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A GALOIS THEORY FOR MONOIDS

Dedicated to Manuela Sobral on the occasion of her seventieth birthday

ANDREA MONTOLI, DIANA RODELO AND TIM VAN DER LINDEN

Abstract. We show that the adjunction between monoids and groups obtained via the
Grothendieck group construction is admissible, relatively to surjective homomorphisms,
in the sense of categorical Galois theory. The central extensions with respect to this
Galois structure turn out to be the so-called special homogeneous surjections.

Introduction

An action of a monoid B on a monoid X can be de�ned as a monoid homomorphism
B Ñ EndpXq, where EndpXq is the monoid of endomorphisms of X. These actions
were studied in [15], where it is shown that they are equivalent to a certain class of
split epimorphisms, called Schreier split epimorphisms in the recent paper [13]. Some
properties of Schreier split epimorphisms, as well as the closely related notions of special
Schreier surjection and Schreier re�exive relation, were then studied in [2] and [3], where
the foundations for a cohomology theory of monoids are laid. Many typical properties
of the category of groups, such as the Split Short Five Lemma or the fact that any
internal re�exive relation is transitive, remain valid in the category of monoids when,
in the spirit of relative homological algebra, those properties are restricted to Schreier
split epimorphisms and Schreier re�exive relations. When an action B Ñ EndpXq factors
through the group AutpXq of automorphisms of X, the corresponding split epimorphism
is called homogeneous [2]. Some properties of homogeneous split epimorphisms and of
the related notions of special homogeneous surjection and homogeneous re�exive relation
were also studied in [2] and [3].
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The aim of the present paper is to approach the concept of homogeneous split epi-
morphism from the point of view of categorical Galois theory [6, 7]. Recall that the
classical Grothendieck group or group completion construction [10, 11, 12] gives an ad-
junction between the categories Mon of monoids and Gp of groups, which is relevant for
instance in K-theory, where it is used in the de�nition of K0. We prove that this ad-
junction is admissible in the sense of categorical Galois theory, when it is considered with
respect to the class of surjective homomorphisms both in Mon and in Gp. We further
show that the central extensions with respect to this adjunction are the special homogen-
eous surjections. This gives a positive answer to the question whether homogeneous split
epimorphisms can be characterised in a way which does not refer to the underlying split
epimorphism of sets.

The paper is organised as follows. In Section 1 we recall some basic notions of cate-
gorical Galois theory. In Section 2 we prove that the Grothendieck group adjunction is
part of an admissible Galois structure (Theorem 2.2). In Section 3 we recall the de�ni-
tions of Schreier split epimorphism and homogeneous split epimorphism, special Schreier
surjection and special homogeneous surjection together with some of their properties. In
Section 4 we show that the central extensions with respect to the Galois structure under
consideration are exactly the special homogeneous surjections (Theorem 4.3).

1. Galois structures

We recall the de�nition of Galois structure and the concepts of trivial, normal and central
extension arising from it, as introduced in [6, 7, 8]. For the sake of simplicity we restrict
ourselves to the context of Barr-exact categories [1].

1.1. Definition. A Galois structure Γ � pC ,X , H, I, η, ε,E ,F q consists of an
adjunction

C
I ,2
K X
H
lr

with unit η : 1C ñ HI and counit ε : IH ñ 1X between Barr-exact categories C and X ,
as well as classes of morphisms E in C and F in X such that:

(1) E and F contain all isomorphisms;

(2) E and F are pullback-stable;

(3) E and F are closed under composition;

(4) HpF q � E ;

(5) IpE q � F .

We will follow [7] and call the morphisms in E and F fibrations.
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1.2. Definition. A trivial extension is a �bration f : AÑ B in C such that the
square

A
ηA ,2

f

��

HIpAq

HIpfq
��

B ηB
,2 HIpBq

is a pullback. A central extension is a �bration f whose pullback p�pfq along some
�bration p is a trivial extension. A normal extension is a �bration such that its kernel
pair projections are trivial extensions.

It is well known and easy to see that trivial extensions are always central extensions
and that any normal extension is automatically central.

