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GALOIS THEORIES OF COMMUTATIVE SEMIGROUPS VIA
SEMILATTICES

ISABEL A. XAREZ AND JOĀO J. XAREZ

Abstract. The classes of stably-vertical, normal, separable, inseparable, purely in-
separable and covering morphisms, defined in categorical Galois theory, are characterized
for the reflection of the variety of commutative semigroups into its subvariety of semi-
lattices. It is also shown that there is an inseparable-separable factorization, but there
is no monotone-light factorization.

1. Introduction

The present work is done at three levels, namely category theory, universal algebra and
semigroup theory. The classes of morphisms we will characterize are defined generally at
the level of category theory, in particular in categorical Galois theory. Some results are
then stated at the level of universal algebra, concerning reflections into idempotent sub-
varieties of universal algebras (that is, in which every one-element subset is a subalgebra).
At the level of semigroup theory, we analyse the reflection of the variety of commutative
semigroups into its subvariety of semilattices, making use of the results stated for univer-
sal algebra. Some of the results included in this paper were previously obtained by the
first-named author and are included in her PhD thesis [10].

A semi-left-exact reflection (in the sense of [3]) can be seen as an admissible Galois
structure (in the sense of categorical Galois theory), in which the classes of admissible
morphisms are the classes of all the morphisms in both category and subcategory. In the
special case of the variety of semigroups, semi-left-exactness was called attainability in
[8], where it was proved that the reflection of semigroups into semilattices is the unique
attainable reflection of the variety of semigroups into a subvariety. Furthermore, this
reflection satisfies the stronger property of having stable units, as shown in [6].

First, we state some results for admissible (= semi-left-exact) reflections of varieties
of universal algebras. Second, Proposition 5.3 is stated, proving that the I-images of
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the projections of any pullback diagram are jointly monic, in the (sub)reflection of the
variety of commutative semigroups into its subvariety of semilattices. Then, in the latter
subreflection, with the help of the results for varieties and crucial Proposition 5.3, we will
be able to characterize the classes of stably-vertical, covering, normal, separable, purely
inseparable, and inseparable (homo)morphisms defined in categorical Galois theory. The
first table at the end summarizes the characterizations of these classes. The second table
addresses the existence of inseparable-separable (see [5]) and monotone-light factorizations
(see [2]). In both tables the results used in each case are specified.

2. Preliminaries

Admissible reflection into idempotent subvarieties

In this section we define semi-left-exact reflection, in the sense of [3], and recall a
characterization of a semi-left-exact reflection of a variety of universal algebras into an
idempotent subvariety (that is, a variety in which every one-element subset is a subalge-
bra), which follows from a more general result in [12]. A semi-left-exact reflection is also
called an admissible reflection in categorical Galois theory (see [1, §5.5]).

2.1. Definition. A reflection H ` I : C → M into a full subcategory M, with unit
η : 1C → HI, is said to be admissible if every pullback diagram

P M

I(B) ,B

u

ηB

gv
?

-

-

?

with M ∈ M has u ∈ EI , where EI is the class of morphisms f in C such that I(f)
is an isomorphism.

Let us recall some data of a reflection of a variety of universal algebras into one of its
subvarieties.

1. Let C be a variety of universal algebras. It is well known that there exists an
adjunction U ` F : Set → C between the variety C and the category of sets, with
unit λ : 1Set → UF and counit ε : FU → 1C, such that:

(a) F is a functor which assigns to a set S the free algebra F (S) in C.
(b) U is the underlying functor which assigns to any C ∈ C its underlying set

U(C) ∈ Set, satisfying the following properties:

i. U reflects isomorphisms, since an isomorphism in a variety of universal
algebras is just a bijective homomorphism;

ii. U preserves finite limits, since it has a left adjoint F .
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(c) The unit λS : S → UF (S) is the inclusion map.

(d) The counit εC : FU(C) → C assigns to the letter x ∈ FU(C) the element
x ∈ C, since U(εC)λU(C) = 1U(C). On the other hand,

εC(θFU(C)(x, y, ..., z)) = θC(x, y, ..., z), for every n-ary operation θ in the variety
C, since εC is a (surjective) homomorphism in C.

2. Let H ` I : C → M be a reflection of a variety C of universal algebras into its
subvariety M, with unit η : 1C → HI.

(a) Note that ηA : A→ HI(A) = A/ ∼A is the canonical projection of A onto the
quotient of A by the congruence ∼A associated by the reflection to A, hence a
surjective homomorphism, for every A in C.

(b) It is easy to check that the following conditions are equivalent:

i. the subvariety M is idempotent, in the sense that every one-element set
{x} ⊆M is a subalgebra in any M ∈M;

ii. every map UT,M : C(T,M) → Set({∗}, U(M)) is a surjection, for any
object M ∈M, with T a terminal object in C.

According to the following Lemma 2.3, stated in [12, §2], a reflection H ` I : C →M
into an idempotent subvariety is admissible if and only if every congruence class [x]∼C

of
the decomposition of any C(∈ C) associated to the reflection is itself I-indecomposable.

2.2. Definition. Consider any morphism µ : T → HI(C) from a terminal object T into
HI(C), for some C ∈ C. The connected component associated to the morphism µ is the
pullback Cµ in the following pullback square.

C

Cµ

HI(C) .

T

µ

ηC
-

-

? ?

