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DUALITY IN NON-ABELIAN ALGEBRA I.
FROM COVER RELATIONS TO GRANDIS EX2-CATEGORIES

ZURAB JANELIDZE AND THOMAS WEIGHILL

Abstract. The aim of this series of papers is to develop a self-dual categorical ap-
proach to some topics in non-abelian algebra, which is based on replacing the framework
of a category with that of a category equipped with a functor to it. The present pa-
per gives some preliminary steps in this direction, where several known structures on
a category, which arise in the categorical treatment of these topics, are viewed as such
functors; as a result, we obtain some new conceptual links between these structures.

Introduction

As is well known, many homomorphism theorems of classical algebra can be obtained
in the self-dual context of an abelian category, which includes the category of modules
over any ring, and in particular, the category of abelian groups, as an example. By
homomorphism theorems we mean various isomorphism theorems (e.g. first, second, etc.),
as well as diagram lemmas needed for homological algebra. Non-abelian versions of these
results are also valid for (not necessarily abelian) groups and group-like structures such as
rings, loops, and many others. In modern categorical algebra, one of the well-established
categorical contexts where these results can be abstractly obtained is that of a semi-
abelian category [16] — a pointed Barr exact [2] Bourn protomodular [3] category having
binary coproducts. Unlike the context of an abelian category, that of a semi-abelian
category is not “self-dual”. In fact, a semi-abelian category whose dual is also a semi-
abelian category is necessarily an abelian category (see [16], and see also [17] for a more
general result). Nevertheless, there is a hidden functorial duality as shown in [20]: among
the pointed regular categories, the semi-abelian categories can be characterised via dual
axioms on the bifibration of subobjects. The aim of this series of papers is to analyse
this new phenomenon, and explore the applications of the idea of considering functorial
duality in various investigations from non-abelian algebra.

By “non-abelian algebra” we mean, first of all, the study of classical non-abelian group-
like structures, where functorial duality would, for instance, provide a self-dual approach
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to homomorphisms theorems, thus making our aim very much along the first sentence of
the passage below from [23]:

“A further development giving the first and second isomorphism theorems, and
so on, can be made by introducing additional carefully chosen dual axioms.
This will be done below only in the more symmetrical abelian case.”

By “non-abelian algebra” we also mean axiomatic investigations in universal and cat-
egorical algebra which attempt to describe general contexts where certain results for dif-
ferent types of non-abelian algebraic structures can be conceptually clarified and unified.
It was suggested in [18] that one such context might be that of a category equipped with
a cover relation, i.e. a binary relation on the class of morphisms satisfying suitable con-
ditions. Such a context allows, for instance, a very general formulation of the five lemma
that unifies D. Bourn’s five lemma [4] and the five lemma of M. Grandis [10] — see [26].

Cover relations abound. For instance, they arise naturally from Grothendieck topolo-
gies. Following the terminology used in [24], say that a morphism f : X → Y in a category
C covers a morphism g : W → Y when the sieve g∗(f) of all morphisms h : V → W
such that gh factors through f , is a covering family of the topology. Cover relations also
arise from factorisation systems. Given a factorisation system (E ,M), say that f covers g
when g factors through the morphism m in the (E ,M)-factorisation f = me of f . These
two types of cover relations are reflexive and transitive, but there are also examples of
cover relations which are not reflexive and transitive — see [19].

It was remarked in [19] that it becomes possible to recover a factorisation system
(E ,M) from the cover relation that it induces, when M is a class of monomorphisms.
Moreover, cover relations that correspond to such factorisation systems can be naturally
characterised. We revisit this result in the present paper, where both cover relations and
factorisation systems are viewed in a certain way as functors — in particular, in the case
of a factorisation system, this functor is the opfibration of M-subobjects. This part of
our work is in some sense a triviality, but what is striking is that out of this triviality
we discover that by imposing the resulting functors to be obtainable in a similar way
also by a dual procedure, we arrive to the self-dual contexts used by M. Grandis in his
“categorical foundations of homological algebra” [10].

The contexts used by M. Grandis consist of a category C equipped with a class N of
morphisms, seen as abstractly defined null morphisms in the category, satisfying various
axioms that mimic the behaviour of the class of null morphisms in an abelian category.
This idea goes back to C. Ehresmann [8], R. Lavendhomme [22], as well as G. M. Kelly
[21] (who considered it in the case of an additive category). One refers to the class N as
an ideal of null morphisms, because of one of the axioms which it is required to satisfy,
which states that if one of the morphisms in a composite nm belongs to the class N , then
so does the composite nm. Thus, an ideal of null morphisms is simply a subfunctor of
the hom-functor. One may introduce the notions of kernel and cokernel, and exactness of
a sequence relative to an ideal, which allows development of homological algebra in the
context of a category equipped with an ideal — see [12] for the complete theory, as well
as examples and applications.
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In the first section of the paper we show that there is an abstract process which
constructs a faithful amnestic functor F : B→ C, or, what we call a form, from a binary
relation C on the class of morphisms in C. The functors that we associate to a cover
relation, a classM of monomorphisms, or an ideal N of null morphisms, are all instances
of a form obtained from C, where in each case the relation C must be suitably chosen
(in the case of a cover relation, C is simply the same relation as the cover relation). We
call these functors the form of the cover relation, the form of M-subobjects, and the form
of N -exact pairs, respectively. In some cases these three forms are isomorphic (by an
isomorphism of forms F : B → C and F ′ : B′ → C we mean an isomorphism I : B → B′
such that F ′I = F ); for instance, they are isomorphic when