Given an object B in C we consider the induced adjunction

pE Ó Bq
IB ,2
K pF Ó IpBqq,
HB
lr

where we write pE Ó Bq for the full subcategory of the slice category pC Ó Bq determined
by morphisms in E ; similarly for pF Ó IpBqq. Here IB is the restriction of I, and HB

sends a �bration g : X Ñ IpBq to the pullback

A ,2

HBpgq

��

HpXq

Hpgq
��

B ηB
,2 HIpBq

of Hpgq along ηB.

1.3. Definition. A Galois structure Γ � pC ,X , H, I, η, ε,E ,F q is said to be admissi-
ble when all functors HB are full and faithful.

1.4. Proposition. [9, Proposition 2.4] If Γ is admissible, then I : C Ñ X preserves
pullbacks along trivial extensions. In particular, the trivial extensions are pullback-stable,
so that every trivial extension is a normal extension.

2. The Grothendieck group of a monoid

The Grothendieck group (or group completion) of a monoid pM, �, 1q is given by
a group GppMq together with a monoid homomorphism M Ñ GppMq which is universal
with respect to monoid homomorphisms from M to groups [10, 11, 12]. More precisely,
we have

GppMq �
GpFpMq

NpMq
,
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where GpFpMq denotes the free group onM and NpMq is the normal subgroup generated
by elements of the form rm1srm2srm1 �m2s

�1 (from now on, we simply write m1m2 instead
of m1 �m2). This gives us an equivalence relation � on GpFpMq generated by rm1srm2s �
rm1m2s with equivalence classes rm1srm2s � rm1m2s. Thus, an arbitrary element in
GppMq�an equivalence class of words�can be represented by a word of the form

rm1srm2s
�1rm3srm4s

�1 � � � rmns
ιpnq or rm1s

�1rm2srm3s
�1rm4s � � � rmns

ιpnq,

where ιpnq � �1, n P N, m1, . . . , mn PM and no further cancellation is possible.
Let Mon and Gp represent the categories of monoids and of groups, respectively. The

group completion of a monoid determines an adjunction

Mon
Gp ,2
K Gp,

Mon
lr (A)

where Mon is the forgetful functor. To simplify notation, we write GppMq instead of
MonGppMq when referring to the monoid structure of GppMq. The counit is ε � 1Gp and
the unit is de�ned, for any monoid M , by

ηM : M Ñ GppMq : m ÞÑ rms.

2.1. Remark. It is well known that in general ηM is neither surjective nor injective. For
example:

� The additive monoid of natural numbers is such that ηN : NÑ Z is an injection. In
fact, ηM is injective whenever M is a monoid with cancellation.

� The monoid M � pt0, 1u, �, 1q has a trivial Grothendieck group and therefore ηM is
surjective.

� The product N � M , for M as above, is such that GppN � Mq � Z (in fact, it
is not di�cult to see that the group completion functor preserves products) and
ηN�M : N�M Ñ Z is neither surjective nor injective.

By choosing the classes of morphisms E and F to be the surjections in Mon and Gp,
respectively, we obtain a Galois structure

ΓMon � pMon,Gp,Mon,Gp, η, ε,E ,F q.

Since this is the only Galois structure we shall consider in detail, without further mention
we take all normal, central and trivial extensions in this paper with respect to ΓMon.
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2.2. Theorem. The Galois structure ΓMon is admissible.

Proof. For any monoid M , we must prove that the functor

MonM : pF Ó GppMqq Ñ pE ÓMq

is fully faithful. Given a morphism α : pA, fq Ñ pB, gq in pF Ó GppMqq, its image through
MonM is de�ned by the universal property of the front pullback below:

M �GppMq A
πA ,2

MonM pfq

����

MonM pαq

!)

A

f

����

α

!)
M �GppMq B

MonM pgq

|� |�

πB ,2 B

g

|� |�

M ηM
,2 GppMq.

(B)

First we prove that MonM is faithful. Consider morphisms α, β : pA, fq Ñ pB, gq such
that MonMpαq � MonMpβq. For any a P A, we prove that αpaq � βpaq by induction on
the length n (supposing that no cancellations are possible) of the word that represents
the class fpaq.