2.3. Lemma. Let H ` I : C → M be a reflection into an idempotent subvariety of
universal algebras. The following conditions are equivalent:

1. H ` I is admissible;

2. HI(Cµ) ∼= T , for every connected component Cµ, where T is the one-element algebra.

Factorization system derived from an admissible reflection

It is well known that there is a factorization system (EI ,MI) associated to the reflec-
tion. The class of vertical morphisms EI is the class of homomorphisms f in C whose
I-images I(f) are isomorphisms. The class of trivial coverings MI is the class of homo-
morphisms f : A → B such that the commutative diagram associated to the identity
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HI(f) ◦ ηA = ηB ◦ f is a pullback diagram in C (see [2]). The following Proposition 2.4
states, in other words, that f ∈ MI if, for every congruence class [a]∼A

∈ A/ ∼A, its
restriction f|[a]∼A

: [a]∼A
→ [f(a)]∼B

is a bijection.

2.4. Proposition. A homomorphism f : A → B in C belongs to MI if and only if the
following two conditions hold:

1. for each b ∈ B and each a ∈ A such that b ∼B f(a), there exists a∗ ∈ A for which
f(a∗) = b and a∗ ∼A a;

2. for all a, a∗ ∈ A, if f(a) = f(a∗) and a ∼A a∗ then a = a∗.

Proof. The proof follows trivially from the fact that, since the reflection is admissible
(hence simple in the sense of [2]), in the pullback diagram (1)

B

B ×HI(B) HI(A)

HI(B) ,

HI(A)

mf HI(f)

ηB -

-

? ?

A

f

ηA
ef

@
@
@
@R

A
A
A
A
A
A
A
A
AAU

PPPPPPPPPPPPPPq

(1)

f ∈ MI if and only if the uniquely determined homomorphism ef = 〈f, ηA〉 is an isomor-
phism.

Stably-vertical, Covering morphisms

The class of stably-vertical morphisms E′I is the class of homomorphisms f : A→ B in
C, whose pullback h∗(f) along any homomorphism h : C → B is a vertical homomorphism.
The class M∗I of covering morphisms (coverings, for short) is the class of homomorphisms
f : A → B in C, such that the pullback p∗(f) along some effective descent morphism1

p : E → B is a trivial covering. Note that a variety of universal algebras C is an exact cat-
egory, hence an effective descent morphism p : E → B in C is just a regular epimorphism
(see [2, §4.7]). On the other hand, a regular epimorphism is a surjective homomorphism
in universal algebra. Then, an effective descent morphism is just a surjective homomor-
phism in a variety of universal algebras.

The following Lemma 2.5 states in particular that, for a reflection H ` I : C →M of
a variety of universal algebras C into one of its subvarieties M, a covering morphism f :
A→ B in C is just a homomorphism such that its pullback ε∗B(f) along εB : FU(B)→ B
is a trivial covering, where εB is a counit morphism of the adjunction U ` F : Set→ C.

1A morphism p : E → B in C is an effective descent morphism when the functor “pullback along p”
p∗ : C/B → C/E is monadic.
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2.5. Lemma. Let 〈F,U, λ, ε〉 : S → C be an adjunction with unit λ and counit ε.
If U(p) : U(E)→ U(B) is a split epimorphism in S, then there exists f : FU(B)→ E

in C such that εB = p ◦ f .

Proof. Since U(p) is a split epimorphism in S, there exists a morphism h : U(B)→ U(E)
such that

U(p) ◦ h = 1U(B). (2)

Since λU(B) is universal from U(B) to U , there exists a unique f : FU(B)→ E such that
the following diagram commutes.

U(B) UFU(B)

U(E)

λU(B)

U(f)h

@
@
@
@R

-

?
(3)

Therefore we have,
U(p ◦ f) ◦ λU(B) = U(p) ◦ U(f) ◦ λU(B),

= U(p) ◦ h, by (3)
= 1U(B), by (2)
= U(εB) ◦ λU(B), because λ and ε are respectively the unit and

the counit of the adjunction 〈F,U, λ, ε〉.
Therefore, εB = p ◦ f , since λU(B) is universal from U(B) to U .

Hence, since the class MI is pullback stable, f : A→ B is a covering morphism if and
only if the pullback ε∗B(f) of f along the surjective homomorphism εB : FU(B)→ B is a
trivial covering.

Separable, Purely Inseparable, Normal morphisms

2.6. Definition. Consider the following pullback diagram

A

A×B A

B ,

A

u f
f

v

-

-

? ?

A

1A

1A
δf

@
@
@@R

A
A
A
A
A
A
A
A
AU

PPPPPPPPPPPPq

(4)
where (u, v) is the kernel-pair of the homomorphism f : A→ B, and δf = 〈1A, 1A〉 is the
uniquely determined homomorphism.

• f is called a separable homomorphism (f ∈ Sep) if δf is a trivial covering.
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• f is called a purely inseparable homomorphism (f ∈ Pin) if δf is vertical.

• f is called a normal homomorphism (f ∈ Normal) if u is a trivial covering.

Inseparable-separable factorization system

For the factorization system (EI ,MI) we can form a derived weak factorization system
(see [5]) as follows:

A -

δf
A×B A -

-
u

v
A - B ;

f







� J
J
JĴ

eδf mδf







� J
J
JĴ

ēf m̄f

here, ēf is just the coequalizer of (u ◦mδf , v ◦mδf ), where (u, v) is the kernel-pair of f ,
and mδf ◦ eδf is the (EI ,MI)-factorization of the morphism δf of diagram (4).