• the cover relation is obtained from the Grothendieck topology generated by the class
of epimorphisms in an abelian category C,

• the class M is the class of monomorphisms in C,

• the ideal N consists of null morphisms in C.

The resulting form is simply the bifibration of subobjects in the abelian category C. In
general, every form ofM-subobjects and every form of N -exact pairs is isomorphic to the
form of some cover relation. Moreover, when the ideal N admits kernels and cokernels,
the form of N -exact pairs is isomorphic to the form of M-subobjects where M is the
class of kernels relative to the ideal.

In the second section we characterise forms of reflexive and transitive cover relations,
and forms ofM-subobjects whenM is a class of monomorphisms in a factorisation system
(E ,M), as well as whenM satisfies weaker conditions introduced in [7], and independently
in [25] — labeled as conditions (M1) and (M2) in this paper.

In the third section we show how requiring a form F : B → C arising from a cover
relation to have, as well, the dual property, i.e. the property that the dual form F op :
Bop → Cop arises from a cover relation on Cop, makes it into a form of N -exact pairs,
where N is an ideal of null morphisms such that every morphism B → C can be extended
to an exact sequence A→ B → C → D. Moreover, up to an isomorphism of forms, this
is a characterisation of forms which together with their duals arise from cover relations.
Forms, which together with their duals arise from classesM of monomorphisms satisfying
(M1) and (M2), can be characterised in a similar way by those ideals of null morphisms
which admit kernels and cokernels. Finally, forms which together with their duals arise
from classesM of monomorphisms which are part of a factorisation system (E ,M), can be
characterised by those ideals N of null morphisms which define Grandis ex2-categories.
Put differently, a Grandis ex2-category can be seen as a category equipped with two
factorisation systems (E1,M1) and (E2,M2), such that the opfibration ofM1-subobjects
is isomorphic to the fibration of E2-quotients.

The main impetus for the present work can be described as follows. The structure of
a cover relation is certainly not categorically self-dual. Indeed, a cover relation is defined
for pairs of morphisms f ,g having the same codomain, while its dual would give a relation



318 ZURAB JANELIDZE AND THOMAS WEIGHILL

defined for pairs of morphisms f ,g having the same domain. It is then natural to ask
what structure do we get if we force the structure of a cover relation to be functorially
self-dual. This leads to the notion of an ideal of null morphisms. In the present paper,
we point out and analyse this passage.

1. Preliminaries

Recall that, given a functor F : S → C, the fibre F−1(Y ) at an object Y in C is the
subcategory of S consisting of those objects and morphisms which by F are mapped
to Y and 1Y , respectively. If F is faithful then each fibre is a preorder. A functor
F : S → C is said to be amnestic when the only isomorphisms which are mapped by it
to an identity morphism are the identity morphisms (see e.g. [1]). For a faithful functor
F to be amnestic is equivalent to each fibre being an ordered set (class). By an ordered
set we mean a partially ordered set — a set equipped with a reflexive, transitive and
antisymmetric binary relation.

In this paper, by a form over a category C, we mean an amnestic faithful functor
F : S → C. Thus, a form is the same as an amnestic forgetful functor in a concrete
category over C, in the sense of [1]. Forms certainly abound in mathematics. Among
them, the following three major classes of forms should be distinguished:

• the forgetful functors for categories of algebras over monads on a category C; we
may refer to these as algebraic forms over C;

• the so-called topological functors [1] (see also [5] and the reference there), which
in some sense play a similar role for topological and relational structures as the
algebraic forms do for algebraic structures; we may refer to these as topological
forms ;

• the amnestic functors obtained from the codomain functors M → C, where M is
a class of monomorphisms in C seen as the full subcategory of the category C2 of
morphisms in C, whose objects are the elements of M; we will refer to these as
subobject forms.

