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TIGHTLY BOUNDED COMPLETIONS

MARTA BUNGE

Abstract. By a ‘completion’ on a 2-category K we mean here an idempotent pseu-
domonad on K . We are particularly interested in pseudomonads that arise from KZ-
doctrines. Motivated by a question of Lawvere, we compare the Cauchy completion [23],
defined in the setting of V-Cat for V a symmetric monoidal closed category, with the
Grothendieck completion [7], defined in the setting of S-Indexed Cat for S a topos. To
this end we introduce a unified setting (‘indexed enriched category theory’) in which to
formulate and study certain properties of KZ-doctrines. We find that, whereas all of the
KZ-doctrines that are relevant to this discussion (Karoubi, Cauchy, Stack, Grothendieck)
may be regarded as ‘bounded’, only the Cauchy and the Grothendieck completions are
‘tightly bounded’ – two notions that we introduce and study in this paper. Tightly
bounded KZ-doctrines are shown to be idempotent. We also show, in a different ap-
proach to answering the motivating question, that the Cauchy completion (defined using
‘distributors’ [2]) and the Grothendieck completion (defined using ‘generalized functors’
[21]) are actually equivalent constructions1.

Introduction

The aim of this paper, motivated by a question of Lawvere, is to identify what is common
to the Cauchy completion [23], the Stack completion [11, 7], and related constructions,
such as the Karoubi envelope [13, 7] and the Grothendieck completion [7].

KZ-doctrines have alternatively been called ‘lax idempotent monads’ in the literature
[18, 20], but I shall stick here to the original terminology. A KZ-doctrine [19] on a
2-category K is a special sort of pseudomonad on K that is not always intuitively
a completion. For instance, adding coproducts freely is part of a KZ-adjointness on
Cat. Another non-example of completion is the KZ-doctrine known as the ‘symmetric
monad’ [10] on a suitable 2-category K . In view of these cases, we shall restrict our
consideration to those KZ-doctrines which, as pseudomonads, are idempotent – that is,
for which the multiplication is an equivalence. Such pseudomonads shall be referred to
here as ‘completions’.

For a proper comparison between the Cauchy and the Grothendieck completions, we
must first unify their settings. On the one hand, the Grothendieck completion takes place

Received by the editors 2012-04-14 and, in revised form, 2013-04-17.
Transmitted by F. William Lawvere. Published on 2013-04-18.
2010 Mathematics Subject Classification: 18A25, 18A40, 18B25, 18C15, 18D10, 18D15, 18D20,

18D30.
Key words and phrases: 2-categories, KZ-doctrines, completions, enriched category theory, indexed

categories, distributors, generalized functors, Karoubi envelope, Stack completion, Cauchy completion,
Grothendieck completion.

c© Marta Bunge, 2013. Permission to copy for private use granted.
1Lecture [9] given at the Octoberfest, Montréal, November 27-28, 2012.
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in the setting of S-indexed categories [24]. On the other hand, the Cauchy completion is
given in the setting of categories enriched over a symmetric monoidal closed category V
[12, 17]. We are therefore led into merging these two settings into a 2-category Cat(S,V)

of ‘S-indexed V-categories’, for V an ‘S-indexed symmetric monoidal closed category’.
Roughly speaking, a KZ-doctrine M on Cat(S,V) is called ‘bounded’ if, as a pseu-

domonad, it can be carved out from the Yoneda embedding, and is such that V is orthog-
onal to the unit of M. However, bounded KZ-doctrines need not be completions, as the
example of the free addition of coproducts shows.

Certain completions are better than others. For instance, the stack completion of
a (small) groupoid in a topos S is of interest precisely because it provides a way of
retrieving the given groupoid from its classifying topos up to weak equivalence [14, 15, 8].
The generalization of the stack construction from (small) groupoids to arbitrary (small)
categories is meaningful [11], but it need no longer have this property. This defect is
repaired by the more general Grothendieck completion [15, 7].

Another instance of a construction whose main interest was originally of a similar
nature (‘Morita equivalence theorem’) is that of the Karoubi envelope of a small additive
category [13]. The Karoubi envelope loses this property when carried out in the context of
enriched V-category theory where the coproducts in V need not be disjoint. This defect
is repaired by the more general Cauchy completion [23].

These considerations led us to single out those bounded KZ-doctrines that are ‘tightly
bounded’, in the sense of satisfying a special form of Morita equivalence. We prove that
every tightly bounded KZ-doctrine is an idempotent pseudomonad, hence a completion.
The KZ-doctrine property is crucially used in this connection : this is the main reason
why we do not deal with just arbitrary pseudomonads.

We prove that the Grothendieck KZ-doctrine (which is bounded as a composite of two
commuting bounded KZ-doctrines) is in fact tightly bounded. The Cauchy completion
involves V-distributors instead of V-generalized functors. For this reason we need to rela-
tivize the passage from distributors to generalized functors [2, 21, 1, 4]. With it, we easily
derive that the Cauchy and the Grothendieck completions are equivalent constructions
in the indexed enriched setting. In particular, we are in a position to better understand
the relationship of the Cauchy completion to the Karoubi envelope – two constructions
that are often wrongly identified in the literature. Indeed, we show that, in general, the
Cauchy completion is not just the splitting of idempotents.

1. KZ-Completions

Let K be a 2-category. The notion of a KZ-doctrine [19] on K is a special sort of
pseudomonad 〈M, δ, µ〉 on K that is ‘property-like’, in the sense that, for its algebras,
structure is adjoint to units, so that, in particular, the so called structure may instead be
regarded as a property.

We recall that lax adjointness, lax monads and their algebras were introduced in [6] in
connection with what we called “families of coherently closed Kan extensions” therein. In
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the work of [20], they go further and show that the lax monads induced by such families
in [6] are KZ-doctrines – which they relabel as “lax idempotent monads” following [18].
We see no reason to adopt the newer terminology [18, 20] here – in fact, the original one
is better suited to our purpose, which is to single out the actual idempotent (in the sense
of equivalence) KZ-doctrines.

1.1. Definition. A KZ-doctrine in a 2-category B is a pseudomonad 〈M, δ, µ〉 that
satisfies the conditions

M(δB) a µB a δM(B) . (1)

for each object B in B. A KZ-doctrine is said to be fully faithful if for every object B of
B, the unit

δB : B // M(B)

is a full and faithful 1-cell.