If fpaq � rms, then pm, aq PM �GppMq A and

MonMpαqpm, aq � MonMpβqpm, aq

implies that αpaq � βpaq. If fpaq � rms�1, then fpa�1q � rms and we �nd αpa�1q �
βpa�1q as in the previous case; hence αpaq � βpaq.

Suppose that αpa1q � βpa1q for those a1 P A which have fpa1q represented by a word of
length n� 1 or smaller. Suppose that fpaq is represented by a word of length n, n ¥ 2.
It can be written as the product (= concatenation) of a word of length one and a word of
length n� 1. By the surjectivity of f , their corresponding classes can be written as fpa1q
and fpa�1

1 aq, for some a1 P A. Then

αpaq � αpa1qαpa
�1
1 aq � βpa1qβpa

�1
1 aq � βpaq

by the induction hypothesis.
Now we have to show that MonM is full. The proof goes in two steps: �rst a proof

by induction in the case when M is a free monoid (Lemma 2.3 below), then an extension
from the free case to the general case (the subsequent Lemma 2.4).
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2.3. Lemma. The functor MonM is full for all free monoids M .

Proof. Let M be a free monoid. To simplify notation, we identify the classes in GppMq
with their representatives. Consider group surjections f and g as in Diagram (B) and a
monoid homomorphism

γ : pM �GppMq A,MonMpfqq Ñ pM �GppMq B,MonMpgqq.

We de�ne a group homomorphism α : pA, fq Ñ pB, gq as follows. For any a P A, we de�ne
αpaq by decomposing a into a product of elements in the image of πA. The main di�culty
lies in proving that the result is independent of the chosen decomposition.

If fpaq � rms for some m PM , then pm, aq PM �GppMq A and we de�ne

αpaq� πBpγpm, aqq.

If fpaq � rms�1, then fpa�1q � rms and we de�ne

αpaq� πBpγpm, a
�1qq�1.

Suppose that a � a1a
�1
2 � � � a

ιpnq
n such that fpaiq � rmis, with mi P M , and n is the

smallest number for which such a decomposition in GppMq exists. Then we must put

αpaq � πBpγpm1, a1qqπBpγpm2, a2qq
�1 � � � πBpγpmn, anqq

ιpnq; (C)

the case a � a�1
1 a2 � � � a

ιpnq
n can be treated similarly.

To prove that α is a homomorphism, it now su�ces to show that it is well de�ned.
That is to say, if a � x1x

�1
2 � � � x

ιpkq
k such that fpxiq � rlis, with li P M , then (C) must

agree with
πBpγpl1, x1qqπBpγpl2, x2qq

�1 � � � πBpγplk, xkqq
ιpkq.

Since M is free, and hence the group GppMq is free, if the words

rm1srm2s
�1 � � � rmns

ιpnq and rl1srl2s
�1 � � � rlks

ιpkq

are both of minimal length, then k � n and li � mi. Thus we only have to prove the
result for decompositions of equal length mapping down to the same word in GppMq. We
do this by induction on n.

Case n � 1. Suppose that a1 � a � x1 and fpa1q � rm1s � fpx1q for some m1 P M .
Then obviously αpa1q � αpx1q. The same happens if a1 � a � x1 and fpa1q � rm1s

�1 �
fpx1q for some m1 PM .

More generally, let a, x P A be such that fpaq � rms � fpxq for some m P M . Then
fpx�1aq � r1s, so

αpaq � πBpγpm, aqq � πBpγpm,xqqπBpγp1, x
�1aqq � αpxqαpx�1aq

which implies that
αpx�1aq � αpxq�1αpaq.
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This formula will be useful in the sequel of the proof.
Case n � 2. Now consider a P A such that a1a

�1
2 � a � x1x

�1
2 and fpaiq � rmis �

fpxiq with mi PM . Then αpx�1
i aiq � αpxiq

�1αpaiq by the formula above. Hence x�1
1 a1 �

x�1
2 a2 implies αpx1q

�1αpa1q � αpx2q
�1αpa2q, so that

αpa1qαpa2q
�1 � αpx1qαpx2q

�1.