2.7. Definition. A morphism f : A → B is called inseparable if, in its decomposi-
tion given in the diagram just above, m̄f is an isomorphism. So, we define the class of
inseparable morphisms Ins := {f ∈ C | m̄f iso}.

There is a factorization system (Ins, Sep) if and only if the class Ins of inseparable
homomorphisms is closed under composition (see [5, §3,§4]). The following two inclusions
Pin ∩ E ⊆ Ins ⊆ EI ∩ E, where E is the class of surjective homomorphisms, are satisfied
by the class Ins in an admissible reflection into a subvariety of universal algebras (see
[11], or the original source [5, §4.2]).

3. Admissible reflections of universal algebras into subvarieties

Next Propositions 3.3 and 3.6, concerning admissible reflections into an idempotent sub-
variety, that is, a variety in which every one-element subset is a subalgebra, help to
characterize the classes of stably-vertical and covering homomorphisms, respectively.

Stably-vertical morphisms

In order to characterize the class of stably-vertical morphisms for an admissible re-
flection H ` I : C → M into an idempotent subvariety, in which the I-images of the
projections of certain pullbacks are jointly monic, we define the class F of “almost surjec-
tive” homomorphisms.

3.1. Definition. A homomorphism f is said to be almost surjective if it belongs to the
class F = {f : A → B in C | ∀b∈B f(A) ∩ 〈b〉B 6= ∅}, where 〈b〉B denotes the subalgebra
of B generated by b. In words, a homomorphism is almost surjective if its homomorphic
image intersects all the monogenic subalgebras in the codomain.

The following Proposition 3.2 states a necessary condition for a homomorphism to be
stably-vertical in any reflection of a variety of universal algebras into a subvariety. Next
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Proposition 3.3 characterizes the class of stably-vertical morphisms for reflections into
idempotent subvarieties, such that the I-images of the projections of any pullback of a
homomorphism belonging to EI ∩ F are jointly monic.

3.2. Proposition. The class of stably-vertical morphisms, E′I , satisfies the inclusion
E′I ⊆ EI ∩ F, for any reflection H ` I : C → M of a variety of universal algebras C into
a subvariety M.

Proof. Consider the pullback diagram

P C

D ,〈d〉D

π2

⊆
eπ1

?
-

-

?

(5)

where e ∈ E′I . Suppose that 〈d〉D ∩ e(C) = ∅, for some d ∈ D. Then, P = ∅ = I(P ).
Since 〈d〉D 6= ∅, I(〈d〉D) 6= ∅ and I(π1) : I(P ) → I(〈d〉D) is not an isomorphism, which
contradicts the assumption of e belonging to E′I .

3.3. Proposition. Consider a reflection H ` I : C → M of a variety C of universal
algebras into an idempotent subvariety M. The following two conditions are equivalent:

(a) I(π1) and I(π2) are jointly monic for all the pullback diagrams

A×C B B

C ,A

π2

gπ1
?

-

-

?

in C, such that g ∈ EI ∩ F;

(b) E′I = EI ∩ F.

Proof. (a)⇒(b): Consider the pullback diagram

I(A)

P

I(C) ,

I(B)

p1 I(g)

I(f)

p2

-

-

? ?

I(A×C B)

I(π1)

I(π2)
w

@
@
@
@@R

A
A
A
A
A
A
A
A
AAU

PPPPPPPPPPPPPq

(6)
where f is an arbitrary homomorphism, g ∈ EI ∩ F, P = I(A) ×I(C) I(B) and w is the
unique homomorphism making the diagram commute. Since I(π1) and I(π2) are jointly
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monic, w is a monomorphism, which is an injective homomorphism in a variety of universal
algebras. Since g ∈ EI , I(g) is an isomorphism. Hence, p1 is also an isomorphism.
Therefore, I(π1) = p1 ◦ w is an injective homomorphism.

On the other hand, let [l]∼A
be an arbitrary class of A/∼A = HI(A). Since every

element of any object M inM is a subalgebra and η〈l〉A : 〈l〉A → HI(〈l〉A) is a homomor-
phism in a variety of universal algebras, HI(〈l〉A) = η〈l〉A(〈l〉A) = 〈η〈l〉A(l)〉HI(A) = T , the
one-element algebra, which means that the elements of 〈l〉A are in the same congruence
class in A. Therefore, 〈l〉A ⊆ [l]∼A

. Since f : A → C is a homomorphism in a variety
of universal algebras, f(〈l〉A) = 〈f(l)〉C . Since g ∈ F, 〈f(l)〉C ∩ g(B) 6= ∅, which implies
〈l〉A ∩ π1(A×C B) 6= ∅. Hence, [l]∼A

∩ π1(A×C B) 6= ∅. Therefore, I(π1) is also surjective
and so g ∈ E′I . Thus, E′I ⊇ EI ∩ F. By Proposition 3.2, E′I ⊆ EI ∩ F.

(b)⇒(a): Consider the pullback diagram (6), where g ∈ EI ∩ F. Since by hypothesis
E′I = EI ∩ F, I(π1) is an isomorphism, and therefore I(π1), I(π2) are jointly monic.

Covering morphisms

We will show that the class of coverings is just the class of trivial coverings in admissible
reflections into idempotent subvarieties, provided that the I-images of the projections of
any pullback of a covering f : A → B along the counit εB : FU(B) → B (see the
paragraph above Lemma 2.5) are jointly monic, and that a certain property holds for the
reflection (see Definition 3.4, here it is named Property F).