A KZ-doctrine on a 2-category B often arises explicitly from a special sort of lax
adjointness [6] known as ‘KZ-adjointness’. A KZ-adjointness

F : A // B a G : B // A

between 2-categories has units δB : B // GF (B) and counits εA : FG(A) // A such
that

F (δB) a εF (B);G(εA) a δG(A).

The induced pseudomonad 〈M, δ, µ〉 is a KZ-doctrine.

1.2. Examples.

1. The free addition of finite coproducts to a small category is a simple instance of a
KZ-doctrine on Cat. It arises from a KZ-adjointness F a U , where

U : Cat⊕ // Cat

is the forgetful 2-functor. In this case, the K-adjointness F a U is monadic. The
construction is meaningful for arbitrary categories.

2. Denote by TopS the 2-category whose objects are toposes bounded over a base topos
S, whose 1-cells are inverse images of geometric morphisms over S, and whose 2-
cells are natural isomorphisms between inverse images of geometric morphisms. We
may forget that a 1-cell between toposes preserves finite limits and leave the rest
unchanged. The resulting 2-category is denoted DistS since a 1-cell E // F is
precisely an F -valued Lawvere distribution on E [21]. The forgetful 2-functor

U : TopS
// DistS

has a right 2-adjoint U a Σ. It induces a pseudomonad 〈M, δ, µ〉 on TopS. The
adjoint pair U a Σ is a KZ-adjointness, hence the induced pseudomonad is a KZ-
doctrine, called ‘the symmetric monad” [10]. The symmetric monad is fully faithful
but not idempotent.
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Although ‘property-like’, the constructions of Examples 1.2 do not feel like completions
precisely because they are not idempotent.

1.3. Definition. By a completion on a 2-category K we mean a fully faithful KZ-
doctrine 〈M, δ, µ〉 on K that is idempotent, that is, for which µ : M2 // M is an
equivalence 2-cell.

1.4. Examples.

1. The Karoubi envelope of a category (in Set) as a universal splitting of the idempo-
tents in it is briefly described in [13] as an exercise. The same construction can be
carried out [7] for a category in a topos S and may be regarded as a KZ-doctrine
on Cat(S). Its unit vC : C // Ĉ evaluated at C is fully faithful. Furthermore, as
shown therein, it has the following properties: (1) Idempotents of C split in Ĉ via
vC : C // Ĉ. (2) Idempotents split in C if and only if vC : C // Ĉ is an equivalence
of categories. It follows that the Karoubi envelope is a fully faithful idempotent
KZ-monad, hence a completion in the sense of Definition 1.3.

2. The stack completion [11] uA : A // Ã (of an S-indexed category A ) is defined
in two equivalent forms, one of which characterizes it as a solution to the problem
of universally inverting weak equivalent functors. Any S-indexed natural trans-
formation uA : A // Ã , where Ã is a stack, provides such a solution. Such a
construction exists in this form [7]. It follows that the stack completion can be
regarded as a fully faithful idempotent KZ-doctrine on S-Indexed Cat, that is, as a
completion in the sense of Definition 1.3.

2. Indexed Enriched Category Theory

This section introduces a 2-category Cat(S,V) for the purpose of stating, in a unified way,
properties of KZ-doctrines on it that can then be tested in any of its models –in particular
in S-Indexed Cat and V-Cat.

We assume familiarity with V-category theory [12, 5, 17] for 〈V,⊗, Z〉 a symmetric
monoidal closed category, and with S-Indexed category theory [24], for S an arbitrary
base topos.

2.1. Definition. Let S be an elementary topos. An S-indexed monoidal category V is
given by the following data:

1. V is an S-indexed category.

2. There are given S-indexed functors

⊗ : V×V //V

and
Z : 1 //V



TIGHTLY BOUNDED COMPLETIONS 217

3. together with S-indexed natural isomorphisms

a : ⊗× idV
// idV ×⊗

(modulo the canonical isomorphism

(V×V)×V //V× (V×V)

as S-indexed categories),
l : idV ⊗ Z // idV

r : Z ⊗ idV
// idV

4. satisfying the (analogues of the) associativity and unitary axioms MC1 and MC2
[5, 17] for a monoidal category.

In particular, for each I ∈ S, 〈VI ,⊗I , ZI〉 is a monoidal category and, for each mor-
phism α : J // I in S, the transition functor α? : VI //VJ is a strong monoidal functor.

We say that V is a symmetric monoidal closed S-indexed category if,

• for each I ∈ S, the monoidal category 〈VI ,⊗I , ZI〉 is both symmetric and closed,
and

• for each α : J // I in S, the strong monoidal functor α? : VI //VJ is symmetric
and closed.

2.2. Remark. With the data for an S-indexed symmetric monoidal closed category V
in Definition 2.1 is associated a pseudofunctor

V : Sop // SMCCat

where SMCCat is the usual 2-category of symmetric monoidal closed categories, sym-
metric monoidal closed functors, and monoidal natural transformations. In turn, this is
equivalently given by a (symmetric monoidal closed) fibration

V // S.

2.3. Assumption. In what follows, S is assumed to be an elementary topos and V an
S-indexed symmetric monoidal closed category in the sense of Definition 2.1.
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2.4. Definition. For V an S-indexed monoidal category, we give the data for a 2-
category

Cat(S,V)

of S-indexed V-categories, S-indexed V-functors, and 2-cells, as follows:

• Objects. An S-indexed V-category consists of an S-indexed category A such that
for each object I of S, A I is a VI-category, and for each morphism α : J // I of S,
α? : A I // A I preserves the structures by means of coherent natural isomorphisms

ϕαA,B : α?(A I(A,B)) // A J(α?A,α?B).

• 1-cells. An S-indexed V-functor consists of an S-indexed functor T : A // B such
that for each object I of S, T I : A I // BI is a VI-functor, and for each morphism
α : J // I in S, the square below

A J(α?(A), α?(A′)) BJ(T J(α?(A), T J(α?(A′)))
TJ
α?A,α?A′

//

α?(A I(A,A′)))

A J(α?(A), α?(A′))

ϕα
A,A′

��

α?(A I(A,A′))) α?(BI(T I(A), T I(A′))
α?(T I

A,A′ )
// α?(BI(T I(A), T I(A′))

BJ(T J(α?(A), T J(α?(A′)))

ϕ̃α
T (A),T (A′)

��

where the right vertical arrow is the composite of

ϕαTA,TA′ : α?(BI(T IA, T IA′)) // BJ(α?(T IA), α?(T IA′))

with isomorphisms deriving from the V-functor structure of T , commutes.

