objects in the image of i
are small projective, then so are those in the image of i+.

5.10. Remark. If i : A → E is a category with arities and X ∈ E , then it is straight
forward to verify that

iX : i/X → E/X (A, h : iA→ X) 7→ (iA, h)

is also a category with arities, and moreover if the objects in the image of i are small
projective, then so are those in the image of iX .

Let us now reformulate Berger’s definition of the wreath product with ∆ ([Berger, 2007]
definition(3.1)) in terms of the language of this paper. Given a distributive category V , for
any sequence of objects (Z1, ..., Zn) regarded as a V -graph, the V -graph Γ(

∏
)(Z1, ..., Zn),

underlying the free V -category on (Z1, ..., Zn), has the following explicit description by
the definition of Γ(

∏
). Its set of objects is {0, ..., n}, and its homs are given by

Γ(
∏

)(Z1, ..., Zn)(i, j) =

{ ∏
i<k≤j

Zk if i ≤ j

∅ if i > j.
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5.11. Definition. [Berger, 2007] Let i : A → E be in CAT-Ar such that E is a distribu-
tive category. Then ∆ o A is the following category

• objects are finite sequences of objects of A.

• an arrow f : (A1, ..., Am)→ (B1, ..., Bn) is an E-functor

f : Γ(
∏

)(iA1, ..., iAm)→ Γ(
∏

)(iB1, ..., iBn).

The enrichment over E implicit in the above is with respect to cartesian product in E .
Suppose the objects of A are not initial and E ’s initial object is strict. Then the object
map φ : {0, ...,m} → {0, ..., n} of f above is forced to be an order preserving function.
As f amounts to an E-graph morphism as on the left in

(iA1, ..., iAm)→ Γ(
∏

)(iB1, ..., iBn) fj : iAj −→
∏

φ(j−1)<k≤φ(j)

iBk

it is completely determined by φ and the morphisms fj in E for 1 ≤ j ≤ m as indicated

in the previous display. In the case where E = Â and i is the yoneda embedding, ∆ o A is
thus exactly as defined in [Berger, 2007] definition(3.1). In fact our definition is no more
general than that of Berger’s.

5.12. Remark. ∆ o A as defined in definition(5.11) does not depend on i or E . For

E(i, 1) : E → Â is fully faithful and product preserving, and so G(E(i, 1)) is also fully

faithful and underlies a monad morphism (G(E),Γ(
∏

)) → (G(Â),Γ(
∏

)) whose 2-cell
datum is invertible. Thus the corresponding commutative square

G(E)Γ(
∏

) G(Â)Γ(
∏

)

G(Â)G(E)

i //

UΓ(
∏

)
��

//
G(E(i,1))

��UΓ(
∏

)

is a pullback by [Berger-Melliès-Weber, 2012] proposition (1.3)(c), and so i is also fully
faithful. Moreover for any sequence (A1, ..., An) of objects of A one has

iΓ(
∏

)(iA1, ..., iAn) ∼= Γ(
∏

)(yA1, ..., yAn)

where y is the yoneda embedding A → Â. Thus the application of i gives a bijection
between E-functors as on the left in

Γ(
∏

)(iA1, ..., iAn)→ Γ(
∏

)(iB1, ..., iBn) Γ(
∏

)(yA1, ..., yAn)→ Γ(
∏

)(yB1, ..., yBn)

and Â-functors as on the right in the previous display.
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As defined in definition(5.11), the category ∆ o A is the image of the identity on
objects-fully faithful factorisation of the composite

MA ME GE E-Cat = G(E)Γ(
∏

)Mi // seqE // FΓ(
∏

)
//

where seqE is the process of viewing sequences as E-graphs.
Let i : A → E be a category with arities and suppose that E has a terminal object 1.

Given a local right adjoint monad4 T on E , we shall now explain how one can extend the
arities A of E in such a way as to make T a monad with arities. In [Berger-Melliès-Weber,
2012] this was explained in section(2.6) in the case where i was a yoneda embedding.

Since T is local right adjoint its effect T1 : E → E/T1 on arrows X → 1 has a left
adjoint LT . Define the full and faithful functor i0 : AT → E as the right part of the
identity on objects-fully faithful factorisation of the composite

i/T1 E/T1 E .
iT1 // LT //

Given f : iA→ T1 and writing g(A,f) for the component of the unit of LT a T1 at (A, f)

iA TLT iT1(A, f) T1
g(A,f) // T ! //

is a T -generic factorisation of f in the sense of [Weber, 2007, Weber, 2004]. Thus the
data of LT iT1 comes down to a choice of such generic factorisation for each (A, f). Since
generics for the identity are exactly isomorphisms, the cartesianness of the unit η : 1→ T
ensures that its components are T -generic by [Weber, 2004] proposition (5.10)(2). As in
the discussion of section(6.1) of [Batanin-Weber, 2011], one can thus take g(A,f) for f of
the form

iA 1 T1
! // η1 //

to be ηiA, whence LT iTA(A, f) = iA in this case. This ensures that i factors through
i0, and so by theorem(5.13) of [Kelly, 1982], i0 is dense. By the same argument as
theorem(2.9) of [Berger-Melliès-Weber, 2012], AT are arities for T , that is to say T is a
monad on i0 : AT → E in CAT-Ar.

Define iT : ΘT → ET to be the right part of the identity on objects-fully faithful
factorisation of the composite

AT E ET
i0 // FT //

By the nerve theorem ([Berger-Melliès-Weber, 2012] theorem(1.10)), iT is also dense and

one has a characterisation of the image of the nerve functor ET (iT , 1) : ET → Θ̂T .
The basic example worth recalling is where E = Gph, i is the yoneda embedding

and T is the monad for categories. Then ΘT is equivalent to ∆, though not isomorphic

4In [Berger-Melliès-Weber, 2012] local right adjoint monads were called strongly cartesian monads.
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– unwinding the definitions in this case reveals that ΘT differs from ∆ in that there
are two copies of the object [0]. Thus to recover ∆ up to isomorphism from the above
considerations, one must take a skeleton of ΘT . Similar remarks apply to the other
examples considered in section(4) of [Weber, 2007].

Let i : A → E be a category with arities, E be locally c-presentable, and T be a coprod-
uct preserving local right adjoint monad on E . Then by remark(5.9) and theorem(3.7)(4),
i+ : A+ → GE is a category with arities, GE is locally c-presentable, and Γ(T×) is a
coproduct preserving local right adjoint monad on GE . Thus as above, one can define
ΘΓ(T×). Recall from section(5.3) that Γ(T×) is the composite monad Γ(

∏
)G(T ) defined

via a distributive law.