The case in which a�1
1 a2 � a � x�1

1 x2 and fpaiq � rmis � fpxiq is similar.
Case n � 3. Suppose a1a

�1
2 a3 � a � x1x

�1
2 x3 such that fpaiq � rmis � fpxiq, with

mi PM . Then
x�1

1 a1a
�1
2 a3 � x�1

2 x3

gives
αpa2a

�1
1 x1q

�1αpa3q � αpx2q
�1αpx3q

because they both map to the same word rm2s
�1rm3s. Similarly,

a1a
�1
2 � x1x

�1
2 x3a

�1
3

gives
αpa1qαpa2q

�1 � αpx1qαpa3x
�1
3 x2q

�1

because they both map to rm1srm2s
�1. As a consequence, the equality

a3x
�1
3 x2 � a2a

�1
1 x1

above the word rm2s of length one gives

αpa3x
�1
3 x2q � αpa2a

�1
1 x1q

so that αpx1q
�1αpa1qαpa2q

�1 � αpx2q
�1αpx3qαpa3q

�1 and thus

αpa1qαpa2q
�1αpa3q � αpx1qαpx2q

�1αpx3q.

Again, the case a�1
1 a2a

�1
3 � a � x�1

1 x2x
�1
3 can be treated analogously.

Case n ¥ 4. Suppose that the result holds for all decompositions which map down to
words of minimal length n� 1 or shorter in GppMq. Suppose that a1a

�1
2 a3 � � � a

ιpnq
n � a �

x1x
�1
2 x3 � � � x

ιpnq
n such that fpaiq � rmis � fpxiq, with mi PM . Then

px�1
1 a1a

�1
2 qa3 � � � a

ιpnq
n � x�1

2 x3 � � � x
ιpnq
n

both map to rm2s
�1 � � � rmns

ιpnq, so by the induction hypothesis we �nd

αpa2a
�1
1 x1q

�1αpa3q � � �αpanq
ιpnq � αpx2q

�1αpx3q � � �αpxnq
ιpnq.

Furthermore, αpa2a
�1
1 x1q � αpa2qαpa1q

�1αpx1q as shown above (case n � 3) so that

αpa1qαpa2q
�1αpa3q � � �αpanq

ιpnq � αpx1qαpx2q
�1αpx3q � � �αpxnq

ιpnq.

The case a�1
1 a2a

�1
3 � � � a

ιpnq
n � a � x�1

1 x2x
�1
3 � � � x

ιpnq
n being similar, this concludes the proof.
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2.4. Lemma. The functor MonM is full for all monoids M .

Proof. As in the previous lemma, we simplify notation by identifying the classes in
GppMq with their representatives.

Consider group surjections f and g as in Diagram (B) as well as a group homomorph-
ism

γ : pM �GppMq A,MonMpfqq Ñ pM �GppMq B,MonMpgqq.

We cover the monoid M with the free monoid FpMq on M , then apply the Grothendieck
group functor to obtain the following commutative diagram with exact columns:

KerprMq_��

��

,2 NpMq
_��

��
FpMq ,2

ηFpMq ,2

rM

����

GpFpMq

qM
_��

M ηM
,2 GppMq.

We pull back MonMpfq, MonMpgq and the morphism γ between them along the surjection
rM . We thus obtain a diagram

FpMq �GppMq A

r�M pMonM pfqq

����

rM�GppMq1A ,2,2

r�M pγq

$,

M �GppMq A
πA ,2

MonM pfq

����

γ

$,

A

f

����

FpMq �GppMq B

r�M pMonM pgqq

x� x�

rM�GppMq1B ,2,2 M �GppMq B

MonM pgq

x� x�

πB ,2 B

g

x� x�

FpMq rM
,2,2 M ηM

,2 GppMq.

Since ηMrM � qMηF pMq, the left hand side triangle of this diagram can also be obtained
by taking the pullbacks of f and g along qMηF pMq:

FpMq �GppMq A

r�M pMonM pfqq

����

,2
ηFpMq�GppMq1A ,2

r�M pγq

$,

GpFpMq �GppMq A
pA � ,2

q�M pfq

����

β

$,

A

f

����

FpMq �GppMq B

r�M pMonM pgqq

x� x�

,2
ηFpMq�GppMq1B ,2 GpFpMq �GppMq B

q�M pgq

x� x�

pB � ,2B

g

x� x�

FpMq ,2 ηFpMq

,2 GpFpMq qM

� ,2GppMq.