• 2-cells. An S-indexed V-natural transformation consists of an S-indexed natural
transformation η : T1

// T2, such that for each I ∈ S, ηI : T I1 // T I2 is a V-natural
transformation, such that for each α : J // I in S, the following identity

α? · ηI = ηJ · α?

holds after inserting isomorphisms deriving from the V-functor structures of T1 and
T2.

2.5. Theorem. The data given in Definitions 2.1 and 2.4 define a 2-category, which will
be denoted Cat(S,V)

Proof. The verifications that the data of Definition 2.4 constitute a 2-category are
straightforward on the basis of [24] and [17] and left to the reader.
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2.6. Proposition.

1. The pair (S,V) = (S,S), for S a topos, where S is S-indexed in the usual way
[24, 11], satisfies the conditions of Definition 2.1. The 2-category Cat(S,S) in the
sense of Definition 2.4 is equivalent to the 2-category S-Indexed Cat [24].

2. The pair (Set,V), for V = 〈V,⊗, Z〉 a symmetric monoidal closed complete and
cocomplete category with Hom(Z,−) : V // Set faithful, satisfies the conditions of
Definition 2.1. The 2-category Cat(S,V) is equivalent to the 2-category V-Cat [17].

Proof. Straightforward.

2.7. Proposition. Let 〈V,⊗, Z〉 be an S-indexed symmetric monoidal closed category.
Then V is an S-indexed V-category in a natural way.

Proof. V is an S-indexed category. Furthermore, for each I ∈ S, VI is closed, hence a
VI-category. For each α : J // I ∈ S, α∗ : VI // VJ is (monoidal) closed, so that we
have coherent natural isomorphisms

ϕαA,B : α?(VI(A,B)) // VJ(α?A,α?B).

Recall [17] that, for a symmetric monoidal closed category V = 〈V,⊗, Z〉, a V-category
A is said to be small if Obj(A ) is a small set. On the other hand, a small S-indexed
category [24], for S a topos, is the externalization of an internal category in S. We need
a notion of smallness for an S-indexed V-category A that has these two as instances. As
in the case of a topos S, such a notion can be given internally in V and then extended to
an S-indexed V-category.

2.8. Definition. Let 〈V,⊗, Z〉 be an S-indexed symmetric monoidal closed category.
A small V-category C consists of

• An object C0 ∈ S.

• An object C1 ∈ VC0×C0 .

• A morphism u : ZC0 // C1 in V over diag : C0
// C0 × C0 in S.

• A morphism C1 ⊗C0 C1
// C1 in V over π02 : C0 × Co × C0

// C0 × C0, such that

• the following diagrams in V

C1 ⊗C0 C1 C1m
//

C1 ⊗C0 (C1 ⊗C0 C1)

C1 ⊗C0 C1

id⊗C0
m

��

C1 ⊗C0 (C1 ⊗C0 C1) C1 ⊗C0 C1

(m⊗C0
id)·a

// C1 ⊗C0 C1

C1

m

��
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where
a = aC1C1C1 : C1 ⊗C0 (C1 ⊗C0 C1) // (C1 ⊗C0 C1)⊗C0 C1

is the isomorphism that is part of the data for the monoidal category VC0×C0×C0 ,

ZC0 ⊗C0 C1 C1 ⊗C0 C1

u⊗C0
id

//ZC0 ⊗C0 C1

C1

r

))

C1 ⊗C0 C1

C1

m

��

and

C1 ⊗C0 Z
C0 C1 ⊗C0 C1

id⊗C0
u
//C1 ⊗C0 Z

C0

C1

l
))

C1 ⊗C0 C1

C1

m

��

commute.

Similar definitions can be stated for the notions of a small V-functor F : C // D
between small V-categories, and for a V-natural transformation η : F // G between
small V-functors from C to D.

2.9. Remarks.

• Along the lines of [24], one can then form the externalization of a small V-category
C (respectively, of a small V-functor F : C //D and of a V-natural transformation
η : F // G). These are, respectively, an S-indexed V-category denoted [C], an S-
indexed V-functor denoted [F ], and an S-indexed natural transformation denoted
[η].

• Let C be a small V-category. The opposite of a small V-category C is a small
V-category Cop. Its externalization is equivalent to [C]op.

• Let C be a small V-category and [C] its externalization. Denote by VCop

the S-
indexed V-category of S-indexed functors [C]op // V and S-indexed V-natural
transformations between such.

• For each morphism α : J // I,

α? : (VCop

)I // (VCop

)J

preserves the structure by coherent isomorphisms

ϕαF,G : α?((VCop

)I(F,G)) // (VDop

)J(α?F, α?G).
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2.10. Theorem. There is an S-indexed V-functor

HOMC : Cop × C −→ V

whose transpose
YC : C −→ VCop

is a fully faithful S-indexed V-functor. In this context, an appropriate name for it is the
S-indexed Yoneda V-embedding (at C).

Proof. An S-indexed functor F : A //B is fully faithful if for each I ∈ S,

F I : A I //BI

is fully faithful. For each I ∈ S, the Yoneda VI-functor

YCI : CI −→ (VI)(CI)op

is fully faithful.

2.11. Definition. Let (S,V) be a pair consisting of a topos S and of an S-indexed
symmetric monoidal closed category V, and let M = 〈M, δ, µ〉 be a KZ-doctrine on
Cat(S,V). We say that M is small for (S,V) if, for any small V-category C, M(C) is
small. If the KZ-doctrine M is a completion of type P, for a given property P of S-
indexed V-categories, then we say instead, in this case, that P-completions are small for
(S,V).

2.12. Examples.

• Let (S,V) be a pair with S any topos and V any S-indexed symmetric monoidal
closed regular category. Then the Karoubi envelope (universal splitting of idempo-
tents) is small for (S,V).

• An example of a small category in an arbitrary topos S whose stack completion is
not small, given by Joyal, is mentioned by Lawvere [22]. However, it follows from
Lemma 8.35 of [16] that, for any Grothendieck topos S, the stack completion is
small for the pair (S,S).