Consider the reflection H ` I : Band → SLat, of the variety of bands (idempotent
semigroups) into its subvariety of semilattices. It is well known that every band is a
semilattice of rectangular bands. This means that, in this reflection, two elements a and b
in a band B are in the same congruence class, a ∼B b, if and only if a = aba and b = bab.
The canonical homomorphism h, from the kernel pair of the unit morphism ηFU(B) to the
kernel pair of the unit morphism ηB (see Definition 3.4), is surjective, since given (a, b) in
B ×HI(B) B, that is, a ∼B b, there exists (aba, bab) in FU(B)×HIFU(B) FU(B) such that
h(aba, bab) = (a, b) (note that words in any rectangular band in FU(B) are just finite
sequences of the same letters).

On the other hand, in the reflection of the variety of commutative semigroups into its
subvariety of semilattices, the canonical homomorphism h is not always surjective (see
Remark 5.5), but it is almost surjective (h ∈ F), as we will see in Proposition 5.4. Which
is enough, together with Proposition 3.6 and Proposition 5.3, to conclude that coverings
and trivial coverings coincide in this reflection.

3.4. Definition. A reflection H ` I : C → M, of a variety of universal algebras into
a subvariety, is said to satisfy Property F if the canonical homomorphism h = 〈εB ◦
π1, εB ◦ π2〉 : FU(B) ×HIFU(B) FU(B) → B ×HI(B) B, from the kernel pair of the unit
morphism ηFU(B) to the kernel pair of the unit morphism ηB, is almost surjective, that is,
h ∈ F, for all B ∈ C. Where π1, π2 are the projections of the kernel pair of ηFU(B), and
εB : FU(B)→ B is a counit morphism of the adjunction U ` F : Set→ C, such that U
is the forgetful functor into sets.
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3.5. Remark. This property means that if a ∼B b, with a, b ∈ B, then there exist
w1 and w2 in FU(B) such that w1 ∼FU(B) w2, and h(w1, w2) belongs to the subalgebra
〈(a, b)〉B×HI(B)B of B ×HI(B) B generated by (a, b). Note that this implies that if a ∼B b,
then there exist w1 and w2 in FU(B), such that w1 ∼FU(B) w2, and εB(w1) belongs to
the subalgebra 〈a〉B of B generated by a, and εB(w2) belongs to the subalgebra 〈b〉B of
B generated by b.

3.6. Proposition. Let H ` I : C → M be an admissible reflection of a variety of
universal algebras C into an idempotent subvarietyM, which satisfies Property F. Then,
the following two conditions are equivalent:

(a) I(π1) and I(π2) are jointly monic for all pullback diagrams

FU(S)×S L L

S ,FU(S)

π2

εS

fπ1
?

-

-

? (7)

where f ∈ M∗I and εS is a counit morphism of the adjunction U ` F : Set → C,
such that U is the forgetful functor into sets;

(b) M∗I = MI .

Proof. Suppose that I(π1) and I(π2) are jointly monic, that is, the canonical homo-
morphism α = 〈I(π1), I(π2)〉 : I(FU(S) ×S L) → IFU(S) ×I(S) I(L) is an injective
homomorphism. First we will prove that the pullback (7) is preserved by I. It remains
to show that α is also surjective.

Note that α is surjective if and only if for every t ∈ L and w ∈ FU(S), such that
f(t) ∼S εS(w), there exists (w∗, t∗) ∈ FU(S)×S L, with w ∼FU(S) w

∗ and t ∼L t∗.
Since the reflection satisfies Property F and f(t) ∼S εS(w), there exists (w1, w2) ∈

FU(S)×HI(FU(S))FU(S), such that εS(w1) ∈ 〈εS(w)〉S, εS(w2) ∈ 〈f(t)〉S, by Remark 3.5.
The existence of t∗ ∈ L, with t ∼L t∗ follows from:
On one hand, there exists t′ ∈ 〈t〉L, such that εS(w2) = f(t′), that is, (w2, t

′) ∈
FU(S) ×S L, since 〈f(t)〉S = f(〈t〉L). On the other hand, since f ∈ M∗I , π1 ∈ MI , and
so the restriction of π1 to any congruence class is a bijection. Then, since w1 ∼FU(S) w2,
there exists t∗ ∈ L, such that (w1, t

∗) ∈ FU(S) ×S L, that is, εS(w1) = f(t∗), and
(w2, t

′) ∼FU(S)×SL (w1, t
∗). Hence, t′ ∼L t∗. Since t′ ∈ 〈t〉L and M is an idempotent

subvariety, t ∼L t′. Therefore, t ∼L t∗.
The existence of w∗ ∈ FU(S), with w ∼FU(S) w

∗ follows from:
On one hand, there exists w∗ ∈ 〈w〉FU(S), such that εS(w∗) = εS(w1), since εS(w1) ∈

〈εS(w)〉S = εS(〈w〉FU(S)). On the other hand, since w∗ ∈ 〈w〉FU(S) and M is an idempo-
tent subvariety, w∗ ∼FU(S) w.

The fact that (w∗, t∗) ∈ FU(S)×S L follows from: εS(w∗) = εS(w1) = f(t∗).
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Therefore, there exists (w∗, t∗) ∈ FU(S) ×S L, such that w ∼FU(S) w
∗ and t ∼L t∗.