5.13. Proposition. For i, E and T as above there exists a fully faithful functor

wT : ΘΓ(T×) −→ ∆ oΘT .

Proof. The category ∆ oΘT is the image of the identity on objects-fully faithful factori-
sation of the composite

MΘi,T MET G(ET ) G(ET )Γ(
∏

) = G(E)Γ(T×)MiT //
seqET // FΓ(

∏
)
//

(8)

and the category ΘΓ(T×) is the image of the identity on objects-fully faithful factorisation
of the composite

i+/Γ(T×)(1) G(E)/Γ(T×)(1) G(E) G(E)Γ(T×).
i+
Γ(T×)(1)//

LΓ(T×)// FΓ(T×)
//

(9)

Thus one has fully faithful functors

i1 : ∆ oΘT −→ G(E)Γ(T×) i2 : ΘΓ(T×) −→ G(E)Γ(T×).

To demonstrate the existence of wT such that i2 = i1wT , it suffices to show that if
X ∈ G(E)Γ(T×) is isomorphic to an object in the image of i2, then X is isomorphic to an
object in the image of i1.

To say that X ∼= X ′ ∈ im(i2) is to say that X ∼= Γ(T×)(Y ) and there exists B ∈ A+

together with a generic morphism g : B → Γ(T×)(Y ), because then Y will have been
obtained by applying the first two functors of (9) to f = Γ(T×)(!)g. In other words,
X ∼= Γ(T×)(Y ) where Y was obtained by generically factoring some morphism f : B →
Γ(T×)(1), where B ∈ A+. Such generic factorisations were understood in the proof of
theorem(3.7)(4). When B = 0 one may take g to be η0. On the other hand when
B = (A), one may take g : (A) → Γ(T×)(Z1, ..., Zn) such that g0 = 0, g1 = n and
g0,1 : A →

∏
1≤i≤n

TZi such that prig0,1 is T -generic for all i. Thus X ∼= Γ(T×)(Y ) where

Y = (p1, ..., pn), and there exists A ∈ A and T -generic maps gi : A → Tpi for 1 ≤ i ≤ n
(the case B = 0 captured by the case n = 0).
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To say that X ∼= X ′ ∈ im(i1) is to say that X ∼= Γ(
∏

)(q1, ..., qn) where the qi are
isomorphic to objects in the image of iT . But this says that for all i, qi ∼= Tpi and there
exists Ai ∈ A and a T -generic morphism gi : Ai → Tpi. Thus X ∼= Γ(Tp1, ..., Tpn) and
for all i, there exists Ai ∈ A and a T -generic morphism gi : Ai → Tpi. Now (Tp1, ..., Tpn)
is a sequence of free T -algebras viewed as an ET -graph, and since T preserves coproducts
this can be rewritten as G(T )(p1, ..., pn). Thus X ∼= Γ(T×)(Y ) where Y = (p1, ..., pn), and
for 1 ≤ i ≤ n there exists Ai ∈ A and T -generic maps gi : Ai → Tpi for 1 ≤ i ≤ n.

5.14. Remark. From the previous proof, it is clear that wT is essentially surjective on
objects when T and i satisfy the following condition – given A1, A2 ∈ A, and generics
g1 : A1 → TX and g2 : A2 → TY , there exists A ∈ A and generics g′1 : A → TX and
g′2 : A→ TY .

5.15. Example. Consider the case when E = Gph, i is the yoneda embedding and T is
the monad for semicategories. Recall that a semicategory is a graph with an associative
binary composition, but not necessarily identities for this composition. Thus TX is the
graph whose vertices are those ofX, and whose edges are non-empty paths. In this case ΘT

is the full subcategory of ∆ consisting of the strictly monotone functions (ie the injections).
Thus an object of ∆ o ΘT is a sequence of finite non-empty ordinals ([n1], ..., [nk]). As a
subcategory of G2(Set)Γ(T×) the objects of ∆oΘT are free Γ(T×) algebras on 2-dimensional
globular pasting diagrams. For instance ([3], [0], [2]) and ([3], [1], [2]) are identified with
the globular pasting diagrams

• • • •
��  
?? KK

//
��
//
HH

��

��

��

��

��
and • • • •

��  
?? KK

  
??

��
//
HH

��

��

��

��
��

��

respectively. The algebras of Γ(T×) in this case are categories enriched in semicategories
using the cartesian product. In other words Γ(T×) algebras are just like strict 2-categories
except that they needn’t have identity 2-cells. In particular the lack of identity 2-cells
means that there is no meaningful operation of whiskering in a Γ(T×) algebra as there is
in a 2-category. As a subcategory of G2(Set)Γ(T×) the objects of ΘΓ(T×) are free on those
globular pasting diagrams which one doesn’t require whiskering to build. For instance
the left pasting diagram above does not live in ΘΓ(T×) whereas the right one does. Thus
this is an example where wT is not an equivalence.

5.16. Strict n-category monads. One can consider the following inductively-defined
sequence of monads

• Put T≤0 equal to the identity monad on Set.

• Given a monad T≤n on GnSet, define the monad T≤n+1 = ΓT ×≤n on Gn+1Set.
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recalling that GnSet is the category of n-globular sets. By example(5.7) and proposition
(3.3) it follows that Gn(Set)T≤n is the category of strict n-categories and strict n-functors
between them. By remarks(5.5) and (5.6), and example(5.7), we recover the fundamental
properties of these monads, that is that they are coproduct preserving, finitary and local
right adjoint. Moreover from this inductive description of T≤n and theorem(5.4) one
recovers the distributive law

G(T≤n)Γ(
∏

)→ Γ(
∏

)G(T≤n)

for all n, between monads on GnSet, with composite monad Γ(
∏

)G(T≤n) = T≤(n+1), as
witnessed in [Cheng, 2011].

We denote by k the free living k-cell viewed as a representable n-globular set (for
0 ≤ k ≤ n). Recall [Weber, 2004] that a globular set A is a globular pasting diagram of
dimension ≤ k iff there exists a generic morphism k → T≤nA. A globular pasting diagram
of dimension ≤ k is obviously a globular pasting diagram of dimension ≤ n, and so for
such an A there exists a generic morphism n → T≤nA. Thus T≤n satisfies the condition
of remark(5.14), and so

ΘT≤n+1
' ∆ oΘT≤n

by proposition (5.13) and remark(5.14). Up to isomorphism the category Θn of [Berger,
2007] may be defined as a skeleton of ΘT≤n , and so one has Θn+1

∼= ∆ oΘn.
As far as defining the monads T≤n is concerned, one could just as well start with

any locally finitely c-presentable V in place of Set, giving monads whose algebras are V -
enriched strict n-categories. This enrichment gives objects in V of n-cells between parallel
pairs of (n−1)-cells. By the same arguments these monads are also coproduct preserving,
finitary and local right adjoint, and moreover give rise to distributive laws in the same
way.