• It is shown in [3] that the Cauchy completion of a small V-category need not be
small. This is the case for the small V-category Z, for V the (symmetric monoidal)
closed category of suplattices, which is monoidal with the usual tensor product and
unit object Z = 2. On the other hand, the Cauchy completion is small for the pair
(Set,V), where V = Mod(R) for R a commutative ring with identity.

3. Bounded KZ-doctrines

Let S be a topos and V an S-indexed symmetric monoidal closed category.
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3.1. Definition. Let M = 〈M, δ, µ〉 be a KZ-doctrine on Cat(S,V). We say that M is
bounded if the following conditions hold.

1. M is small for the pair (S,V) in the sense of Definition 2.11.

2. M is a fully faithful KZ-doctrine in the sense of Definition 1.1.

3. For any small V-category C, there is a factorization

C δC // M(C) �
� // VCop

of the Yoneda embedding YC : C // VCop

in Cat(S,V), where the second factor is an
inclusion.

4. V is orthogonal to the opposite of the unit of the pseudomonad M in the sense that,
for any small V-category C,

VδopC : VM(C)op // VCop

is an equivalence.

3.2. Definition. An object ϕ : C // D of the category Hom(C,D), of V-functors from
C to D and V-natural transformations, where C and D are small V-categories in the
sense of Definition 2.8, is said to be an M-equivalence if M(ϕ) : M(C) // M(D) is an
equivalence. Denote by

EquivM(C,D)

the full subcategory of Hom(C,D) whose objects are the M-equivalences.

3.3. Proposition. Let M = 〈M, δ, µ〉 be a bounded KZ-doctrine on a 2-category Cat(S,V).
Then, for small V-categories C and D, the restriction of the functor

V(−)op : Hom(C,D) // Hom(VDop

,VCop

)

to EquivM(C,D) is a well defined functor

V(−)op : EquivM(C,D) // Equiv(VDop

,VCop

)

Proof. Let ϕ : C // D be any M-equivalence 1-cell in Cat(S,V). Consider the commuta-
tive square

VDop

VCop

Vϕop
//

VM(D)op

VDop

V(δD
op)

��

VM(D)op VM(C)opVM(ϕ)op

//VM(C)op

VCop

V(δC
op)

��

Since M is bounded, the two vertical arrows are equivalences. Therefore, if M(ϕ) :
M(C) // M(D) is an equivalence, so is VM(ϕ)op , and then so is Vϕop

.
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3.4. Definition. A bounded small KZ-doctrine M = 〈M, δ, µ〉 on Cat(S,V) is said to be
tightly bounded if, for every pair C, D of small V-categories, the functor

V(−)op : EquivM(C,D) // Equiv(VDop

,VCop

)

is an equivalence.

3.5. Theorem. Let M = 〈M, δ, µ〉 be a tightly bounded KZ-doctrine on a 2-category
Cat(S,V). Assume that M is small for the pair (S,V). Then, M is idempotent when
restricted to small V-categories, hence a completion.

Proof. We wish to show that 1-cell

µ : M2 // M

is an equivalence. Let C be a small V-category.

1. Since the KZ-doctrine is bounded,

VδCop : VM(C)op // VCop

is an equivalence for any small V-category C.

2. Since furthermore the KZ-doctrine M is assumed tightly bounded, it follows from
the above that

M(δC) : M(C) // M2(C)

is an equivalence.

3. Since M = 〈M, δ, µ〉 is a locally fully faithful KZ-doctrine,

M(δC) a µC a δM(C)

where the counit
ε : δM(C) · µC // id

an equivalence –equivalently, with the unit

η : id // µC ·M(δC)

an equivalence, it follows that µC : M2(C) // M(C) is an equivalence.
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3.6. Definition. Let M = 〈M, δ, µ〉 and N = 〈N, κ, ν〉 be pseudomonads on a 2-category
K . We say that M and N commute if there exists an iso 1-cell

γ : MN // NM

such that the following diagrams

1.

MN NMγ //

id

MN

(δN)·κ

||

id

NM

(κM)·δ
""

2.

MN NMγ
//

MMNN

MN

µ·ν

��

MMNN NNMM
γ̄ // NNMM

NM

ν·µ

��

commute, where γ̄ is the obvious composite of various combinations of γ, M and
N .

commute.

3.7. Proposition. Let M = 〈M, δ, µ〉 and N = 〈N, κ, ν〉 be bounded KZ-doctrines (re-
spectively, bounded completions) on Cat(S,V). Assume furthermore that M and N are
small for the pair (S,V). If M and N commute with each in the sense of Definition 3.6,
then the composite NṀ is a bounded KZ-doctrine (respectively a bounded completion).

Proof.

1. Denote by T = 〈T, u,m〉 the composite pseudomonad, that is, for each object A of
K , T (A ) = NM(A ), uA = κM(A ) · δA , and mA = N(µA ) · νM2(A ) · γ.

We wish to show that, since each of M and N are KZ-doctrines, so is T. In other
words, we wish to establish the relationships

T (uA ) a mA a uT (A )

for every A .

We know that
µ(δA ) a µA a δM(A )

and
N(κA ) a νA a κN(A ).
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It follows that
N(κM2(A )) ·NM(δA ) a N(µA ) · νM2(A )

which, using the commutativity relations, states that T (uA ) a mA .

It also follows that

N(µA ) · νM2(A ) a κNM2(A ) ·N(δM(A ))

which, using the commutativity relations, says that mA a uT (A ).

2. The commutativity of M with N implies that the composite KZ-doctrine NṀ is
fully faithful since each one is.

3. Since V is orthogonal to each of the opposites of the units δC and κC, for C a small
V-category, then V is also orthogonal to the opposite of the composite

C δC // M(C)
κM(C)// NM(C).

4. Furthermore, if each of M, N is idempotent, so is the composite.

3.8. Remark. There is a tempting comparison with the usual formulation of Morita
equivalence [7] for a KZ-doctrine M = 〈M, δ, µ〉 on S-Indexed Cat. The latter states that
two small S-indexed categories C and D are ‘Morita equivalent’ (in the sense that there
is an equivalence SCop ∼= SDop

) if and only if M(C) and M(D) are equivalent. However,
in this formulation – unlike the case for tightly bounded KZ-doctrines, it does not follow
that the KZ-doctrine M is idempotent.