Thus, α is also surjective.
Now, we have to prove that f ∈ MI .
Consider the commutative diagram

FU(S)

FU(S)×S L

HIFU(S)

HI(FU(S)×S L)

π1

ηFU(S)×SL

ηFU(S) HI(εS)

HI(π1)

-

-

? ?
-

- HI(L)

HI(S) ,
?
HI(f)

HI(π2)

(8)

where both squares are pullbacks. The right square is a pullback, since the pullback
diagram (7) is preserved, and the left square is a pullback, since π1 ∈ MI , according to
the paragraph above Proposition 2.4.

As ηS ◦ εS = HI(εS) ◦ ηFU(S) and ηL ◦ π2 = HI(π2) ◦ ηFU(S)×SL, the outside square of
the following commutative diagram (9) is the same as in the former (8), and therefore a
pullback.

FU(S)

FU(S)×S L

S

L

π1

π2

εS ηS

f

-

-

? ?
-

- HI(L)

HI(S)
?

HI(f)

ηL

(9)

According to Lemma 4.6 in [2], since the outside square in diagram (9) is a pullback,
and εS is an effective descent morphism in C, and the left square is a pullback, the right
square is a pullback, too. Hence, f ∈ MI , by the paragraph above Proposition 2.4.

Conversely, let M∗I = MI . Since the reflection is admissible, it is known that I preserves
the pullback (7) of εS and f because the latter is a trivial covering (see [2, 3.6]). Hence,
I(π1) and I(π2) are jointly monic.

Separable, Purely Inseparable and Normal morphisms

The following Proposition 3.7 characterizes the classes of separable, purely inseparable
and normal morphisms, in admissible reflections of varieties such that the I-images of the
projections of every kernel pair are jointly monic.

3.7. Proposition. Let H ` I : C → M be an admissible reflection of a variety of
universal algebras C into a subvariety M. Let ∆ denote the identity relation, Ker(f) the
congruence associated to the kernel pair of f : A → B, ∼A the congruence on A induced
by the reflection, and ◦ the composition of congruences.

If, for the kernel pair (u, v) of f , I(u) and I(v) are jointly monic, then:
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(a) f is separable if and only if Ker(f)∩ ∼A= ∆;

(b) f is purely inseparable if and only if Ker(f) ⊆∼A;

(c) f is normal if and only if

∼A ◦Ker(f) ⊆ Ker(f)◦ ∼A and Ker(f)∩ ∼A= ∆.

Proof. Consider the pullback diagram (4) in Definition 2.6 and note that I(u) and I(v)
are jointly monic when, for all pairs (a, b), (c, d) in A×B A, a ∼A c and b ∼A d if and only
if (a, b) ∼A×BA (c, d).

(a) A homomorphism f : A → B is separable if, for all a ∈ A, the restriction δf |[a]∼A
:

[a]∼A
→ [δf (a)]∼A×BA

is a bijection. On one hand, this restriction is injective for all
a ∈ A, since v ◦ δf = 1A. On the other hand, this restriction is surjective if and only
if, for all a, a′ ∈ A, such that f(a) = f(a′) and b ∼A a and b ∼A a′, for some b ∈ A,
there exists c ∈ A such that (c, c) = (a, a′). That is, a homomorphism f : A→ B is
separable if and only if, for all a, a′ ∈ A, such that f(a) = f(a′) and a ∼A a′, then
a = a′. Which is to say that a homomorphism f : A → B is separable if and only
if Ker(f)∩ ∼A= ∆.

(b) A homomorphism f : A→ B is purely inseparable if and only if I(δf ) is an isomor-
phism. On one hand, I(δf ) is always injective, since v ◦δf = 1A. On the other hand,
I(δf ) is a surjection if and only if, for all a, a′ ∈ A, such that f(a) = f(a′), there
exists b ∈ A such that b ∼A a and b ∼A a′. That is, a homomorphism f : A→ B is
purely inseparable when, for all a, a′ ∈ A, if f(a) = f(a′) then a ∼A a′. Which is to
say that a homomorphism f : A→ B is separable if and only if Ker(f) ⊆∼A.

(c) A homomorphism f : A→ B is normal if and only if the next two conditions hold:

(1) The restrictions of u to the congruence classes of ∼A×BA are surjective. That
is, for all a, b ∈ A, such that a ∼A c and f(c) = f(b) for some c ∈ A, there
exists d ∈ A, such that f(a) = f(d) and d ∼A b, or equivalently, ∼A ◦Ker(f) ⊆
Ker(f)◦ ∼A .

(2) The restrictions of u to the congruence classes of ∼A×BA are injective. That is,
for all a, b ∈ A such that a ∼A b and f(a) = f(b) then, a = b, or equivalently,
Ker(f)∩ ∼A= ∆.
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4. Inseparable-Separable factorization

In Proposition 4.1 it will be proved that there is an inseparable-separable factorization
system, for admissible reflections into subvarieties, provided the class of stably-vertical
morphisms is the class of almost surjective vertical homomorphisms.

4.1. Proposition. Let H ` I : C → M be an admissible reflection of a variety of
universal algebras C into a subvariety M. If E′I = EI ∩F then there exists a factorization
system (Ins, Sep), with Ins = EI ∩ E.