6. Higher operads and contractibility

Since higher operads are monad morphisms of a certain kind, the functorial correspon-
dence between monads and multitensors gives a multitensor viewpoint on higher oper-
ads. This is theorem(6.2) which generalises the main results of [Batanin-Weber, 2011].
Sections(6.3) and (6.8) are then concerned with extending this to give a sensible notion of
“contractible multitensor” and its relation to contractible operads. Finally in section(6.11)
we use our theory to recover Trimble’s definition, as described in [Cheng, 2011].

6.1. The basic correspondence. Recall [Batanin-Weber, 2011] that just as one can
define T -operads for a cartesian monad T , one also has a notion of E-multitensor for any
cartesian multitensor E. For (V,E) a cartesian multitensor, one defines an E-multitensor
to consist of another multitensor A on V together with a natural transformation α : A→
E which is cartesian natural and compatible with the multitensor structures.

For V a category with pullbacks and T a cartesian monad on GV over Set, a T -
operad α : A → T over Set may be regarded as either a monad functor (1GV , α) :
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(GV, T ) → (GV,A) over Set whose 1-cell datum is an identity and 2-cell datum is a
cartesian transformation, or equally well as a monad opfunctor (1GV , α) : (GV,A) →
(GV, T ) whose 1-cell datum is an identity and 2-cell datum is cartesian. Similarly, an
E-multitensor may be regarded as either a lax monoidal functor (1V , α) : (V,E)→ (V,A)
over Set whose 1-cell datum is an identity and 2-cell datum is a cartesian transformation,
or equally well as an oplax monoidal functor (1V , α) : (V,A)→ (V,E) whose 1-cell datum
is an identity and 2-cell datum is cartesian.

We denote by T -Op0 the category of T -operads over Set and their morphisms. A
morphism from α : A→ T to β : B → T is just a monad morphism γ : A→ B such that
α = βγ. It follows that γ is itself cartesian and over Set. Thus a T -operad morphism may
be regarded either as a monad functor (1V , γ) : (V, T ) → (V,A) or a monad opfunctor
(1V , γ) : (V,A) → (V, T ). Similarly one has the category E-Mult of E-multitensors and
their morphisms, with a morphism from α : A→ E to β : B → E being multitensor map
over E. As with operad morphisms, morphisms of E-multitensors are reexpressable either
as lax monoidal functors under (V,E) or as oplax monoidal functors over (V,E). Thus
by applying either Γ or Γ′ to E-multitensors and their morphisms, one obtains a functor

ΓE : E-Mult→ ΓE-Op0.

By lemma(4.17), theorem(4.9) and proposition(4.16), ΓE is essentially surjective on ob-
jects. By proposition(4.13) it is fully faithful, and so we have obtained

6.2. Theorem. Let V be lextensive. Then ΓE gives an equivalence of categories

E-Mult ' ΓE-Op0.

In the case where E = T ×≤n we recover the first equivalence of corollary(7.10) and of
corollary(8.3) of [Batanin-Weber, 2011].

6.3. Trivial Fibrations. Let V be a category and I a class of maps in V . Denote by
I↑ the class of maps in V that have the right lifting property with respect to all the maps
in I. That is to say, f : X→Y is in I↑ iff for every i : S→B in I, α and β such that the
outside of

S X

YB

α //

f
��

i
��

β
//

γ

??

commutes, then there is a γ as indicated such that fγ=β and γi = α. An f ∈ I↑ is called
a trivial I-fibration. The basic facts about I↑ that we shall use are summarised in

6.4. Lemma. Let V be a category, I a class of maps in V , J a set and

(fj : Xj→Yj | j ∈ J)

a family of maps in V .
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1. I↑ is closed under composition and retracts.

2. If V has products and each of the fj is a trivial I-fibration, then∏
j

fj :
∏
j

Xj →
∏
j

Yj

is also a trivial I-fibration.

3. The pullback of a trivial I-fibration along any map is a trivial I-fibration.

4. If V is extensive and
∐

j fj is a trivial I-fibration, then each of the fj is a trivial
fibration.

5. If V is extensive, the codomains of maps in I are connected and each of the fj is a
trivial I-fibration, then

∐
j fj is a trivial I-fibration.

Proof. (1)-(3) is standard. If V is extensive then the squares

Xj

∐
j Xj

∐
j YjYj

// ∐
j fj��

fj
��

//

whose horizontal arrows are the coproduct injections are pullbacks, and so (4) follows by
the pullback stability of trivial I-fibrations. As for (5) note that for i : S→B in I, the
connectedness of B ensures that any square as indicated on the left

S
∐

j Xj

∐
j YjB

// ∐
j fj��i

��
//

S Xj

YjB

//

fj
��

i
��

//

factors through a unique component as indicated on the right, enabling one to induce the
desired filler.

6.5. Definition. Let F,G : W→V be functors and I be a class of maps in V . A
natural transformation φ : F⇒G is a trivial I-fibration when its components are trivial
I-fibrations.

Note that since trivial I-fibrations in V are pullback stable, this reduces, in the case
where W has a terminal object 1 and φ is cartesian, to the map φ1 : F1→G1 being a
trivial I-fibration.

Given a category V with an initial object, and a class of maps I in V , we denote by
I+ the class of maps in GV containing the maps5

∅ → 0 (i) : (S)→ (B)

where i ∈ I. The proof of the following lemma is trivial.

5Recall that 0 is the V -graph with one object whose only hom is initial, or in other words the repre-
senting object of the functor GV→Set which sends a V -graph to its set of objects.
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6.6. Lemma. Let V be a category with an initial object and I a class of maps in V . Then
f : X→Y is a trivial I+-fibration iff it is surjective on objects and all its hom maps are
trivial I-fibrations.