4. The Grothendieck Completion

In this section we work within Cat(S,S), for S a topos. In the first part, we review the
Karoubi envelope and the stack completion on S-Indexed Cat as the principal ingredients
of the Grothendieck completion. The constructions themselves and most of their proper-
ties (stated here without proof) are the contents of [7]. The main purpose of this section
is to prove that both of these constructions are bounded completions in the sense of Defi-
nition 3.1. It will follow from this that the Grothendieck completion is also bounded and,
in fact, tightly bounded.

The Karoubi envelope of a category C in S is constructed as a universal solution

vC : C // Ĉ

to the problem of universally splitting the idempotents [7] by internalizing the analogous
case applied to a small additive category C [13].



226 MARTA BUNGE

4.1. Theorem. The Karoubi envelope is a bounded completion on Cat(S,S).

Proof.

1. We have already remarked in Examples 2.12 that the Karoubi envelope is small for
any pair (S,V) in the sense of Definition 2.11.

2. The unit vC : C // Ĉ is an embedding. Hence, the Karoubi envelope is a fully
faithful KZ-doctrine.

3. The embedding of a small V-category C into its Karoubi envelope is equivalent to
the embedding

yonC : C // RRep(VCop

)

where RRep(VCop

) is the full S-indexed V-subcategory of VCop

whose objects are
the retracts of the representables.

4. The Karoubi envelope is a completion. A small V-category C has split idempotents
if and only if vC : C // Ĉ is an equivalence. Further, idempotents split in Ĉ.

Therefore vĈ : Ĉ // ̂̂C is an equivalence.

5. That S is orthogonal to the unit vC : C // Ĉ is shown exactly as in [7] (Proposition
3.3) by remarking that what is used of the topos assumption is that it be a regular
category. Notice now that

(Ĉ)op ∼= Ĉop.

It follows from this that S is also orthogonal to the opposite of the unit vC : C // Ĉ,
again because S is a regular category.

We recall some definitions from [11, 7]

4.2. Definition. Let F : B //C be an S-indexed functor between S-indexed categories.
F is said to be a weak equivalence if the following conditions hold.

1. (locally essentially surjective) For each object I of S, F I : BI //C I , and an object
c in C I , there exists an epimorphism e : J // // I in S, an object b in BJ , and an
isomorphism θ : F J(b) // e∗(c).

2. (fully faithful) For all objects I of S, and for all objects x, x′ of BI , the morphism

HomBI (x, x′)
Fx,x′ // HomC I (Fx, Fx

′)

is an isomorphism in BJ .
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4.3. Definition. An S-indexed category A is a stack if for every weak equivalence S-
indexed functor F : B // C , the S-indexed functor A F : A C // A B is an equivalence
of S-indexed categories.

4.4. Remark. For A and C both S-indexed categories, the expression A C denotes the
S-indexed category of S-indexed functors from C to A and S-indexed natural transfor-
mations. It is well defined [24]. In view of the merging of S-Indexed Cat with V-Cat for
V a symmetric monoidal closed category, we are interested in restricting our attention
to exponentials by small S-indexed categories. This in fact makes no restriction on the
notion of a stack, as Proposition (2.2) [11] shows, since it is enough to consider those weak
equivalence functors of the form

Fe : Je // I

for each regular epimorphism e : J // I in S, where Je is the 1-kernel of e : J // // I.

4.5. Definition. Let C be a small S-category, that is, a category internal to S. An
object F of (SCop

)I is said to be locally representable if there exists an epimorphism

e : J // // I

in S, an object c of CJ , and an S-indexed natural isomorphism

θ : e?(F ) // C(−, c)

in (SCop

)J .

The stack completion uC : C // C̃ of a small S-indexed category C, as constructed in
[7] using results of [11], has as unit the embedding

uC : C // LocRep(SCop

)

into the full S-indexed subcategory of SCop

whose objects in each fiber are those X that
are locally representable in the sense of Definition 4.5.

4.6. Theorem. For S a Grothendieck topos, the stack completion on Cat(S,S) is a bounded
completion.

Proof.

1. It follows easily from its defining property – to wit, ‘inverting’ the weak equivalence
S-indexed functors, that the stack completion is a KZ-doctrine.

2. As we observed in Examples 2.12, if S is a Grothendieck topos, then the pair (S,S)
satisfies the axiom of small stack completions. Indeed, for any small S-indexed
category C, the stack completion LocRep(SCop

) is a small S-indexed category. This
is on account of the existence of a generating family.
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3. The unit uC : C // C̃ is a weak equivalence S-indexed functor. In fact, this property
characterizes it, as any weak equivalence S-indexed functor f : C // D, with D a
stack, is (up to equivalence) the stack completion of C.

4. Since weak equivalence S-indexed functors compose, the stack completion is idem-
potent, thus a completion in the sense of Definition 1.3.

5. From the above follows that also its opposite

uCop : Cop // (C̃)op

is a weak equivalence S-indexed functor.

6. Any topos S is an S-stack as shown in [11], and therefore so is SCop

. Hence S is
orthogonal to (both the unit and) the opposite of the unit.

4.7. Proposition. If S is a Grothendieck topos, the stack completion on Grpds(S,S) is
tightly bounded.

Proof. This special form of [7] (Theorem 5.2) is given in [8] in connection with topos
cohomology.

We can now prove, based mostly on results established in [7], that the Grothendieck
completion on Cat(S,S), for S a Grothendieck topos, is tightly bounded. In fact, this
example has been our motivation for the very definition of this notion.

4.8. Definition. Let S be a topos and Let C be a small S-indexed category.

1. An S-point of the topos SCop

is a geometric morphism

ϕ : S // SCop

over S.

2. Denote by PointsS(SCop

) the S-indexed category whose fiber at I ∈ S is the category
whose objects are the geometric morphisms S/I // (S/I)C

op
over S, and whose

morphisms are the usual 2-cells between geometric morphisms.

3. An S-point ϕ of SCop

is said to be S-essential if ϕ? has an S-indexed left adjoint
ϕ! a ϕ?. Denote by EssPointsS(SCop

) the full S-indexed subcategory of PointsS(SCop

)
whose objects are the essential points.
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4.9. Definition. By the Grothendieck completion

wC : C // G (C)

of a small S-indexed category C we mean here the canonical S-indexed functor

wC : C // EssPointsS(SCop

)

that assigns, to an object c of C, the 3-tuple

Fc a Ec a Gc,

where Ec is evaluation at c.