Proof. First we will show that E′I ⊆ Pin. Consider the pullback diagram (4) and
suppose f ∈ E′I . Then v ∈ EI . Since I(v) is an isomorphism and I(v)◦I(δf ) = 1I(A), I(δf )
is an isomorphism. Hence, δf ∈ EI , thus f ∈ Pin. Therefore, by the paragraph below
Definition 2.7,

E′I ∩ E ⊆ Ins ⊆ EI ∩ E.

Now we have to prove that the class Ins is closed under composition. Since E ⊆ F,
EI ∩ E ⊆ EI ∩ F = E′I . Hence, EI ∩ E ⊆ EI ∩ F ∩ E = E′I ∩ E. On the other hand, since
E′I ⊆ EI , E′I ∩E ⊆ EI ∩E. Hence, E′I ∩E = EI ∩E. Therefore, Ins = EI ∩E. Since EI and
E are closed under composition, so it is EI ∩ E. Therefore, (Ins, Sep) is a factorization
system.

4.2. Remark. Under the assumptions of Proposition 4.1, the (Ins, Sep)-factorization of
f : A → B given in the paragraph above Definition 2.7, could be obtained alternatively
by applying the surjection-injection factorization to the homomorphism ef in diagram
(1). Hence, f = m̄f ◦ ēf = (mf ◦m) ◦ ēf , with ef = m ◦ ēf . This means that inseparable-
separable and concordant-dissonant factorizations coincide (see Proposition 2 in [13, §3],
which is a generalization of the results given in [2, §3.9] or [3, Proposition 5.5]; see also
[5, §2.11] in the context of pointed endofunctors, where previous references are provided).

5. The reflection of commutative semigroups into semilattices

Consider the admissible reflection H ` I : CommSgr → SLat of commutative semi-
groups into semilattices. It is well known that a commutative semigroup C is semilattice
indecomposable if and only if it is archimedean, in the sense of [9]. That is, a commutative
semigroup C is archimedean if for every ordered pair (a, b) of elements in C there exist
n ∈ N (positive integers) and x ∈ C, with an = bx. Hence, every commutative semigroup
is a semilattice of archimedean subsemigroups.

(I) If C is a finitely generated commutative semigroup, any of its archimedean com-
ponents A has some power Ak = {a ∈ C | a = a1...ak, with a1, , ak ∈ A} with
cancellation (see Proposition 9.6 in [4, §IV]).

(II) Since the subvariety of semilattices is idempotent, each archimedean component of
the semilattice decomposition of a commutative semigroup S is a subalgebra of S.
Therefore, every power of each archimedean component is a subsemigroup of S.



GALOIS THEORIES OF COMMUTATIVE SEMIGROUPS VIA SEMILATTICES 1165

(III) Any archimedean component of the semilattice decomposition of a commutative
semigroup is semilattice indecomposable (see [8]). That is, let S be a commutative
semigroup and consider an archimedean class [x]∼S

in S : then, since I([x]∼S) = 1,
for every y, z ∈ [x]∼S

, there exist m,n ∈ N and there exist c, d ∈ [x]∼S
, such that

zm = yc and yn = zd.

The following Proposition 5.1 will be used to prove Proposition 5.2, which in turn will
be used to prove the more general Proposition 5.3.

5.1. Proposition. Consider the reflection H ` I : CommSgr→ SLat, and the follow-
ing pullback diagram,

A×C B B

C ,A

π2

f

eπ1
?

-

-

?
(10)

in CommSgr.
Then, I(π1) and I(π2) are jointly monic, provided C is a commutative semigroup with

cancellation.

Proof. Let (a1, b1), (a2, b2) ∈ A×C B be such that a1 ∼A a2 and b1 ∼B b2, that is, there
exist m,n, p, q ∈ N and c, d ∈ A and u, v ∈ B, such that am1 = a2c, a

n
2 = a1d, bp1 = b2u

and bq2 = b1v.
We need (x, y), (z, t) ∈ A ×C B and r, s ∈ N such that (a1, b1)

r = (a2, b2)(x, y) and
(a2, b2)

s = (a1, b1)(z, t).
We take (x, y) = (ap−12 cp, bm−12 um), (z, t) = (aq−11 dq, bn−11 vn) and r = mp, s = nq.
Clearly we have (a1, b1)

r = (ar1, b
r
1) = (a2, b2)(x, y) and (a2, b2)

s = (as2, b
s
2) = (a1, b1)(z, t).

We have to prove (1) f(x) = e(y), and (2) f(z) = e(t).
The equality (1) follows from f(a2)f(x) = f(ap2c

p) = f(amp1 ) = e(bmp1 ) = e(bm2 u
m) =

e(b2)e(y), by cancellation.
The equality (2) follows from f(a1)f(z) = f(aq1d

q) = f(anq2 ) = e(bnq2 ) = e(bn1v
n) =

e(b1)e(t), by cancellation.

5.2. Proposition. Consider the reflection H ` I : CommSgr → SLat, and the pull-
back diagram (10). Then, I(π1) and I(π2) are jointly monic, provided C is a finitely
generated commutative semigroup.

Proof. Let (a1, b1), (a2, b2) ∈ A×C B be such that a1 ∼A a2 and b1 ∼B b2. Let k ∈ N be
such that [f(a1)]

k
∼C

= [e(b1)]
k
∼C

has cancellation, by (I).
Consider the following pullback

X ×H Y Y

H ,X

p2

f|X

e|Yp1
?