Many concrete instances of subobject forms are in fact topological forms, while they are
hardly ever algebraic. Subobject forms are often fibrations, or opfibrations, and in fact,
usually they are bifibrations. A form F which is a Grothendieck fibration [13, 14] will
be called a right form, and when F is an opfibration, we call it a left form; thus, F is a
right form if and only if its dual form F op is a left form. When F is both a left form and
a right form, we will say that F is a biform. As shown in [29], topological forms are the
same as what can be called locally complete biforms, i.e. biforms whose fibres are complete
lattices.

Two forms F1 : S1 → C and F2 : S2 → C are said to be isomorphic when there is
an isomorphism I : S1 → S2 such that F2I = F1. Equivalence classes of (left/right/bi-)
forms under the equivalence relation “F1 is isomorphic to F2” will be called “isomorphism
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classes” of (left/right/bi-) forms, although their sizes are bigger than the sizes of, say,
“classes of morphisms” in a category.

Just as any preorder can be turned into an ordered set (class) by identifying isomorphic
objects in it, any faithful functor F : S→ C gives rise to a form, by identifying isomorphic
objects in each fibre.

All forms that we consider in this paper can be obtained using the same general
procedure which constructs a form over a category C from a binary relation C on the
class of morphisms of C. First, we construct a category from C, denoted by MorC(C). Its
objects are pairs (B, f) where B is an object in C and f is a morphism f : A→ B having
the following property:

(m) fCf and in any diagram

A

f

��

A′

f ′

��

X u
// B v

// B′

if uCf and vfCf ′ then vuCf ′.

A morphism v : (B, f) → (B′, f ′) in MorC(C) is a morphism v : B → B′ in C such
that vfCf ′. Identity morphisms and composition of morphisms in MorC(C) are defined
as in C. We then get a faithful functor MorC(C) → C, which maps each morphism
v : (B, f) → (B′, f ′) to the morphism v : B → B′ in C. The corresponding form will be
called the form of the relation C.

1.1. Lemma. Every morphism f in C has the property (m), if and only if C is a reflexive
and transitive relation such that

(C1) C has the left preservation property [19], i.e. if fCg and the composites ef and eg
are defined, then efCeg.

We now describe two special classes of such forms, which we use in the paper.
LetM be a class of monomorphisms in C. Define a relation C on the class of morphisms

of C as follows: fCf ′ if and only if f ′ ∈M and f factors through f ′, i.e. f = f ′g for some
morphism g. It is easy to see that a morphism f satisfies (m) for this relation if and only
if f ∈ M. The form F of this relation will be called the form of M-subobjects. Objects
in each fibre F−1(X) are called M-subobjects of the object X. They can be represented
by monomorphisms m ∈ M with codomain X, with m and m′ representing the same
M-subobject if and only if m = m′i for some isomorphism i (which is unique once it
exists). Thus, when M is the class of all monomorphisms, an M-subobject is the same
as a subobject in the usual sense.

Let N be any class of morphisms in C. Following [10], a sequence

A
f
// B

g
// C
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of morphisms in C is said to be N -exact (at B), when gf ∈ N and for any two morphisms
u and v such that vf ∈ N and gu ∈ N , we have vu ∈ N . The classical example of this
notion is exactness of a sequence in an abelian category, where N is the class of null
morphisms there. The theory developed by M. Grandis in [10, 11, 12] extends many
aspects of exact sequences from the context of an abelian category, to self-dual axiomatic
contexts given by a category equipped with a distinguished classN of morphisms (thought
of as null morphisms in the category), where exactness of a sequence is defined as above.
The aim of his theory is to provide a foundation for non-abelian homological algebra, and
it includes many examples of non-abelian categories relevant both for algebraic topology
and general algebra (see [12]).

A pair (g, f) of morphisms as above, which forms an N -exact sequence, will be called
an N -exact pair. Note that this notion is self-dual: (g, f) is an N -exact pair in C if and
only if (f, g) is an N -exact pair in Cop.

Given a class N of morphisms in a category C, define a relation CN on the class of
morphisms of C as follows: fCNf ′ when f ′ is part of an N -exact pair (g′, f ′) such that
g′f ∈ N . The form of CN will be called the form of N -exact pairs in C. The name can
be justified by the following lemma:

1.2. Lemma. For any class N of morphisms in a category C, a morphism f satisfies (m)
for the relation C = CN , if and only if f is part of an N -exact pair (g, f).

Proof. Suppose f satisfies (m). Then fCNf , which implies that f is part of an N -exact
pair (g, f). Conversely, suppose f is part of an N -exact pair (g, f). Then, since in an
N -exact pair (g, f) we have gf ∈ N , it follows that fCNf . To check the second part of
the condition (m), consider the diagram as in (m), and assume uCNf and vfCNf ′. We
want to show vuCNf ′. Since vfCNf ′, there is an N -exact pair (g′, f ′) such that g′vf ∈ N .
Since uCNf , there is an N -exact pair (g′′, f) such that g′′u ∈ N . Since gf ∈ N , the fact
that (g′′, f) is an N -exact pair implies gu ∈ N . Now, since the pair (g, f) is N -exact, we
get that g′vu ∈ N . This, together with the fact that the pair (g′, f ′) is N -exact, shows
that vuCNf ′, as desired.