4.10. Remarks. A justification for the terminology ‘Grothendieck completion’ comes
from the following observations.

• Let G be a groupoid in S and B(G) its classifying topos. There is [15] an equivalence
γG in the commutative diagram

Tors1
S(G)

γG

��

G

uG
88

wG &&
PointsS(B(G))

(2)

• Let C be a category in S. There is a diagram of S-indexed functors

LocRep(SCop

)

γC

��

C

uC
77

wC ''

EssPointsS(SCop

)

(3)

The upper arrow uC is the stack completion of C. The lower arrow wC is what we
have called the Grothendieck completion of C in Definition 4.9. As shown in [7], the
Grothendieck completion of C is equivalent to the stack completion of the Karoubi
envelope of C. This is what induces the unique vertical arrow γC which is identified
with uC̃ and which, in this case, need not be an equivalence.

• Diagram 3 reduces to Diagram 2 in case C is a groupoid.
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• In Diagram 3, LocRep(SCop

) is the correct generalization of the category of G-torsors
when C is not necessarily a groupoid G, but B(C) = SCop

is not its classifying topos.
By an instance of Diaconescu’s theorem [16], SCop

classifies S-valued flat presheaves
on C.

It is shown in [7] that the Grothendieck completion wC : C // G (C) admits two
different factorizations. With wC : C // G (C) as the diagonal, the two factorizations in
question are exhibited in the commutative square below

C̃ G (C)uC̃
//

C

C̃

vC

��

C ĈuC // Ĉ

G (C)

vĈ

��

4.11. Theorem. For S a Grothendieck topos, the Grothendieck completion is a bounded
completion.

Proof. The proof relies on Proposition 3.7 since the Grothendieck completion is the
composite of two commuting bounded completions on S-Indexed Cat – to wit, the Karoubi
and the stack completions.

We shall now prove that – unlike either of its components in general, the Grothendieck
completion is tightly bounded. This requires a characterization of it in terms of ‘atoms’
in the sense of [4, 5, 7].

4.12. Definition. An atom of a cocomplete S-indexed category A is any object A of
A such that the S-indexed functor

Hom(A,−) : A // S

preserves S-indexed colimits, that is, coequalizers and S-indexed coproducts. Denote by

Atoms(A )

the full S-indexed subcategory of A determined by its atoms.

Let C be a small S-indexed category, that is, a category object in S. The topos SCop

is S-bounded via an adjoint pair ∆ a Γ : SCop // S, where Γ indicates taking global
sections. From this follows that SCop

can be indexed via

(SCop

)I = SCop

/∆(I)

with change of base functors defined in the usual way [24].

4.13. Proposition. The S-indexing of the category SCop

restricts to the full S-indexed
subcategory Atoms(SCop

).

Proof. Change of base along any 1-cell α : K // I has a (left and a) right adjoint
satisfying the Beck-Chevalley condition.
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4.14. Theorem. There is a canonical equivalence of S-indexed categories

Θ : G (C) ∼= Atoms(SCop

)

which commutes with the inclusions of the representables.

Proof. We only sketch the proof here, but see [7]. The assignments are as follows. Given
any S-essential point f : S // SCop

, the S-adjoint pair f! a f ? is equivalent to one of the
form

(−)⊗ A a Hom(A,−)

and the S-adjoint pair f ? a f? shows that A is an atom of SCop

. Conversely, any atom A
of SCop

gives rise to an S-essential point of SCop

.

4.15. Proposition.

1. Every representable C(−, c) : Cop // S is an atom of SCop

.

2. Every retract of a small coproduct of representables is an atom of SCop

.

3. Every atom of SCop

is locally the retract of a small coproduct of representables.

Proof.

1. For any object X of SCop

there is an isomorphism

Hom(C(−, c), X) ∼= Ec(X),

natural in X. The evaluation functor Ec : SCop // S preserves all small colimits.

2. If R is a retract of a small coproduct of representables in SCop

, then Hom(R,−) is
obtained from Hom(C(−, c),−) by a coequalizer diagram involving small coprod-
ucts. By the commutativity between colimits, Hom(R,−) : SCop // S preserves all
small colimits.

3. Let ξ : X // ∆(I) be an atom of (SCop

)I for I ∈ S, and let

pX : ∆(JX)×∆(C0) C1
// // X

be the canonical presentation of X as a colimit of representables over ∆(I).

Since Hom(ξ,−) preserves (regular) epimorphisms, we obtain an epimorphism

Hom(X,∆(JX)×∆(C0) C1) // // Hom(X,X)

over ∆(I).

Since Hom(ξ,−) preserves S-indexed coproducts, we have an isomorphism

JX ×C0 Hom(X,C1) ∼= Hom(X,∆(JX)×∆(C0) C1)
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Call qX : JX ×C0 Hom(X,C1) // // Hom(X,X) the composite of the above two.

Consider the morphism I // Hom(X,X) which picks up the identity on ξ, that is,
the identity on X over ∆(I). Consider the pullback

JX ×C0 Hom(X,C1) Hom(X,X)q
// //

K

JX ×C0 Hom(X,C1)

r

��

K I
q̄ // // I

Hom(X,X)

idX

��

in S. The top horizontal arrow is an epimorphism since S is a regular category.
This shows that ξ is locally the retract of a small coproduct of representables.

The following is now all we need to show our desired result.

4.16. Theorem. Let there be given an S-indexed (strong) equivalence Φ : SDop // SCop

.
Then, Φ restricts to an S-indexed (strong) equivalence Φ̄ : Atoms(SDop

) // Atoms(SCop

),
depicted in a commutative square

SDop

SCop

Φ
//

Atoms(SDop

)

SDop
��

Atoms(SDop

) Atoms(SCop

)Φ̄ // Atoms(SCop

)

SCop
��

where the vertical arrows are inclusions.

Proof. Straightforward.

4.17. Corollary. The Grothendieck completion is tightly bounded.

Proof. Since the Grothendieck completion is bounded by Theorem 4.11, it remains to
verify the condition of Definition 3.4. In turn, this follows readily from Theorem 4.16
applied to an equivalence of the form Sϕ

op

: SDop // SCop

for a given ϕ : C // D.