Since the functor MonFpMq is full by Lemma 2.4, we �nd a morphism β given by the dotted
arrow above. It su�ces to show that β keeps the elements of the kernel NpMq (of qM ,
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thus also) of pA and pB �xed, because then it induces the needed α : pA, fq Ñ pB, gq by
the universal property of pA as a cokernel of its kernel.

The group NpMq is generated by words rm1srm2srm1m2s
�1 as a normal subgroup of

GpFpMq. Hence it su�ces to prove for elements of the type

prm1srm2srm1m2s
�1, 1q

in GpFpMq �GppMq A that

βprm1srm2srm1m2s
�1, 1q � prm1srm2srm1m2s

�1, 1q P GpFpMq �GppMq B.

Since f is a surjection, there exists an element a P A such that

prM �GppMq 1Aqprm1srm2s, aq � pm1m2, aq � prM �GppMq 1Aqprm1m2s, aq.

For some b P B we have γpm1m2, aq � pm1m2, bq, so using the commutativity of the
second diagram, we see that

r�Mpγqprm1srm2s, aq � prm1srm2s, bq

and
r�Mpγqprm1m2s, aq � prm1m2s, bq.

On the other hand, using the commutativity of the third diagram we �nd

βprm1srm2s, aq � βpηFpMq �GppMq 1Aqprm1srm2s, aq

� pηFpMq �GppMq 1Bqpr
�
Mpγqprm1srm2s, aqq

� prm1srm2s, bq

and, similarly, βprm1m2s, aq � prm1m2s, bq, for some b P B as above. Since β is a group
homomorphism, we obtain

βprm1srm2srm1m2s
�1, 1q � βprm1srm2s, aqβprm1m2s, aq

�1

� prm1srm2s, bqprm1m2s
�1, b�1q

� prm1srm2srm1m2s
�1, 1q

which concludes the proof.

2.5. Remark.We can restrict the group completion to commutative monoids: it is easily
seen that then ΓMon restricts to an admissible Galois structure

ΓCMon � pCMon,Ab,CMon,Gp|CMon, η
1, ε1,E 1,F 1q

induced by the (co)restriction

CMon
Gp|CMon,2

K Ab,
CMon
lr

of the adjunction (A) to commutative monoids and abelian groups.

We end this section with an example showing that the adjunction (A) is not semi-
left-exact [5]: it is not admissible with respect to all morphisms, instead of just the
surjections [4].
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2.6. Example. Consider ηN2 : N2 Ñ Z
2 with morphisms f and g as in Diagram (B),

where A is the subgroup of Z2 generated by p1,�1q, f is determined by fp1,�1q � p1,�1q
and

g : Z3 Ñ Z
2 : pk, l,mq ÞÑ pk, lq.

Then N2 �Z2 A � 0 while N2 �Z2 Z
3 � N

2 � Z, so that the functor MonM is not faithful:
it maps, for instance, both AÑ B : p1,�1q ÞÑ p1,�1, 0q and p1,�1q ÞÑ p1,�1, 1q to the
zero morphism 0 Ñ N

2 � Z.

3. Schreier split epimorphisms and homogeneous split epimorphisms

In this section we recall some de�nitions and results from [2] and [3]. We work in the
category Mon of monoids.

3.1. Definition. Consider a split epimorphism pf, sq with its kernel:

N � ,2
k
,2 X

f ,2,2 Y.
s

lr (D)

It is called a Schreier split epimorphism when, for any x P X, there exists a unique
n P N such that x � n sfpxq.

Note that when we say �split epimorphism� we consider the chosen splitting as part of
the structure; and for the sake of simplicity, we take canonical kernels�so N is a subset
of X.