The self-dual nature of the notion of an N -exact pair has the following manifestation:

1.3. Proposition. For any class N of morphisms in a category C, the form of N -exact
pairs in C is isomorphic to the dual of the form of N -exact pairs in Cop.

Proof. The isomorphism can be established by mapping an object, represented by a
morphism f : A → B, in the fibre at B of the form of N -exact pairs in C, to the object
in the fibre at B of the form of N -exact pairs in Cop, which is represented by a morphism
g : B → C such that (g, f) is an N -exact pair.

2. Left forms, cover relations, and factorizations

A reflexive and transitive cover relation in the sense of [19] is a reflexive and transitive
binary relation on the class of morphisms of C which satisfies the condition (C1) (see
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Section 1 above) as well as the following two conditions:

(C0) If fCg then f and g have the same codomain.

(C2) For any morphism f : A→ B we have fC1B.

The axioms for a general cover relation (i.e. one which is not reflexive and transitive)
given in [19] comprise of (C0), (C1), and a condition which in the case of a reflexive and
transitive relation satisfying (C0) and (C1) is easily seen to be equivalent to (C2).

As introduced in [18], cover relations on a category C are binary relations on the
class of morphisms of C, defined only for those pairs of morphisms which have the same
codomain. Some axioms were added later in [19], where it was shown that in a category C,
factorisation systems (E ,M) whereM is a class of monomorphisms, and a certain type of
monoidal structures on C, can be naturally seen as two different types of cover relations
on C, which in many special cases also have a several other properties in common. In [18],
the structure of a cover relation was put forward as a minimal structure on a category
allowing to state in it “closedness properties of internal relations” that correspond to
linear Mal’tsev conditions in universal algebra [27]. These “closedness properties” can be
expressed by formulas α⇒ β, which are similar to those that give axioms for a geometric
theory [24], and the cover relation is used to interpret the meaning of implication in the
formula. Among examples of cover relations that could fit this purpose are those defined
by factorisation systems, as well as those defined by Grothendieck topologies, as briefly
explained in [18]. It is precisely such type of cover relations that are of interest for the
present paper, and not those which arise from monoidal structures, since the condition of
being reflexive and transitive, which, apart from trivial cases is never satisfied by cover
relations arising from monoidal structures, plays a principal role here.

Theorem 2.1 below states that there is a bijection between reflexive and transitive
cover relations on C and isomorphism classes of left forms F over C (i.e. forms which are
opfibrations) satisfying the following conditions:

(LF1) F is locally bounded above, i.e. in each fibre there is a terminal object, that is, each
ordered set F−1(X) has an upper bound (written as 1X).

(LF2) F is conormal, i.e. for any object Y of C, and for any W ∈ F−1(Y ), there exists a
morphism f : X → Y in C such that we have fF (1X) = W .

Here fF denotes the change-of-base functor fF : F−1(X) → F−1(Y ) — it maps each
object V ∈ F−1(X) to the codomain of the cocartesian lifting of f at V .

2.1. Theorem. For any category C, there is a bijection:

reflexive and transitive
cover relations C on C

≈ isomorphism classes of conormal
locally bounded above left forms F over C

Under this bijection, an isomorphism class of a form F corresponds to the cover relation
C defined as follows: for any two morphisms f : X → Y and f ′ : X ′ → Y in C we
have fCf ′ if and only if fF (1X) 6 f ′F (1X′

). In the other direction, a cover relation C
corresponds to the isomorphism class of the form of the relation C.
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Proof. Let F be a left form over C. It is easy to see that if F is locally bounded above,
then the relation C = F ∗ defined in the theorem is a reflexive and transitive cover relation.
If F1 and F2 are isomorphic then F ∗1 = F ∗2 . Now, let C be a reflexive and transitive relation
on the class of morphisms of C satisfying (C1). Write F = C∗ for the form of the relation
C. It is easy to show, thanks to Lemma 1.1, that F is a left form which is locally bounded
above and is conormal. When further (C0) holds, we have (C∗)∗ = C. Finally, it is not
difficult to verify that for any left form F which is locally bounded and conormal, the left
form (F ∗)∗ is isomorphic to F .

Next, we characterize various properties of the form of M-subobjects, where M is
a class of monomorphisms in a category, via conditions on the class M first studied in
[7, 9, 25, 28, 15]; we will freely use/recall some of the well known results from these works.

Consider any form F : B → C and let W ∈ F−1(Y ). A left universalizer of W is a
morphism f : X → Y in C with the universal property of being terminal among those
morphisms f : X → Y which satisfy the following condition:

(LU0) For any object X of C, and for any V ∈ F−1(X), there exists a (unique) morphism
b : V → W in B with the property F (b) = f .