4.18. Remark. To the natural question of whether the results of this section extend
to an arbitrary pair (S,V), where V is an S-indexed symmetric monoidal category not
necessarily the topos S with is cartesian closed structure, the answer is that a priori this
is not the case. For instance, a property of S that is crucially used in theory of stacks [11]
is that, since S is a topos, it is a regular – in fact, an exact category. Perhaps suitably
adding this as a condition on V will be sufficient for developing a good theory of V-stacks
over S. We leave this as an open question.
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5. The Cauchy completion

In this section we work within Cat
(Set,V)

, where 〈V,⊗, Z〉 a symmetric monoidal closed

category. Moreover, we will assume that〈V,⊗, Z〉 be a (symmetric monoidal) closed
category with HomV : V // Set faithful, and such that V is complete and cocomplete
[12, 5, 17].

The Cauchy completion of a V-category is introduced in [23] (see also [3, 17]). It is
the purpose of this section to show that the Cauchy completion, for a suitable V such
that the Cauchy completion is small for (Set,V), is bounded – in fact, tightly bounded.
As this construction is not immediately seen as being ‘carved out of Yoneda’, we prove it
explicitly.

Let C and D be small V-categories. We recall [2] that a V-distributor F from C to D,
denoted F : D 7→ C, is V-functor F : C //VDop

. Denote by

DistV(D,C)

the category of V-distributors from D to C and V-natural transformations between them.

5.1. Definition. Denote by AdjDistV(D,C) the full subcategory of DistV(D,C) de-
termined by the V-valued distributors F : D 7→ C with a V-distributor right adjoint
G : C 7→ D.

5.2. Remark. Let 〈V,⊗, Z〉 be a symmetric monoidal closed category. Recall that Z
denotes the V-category with one object o, and with HomZ(o, o) = Z. There are natural
equivalences C ∼= HomV(Z,C) and VCop ∼= DistV(Z,C) for any small V-category C.

5.3. Proposition. There is a commutative diagram

HomV(Z,C) DistV(Z,C)
ΦZ,C

//

C

HomV(Z,C)
��

C VCopYC //VCop

DistV(Z,C)
��

Proof. To a V-functor f : Z // C, ΦZ,C assigns the V-distributor f? : Z 7→ C such
that f?(c, o) = C(c, f(o)). Indeed, there is f? a f ? where f : C 7→ Z is such that
f ?(o, c) = C(f(o), c).

.
There is an S-indexed functor

ΨD,C : HomV(D,C) // DistV(D,C)

whose fiber at an object I of S is defined as follows. To a V-functor f : D // C, ΨI

assigns, to the I-fiber f I : DI // CI , the V-distributor (f I)? : DI 7→ CI such that
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(f I)?(c, d) = HomDI (c, f
I(d)). To an S-indexed V-natural transformation α : f // f ′,

ΨI assigns, to αI the obvious morphism αI? : f I? // f ′I? of V-distributors. It is easy to
check that αI? is a natural transformation.

Given any S-indexed V-functor f : D //C, the corresponding S-indexed V-distributor
f? : D 7→ C has an S-indexed V-distributor right adjoint f ? : C 7→ D, defined so that, for
I in S, f I?(d, c) = HomCI (f

I(d), c).
We now recall the definition of Cauchy completion following [23] (see also [3, 17]).

5.4. Definition. The Cauchy completion

zC : C // C (C)

of a small V-category C is identified with the first factor in the factorization

HomV(Z,C)
zC // AdjDistV(Z,C) �

� // DistV(Z,C)

of ΦZ,C.

A small V-category C is said to be Cauchy complete if zC : C // C (C) is an equiva-
lence of V-categories.

Assumption. We assume in what follows that V is a symmetric monoidal closed
category such that the Cauchy completion is small for the pair (Set,V).

5.5. Remark. The name ‘Cauchy completion’ arises from the following motivating ex-
ample [23]. Let V be R+, the category whose objects are all non-negative reals (including
∞), as morphisms a // v the greater-than-or-equal-to relations a ≥ v, and as tensor
a⊗u = a+u. An R+-category is an arbitrary (generalized) metric space. The motivating
result for the notion called Cauchy completeness in [23] is that a metric space < X, d > is
Cauchy complete in the usual sense (that is, all Cauchy sequences on X converge) if and
only if < X, d > is Cauchy complete as a R+-category.

5.6. Proposition. The Cauchy completion of a small V-category C is equivalent to the
full V-subcategory of VCop

determined by the retracts of small coproducts of representables.
In particular, there is an identification

C (C) ∼= Atoms(VCop

).

5.7. Corollary. The Cauchy completion on V-Cat is tightly bounded. In particular, it
is an idempotent KZ-doctrine when evaluated at small V-categories, hence a completion
in the sense of Definition 1.3.

Proof. It follows from Proposition 5.3 that the Cauchy completion is fully faithful and
carved out from the Yoneda embedding. The defining property of the Cauchy completion
as a pseudomonad is that of having absolute colimits [3]. This implies, since Set is
complete and cocomplete, that Set is orthogonal to the unit. It follows that it is bounded.
To see that it is tightly bounded, we now use the same reasons as those employed for the
Grothendieck completion, namely, Proposition 5.6 and Theorem 4.16 in the relative case.
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5.8. Remark.

1. For V the category of modules over a commutative ring R with unit, the Cauchy
completion of the V-category Z, for Z the unit of V (which is just the ring R
itself), is the category of finitely generated projective R-modules [3]. The proof
relies on a well known characterization of finitely generated projective modules as
retracts of finitely generated free modules. In particular, this shows that the Cauchy
completion does not always reduce to the Karoubi envelope.

2. If in V coproducts are disjoint (and universal) then the Cauchy completion reduces
to the Karoubi envelope.

3. If V = S is a topos, regarded as a cartesian closed category, then, for C a category in
S, the atoms of SCop

are those presheaves that are locally retracts of representables
[7]. In this case, coproducts in S are disjoint, but the axiom of choice need not hold
in S. If the axiom of choice holds in V = S, then the Cauchy completion reduces
to the Karoubi envelope.

5.9. Remark. The results of this section should hold for any pair (S,V), where S is an
arbitrary topos and V is an S-indexed symmetric monoidal category. Indeed, nothing in
[17] seems to make an essential use of Set as a base topos.