3.2. Definition. The split epimorphism (D) is said to be right homogeneous when,
for every element y P Y , the function µy : N Ñ f�1pyq de�ned through multiplication
on the right by spyq, so µypnq � n spyq, is bijective. Similarly, by duality, we can de�ne
a left homogeneous split epimorphism: now the function N Ñ f�1pyq : n ÞÑ spyqn
must be a bijection for all y P Y . A split epimorphism is said to be homogeneous when
it is both right and left homogeneous.

3.3. Proposition. [2, Propositions 2.3 and 2.4] Consider a split epimorphism pf, sq as
in (D). The following statements are equivalent:

(i) pf, sq is a Schreier split epimorphism;

(ii) there exists a unique function q : X Ñ N such that qpxqsfpxq � x, for all x P X;

(iii) there exists a function q : X Ñ N such that qpxqsfpxq � x and qpn spyqq � n, for
all n P N , x P X and y P Y ;

(iv) pf, sq is right homogeneous.
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3.4. Definition. Given monoids Y and N , an action of Y on N is a monoid homo-
morphism ϕ : Y Ñ EndpNq, where EndpNq is the monoid of endomorphisms of N .

Actions correspond to Schreier split epimorphisms via a semidirect product construc-
tion:

3.5. Semidirect products. It is shown in [13] that any Schreier split epimorphism (D)
corresponds to an action ϕ of Y on N de�ned by

ϕpyqpnq � yn � qpspyq nq

for y P Y and n P N . Thus pf, sq is isomorphic, as a split epimorphism, to

N
x1,0y

,2 N �ϕ Y
πY ,2 Y,
x0,1y
lr

where N �ϕ Y is the semidirect product of N and Y with respect to ϕ: the cartesian
product of sets N � Y equipped with the operation

px1, y1q � px2, y2q � px1 ϕy1px2q, y1y2q,

where ϕy1 � ϕpy1q P AutpNq. See [13], [2] or Chapter 5 in [3] for more details.

3.6. Proposition. [2, Proposition 3.8] A Schreier split epimorphism (D) is homogen-
eous if and only if the corresponding action ϕ : Y Ñ EndpNq factors through the group
AutpNq of automorphisms of N .

3.7. Lemma. [2, Lemma 4.1] Consider the morphism of Schreier split epimorphisms

N

ru
��

� ,2
k
,2 X

u
��

f ,2,2qlr Y
s

lr

v
��

N 1 � ,2
k1
,2 X 1

q1lr f 1 ,2,2 Y 1

s1
lr

and their kernels, and the restriction ru of u to N . Then the left hand side square consisting
of the functions q and q1 also commutes: q1u � ruq.

This lemma has the following useful consequence.

3.8. Corollary. Given a morphism of Schreier split epimorphisms as in Lemma 3.7,
the homomorphism ru preserves the action of the object Y on N : for all y P Y and n P N ,

rupynq � vpyq
rupnq.

Proof. rupynq � ruqpspyq nq � q1upspyq nq � q1puspyq upnqq � q1ps1vpyq rupnqq � vpyq
rupnq
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We now extend these concepts to surjections which are not necessarily split.

3.9. Definition. Given a surjective homomorphism g of monoids and its kernel pair

Eqpgq
π1 ,2

π2
,2X∆lr

g ,2,2 Y, (E)

g is called a special Schreier surjection when pπ1,∆q is a Schreier split epimorphism.
It is called a special homogeneous surjection when pπ1,∆q is a homogeneous split
epimorphism.

As a consequence of Theorem 5.5 in [2], if g is a special Schreier surjection, then its
kernel is necessarily a group.

3.10. Remark. The name Schreier extension was used in [16, 14] to describe a di�erent,
but closely related concept.

3.11. Remark. A special Schreier (resp. homogeneous) surjection which is a split epi-
morphism is always a Schreier (resp. homogeneous) split epimorphism. Yet a Schreier
(resp. homogeneous) split epimorphism is not necessarily a special Schreier (resp. ho-
mogeneous) surjection. Indeed, according to Proposition 3.1.12 in [3], a Schreier (resp.
homogeneous) split epimorphism is a special Schreier (resp. homogeneous) surjection if
and only if its kernel is a group. In fact, by Proposition 2.3.4 in [3], taking the kernel pair
of a Schreier split epimorphism pf, sq as in (D), we do obtain a Schreier split epimorphism
pπ1, xsf, 1Xyq. Nevertheless, the split epimorphism pπ1,∆q need not be Schreier.