In particular starting with V = Ĝ the category of globular sets and I−1 the empty class
of maps, one generates a sequence of classes of maps In of globular sets by induction on
n by the formula In+1 = (In)+ since G(Ĝ) may be identified with Ĝ, and moreover one
has inclusions In ⊂ In+1. More explicitly, the set In consists of (n+ 1) maps: for 0≤k≤n
one has the inclusion ∂k ↪→ k, where k here denotes the representable globular set, that
is the “k-globe”, and ∂k is the k-globe with its unique k-cell removed. One defines I≤∞
to be the union of the In’s. Note that by definition I≤∞ = I+

≤∞.
There is another version of the induction just described to produce, for each n ∈ N, a

class I≤n of maps of Gn(Set). The set I≤0 consists of the functions

∅ → 0 0 + 0→ 0,

so I↑≤0 is the class of bijective functions. For n ∈ N, I≤n+1 = I+
≤n. As maps of globular

sets, the class I≤n consists of all the maps of In together with the unique map ∂(n+1)→n.
A map of n-globular sets is a trivial I≤n fibration iff it has the right lifting property with
respect to all the morphisms of In and moreover the unique right lifting property in the
top dimension (ie with respect to ∂n ↪→ n).

6.7. Definition. Let 0≤n≤∞. An n-operad6 α : A→T≤n is contractible when it is a
trivial I≤n-fibration. An n-multitensor ε : E→T ×≤n is contractible when it is a trivial
I≤n-fibration.

By the preceeding two lemmas, an (n + 1)-operad α : A→T≤n+1 over Set is contractible
iff the hom maps of α1 are trivial I≤n-fibrations.

6.8. Contractible operads versus contractible multitensors. As one would
expect a T≤n+1-operad over Set is contractible iff its associated T ×≤n-multitensor is con-
tractible. This fact has quite a general explanation.

6.9. Proposition. Let (H,ψ) : (V,E)→(W,F ) be a lax monoidal functor between dis-
tributive lax monoidal categories, and I a class of maps in W . Suppose that W is exten-
sive, H preserves coproducts and the codomains of maps in I are connected. Then the
following statements are equivalent

1. ψ is a trivial I-fibration.

2. Γψ is a trivial I+-fibration.

6The monad T≤∞ on globular sets is usually just denoted as T : it is the monad whose algebras are
strict ω-categories.
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Proof. For each X ∈ GV the component {Γψ}X is the identity on objects and for
a, b ∈ X0, the corresponding hom map is obtained as the composite of∐

a=x0,...,xn=b

ψ :
∐

x0,...,xn

F
i
HX(xi−1xi)→

∐
x0,...,xn

H E
i
X(xi−1xi)

and the canonical isomorphism that witnesses the fact that H preserves coproducts. In
particular note that for any sequence (Z1, ..., Zn) of objects of V , regarded as V -graph in
the usual way, one has

{Γψ}(Z1,...,Zn) = ψZ1,...,Zn .

Thus (1)⇔(2) follows from lemmas(6.4) and (6.6).

6.10. Corollary. Let 0≤n≤∞, α : A→T≤n+1 be a T≤n+1-operad over Set and ε :
E→T ×≤n be the corresponding T ×≤n-multitensor. TFSAE:

1. α : A→T≤n+1 is contractible.

2. ε : E→T ×≤n is contractible.

Proof. By induction one may easily establish that the codomains of the maps in any of
the classes: In, I≤n, I≤∞ are connected so that proposition(6.9) may be applied.

6.11. Trimble’s construction. In this section we exhibit Cheng’s analysis of Trim-
ble’s definition [Cheng, 2011] as fitting within our framework.

Topological preliminaries. Given a topological space X and points a and b therein,
one may define the topological space X(a, b) of paths in X from a to b at a high degree of
generality. In recalling the details let us denote by Top a category of “spaces” which is
complete, cocomplete and cartesian closed. We shall write 1 for the terminal object. We
shall furthermore assume that Top comes equipped with a bipointed object I playing the
role of the interval. A conventional choice for Top is the category of compactly generated
Hausdorff spaces with its usual interval, although there are many other alternatives which
would do just as well from the point of view of homotopy theory.

Let us denote by σX the suspension of X, which can be defined as the pushout

X+X I×X

σX.1+1

//

����
//

Writing Top• for the category of bipointed spaces, that is to say the coslice 1+1/Top,
the above definition exhibits the suspension construction as a functor

σ : Top→ Top•.
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Applying σ successively to the inclusion of the empty space into the point, one obtains
the inclusions of the (n−1)-sphere into the n-disk for all n ∈ N, and its right adjoint

h : Top• → Top

is the functor which sends the bipointed space (a,X, b), to the space X(a, b) of paths in
X from a to b. This adjunction σ a h is easy to verify directly using the above elementary
definition of σ(X) as a pushout, and the pullback square

X(a, b) XI

X1+11

//

Xi

����

(a,b)
//

where i is the inclusion of the boundary of I.
Thus to each space X one can associate a canonical topologically enriched graph whose

homs are the path spaces of X. In section(2) we described explicitly the adjunction
(−)×2

• a G1 and in particular its unit η, from which one may readily verify that the
assignment X 7→ PX is the object map of the composite

Top G(Top•) GTopη // Gh //

and by proposition(2.4), the component ηf of the unit of this adjunction at f : A→ Set
has a left adjoint when A is cocomplete. Since Top is cocomplete, h has left adjoint σ,
and G is a 2-functor, whence P is a right adjoint.

Recall from section(3.1) that non-symmetric operads within braided monoidal cate-
gories may be regarded as multitensors, and that these are distributive when the tensor
product is distributive. To say that a non-symmetric topological operad A acts on P is
to say that P factors as

Top A-Cat G(Top)
PA // UA //

The main example to keep in mind is the version of the little intervals operad recalled
in [Cheng, 2011] definition (1.1). As this A is a contractible non-symmetric operad, A-
categories may be regarded as a model of A-infinity spaces. Since P is a right adjoint, PA
is also a right adjoint by the Dubuc adjoint triangle theorem.

Inductive construction. Let A be a non-symmetric topological operad which acts on
P . Applying a product preserving functor

Q : Top→ V

into a distributive category to the operad A in Top, produces an operad QA in V .
Moreover Q may be regarded as the underlying functor of a strong monoidal functor
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(Top, A) → (V,QA) between lax monoidal categories. Applying Γ to this gives us a
monad functor

(G(Top),Γ(A))→ (GV,Γ(QA))

with underlying functor GQ, which amounts to giving a lifting Q as indicated in the
commutative diagram

Top A-Cat QA-Cat

GVG(Top)

PA // Q //

UQA
����

G(Q)
//

P ''

and so we have produced another product preserving functor

Q(+) : Top→ V (+)

where Q(+) = QPA and V (+) = QA-Cat. The functor Q is product preserving since G(Q)
is and UQA creates products. The assignment

(Q, V ) 7→ (Q(+), V (+))

in the case where A is as described in [Cheng, 2011] definition (1.1), is the inductive
process lying at the heart of the Trimble definition. In this definition one begins with
the path components functor π0 : Top→ Set and defines the category Trm0 of “Trimble
0-categories” to be Set. The induction is given by

(Trmn+1, πn+1) := (Trm(+)
n , π(+)

n )

and so this definition constructs not only a notion of weak n-category but the product
preserving πn’s to be regarded as assigning the fundamental n-groupoid to a space.