We have now identified a property that is common to both the Grothendieck and
the Cauchy completion, to wit, that they are both tightly bounded in their respective
universes. There is another way to comparing them, and that is to do so just as construc-
tions. The following theorem, which is the relative version of a theorem in [1, 4], makes
this clear.

5.10. Definition. Let C and D be small V-categories. By a generalized V-functor F
from D to C we mean, following Lawvere [21], a cocontinuous V-functor F : VDop //VCop

.
Denote by

GenV(D,C)

the category of generalized V-functors from D to C and V-natural transformations be-
tween them.

5.11. Theorem. Let D and C be small V-categories. Then, the functor

Φ : DistV(D,C) // GenV(D,C)

which assigns, to a V-distributor
F : D 7→ C,

the V-functor
TF : VDop //VCop

given by Kan extension of F along Yoneda, is an equivalence of categories.
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Proof. Given a V-distributor F : D //VCop

, one can extend it along Yoneda to a V-
functor TF = F ⊗ (−) : VDop //VCop

. Recall that the value of F ⊗ (−) at a V-functor
ϕ : Dop // V is the following end:

F ⊗ ϕ =

∫ d

HomVDop (D(−, d), ϕ)⊗ F (d)

F ⊗ (−) always has right V-adjoint to wit, T̂F = Hom(F,−). In particular, TF is cocon-
tinuous. This assignment extends to a functor

T(−) : DistV(D,C) // HomV(VDop

,VCop

).

Going backwards, any V-functor T : VDop //VCop

can be “restricted along Yoneda”,
defining in particular a V-distributor

FT : D 7→ C.

The condition that the V-functor T : VDop //VCop

be cocontinuous, hence preserves
ends, is used in the verification that TFT

∼= T .
We have the canonical isomorphisms, natural in ϕ:

TFT (ϕ) =

∫ d

HomVDop (D(−, d), ϕ)⊗ FT (d)

=

∫ d

HomVDop (D(−, d), ϕ)⊗ T (D(−, d))

∼= T (

∫ d

HomVDop (D(−, d), ϕ)⊗ D(−, d)) ∼= T (ϕ).

We also have the isomorphisms, natural in D, for any object D of D:

FTF (d) = (TF ◦ yon)(d) = TF (D(−, d)) =∫ e

HomVDop (D(−, e),D(−, d))⊗ F (e) ∼= F (d).

The correspondence between V-natural transformations on both sides is the obvious
one.

The composite of V-distributors F : D 7→ E and G : E 7→ C is the V-distributor
(G ◦ F ) : D 7→ C defined so that

(G ◦ F )(c, d) = colim(G(c, e)⊗ F (e, d))

indexed by all morphisms e // e′ in E. Using this composition we may define V-
adjointness between V-distributors in the usual way.
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5.12. Theorem. The equivalence given by Φ in Theorem 5.11 restricts to an equivalence

AdjDistV(D,C) ∼= EssSGenV(D,C).

Proof. Let F : D 7→ C be an adjoint V-distributor with F a G. To F corresponds,
by Theorem 5.11, Φ(F ) : VDop //VCop

, that is, the adjoint pair F ⊗ (−) a Hom(F,−).
Similarly, to G : C 7→ D corresponds, by the same theorem, Φ(G) : VCop //VDop

, that is
the adjoint pair G⊗ (−) a Hom(G,−).

It follows from F a G that F ⊗ (−) a G⊗ (−). The unit η : id // G⊗ F induces
η̄ : id // (G ⊗ F ) ∼= (G⊗ (−)) ◦ (F ⊗ (−)), and similarly for the counit ε̄ : (F ⊗ (−)) ◦
(G⊗ (−)) // id induced by ε : F ⊗G // id. The verification of the adjunction equations
for (η̄, ε̄) follow from the corresponding ones for (η, ε). We conclude that there is a natural
isomorphism G⊗ (−) ∼= Hom(F,−). This in turn results in a sequence of V-adjoints

F ⊗ (−) a Hom(F,−) ∼= G⊗ (−) a Hom(G,−),

so in particular an object of EssSGen(D,C).
Conversely, given a sequence of V-adjoints

T a T̂ a ˆ̂
T,

restricting T̂ along Yoneda gives a V-distributor G : C 7→ D, whereas restricting T along
Yoneda gives a V-distributor F : D 7→ C. By Theorem 5.11 there are identifications
T̂ ∼= G ◦ (−) and T ∼= F ◦ (−). It follows that

F ⊗ (−) a G⊗ (−)

hence that F a G. We leave the remaining verifications, which are routine, to the reader.

6. Final remarks

It has been advocated by Lawvere [22] that the notion of a mixed sort of ‘category’ needed
to be explored, namely, one for which the objects are parameterized by the objects of a
topos, while the morphisms are parameterized by objects in an enriching monoidal closed
category. It is therefore curious that such a theory had not yet been formally developed.

Independently of the above, we were led to defining a 2-category Cat(S,V) (of ‘indexed
enriched categories’) on account of our desire to compare a construction (the Grothendieck
completion) that exists in S-Indexed Cat, for a topos S, with another (the Cauchy com-
pletion) that exists in V-Cat, for a closed monoidal category V.

However, what we introduce here is just a portion of such a theory of S-indexed
V-categories, albeit one that is sufficient for our purposes – namely, to introduce the
unifying notion of (tightly) bounded KZ-doctrines on any 2-category Cat(S,V), and not
just in either S-Indexed Cat or V-Cat.
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A theory of indexed enriched categories seems desirable also for other applications – to
wit, those which Lawvere had in mind when he proposed the merge [22]. One such would
be to develop a theory of internal metric spaces in a petite topos as time-parameterized
sets, suggested by Einstein but bypassed because of lack of sufficient mathematical ma-
chinery. Another would be to develop linear algebra in any topos, such as functional
analysis in a gros topos. Specifically, moduli spaces such as the parameterizer for irre-
ducible representations of a Lie group, have the structure, beyond a mere category on a
set, of an S-object, where S expresses the smoothness of the group and of the functional
analysis.

Having both answered the question that motivated this investigation, and introduced
indexed enriched categories for this purpose, we end with the observation that the pos-
sible further applications of the latter are of sufficient importance to warrant a further
exploration.
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