As a consequence of Theorem 5.5 in [2] and of the remark above we have:

3.12. Corollary. A surjective homomorphism g as in (E) is a special Schreier (resp.
special homogeneous) surjection if and only if the kernel pair projection π1 is a special
Schreier (resp. special homogeneous) surjection.

3.13. Proposition. [3, Proposition 7.1.4] Special Schreier and special homogeneous sur-
jections are stable under products and pullbacks.

3.14. Proposition. [3, Proposition 7.1.5] Given any pullback

X

f
����

g ,2,2 X 1

f 1

����

Y
h
,2,2 Y 1

with g and h surjective homomorphisms, if f is a special Schreier (resp. special homogen-
eous) surjection, then so is f 1.

3.15. Proposition. [2, Proposition 3.4] Any split epimorphism (D) such that Y is a
group is a homogeneous split epimorphism.
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3.16. Remark. According to the proposition above and to Remark 3.11, a split epi-
morphism (D) such that Y is a group is a special homogeneous surjection if and only if
its kernel N is a group. Furthermore, in that case also X is a group [3, Corollary 2.2.5].
Conversely, every surjective homomorphism between groups is a special homogeneous
surjection.

4. Normal extensions and central extensions

In this section we characterise the trivial split extensions, the central and the normal
extensions in the Galois structure ΓMon. The central extensions turn out to be precisely
the special homogeneous surjections, while a split epimorphism of monoids is a trivial
extension if and only if it is a special homogeneous surjection. This gives a characterisation
which does not refer to the underlying split epimorphism of sets: De�nition 3.2 in terms
of elements, Proposition 3.3 where the splitting q is a function rather than a morphism
of monoids.

4.1. Lemma. Any morphism of homogeneous split epimorphisms and their kernels

N

ru
��

� ,2 k ,2 X

u
��

f ,2,2 Y
s

lr

ηY
��

N 1 � ,2
k1
,2 X 1

f 1 ,2,2 GppY q
s1
lr

factors into the composite

N � ,2 k ,2 X

ηY
��

f ,2,2 Y
s

lr

ηY
��

N

ru

��

� ,2
k2
,2 X2

f2 ,2,2

u

��

GppY q
s2
lr

N 1 � ,2
k1
,2 X 1

f 1 ,2,2 GppY q
s1
lr

of morphisms of homogeneous split epimorphisms and their kernels, where ϕ is as in
Proposition 3.6 and X2 � N �ϕ GppY q for ϕ : GppY q Ñ AutpNq, the unique group ho-
momorphism satisfying ϕ � ϕηY .

Proof. As mentioned above, we have X � N �ϕ Y for ϕ : Y Ñ AutpNq. By adjointness,
this monoid morphism ϕ gives rise to a unique group homomorphism ϕ : GppY q Ñ AutpNq
for which ϕηY � ϕ. Note that ϕ is necessarily given by

ϕpry1sry2s�1 � � � rynsιpnqq � ϕy1ϕ
�1
y2
� � �ϕιpnqyn P AutpNq (F)

and
ϕpry1s�1ry2s � � � rynsιpnqq � ϕ�1

y1
ϕy2 � � �ϕ

ιpnq
yn P AutpNq. (G)
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Via the functoriality of the semidirect product construction this already yields the upper
part of the diagram, where ηY � 1N � ηY . This leaves us with �nding u : X2 Ñ X 1.

The needed morphism u : N �ϕ GppY q Ñ N 1 �ψ GppY q, where ψ is the action for
which X 1 � N 1 �ψ GppY q, is induced once we prove that ru is a morphism of GppY q-
actions. More precisely, we have to show that

rupϕzpnqq � ψzprupnqq

for all z P GppY q and n P N . Corollary 3.8 and the fact that ϕ � ϕηY tell us precisely
that this equality holds for generators z � ηY pyq of GppY q, so it su�ces to check that it
extends to all elements of GppY q. This needs a straightforward veri�cation based on (F)
and (G).