Operads for Trimble n-categories. In the context of a product preserving functor
Q : Top → V as above, suppose that W is a lextensive category, T is a coproduct
preserving cartesian monad on W , and φ : S → T is a T -operad. Suppose moreover
that V = W S. Then the operad/multitensor QA is a lifting of the operad/multitensor
USQA, and so QA-Cat may be identified with categories enriched in the multitensor on
W whose tensor product is given by (USQA)n × SX1 × ... × SXn by theorem(5.4). But
the composites

USQ(A)n ×
∏
i

SXi

∏
i

SXi

∏
i

TXi

proj //

∏
i
φXi

//
(10)

are the components of a cartesian multitensor map into T×. Thus by theorem(6.2)
(QA)-Cat is the category of algebras of a Γ(T×)-operad over Set. Thus by the induc-
tive definition of Trmn and of the monads T≤n, Trmn is the category of algebras of a
T≤n-operad.

Contractibility of the Trimble operads. Let us denote by J the set of inclusions
Sn−1→Dn of the n-sphere into the n-disk for n ∈ N. Recall that these may all be
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obtained by successively applying the suspension functor σ to the inclusion of the empty
space into the point. By definition the given topological operad A is contractible when for
each n the unique map An → 1 is in J ↑, and this is equivalent to saying that the cartesian
multitensor map A→

∏
is a trivial J -fibration. We shall write Un : Trmn → GnSet for

the forgetful functor for each n.

6.12. Lemma. If f : X→Y is a trivial J -fibration then

1. fa,b : X(a, b)→Y (fa, fb) is a trivial J -fibration for all a, b ∈ X.

2. Unπnf is a trivial I≤n-fibration.

Proof. (1): To give a commutative square as on the left in

Sn−1 X(a, b)

Y (fa, fb)Dn

//

����
//

Sn (a,X, b)

(fa, Y, fb)Dn+1

//

����
//

is the same as giving a commutative square in Top• as on the right in the previous display,
by σ a h. The square on the right admits a diagonal filler Dn+1 → X since f is a trivial
J -fibration, and thus so does the square on the left.

(2): We proceed by induction on n. Having the right lifting property with respect to
the inclusions

∅ ↪→ 1 1+1 = ∂I ↪→ I

ensures that f surjective and injective on path components, and thus is inverted by
π0. For the inductive step we assume that Unπn sends trivial J -fibrations to trivial
I≤n-fibrations and suppose that f is a trivial J -fibration. Then so are all the maps it
induces between path spaces by (1). But from the inductive definition of Trmn+1 we have
Un+1πn+1 = G(unπn)P and so Un+1πn+1(f) is a morphism of (n+1)-globular sets which
is surjective on objects (as argued already in the n = 0 case) and whose hom maps are
trivial I≤n-fibrations by induction. Thus the result follows by lemma(6.6).

6.13. Corollary. ([Cheng, 2011] Theorem(4.8)) Trmn is the category of algebras for a
contractible T≤n-operad.

Proof. We proceed by induction on n, and the case n = 0 holds trivially. For the
inductive step we must show by corollary(6.10) that the components (10) are trivial I≤n-
fibrations, where Q = πn, T = T≤n and φ : S → T the contractible operad for Trimble
n-categories. But by lemma(6.12) the unique map USQ(A)→ 1 is a trivial I≤n-fibration
since A is contractible, and so the result follows from lemma(6.4) since trivial fibrations
are closed under products and composition.
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A. Locally connected and locally presentable categories

Higher categorical structures are supposed to model the homotopy-theoretic aspects of
spaces. Thus the categories that arise in this work behave in some respects as categories
of space-like objects, even before one considers any Quillen model category structures.
The formal expression of this is that all the categories at arise in this work are locally
c-presentable in the sense to be discussed in this section. This includes a well-behaved
notion of connected component of an object, and that the ability to decompose objects
into connected components works as one would want. From a technical standpoint, local
c-presentability also plays an important role in the dictionary between monads and mul-
titensors. In particular, the correspondence between local right adjoint multitensors and
local right adjoint monads given in theorem(3.7) requires that the underlying categories
are locally c-presentable.

The material of this section is somewhat of a review, being essentially an instance
of the theory given in [Adamek-Borceux-Lack-Rosicky, 2002]. However we do cover the
particular case of the theory of locally c-presentable categories in considerably more detail
than in [Adamek-Borceux-Lack-Rosicky, 2002]. There are two principal results in this
section. The first of these, theorem(A.14), characterises locally c-presentable categories
in various ways. From this result it is clear that locally connected Grothendieck toposes are
examples. The second result, theorem(A.16), exhibits algebras of coproduct preserving
accessible monads on locally c-presentable categories as locally c-presentable. By this
result the categories of algebras of higher operads are exhibited as locally c-presentable.

A.1. Connected objects and locally connected categories. We now collect
together the basic, mostly well-known, abstract categorical theory of connected objects
and coproduct decompositions. Recall that an object C in a category V with coproducts
is connected when the representable V (C,−) preserves coproducts.

The natural environment within which to study coproduct decompositions is a lexten-
sive category. Recall that a category V is extensive when it has coproducts and for all
families (Xi : i ∈ I) of objects of V , the functor∐

:
∏
i

(V/Xi)→ V/(
∐
i

Xi) (fi : Yi→Xi) 7→
∐
i

fi :
∐
i

Yi→
∐
i

Xi

is an equivalence of categories. Note that this terminology is not quite standard: exten-
sivity is usually defined using only finite coproducts.

Recall that coproducts in a category are said to be disjoint when coproduct coprojec-
tions are mono and the pullback of different coprojections is initial. Recall also that an
initial object is said to be strict when any map into it is an isomorphism. The fundamental
result on extensive categories is

A.2. Theorem. ([Carboni-Lack-Walters, 1993],[Cockett, 1993]) A category V is exten-
sive iff it has coproducts, pullbacks along coproduct coprojections and given a family of
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commutative squares

Xi
ci //

fi
��

X

f
��

Yi di
// Y

where i ∈ I such that the di form a coproduct cocone, the ci form a coproduct cocone iff
these squares are all pullbacks. In an extensive category coproducts are disjoint and the
initial object of V is strict.

We consider now conditions on a category which turn out to be sufficient to ensure
extensivity.