-

-

?
(11)
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where

• H = [f(a1)]
k
∼C

= [e(b1)]
k
∼C

, X = [a1]
k
∼A

= [a2]
k
∼A

, Y = [b1]
k
∼B

= [b2]
k
∼B

,

• f|X : X → H and e|Y : Y → H are restrictions, respectively,

of f : A→ C and e : B → C.

Let us prove that:

(1) (ak1, b
k
1), (ak2, b

k
2) ∈ X ×H Y ;

(2) ak1 ∼X ak2 and bk1 ∼Y bk2.

(1) follows from:
f(ak1) = e(bk1) and f(ak2) = e(bk2), since f(a1) = e(b1) and f(a2) = e(b2). Therefore
f|X (ak1) = e|Y (bk1) and f|X (ak2) = e|Y (bk2), that is, (ak1, b

k
1), (ak2, b

k
2) ∈ X ×H Y .

(2) follows from (III) above:
by (III), there exist m,n, p, q ∈ N and c, d ∈ [a1]∼A

and u, v ∈ [b1]∼B
, such that am1 = a2c,

an2 = a1d, bp1 = b2u and bq2 = b1v; therefore, (ak1)m = ak2c
k, (ak2)n = ak1d

k, (bk1)p = bk2u
k and

(bk2)q = bk1v
k, with ck, dk ∈ X and uk, vk ∈ Y .

Hence, by Proposition 5.1, (ak1, b
k
1) ∼X×HY (ak2, b

k
2), since H is cancellative. Thus, (ak1, b

k
1)

∼A×CB (ak2, b
k
2), since X ×H Y is a subsemigroup of A ×C B. Therefore, (a1, b1) ∼A×CB

(a2, b2), since (ak1, b
k
1) ∼A×CB (a1, b1) and (ak2, b

k
2) ∼A×CB (a2, b2).

5.3. Proposition. Consider the reflection H ` I : CommSgr→ SLat, of commutative
semigroups into semilattices. The I-images of the projections of any pullback diagram in
CommSgr, are jointly monic.

Proof. We have to show that, for any commutative semigroup C in the pullback diagram
(10), the homomorphisms I(π1) and I(π2) are jointly monic.

Let (a1, b1), (a2, b2) ∈ A×C B be such that a1 ∼A a2 and b1 ∼B b2. That is, there exist
m,n, p, q in N, c and d in A, and u and v in B, with am1 = a2c, a

n
2 = a1d, b

p
1 = b2u and

bq2 = b1v. Let H be the subsemigroup in C generated by f(a1), f(a2), f(c), f(d), e(u) and
e(v).

Recall that f(a1) = e(b1) and f(a2) = e(b2), and consider the pullback diagram

X ×H Y Y

H ,X

p2

f|X

e|Yp1
?

-

-

?

in which X = f−1(H), Y = e−1(H), and f|X and e|Y are the obvious restrictions.

Note that:

(i) a1, a2, c, d ∈ X and b1, b2, u, v ∈ Y ;



GALOIS THEORIES OF COMMUTATIVE SEMIGROUPS VIA SEMILATTICES 1167

(ii) (a1, b1), (a2, b2) ∈ X ×H Y ;

(iii) a1 ∼X a2 and b1 ∼Y b2, since c, d ∈ X and u, v ∈ Y.

Hence, by Proposition 5.2, (a1, b1) ∼X×HY (a2, b2). Therefore, (a1, b1) ∼A×CB (a2, b2),
since X ×H Y is a subsemigroup of A×C B.

5.4. Proposition. The reflection H ` I : CommSgr → SLat, of commutative semi-
groups into semilattices, satisfies Property F.

Proof. Remark that, in the following, referring to a word in a free semigroup, xk stands
for the concatenation of a positive integer number k of letters x.

Let B be a commutative semigroup and a, b ∈ B such that a ∼B b. Recall that a ∼B b
if and only if there exist n,m ∈ N and c, d ∈ B, such that an = bc and bm = ad. Then,
anm = bmcm = adcm and bmn = andn = bcdn.

Hence, an
2m = andncmn = bcdncmn = bcmn+1dn.

Thus, an
2m = bcnm+1dn and bnm = bcdn.

Finally, an
2m = bcnm+1dn and bn

2m = bncndn
2
.

Since the words in FU(B) are in the same archimedean component if and only if
they have the same letters, the words w1 = bcnm+1dn and w2 = bncndn

2
, are in the same

congruence class in FU(B), that is, (bcnm+1dn, bncndn
2
) ∈ FU(B)×HIFU(B) FU(B).

Hence, applying the canonical homomorphism h = 〈εB ◦ π1, εB ◦ π2〉 of Definition 3.4,
we have h(bcnm+1dn, bncndn

2
) = (a, b)n

2m ∈ 〈(a, b)〉B×HI(B)B.

5.5. Remark. Consider the reflectionH ` I : CommSgr→ SLat, of the variety of com-
mutative semigroups into its subvariety of semilattices, and the canonical homomorphism
h : FU(B)×HIFU(B)FU(B)→ B×HI(B)B of Definition 3.4, where B = F (a, b; a2 = (ab)2)
is the quotient of the free commutative semigroup on the set {a, b}, by the congruence
generated by the identity a2 = (ab)2.