Thus, f is a left universalizer of W when f satisfies the condition above and for any
other morphism f ′ : X ′ → Y satisfying the same condition, there is a unique morphism
x : X ′ → X such that fx = f ′.

2.2. Lemma. Let M be a class of monomorphisms in a category C, satisfying the follow-
ing condition:

(M0) for any object C in C there exists an isomorphism which belongs to the classM and
whose codomain is C.

Then for any monomorphism m : X → Y from the class M, the morphism m is a left
universalizer of the M-subobject of Y represented by m, in the form of M-subobjects.

Proof. Let F denote the form of M-subobjects. In it clear that if W denotes the M-
subobject of Y represented by m, then (LU0) holds for f = m. Suppose f ′ : X ′ → Y
also satisfies (LU0). Then, taking f = f ′ in (LU0), and taking V to be the M-subobject
of X represented by an isomorphism with codomain X, we will conclude that f ′ factors
through m, i.e. mx = f ′ for some morphism x. Since m is a monomorphism, such x is
necessarily unique.

The condition (M0) in Lemma 2.2 is necessary. Indeed, for, if for example we take
M to be the class of functions whose domain is the empty set, then the class of left
universalizers for the form of M-subobjects over the category Set will be the class of
isomorphisms, and so in this case the assertion of the lemma does not hold.

In the case when the functor F above is a left form, the condition (LU0) is equivalent
to the following one:

(LU1) For any object X of C, and for any V ∈ F−1(X), we have fF (V ) 6 W .
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When further F is a biform, (LU0) becomes the same as to require that f−1F (W ) is the
terminal object in the fibre F−1(X) at X, where f−1F stands for the right adjoint in the
change of base adjunction

fF a f−1F : F−1(X)� F−1(Y )

induced by f . Thus, when F is a biform, a left universalizer in the above sense is the
same as a left universalizer in the sense of [20] (note that what we call in this paper a
biform was called a form in [20]).

2.3. Lemma. For any left form, every left universalizer is a monomorphism.

Proof. This is a consequence of the fact that if a morphism f satisfies (LU1), then so
does any composite fg.

Right universalizers are defined dually. By the dual of the above lemma, for a right
form, every right universalizer is an epimorphism.

Consider the following additional axiom on a cover relation:

(C3) C admits images [19], i.e. for any morphism w : W → Y there exists a morphism
f : X → Y such that fCw and f is terminal with this property, i.e. if f ′ : X ′ → Y
is another morphism with f ′Cw then f ′ = fx for a unique morphism x : X ′ → X
(then f is called a C-image of the morphism w).

It was shown in [19] that the process of assigning to a cover relation C the class M of
C-images defines a bijection between reflexive and transitive cover relations satisfying (C3)
and classes M of monomorphisms satisfying the following conditions, which are due to
H. Ehrbar and O. Wyler [7] (see also [25, 28, 15]):

(M1) M is closed under composition with isomorphisms.

(M2) Every morphism f in C has a factorisation f = me with m ∈ M, such that for
any commutative diagram of solid arrows below with n ∈ M, there is a unique
morphism g which makes the diagram commute:

•

f

��

e

��

e′

��
•

m

��

g
// •

n

��
•

h
// •
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We note immediately that already the first half of (M2) implies (M0), whenM is a class of
monomorphisms. Under the bijection referred to above, the cover relation C corresponding
to the class M is defined as follows: fCf ′ when m factors through m′, where m and m′

are part of factorizations of f and f ′, respectively, given by (M2). Further, it is easy to
see that the form of M-subobjects is isomorphic to the form of the corresponding cover
relation.

The images for a reflexive and transitive cover relation C are in fact the same as left
universalizers for the form of the relation C. Thus, C satisfies (C3) if and only if the
corresponding left form satisfies the following condition:

(LF3) F admits left universalizers, i.e. for any object Y of C, each W ∈ F−1(Y ) has a left
universalizer (which is written as lunF (W ) : LunF (W )→ Y ).

As (LF3) is invariant under isomorphism of left forms, we get that the bijection of Theo-
rem 2.1 restricts to a bijection between isomorphism classes of left forms satisfying (LF1),
(LF2), and (LF3), and reflexive and transitive cover relations admitting images. Combining
this bijection with the one established in [19] and recalled above, we get:

2.4. Theorem. For any category C, there is a bijection:

classes M of monomorphisms in C
satisfying (M1) and (M2)

≈
isomorphism classes of conormal
locally bounded above left forms

F over C admitting left universalizers

Under this bijection, an isomorphism class of a form F corresponds to the class of left
universalizers for F . In the other direction, a class M of monomorphisms corresponds to
the form of M-subobjects.