A.3. Definition. A category V is locally connected when

1. V has coproducts.

2. V has pullbacks along coproduct inclusions.

3. every X ∈ V is a coproduct of connected objects.

A.4. Lemma. If a category V is locally connected then it is extensive.

Proof. Suppose f : X → ∅ is a morphism into the initial object, and X =
∐

i∈I Xi is
a decomposition of X as a coproduct of connected objects. Then for any i ∈ I, one has
by composing with ci the i-th coproduct coprojection, a map Xi → ∅. But since Xi is
connected there can be no such map since the hom V (Xi, ∅) is empty, and so I must be
empty, and so X is initial, and so f is invertible. Thus V has a strict initial object.

Given A and B in V , denote by cA : A → A + B the coprojection. Given a pair of
maps f, g : X → A such that cAf = cAg, using X’s coproduct decomposition again one
has cAfci = cAgci, but since Xi is connected fci = gci, and since this is true for all i,
f = g, and so cA is mono. On the other hand suppose that a commutative square

X B

A+BA

//

cB��
//

cA

��

is given. Then by composing with ci, one obtains another with Xi in place of X, but
this cannot be since Xi is connected. Thus I is empty, and so X is initial. Thus the
coproducts in V are disjoint.

By theorem(A.2) it suffices to show that given a family of commutative squares as on
the left in

Xi X

YYi

ci //

f
��
//

di

��
fi

V (Z,Xi) V (Z,X)

V (Z, Y )V (Z, Yi)

V (Z,ci)//

V (Z,f)
��

//
V (Z,di)

��
V (Z,fi)
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where i ∈ I such that the di form a coproduct cocone, the ci form a coproduct cocone
iff these squares are all pullbacks. By the yoneda lemma, this is equivalent to the same
statement for the family of squares on the right (in Set) for all Z ∈ V . Since every object
of V is a coproduct of connected ones, it suffices to consider just those Z ∈ V that are
connected. By the definition of connectedness, the functions V (Z, ci) (resp. V (Z, di))
form a coproduct cocone for all connected Z iff the maps ci (resp di) do so in V , and so
the result follows by the extensivity of Set.

A.5. Remark. Let X be a topological space which is not locally connected. Then the
topos Sh(X) of sheaves on X is an example of a category which is extensive but not
locally connected.

Recall that a category is lextensive when it is extensive and has finite limits. We
shall now study the decomposability of objects in such categories. As we shall see, the
categorical datum which tells us whether all objects in a lextensive category V admit a
coproduct decomposition, is the left adjoint (−) · 1 to the representable V (1,−), where 1
as usual denotes the terminal object.

A.6. Lemma. If V is lextensive, then the representable V (1,−) : V → Set has a left
exact left adjoint (−) · 1 given by taking copowers with 1.

Proof. It is a standard fact, coming from nothing more than the universal property of
coproducts, that the left adjoint take this form, and clearly (−) · 1 preserves the terminal
object. Given a pullback in Set as on the left in

P B

CA

f //

k
��
//

g

��
h pb

h−1(a) · 1 P · 1 B · 1

C · 1A · 11

f ·1 //

k·1
��

//
g·1

��
h·1

//

//
a

��
pb

one has for each a ∈ A a diagram as on the right. Since the original square is a pullback
one has canonical bijections h−1(a) ∼= k−1(ga) enabling one to identify the top horizontal
composite as (−) · 1 applied to the inclusion of the fibre k−1(ga), and so for all a these
maps exhibit B · 1 as a coproduct. By theorem(A.2) it follows that the composite square
on the right is a pullback. Since this is true for all a ∈ A the right-most square is a
pullback, again by theorem(A.2), as required.

This is very familiar in the case where V is a Grothendieck topos. Then the adjoint
pair (−)·1 a V (1,−) is the global sections geometric morphism. Recall also that in this
case the existence of a further left adjoint to (−)·1 is a fundamental property, which in
the case of Sh(X) for X a topological space, is equivalent to the local connectedness of
X (see remark(A.5) above). Inspired by this case, we make

A.7. Definition. Let V be a category with coproducts and a terminal object 1. A left
adjoint to (−)·1 is denoted as

π0 : V −→ Set
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and when it exists, we say that V admits a π0 functor.

We now note that the connectedness of an object in a lextensive category can be
characterised in various ways.

A.8. Lemma. Let V be a lextensive category and C be an object therein. Then the fol-
lowing statements are equivalent:

1. C is connected.

2. V (C,−) preserves copowers with 1.

and if in addition V admits a π0 functor, then these are moreover equivalent to

3. π0(C) ∼= 1.

Proof. Suppose that V (C,−) preserves copowers with 1. Coproduct coprojections defin-
ing X =

∐
i∈I Xi assemble, by theorem(A.2), into pullback squares

Xi X

I · 11

ci //

��
//

i·1

��
pb

to which we apply V (C,−). By theorem(A.2) in the case V = Set, the functions V (C, ci)
form a coproduct cocone since V (C, i) do by hypothesis. Thus V (C,−) does indeed
preserve all coproducts. In the case where one has π0, by the canonical isomorphisms
V (C, I · 1) ∼= Set(π0C, I), the connectedness of C is equivalent to Set(π0C,−) being
isomorphic to the identity, which by the yoneda lemma is equivalent to π0C ∼= 1.

We now characterise those lextensive categories in which every object admits a de-
composition as a coproduct of connected objects.

A.9. Proposition. Let V be a lextensive category. Then V is locally connected iff V
admits a π0 functor.

Proof. Suppose that every object of V can be expressed as a coproduct of connected
objects. For each X ∈ V choose such a decomposition, write π0(X) for the indexing set,
and for i ∈ π0(X) denote by ci : Xi → X the corresponding coprojection. One induces
the map ηX as in

Xi X

π0(X) · 11

ci //

ηX
��

//
i·1

��
pb

I · 1

f

''

g(i)·1

88g·1
// (11)

so that the square commutes, and as indicated this square is a pullback by theorem(A.2).
Given a set I and a morphism f as in (11), the connectedness of Xi ensures that there
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is a unique g(i) ∈ I making the outside of (11) commute. In this way we have exhibited
a unique g : π0X → I making the triangle in (11) commutative, and this exhibits ηX
as the component at X of a unit of π0 a (−) · 1. Moreover the uniqueness of coproduct
decompositions is now evident, since any choice of all them gives rise in this way to an
explicit left adjoint π0 of the same functor (−) · 1, and so different choices give rise to
canonical isomorphisms between the corresponding π0’s, which are compatible with the
corresponding units.