The archimedean components of B are {ak, ambn}, with k,m, n arbitrary positive
integers, since a ∼B ab, and {bl}, with l an arbitrary positive integer, since a and b are
not in the same archimedean component of B. While the archimedean components in
FU(B) are its subsemigroups whose elements have the same letters. Hence, a ∼B ab, but
the words w1 = a and w2 = ab are not in the same archimedean component in FU(B),
and they are the unique two words such that εB(w1) = a and εB(w2) = ab. Therefore,
the canonical homomorphism h of Definition 3.4 is not surjective.

The following first table concludes the characterizations of the classes of morphisms
considered above, for the reflection of commutative semigroups into semilattices. The
second table concludes that there exists an inseparable-separable factorization system,
but does not exist a monotone-light factorization system, for that reflection.
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Classes of homomorphisms f : A→ B associated to I : CommSgr→ SLat

E′I M∗I Normal P in Sep Ins

EI ∩ F M∗I = MI ∼A ◦Ker(f) ⊆ Ker(f)◦ ∼A Ker(f) ⊆∼A Ker(f)∩ ∼A= ∆ EI ∩ E
Ker(f)∩ ∼A= ∆

Pr. 3.3 Pr. 3.6 Pr. 3.7 Pr. 3.7 Pr. 3.7 Pr. 4.1
and and and and and

Pr. 5.3 Pr. 5.3 Pr. 5.3 Pr. 5.3 Pr. 5.3
and

Pr. 5.4

Factorizations associated to I : CommSgr→ SLat

(EI ,MI) (Ins, Sep) (E′I ,M
∗
I)

Y ES Y ES NO

M∗I = MI ,E
′
I = EI ∩ F 6= EI

Admissible reflection Pr. 4.1
(i : (N,+) ⊆ (R,+), i ∈ EI but i /∈ F)
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[3] Cassidy, C., Hébert, M., Kelly, G. M. Reflective subcategories, localizations and fac-
torization systems, J. Austral. Math. Soc., 38A(1985), 287–329.

[4] Grillet, P. A. Semigroups: an introduction to the structure theory, Marcel Dekker,
Inc.(1995).

[5] Janelidze, G., Tholen, W. Functorial factorization, well-pointedness and separability,
J. Pure App. Algebra, 142(1999), 99–130.



GALOIS THEORIES OF COMMUTATIVE SEMIGROUPS VIA SEMILATTICES 1169

[6] Janelidze, G., Laan, V., Márki, L. Limit preservation properties of the greatest semi-
lattice image functor, Internat. J. Algebra Comput., 18, Issue 5(2008), 853–867.

[7] Mac Lane, S. Categories for the Working Mathematician, 2nd ed., Springer(1998).

[8] Tamura, T. Attainability of systems of identities on semigroups, J. Algebra, 3(1966),
261–276.

[9] Tamura, T., Kimura, N. On decompositions of a commutative semigroup, Kodai
Math. Sem. Rep., 6, Issue 4(1954), 109–112.

[10] Xarez, I. A. Reflections of universal algebras into semilattices, their Galois theories
and related factorization systems, University of Aveiro, PhD thesis(2013).

[11] Xarez, J. J. Separable morphisms of categories via preordered sets, Fields Inst. Com-
mun., 43(2004), 543–549.

[12] Xarez, J. J. Generalising Connected Components, J. Pure Appl. Algebra, 216, Issues
8-9(2012), 1823–1826.

[13] Xarez, J. J. Concordant and monotone morphisms, App. Cat. Struct., 21, Issue
4(2013), 393–415.

CIDMA - Center for Research and Development in Mathematics and Applications, De-
partment of Mathematics, University of Aveiro, Portugal.
Email: isabel.andrade@ua.pt

xarez@ua.pt

This article may be accessed at http://www.tac.mta.ca/tac/ or by anonymous ftp at
ftp://ftp.tac.mta.ca/pub/tac/html/volumes/28/33/28-33.{dvi,ps,pdf}



THEORY AND APPLICATIONS OF CATEGORIES (ISSN 1201-561X) will disseminate articles that
significantly advance the study of categorical algebra or methods, or that make significant new contribu-
tions to mathematical science using categorical methods. The scope of the journal includes: all areas of
pure category theory, including higher dimensional categories; applications of category theory to algebra,
geometry and topology and other areas of mathematics; applications of category theory to computer
science, physics and other mathematical sciences; contributions to scientific knowledge that make use of
categorical methods.
Articles appearing in the journal have been carefully and critically refereed under the responsibility of
members of the Editorial Board. Only papers judged to be both significant and excellent are accepted
for publication.
Full text of the journal is freely available in .dvi, Postscript and PDF from the journal’s server at
http://www.tac.mta.ca/tac/ and by ftp. It is archived electronically and in printed paper format.

Subscription information Individual subscribers receive abstracts of articles by e-mail as they
are published. To subscribe, send e-mail to tac@mta.ca including a full name and postal address. For in-
stitutional subscription, send enquiries to the Managing Editor, Robert Rosebrugh, rrosebrugh@mta.ca.

Information for authors The typesetting language of the journal is TEX, and LATEX2e
strongly encouraged. Articles should be submitted by e-mail directly to a Transmitting Editor. Please
obtain detailed information on submission format and style files at http://www.tac.mta.ca/tac/.

Managing editor. Robert Rosebrugh, Mount Allison University: rrosebrugh@mta.ca

TEXnical editor. Michael Barr, McGill University: barr@math.mcgill.ca

Assistant TEX editor. Gavin Seal, Ecole Polytechnique Fédérale de Lausanne:
gavin seal@fastmail.fm

Transmitting editors.
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