It is well known that for a class M of morphisms which satisfies (M0) and (M1), the
following conditions are equivalent:

• the codomain functor M → C is an opfibration (when M is a class of monomor-
phisms, this is the same as to say that the form of M-subobjects is a left form).

• (M2) holds.

Thus, the theorem above gives a characterization of left forms which are isomorphic to
forms of M-subobjects, where M is a class of monomorphisms which satisfies (M0) and
(M1): such left forms are precisely those left forms which are locally bounded above,
conormal, and admit left universalizers.

It is also well known that for a classM of monomorphisms satisfying (M1) and (M2),
we have:

• the form of M-subobjects is a right form (and hence a biform) if and only if all
pullbacks of morphisms along those in M exist (in which case M is even stable
under pullbacks);
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• the class M is part of a factorization system (E ,M) in the sense of P. Freyd and
G. M. Kelly [9] if and only if M is closed under composition.

This produces two important restrictions of the bijection described in Theorem 2.4: a
bijection between

• classes M of monomorphisms, such that C is finitely M-complete in the sense of
D. Dikranjan and W. Tholen [6],

• and isomorphisms classes of biforms over C which are locally bounded above, conor-
mal and admit left universalizers;

and a bijection between

• classes M of monomorphisms which are part of a factorization system,

• and isomorphisms classes of left forms over C which are locally bounded above,
conormal, admit left universalizers, and for which the class of left universalizers is
closed under composition.

As follows from Proposition 1.4.20 in [19], the requirement above that the class of left
universalizers is closed under composition can be replaced with the following condition:

(LF4) For any object Y of C, and for any W ∈ F−1(Y ), the change-of-base functor
F−1(LunF (W ))→ F−1(Y ) induced by lunF (W ) is full.

Note that when F is a biform, the condition above becomes equivalent to requiring that
left universalizers are injective, i.e. the left adjoint in the corresponding change-of-base
adjunction is injective on objects. In the language of the corresponding cover relation,
the condition above evidently translates to the following one:

(C4) Any C-image f is C-reflecting [19], i.e. for any v and v′, if fvCfv′ then vCv′.

Thus, we have:

2.5. Corollary. There is a bijection

classes M of
monomorphisms in C

which are part of a
factorization system (E ,M)

≈
isomorphism classes of conormal

locally bounded above left forms F over C
admitting left universalizers

which determine full change-of-base functors

given by assigning to a class M of monomorphisms the isomorphism class of the form of
M-subobjects.
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3. Biforms and ideals of null morphisms

A class N of morphisms in a category C satisfying the following conditions is called an
ideal of null morphisms [8, 21, 22]:

(LN0) If n ∈ N and the composite nt is defined, then nt ∈ N .

(RN0) If n ∈ N and the composite sn is defined, then sn ∈ N .

Note that (LN0) is dual to (RN0), i.e. the first one holds for a class N in C if and only if
the second one holds for the same class in Cop. Consider the following additional pair of
dual conditions on an ideal N :

(LN1) Any morphism g is part of an N -exact pair (g, f).

(RN1) Any morphism f is part of an N -exact pair (g, f).

When stated for the dual F op : Bop → Cop of a right form F , the conditions (LF1) and
(LF2) become:

(RF1) F is locally bounded below, i.e. in each fibre there is an initial object, that is, each
ordered set F−1(X) has a lower bound (written as 0X).

(RF2) F is normal, i.e. for any object X in C, and for any V ∈ F−1(X), there exists a
morphism f : X → Y in C such that we have f−1F (0Y ) = V .

We will now show that a biform F over a category C which is locally bounded (i.e. satisfies
both (LF1) and (RF1)) and binormal (i.e. satisfies both (LF2) and (RF2)) is determined
uniquely (up to an isomorphism of forms) by the class of those morphisms n : X → Y
in C for which the change-of-base adjunction is trivial (i.e. the change of base maps
nF : F−1(X)→ F−1(Y ) and n−1F : F−1(Y )→ F−1(X) are constant maps) — we will call
such morphisms F -trivial morphisms. Moreover, this gives a bijection between isomor-
phism classes of locally bounded binormal biforms over a category C and ideals N of null
morphisms in C for which every morphism B → C is part of a sequence A→ B → C → D
which is exact relative to the ideal.