For the converse let us suppose that we have π0 a (−) · 1. Then one has ηX : X →
π0(X) · 1, and one then takes pullbacks as in (11) to obtain the ci : Xi → X which form
a coproduct cocone by theorem(A.2). To finish the proof we must show that all these
Xi’s are connected, and by lemma(A.8) it suffices to show that the cardinality |π0(Xi)|
is 1. If it was 0 then one would have ηXi : Xi → ∅ making Xi initial too, since initial
objects are strict. But then by defining I = π0(X) \ {i}, writing j : I → π0(X) for the
proper inclusion, one has also η′ : X → I · 1 such that (j · 1)η′ = ηX . But by the universal
property of ηX one also has a section s : π0(X)→ I of j, contradicting the properness of
j. Thus |π0(Xi)| > 0. Note that we have a diagram

Xi X

π0(X) · 11

π0(Xi) · 1

ci //

ηX
��

//i��
ηXi

{{
33

π0(ci)·1

88
(I)

in which the outside and all regions except region (I) are clearly commutative. By the
universal property of ηXi the function π0(ci) factors as

π0(Xi) 1 π0(X)// i //

so that |im(π0(ci))| ≤ 1, and since π0(ci) as a coprojection in Set is injective, we have
|π0(Xi)| ≤ 1.

A.10. Locally c-presentable categories. We recall first some of the basic notions
from the theory of locally presentable categories [Adamek-Rosicky, 1994, Gabriel-Ulmer,
1971, Makkai-Paré, 1989]. Let λ be a regular cardinal. A λ-small category is one whose
class of arrows forms a set of cardinality < λ, and a category A is λ-filtered when every
functor J → A, where J is λ-small, admits a cocone. Colimits of functors out of λ-filtered
categories are called λ-filtered colimits. An object X of a category V is λ-presentable
when the representable V (X,−) preserves all λ-filtered colimits that exist in V . A locally
small category V is locally λ-presentable when it is cocomplete and there is a set S of
λ-presentable objects such that every object of V is a λ-filtered colimit of objects from S.

There are many alternative characterisations of locally λ-presentable categories, the
most minimalistic being the following. Recall that a set D of objects of V is a strong
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generator when for all maps f : X→Y , if

V (D, f) : V (D,X)→ V (D, Y )

is bijective for all D ∈ D, then f is an isomorphism. Then a locally small category V
is locally λ-presentable iff it is cocomplete and has a strong generator consisting of λ-
presentable objects. Other characterisations include: as categories of Set-valued models
of limit sketches whose distinguished cones are λ-small; as full reflective subcategories
of presheaf categories for which the inclusion is λ-accessible; to name just two. See for
instance [Adamek-Rosicky, 1994, Gabriel-Ulmer, 1971, Makkai-Paré, 1989] for a complete
discussion of this fundamental notion.

The appropriate functors between such categories are the λ-accessible ones – a functor
being λ-accessible when it preserves λ-filtered colimits. Here we describe a mild variant
of these notions in which the role of λ-presentable objects is played by objects which are
both λ-presentable and connected, and accessible functors are replaced by functors which
preserve both λ-filtered colimits and coproducts. A category A is λ-c-filtered when every
functor J → A, where J is λ-small and connected, admits a cocone. Clearly a category
is λ-c-filtered iff its connected components are λ-filtered, and thus a λ-c-filtered colimit
is the same thing as a coproduct of λ-filtered colimits7.

The categories which are λ-small and connected form a doctrine D in the sense of
[Adamek-Borceux-Lack-Rosicky, 2002], a λ-c-filtered category is one which is D-filtered in
the sense of [Adamek-Borceux-Lack-Rosicky, 2002] definition (1. 2), and this doctrine is
easily exhibited as sound in the sense of [Adamek-Borceux-Lack-Rosicky, 2002] definition
(2.2).

A.11. Definition. [Adamek-Borceux-Lack-Rosicky, 2002] A locally small category V is
locally λ-c-presentable when it is cocomplete and has a set S of objects which are connected
and λ-presentable, such that every object of V is a λ-c-filtered colimit of objects of S.
A locally c-presentable category is one which is locally λ-c-presentable for some regular
cardinal λ. When λ is the first infinite ordinal, we also use the terminology locally finitely
c-presentable.

We have attributed definition (A.11) to [Adamek-Borceux-Lack-Rosicky, 2002] since a
locally λ-c-presentable category is exactly a locally-D-presentable category in the sense of
[Adamek-Borceux-Lack-Rosicky, 2002] definition (5.1), for the doctrine D of λ-small con-
nected categories. The soundness of this doctrine ensures, by theorem(5.5) of [Adamek-
Borceux-Lack-Rosicky, 2002], that one has various reformulations of the notion of λ-c-
presentable category, analogous to those in the usual theory of locally presentable cate-
gories. We record these reformulations in

A.12. Theorem. [Adamek-Borceux-Lack-Rosicky, 2002] For a locally small category V
and regular cardinal λ, the following statements are equivalent.

1. V is locally λ-c-presentable.

7When λ is the first infinite cardinal, such categories are often said to be “pseudo filtered”.
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2. V is equivalent to the category of models for a limit sketch whose distinguished cones
are λ-small and connected.

3. V is equivalent to the full subcategory of [A,Set] consisting of λ-small connected
limit preserving functors, for some small category A with λ-small connected limits.

4. V is a free completion of a small category with λ-small connected limits under λ-c-
filtered colimits.

In theorem(A.14) below we give further reformulations of this notion.

A.13. Lemma. Let λ be a regular cardinal and V be locally λ-presentable and extensive.
Then a summand of a λ-presentable object in V is λ-presentable.

Proof. Suppose that A, B ∈ V and that their coproduct A + B is a λ-presentable
object. Since V is locally λ-presentable one has a λ-filtered category I, and a colimit
cocone ki : Ai → A for i ∈ I, where the Ai are λ-presentable objects. Thus the maps
ki+1B : Ai+B → A+B exhibit A+B as a λ-filtered colimit. Since A+B is λ-presentable,
there is j ∈ I and s : A+B → Aj +B such that (kj + 1B)s = 1A+B. Extensivity ensures
that the right-most square in

A Aj A

A+BAj +BA+B

t
//

kj
//

cA
��

//kj+1B//s
��

cA cAj
��

1

**

1

33

is a pullback, enabling us to induce t as shown which exhibits kj as a retraction, and thus
A as λ-presentable.

A.14. Theorem. For a locally small category V and regular cardinal λ, the following
statements are equivalent.

1. V is cocomplete and has a strong generator consisting of objects which are connected
and λ-presentable.

2. V is locally λ-c-presentable.

3. V is cocomplete and has a small dense subcategory consisting of objects which are
connected and λ-presentable.

4. V is a full subcategory of a presheaf category for which the inclusion is λ-accessible,
coproduct preserving and has a left adjoint.