4.2. Proposition. Consider a split epimorphism pf, sq as in (D). The following state-
ments are equivalent:

(i) f is a trivial extension;

(ii) f is a special homogeneous surjection.

Proof. (i) ñ (ii) If f is a trivial extension, then by de�nition the diagram

X
f ,2,2

ηX

��

Y
s

lr

ηY

��
GppXq

Gppfq ,2,2 GppY q
Gppsq
lr

(H)

is a pullback. By Remark 3.16, the group homomorphism Gppfq is a special homogeneous
surjection; hence so is f by Proposition 3.13.

(ii) ñ (i) Given a split epimorphism pf, sq which is a special homogeneous surjection,
we have to show that the square (H) is a pullback. Taking kernels we obtain the morphism
of special homogeneous surjections and their kernels

N

�ηX
��

� ,2 k ,2 X

ηX
��

f ,2,2 Y
s

lr

ηY
��

K � ,2
k1
,2 GppXq

Gppfq ,2,2 GppY q
Gppsq
lr

where, in particular, the kernel N of f is a group by Remark 3.11. By Theorem 2.3.7
in [3], the square (H) is a pullback precisely when �ηX is an isomorphism.
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Lemma 4.1 gives us the diagram of solid arrows

N � ,2 k ,2 X

ηY
��

f ,2,2 Y
s

lr

ηY
��

N

�ηX

��

� ,2 k
2
,2 X2

f2 ,2,2

ηX

��

GppY q
s2

lr

K � ,2
k1
,2 GppXq

g

LR

Gppfq ,2,2 GppY q.
Gppsq
lr

On the other hand, since X2 is a group (thanks to Remark 3.16), the universal property
of GppXq makes ηY induce a unique group homomorphism g : GppXq Ñ X2 such that
gηX � ηY . Note that this g is actually a morphism of split epimorphisms:

f2gηX � f2ηY � ηY f � GppfqηX

so that f2g � Gppfq by the universal property of ηX , while

gGppsqηY � gηXs � ηY s � s2ηY

and thus gGppsq � s2.
Finally, we have ηXg � 1GppXq since ηXgηX � ηXηY � ηX . On the other hand,

using Lemma 2.1.6 in [3]�which says that Schreier split epimorphisms are strongly split
epimorphisms, that is, the kernel and the section are jointly strongly epimorphic�from

gηXk
2 � gηXηY k � gηXk � ηY k � k2 and gηXs

2 � gGppsq � s2

we conclude that gηX � 1X2 . In particular, the arrow �ηX is an isomorphism, hence the
square (H) is a pullback.

4.3. Theorem. For a surjective homomorphism of monoids g, the following statements
are equivalent:

(i) g is a central extension;

(ii) g is a normal extension;

(iii) g is a special homogeneous surjection.

Proof. Consider a surjective homomorphism and its kernel pair (E). Then g is a normal
extension

(1.2)
ô π1 is a trivial extension

(4.2)
ô π1 is a special homogeneous surjection

(3.12)
ô g is a special homogeneous surjection.
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A normal extension is always a central extension by de�nition. To prove that (i) implies
(iii), let us suppose that g is a central extension. Then there exists a �bration p such that
p�pgq is a trivial extension, which makes it a normal extension by Proposition 1.4, hence a
special homogeneous surjection by (ii) ñ (iii). Since p is a surjective homomorphism, we
can apply Proposition 3.14 to conclude that g is a special homogeneous surjection, too.

4.4. What about special Schreier surjections? A natural question that arises is,
whether the special Schreier surjections admit a similar characterisation. More precisely,
does the re�ection (A) factorise in such a way that the special Schreier surjections become
the central extensions with respect to this new adjunction? As explained in the proof of
Proposition 4.2, any split epimorphism of groups is necessarily special homogeneous, which
implies that so are the central extensions. Hence we would need a re�ective subcategory X
of Mon in which all spit epimorphisms are Schreier split epimorphisms. By Corollary 3.1.7
in [3] though, this would mean that X is contained in the category of groups, which
defeats the purpose.
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