3.1. Theorem. For any category C, there is a bijection:

ideals N of null morphisms in C
satisfying (LN1) and (RN1)

≈ isomorphism classes of binormal
locally bounded biforms F over C

Under this bijection, an isomorphism class of a biform F corresponds to the class of F -
trivial morphisms. In the other direction, an ideal N corresponds to the isomorphism
class of the form of N -exact pairs.
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Proof. Let F be a biform over C. It is clear that the classN = F ∗ of F -trivial morphisms
is an ideal of null morphisms. Note that when F is locally bounded, a composite fg of two
morphisms f : A→ B and g : B → C is F -trivial if and only if fF (1A) 6 g−1F (0C). When
in addition F is normal, this gives that for two morphisms f : A → B and f ′ : A′ → B
we have fF (1A) 6 f ′F (1A′

) if and only if for any morphism g : B → C we have: gf ′ ∈ F ∗
implies gf ∈ F ∗. So the cover relation C corresponding to F is uniquely determined by the
class of F -trivial morphisms, which after applying Theorem 2.1 implies that two locally
bounded normal biforms are isomorphic provided they determine the same class of trivial
morphisms. Next, we show that N = F ∗ satisfies (LN1) when F is locally bounded and
conormal. Given a morphism g : B → C, consider the morphism f : A → B such that
fF (1A) = g−1F (0C) (such f exists when the form is conormal). Then the composite gf
is F -trivial. Moreover, if u : A′ → B and v : B → C ′ are morphisms such that vf and
gu are F -trivial, then fF (1A) 6 v−1F (0C′

) and uF (1A′
) 6 g−1F (0C) which with the previous

equality together give uF (1A′
) 6 v−1F (0C′

) and hence vu is trivial. Thus the pair (g, f)
is F ∗-exact. This proves that the class N = F ∗ satisfies (LN1), as desired. Dually, the
class N = F ∗ satisfies (RN1) when F is locally bounded and normal. It is not difficult to
see that two isomorphic biforms will give rise to the same class of trivial morphisms. So,
thus far we have shown that the assignment F 7→ F ∗ determines a map from isomorphism
classes of locally bounded binormal biforms to ideals of null morphisms satisfying (LN1)
and (RN1), and that this map is injective.

It is easy to see that when a class N of morphisms satisfies (LN1), the form F = N∗ of
N -exact pairs is a right form. Dually, in view of Proposition 1.3, when N satisfies (RN1),
the same form is a left form. Further, once each identity morphism 1B : B → B is part of
an N -exact pair (g, 1B), and (LN0) holds, the form N∗ is locally bounded above. Dually,
once each identity morphism 1B : B → B is part of an N -exact pair (1B, f), and (RN0)
holds, the form N∗ is locally bounded below. So when N is an ideal of null morphisms
satisfying (LN1) and (RN1), we get thatN∗ is a biform which is locally bounded. Moreover,
in this case N∗ is also binormal, which can be easily verified.

For a locally bounded form F over C, a morphism n : X → Y in C is F -trivial if and
only if there exists a morphism b : 1X → 0Y in the domain of F such that F (b) = n.
This fact can be used to verify straightforwardly that for an ideal N of null morphisms
satisfying (LN1) and (RN1), the class of N∗-trivial morphisms coincides with the class N .

Consider now the following pair of dual conditions on a class N of morphisms in a
category C:

(LN2) N admits kernels, i.e. for any morphism g : B → C in C there exists a morphism
k : A → B such that gk ∈ N and k is terminal with this property, i.e. if gk′ ∈ N
for some morphism k′ : A′ → B then k′ = ku for a unique morphism u : A′ → A
(such k is called an N -kernel of g).

(RN2) N admits cokernels, i.e. for any morphism f : A→ B in C there exists a morphism
c : B → C such that cf ∈ N and c is initial with this property, i.e. if c′f ∈ N for
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some morphism c′ : B → C ′ then c′ = uc for a unique morphism u : C → C ′ (such
c is called an N -cokernel of f).

It is not difficult to see if k is an N -kernel of a morphism g, then the pair (g, k) is
N -exact, when N satisfies (LN0). So under (LN0), the condition (LN2) implies (LN1).
Dually, under (RN0), the condition (RN2) implies (RN1).

When N is the class of trivial morphisms in a locally bounded below normal biform
F , the class of N -kernels coincides with the class of left universalizers for F . In detail,
an N -kernel of a morphism g : B → C is the same as a left universalizer of g−1F (0C). This
and its dual observation allow us to restrict the bijection described in Theorem 3.1 to a
bijection:

ideals N
of null morphisms

in C admitting
kernels and cokernels

≈
isomorphism classes of binormal

locally bounded biforms F over C
admitting left and right universalizers

(1)

Now, as it follows by the remarks after Theorem 2.4 in Section 2, for an ideal of null
morphisms admitting kernels and cokernels, the class of kernels is closed under composi-
tion if and only if the corresponding biform admits injective left universalizers. A dual
result would state that for an ideal of null morphisms admitting kernels and cokernels,
the class of cokernels is closed under composition if and only if the corresponding biform
admits surjective right universalizers (i.e. the left adjoint in the change-of-base adjunction
induced by any right universalizer is surjective on objects).