5. V is locally λ-presentable and every object of V is a coproduct of connected objects.

6. V is locally λ-presentable, extensive and the functor (−)·1 : Set→V has a left
adjoint.
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Proof. The implication (3)⇒(1) is trivial, and the equivalence of (5) and (6) is an im-
mediate consequence of lemma(A.4) and proposition(A.9). Given (2) V is clearly locally
λ-presentable and any X ∈ V is a coproduct of λ-filtered colimits of λ-presentable con-
nected objects. But a λ-filtered colimit of connected objects is connected, and so (2)⇒(5).

(1)⇒(2): Let D be a strong generator of λ-small connected objects, and denote also
by D the full subcategory of V it determines. Take the closure S of D in V under
λ-small connected colimits, and note that S is also essentially small (see [Kelly, 1982]
section(3.5)). Thus S is also a strong generator of V consisting of λ-small connected
objects and moreover, the full subcategory it determines has λ-small connected colimits.
Thus for X ∈ V , the comma category S/X is λ-c-filtered, and so it suffices to show that
the comma object defining S/X exhibits X as a colimit. Denote by K the actual colimit,
for f : A → X in S/X by κf : A → K the component of the colimit cocone, and by
k : K → X the induced map. Since S is a strong generator it suffices to show that for
all A ∈ S the function V (A, k) : V (A,C) → V (A,X) is bijective. It is surjective by the
definition of k, which is defined as the unique map such that kκf = f for all f ∈ S/X.
To see that V (A, k) is injective, suppose that one has b and c : A→ K such that kb = kc.
Then since the colimit defining K is λ-c-filtered and A is λ-presentable and connected,
one has b2 : B → K and b3 : B → X such that κb3b2 = b, and similarly c2 : C → K and
c3 : C → X such that κc3c2 = c. Take the pushout

A B

DC

b2 //

p
��
//

q

��
c2 po

in S, and induce d : D → X as the unique map such that dp = b3 and dq = c3. The result
follows by

b = κb3b2 = κdpb2 = κdqc2 = κc3c2 = c.

(2)⇒(3): Let S be the set of λ-presentable connected objects required by definition
(A.11), and denote by i : S → V the inclusion of the corresponding full subcategory of V .

Let X, Y ∈ V and suppose that φ : V (i,X)→ V (i, Y ) in Ŝ is given. One has k : J → S
with J small and λ-c-filtered, such that col(ik) = X, and we denote by κj : kj → X
a typical component of the colimiting cocone. Induce φ′ : X → Y as the unique map
such that φ′κj = φ(κj) for all j ∈ J . But then for all f : S → X with S ∈ S, one has
φ′f = φ(f): since S is λ-presentable and connected one can find j ∈ J and g : S → kj
such that f = κjg and so

φ(f) = φ(κj)g = φ′κjg = φ′f.

Thus V (i, 1) : V → Ŝ is fully-faithful, in other words, i is dense as claimed.
(3)⇒(4): Let i : S → V be the inclusion of the given dense subcategory. Then

V (i, 1) : V → Ŝ preserves coproducts and is λ-accessible since the objects of S are
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connected and λ-presentable, is fully faithful since i is dense, and has a left adjoint given
by left kan extension along i since V is cocomplete and S is small.

(4)⇒(3): Let I : V → Ĉ be the given inclusion and L be its left adjoint. Let T be the
monad induced by L a I, and note that since I is fully-faithful, it is monadic. Denote by
i : S → Ĉ the inclusion of the closure of the representables in Ĉ under λ-small connected
colimits. Since the objects of S are λ-presentable and connected, and T is λ-accessible
and coproduct preserving, it follows that (T,S) is a monad with arities in the sense of
[Weber, 2007, Melliès, 2010, Berger-Melliès-Weber, 2012]. Taking

S ΘT V
k // j //

to be the identity on objects fully faithful factorisation of Li, it follows from the Nerve
theorem [Berger-Melliès-Weber, 2012] that j : ΘT → V is dense. Since for all A ∈ ΘT ,

V (jA,−) ∼= V (LiA,−) ∼= Ĉ(iA, IA) and I preserves coproducts and λ-filtered colimits,
it follows that the image of j consists of connected λ-presentable objects.

(6)⇒(1): V is cocomplete by definition. Let D be a strong generator of λ-presentable
objects of V . Decompose each object of D into connected components using proposition
(A.9), and write D′ for the set of summands of objects of D that so arise. Clearly D′ is
also a strong generator of V , its objects are connected by definition and λ-presentable by
lemma(A.13).

A.15. Examples. By theorem(A.14)(4) any presheaf topos is locally finitely c-present-
able. By theorem(A.14)(6) a Grothendieck topos is locally connected iff it is locally
c-presentable.

Just as with locally presentable categories, locally c-presentable categories are closed
under many basic categorical constructions. For instance from theorem(A.14)(5), one sees
immediately that the slices of a locally λ-c-presentable category are locally λ-c-presentable
from the corresponding result for locally presentable categories. Another instance of this
principle is the following result.

A.16. Theorem. If V is locally λ-c-presentable and T is a λ-accessible coproduct pre-
serving monad on V , then V T is locally λ-c-presentable.

Proof. By the analogous result for locally presentable categories V T is locally λ-pre-
sentable and thus cocomplete. Defining Θ0 to be the full subcategory of V consisting of
the λ-presentable and connected objects, (T,Θ0) is a monad with arities in the sense of
[Weber, 2007]. One has a canonical isomorphism

V T V T (i,1) //

UT

��

Θ̂T

resj
��

V
V (i0,1)

// Θ̂0

∼=
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in the notation of [Weber, 2007]. Since T preserves λ-filtered colimits and coproducts, UT

creates them. Since j is bijective on objects resj creates all colimits. Thus by the above
isomorphism V T (i, 1) preserves λ-filtered colimits and coproducts. By the nerve theorem
of [Weber, 2007] V T (i, 1) is also fully faithful, it has a left adjoint since V T is cocomplete
given by left extending i along the yoneda embedding, and so we have exhibited V T as
conforming to theorem(A.14)(4).

A.17. Examples. An n-operad for 0≤n≤ω in the sense of [Batanin, 1998], gives a finitary

coproduct preserving monad on the category Ĝ≤n of n-globular sets, and its algebras

are just the algebras of the monad. Since Ĝ≤n as a presheaf topos is locally finitely c-
presentable by example(A.15), the category of algebras of any n-operad is locally finitely
c-presentable by theorem(A.16).
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