Ideals N of null morphisms in a category C which admit kernels and cokernels, and
for which the classes of kernels and cokernels are closed under composition, are precisely
those for which the pair (C,N ) is an ex2-category in the sense of M. Grandis [10]. In fact,
in the definition given in [10], the class N is also required to be a closed ideal, i.e. any
morphism in N must factor through an identity morphism which belongs to N . However,
this is a consequence of the other requirements: consider a morphism n : L → M from
the class N . Let k : K → M be the kernel of 1M . Then n factors though 1K . To show
that 1K ∈ N , consider the composite kk′ where k′ is a kernel of 1K . Notice that kk′ ∈ N .
Then, 1M is a cokernel of kk′. Since the class of N -kernels is closed under composition,
the composite kk′ is a kernel of some morphism and hence of its cokernel 1M . But k is
also a kernel of 1M . This implies that k′ is an isomorphism, which forces 1K ∈ N .

Thus, we have:

3.2. Corollary. For any category C, there is a bijection (1) under which an isomor-
phism class of a biform F corresponds to the class of F -trivial morphisms. In the other
direction, an ideal N corresponds to the isomorphism class of the form F ofM-subobjects,
where M is the class of N -kernels. Furthermore, such F admits injective left universal-
izers and surjective right universalizers if and only if the pair (C,N ) is an ex2-category.

These results reveal a correspondence between a hierarchy of conditions on cover rela-
tions and a hierarchy of conditions on ideals of null morphisms encountered in the work
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of M. Grandis [10, 11, 12], which is given by the procedure of translating a condition on
a cover relation into the language of the form F of the cover relation, imposing also the
dual condition on the same form F , and then further translating the resulting condition
into the language of the ideal of F -trivial morphisms. This correspondence, to the extent
explored above, can be summarized by the following table:

Conditions on a
cover relation C:

Corresponding dual
conditions on a biform F :

Corresponding dual
conditions on an ideal N :

C is reflexive
and transitive

F is locally bounded
and binormal

N is an ideal
such that every morphism
B → C is part of an exact
sequence A → B → C → D

+ C admits images + left and right
universalizers exist

N is an ideal admitting
kernels and cokernels

+ C-images are C-reflecting
+ left universalizers are injective

and right universalizers are surjective
N makes an ex2-category

A different presentation of the same correspondence is to view the resulting classes of
ideals as classes of pairs of “dual structures”:

• For example, an ideal N which admits kernels and cokernels is the same as a pair
(E ,M), where M is a class of monomorphisms satisfying (M1) and (M2), and E
is a class of epimorphisms satisfying dual conditions, such that the form of M-
subobjects is isomorphic to the form of E-quotients (which is a form given by the
dual of the construction for the form of M-subobjects — construct the form of
E-subobjects in the dual category and then take the dual of the resulting form).
Above, “is the same as” means that there is a bijection between these two types
of structures; namely, for an ideal N the corresponding pair (E ,M) consists of the
class E of N -cokernels and the class M of N -kernels.

• Note that the “compatibility condition” on the pair (E ,M) which says that the form
of M-subobjects is isomorphic to the form of E-quotients, can be also presented in
the following elementary way: there is a relation R ⊆ E × M which induces a
bijection between the class of allM-subobjects and the class of all E-quotients, and
is such that for any diagram

A
m //

a

��

B
e //

s

��

C

c

��

A′
m′
// B′

e′
// C ′

of solid arrows where (e,m) ∈ R and (e′,m′) ∈ R, the dotted arrow a exists making
the left square commute, if and only if the dotted arrow c exists making the right
square commute. The pairs (e,m) in this relation are those which are N -exact for
the corresponding ideal N of null morphisms — these in turn are those morphisms
s for which the dotted arrows above always exist.
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• As already observed in the introduction, in a similar way an ex2-category structure
is the same as a pair of factorization systems such that the class E in the first fac-
torization system is a class of epimorphisms, the classM in the second factorization
system is a class of monomorphisms, and the form of M-subobjects for the second
factorization system is isomorphic to the form of E-quotients for the first one.
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[5] G. Brümmer, Topological categories, Topology and its Applications 18, 1984, 27-41.

[6] D. Dikranjan and W. Tholen, Categorical structure of closure operators, Mathematics and its
Applications 346, Kluwer Academic Publishers, 1995.

[7] H. Ehrbar and O. Wyler, On subobjects and images in categories, Technical Report, Department
of Mathematical Sciences, Carnegie Mellon University, 1968.

[8] C. Ehresmann, Sur une notion générale de cohomologie, C. R. Acad. Sci. Paris 259, 1964,
2050-2053.

[9] P. J. Freyd and G. M. Kelly, Categories of continuous functors I, Journal of Pure and Applied
Algebra 2, 1972, 169-191.

[10] M. Grandis, On the categorical foundations of homological and homotopical algebra, Cah. Top.
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